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Abstract

A canonical form is derived for systems described by an mx{ transfer
function matrix G(s) and applied to the calculation of system
transmission zeros, the feedback control of multivariable second-

order type systems and pole allocation using output feedback.
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1. Introduction

In a recent paper (Owens, 1975) the concept of the classical first
order lag has been extended to the multivariable case by defining an mxm

multivariable first order system of the form
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where {aij }1£jsm is a set of dyads satisfyipng the constraint that
= . . + ® " .
bj = b2 implies aij = 3262 . Closed-form solutions have been derived

(Owens, 1975) for proportional and proportional plus integral unity
negative feedback controllers which are direct multivariable generalizations
of the equivalent classical controllers. The proposed controllers are
capable of producing a feedback system with arbitrarily fast response
speeds and small interaction effects.

In classical theory, first order lags can be regarded as fundamental
building blocks for the construction of the system dynamic behaviour.
For example, if g(s) is a non-zero scalar transfer function with pole

set {pj}ls' and zeros {zj}1€j<m_(m<n), then if k = n-m,

jsn <
(k) = 1im Skg(s) #0 . (2)
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g(s) ={ 1 (s-p.) 1l + h(s)) . (3)
j=t

where h(s) is a strictly proper transfer function with pole set {p.} . .
] k<jsn
Quite obviously the decomposition can be extended by application of the
same approach to h(s). Such decompositions are useful in the classifica-
tion of linear systems according to rank and type, the characterization of

zeros as due to parallel branches in the system, and in many cases can be

used as the basis of a simple model reduction procedure.



