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Proof of Heisenberg’s error-disturbance relation
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While the slogan “no measurement without disturbance” has established itself under the name
Heisenberg effect in the consciousness of the scientifically interested public, a precise statement of this
fundamental feature of the quantum world has remained elusive, and serious attempts at rigorous
formulations of it as a consequence of quantum theory have led to seemingly conflicting preliminary
results. Here we show that despite recent claims to the contrary [Rozema et al, Phys. Rev. Lett.

109, 100404 (2012)], Heisenberg-type inequalities can be proven that describe a trade-off between
the precision of a position measurement and the necessary resulting disturbance of momentum
(and vice versa). More generally, these inequalities are instances of an uncertainty relation for the
imprecisions of any joint measurement of position and momentum.

PACS numbers: 03.65.Ta, 03.65.Db, 03.67.-a

In spite of their important role since the very be-
ginning of quantum mechanics, uncertainty relations
have recently become the subject of active scientific de-
bates. On one hand, entropic versions of the information-
disturbance trade-off [1] have become an important tool
in security proofs [2] for continuous variable cryptogra-
phy. On the other hand there were widely publicized
[3] claims of a refutation [4–6] of the error-disturbance
uncertainty relations heuristically claimed by Heisenberg
[7]. A review of the literature on uncertainty relations is
given in [8].

Heisenberg’s 1927 paper [7] introducing the uncer-
tainty relations is one of the key contributions to early
quantum mechanics. It is part of virtually every quan-
tum mechanics course, almost always in the version for-
warded by Kennard [9] and Robertson [10]. What is
often overlooked, however, is that this popular version
is only one way of making the idea of uncertainty pre-
cise. The original paper begins with a famous discussion
of the resolution of microscopes, in which the accuracy
(resolution) of an approximate position measurement is
related to the disturbance of the particle’s momentum.
This situation is no way covered by the standard rela-
tions, since in an experiment concerning the Kennard-
Robertson inequality no particle meets with both a posi-
tion and a momentum measurement. Heisenberg’s semi-
classical discussion has no immediate translation into the
modern quantum formalism, particularly since the mo-
mentum disturbance prima facie involves the comparison
of two non-commuting quantities, the momentum before
and after the measurement. Such a translation does re-
quire some careful conceptual work, and one can get it
wrong. This is shown by the example of Ozawa [4], who
defines a relation and claims it to be a rigorous version
of Heisenberg’s ideas, only to show that it fails to hold in
general. It is merely this failure which has recently been
verified experimentally [5, 6].

In contrast, the purpose of this note is to describe and
prove an inequality of the classic form

(∆Q)(∆P ) ≥
~

2
, (1)

in which, however, the quantities ∆Q and ∆P are not

given by the variances of the position and momentum
distribution in the same state, as in the textbook inequal-
ity. Instead, following closely the suggestion of Heisen-
berg, they are explicitly defined figures of merit for a
microscope-like measurement scenario: the accuracy ∆Q
of a position measurement and the momentum distur-
bance ∆P incurred by it. Moreover, the inequality is
sharp, and we will describe explicitly the cases of equal-
ity. We believe that the definitions and results are sim-
ple enough to use in a basic quantum mechanics course,
although the full proof uses some tools beyond such a
course.

The main progress over earlier work [11] is a simpler
definition of the ∆ quantities, using the idea of calibra-
tion [12]. This definition does not require the Monge
transportation metric, which led in [11] to quantities akin
to absolute deviations rather than root mean square devi-
ations, and hence to a constant different from ~/2 in (1).
A changed constant (even if optimal for the particular
definitions of ∆) puts an undue burden on the memory
of undergraduates. Using variances also for calibration
solves this problem. The basic ideas of the proof in [11]
can be taken over.

To keep matters simple, we stick to the classic situation
of two canonically conjugate variables of a single quan-
tum degree of freedom. For the sake of comparison, let us
recall the scenario of the Kennard-Robertson inequality,
which we call preparation uncertainty (see Fig. 1). The

spreads ∆ρ(A) =
(

tr ρA2−(tr ρA)2
)1/2

of position Q and
momentum P are determined in separate experiments on
the same source, given by a density operator ρ. The un-
certainty relation ∆ρ(Q)∆ρ(P ) ≥ ~/2 is a quantitative
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FIG. 1. Scenario of preparation uncertainty. ∆ρ is the root of
the variance of the distribution obtained for the indicated ob-
servable in the state ρ. In this pair of experiments no particle
is subject to both a position and a momentum measurement.

version of the observation that there are no dispersion-
free quantum states [13], as applied to a canonical pair
of observables. It is not to be found in Heisenberg’s pa-
per [7], except in a rough discussion of post-measurement
states, which he assumes to be Gaussian with a spread
related to the accuracy of a position measurement.

In contrast, Fig. 2 shows the scenario discussed by
Heisenberg. The middle row shows an approximate posi-
tion measurement Q′ followed by a momentum measure-
ment. How should we define the momentum disturbance
and position error in this setup? The error of the ap-
proximate position measurement Q′ clearly refers to the
comparison with an ideal measurement Q as shown in the
first row. For the momentum disturbance we can say the
same: We have remarked that the momenta before and
after the microscope interaction do not commute, so the
difference makes no sense in the individual case. How-
ever, we can compare the distributions of the momenta
measured after the position measurement (call this effec-
tive measurement P ′) with the distribution an ideal mo-
mentum measurement P would have given on the same
input state. Come to think of it, this is precisely how
we detect disturbance in other typical quantum settings.
Consider, for example, the double slit experiment. It is
well-known that illuminating the slits enough to detect
the passage of a particle through one or the other hole
makes the interference fringes go away. Clearly, the light
used for observation disturbs the particles, and the evi-
dence for this is once again the change of the distribution

on the screen. Note that this way of looking at error
and disturbance restores the symmetry between the po-
sition and momentum aspects of this scenario. The un-
certainty relations we will prove therefore apply just as
well to the position disturbance caused by an approxi-
mate momentum measurement and, more generally, to

ρ P'Q'

ρ P

ρ Q

M

 ∆(P, P' )

 ∆(Q, Q' )

FIG. 2. Scenario of measurement uncertainty for successive
measurements, as discussed by Heisenberg (middle row). An
approximate position measurement Q′ is followed by an ideal
momentum measurement, effectively given a measurement P ′

on the initial state. The accuracy ∆(Q,Q′) quantifies the dif-
ference between the output distributions of Q′ and an ideal
position measurement Q (first row). Similarly, the momen-
tum disturbance ∆(P, P ′) quantifies the difference between
the distributions obtained by P ′ and by an ideal momentum
measurement P (last row). The definitions for these ∆ quan-
tities (see text) can be applied, more generally, to an arbitrary
joint measurement M (dashed box). This can be any device
producing, in every shot, a q value and a p value. Q′ and P ′

are then defined as the marginals of M , obtained by ignoring
the other output.

any measurement scheme M , which produces in every
run a value p and a value q (see the dashed outline in
Fig. 2). This generalization also covers any successive
measurement scenario, in which one tries to correct for

some of the momentum disturbance, perhaps using the
detailed knowledge of how the position measuring device
works. In principle, this could allow a reduction of uncer-
tainties. However, the inequality holds without change,
which gives a precise meaning and a proof to Heisen-
berg’s phrase “uncontrollable momentum disturbance”,
which he himself uses without further justification.

Let us now discuss the definition of ∆(Q,Q′) in more
detail (the momentum case will be completely analo-
gous). We think of this “microscope resolution” as a fig-
ure of merit for the device, a promise which might be
advertised by the manufacturer, and which could be ver-
ified by a testing lab. ∆(Q,Q′) = 0 will mean that the
“approximate” device Q′ is completely equivalent to the
ideal Q, i.e., for every input state ρ the output distri-
butions will be the same. Similarly, a small value might
indicate that the difference in the distributions will be
small for every input state. This requires a definition
for the distance of two general probability distributions,
which we will give below (Section on “Uncertainty met-
rics”). However, we can also take a simpler approach,
which avoids verifying a statement for all input states.
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Instead the testing lab might concentrate on those states,
which at least classically would seem to be the most de-
manding ones, namely states for which Q has a known
and sharp value. We call this process “calibration”. Still,
this requires testing of many states but no longer on very
mixed states, or states which contain coherent superpo-
sitions of widely separated wave functions.

An advantage of the calibrated error is that we no
longer need a quantitative evaluation of the distance be-
tween arbitrary probability distributions, but just be-
tween an arbitrary distribution and a known sharp value
ξ. For this we naturally take the root mean square devi-
ation from ξ

D(ρ,Q′; ξ) =
〈

(q′ − ξ)2
〉1/2

ρ,Q′

(2)

where the angle brackets denote the expectation of the
indicated function of the output q′, in the distribution
obtained on the preparation ρ with the device Q′. This
statement allows for Q′ to be a general POV (positive op-
erator valued) measurement. For projection valued ob-
servables like Q we could simplify this to D(ρ,Q; ξ)2 =
tr
(

ρ(Q − ξ1I)2
)

. The latter quantity is to be small, say
≤ ε, for the input states ρ used for calibration. Hence we
set ∆c(Q,Q′) to be

lim
ε→0

sup
{

D(ρ,Q′; ξ)
∣

∣

∣
ρ, ξ; D(ρ,Q; ξ) ≤ ε

}

. (3)

Here the set is non-empty since for any ξ and ǫ > 0
there is a ρ such that tr(ρQ) = ξ and D(ρ,Q; ξ) < ǫ;
moreover, the limit exists, because with decreasing ε the
supremum is over fewer and fewer states, so the func-
tion is non-increasing. In the case of a bad approxima-
tion, the supremum can be infinite, in which case we put
∆c(Q,Q′) = ∞.

With this definition, and the corresponding one for P ,
we can state our main result. We just assume that the
Q′ and P ′ are the marginal observables of some joint
measurement device M . As discussed above this covers
also the case of a sequential measurement (Fig. 2). Then

∆c(Q,Q′)∆c(P, P
′) ≥

~

2
. (4)

This inequality is sharp, and equality holds for an M for
which the joint distribution of (q, p)-outputs is the so-
called Husimi distribution [14] of the input state, which
can be obtained by a Gaussian smearing of the Wigner
function.

PROOF

The proof has two parts: The first is elementary and
concerns the special case that M is a covariant phase

space observable. These observables [14–17] can be de-
scribed explicitly, including a very simple form of their

marginals Q′ and P ′, by which (4) can be reduced to the
Kennard-Robertson preparation uncertainty. The sec-
ond, more technical part of the proof reduces the general
case to the covariant case by an averaging method, and
is taken from [11]. We only sketch it.

By a covariant measurement we mean one which has
a natural symmetry property for both position and mo-
mentum translations. That is, if we apply it to an input
state shifted in position by δq and in momentum by δp,
the output distribution will be the same as before, trans-
formed by (q, p) 7→ (q + δq, p + δp). These symmetries
are implemented by the Weyl operators (a.k.a. Glauber
translations) W (q, p) = exp((iqP − ipQ)/~). Then the
whole observable can be reconstructed from its density
at the origin, which must be [16, 17] a positive operator
σ of trace 1, i.e., a density operator as for a quantum
state. The probability for outcomes in a set S ⊆ R

2 is
then given by the positive operator

M(S) =

∫

S

dq dp

2π~
W (q, p)∗σW (q, p) . (5)

A remarkable property of these joint measurements of
position and momentum is that their marginals take a
particularly simple form: The probability density of the
outputs q′ obtained on a state ρ is a convolution of the
position distributions of ρ and σ. That is, we can model
the output distribution by taking q distributed like the
outputs of an ideal measurement Q on ρ, and adding a
noise term q′′, which is independent of q and distributed
according to the position distribution of σ. The same
description applies to the marginal P ′.

Therefore, for a covariant measurement we can imme-
diately identify ∆c(Q,Q′) without further computation:
The density σ is a fixed characteristic property of the
measurement. Therefore, as the position distribution of
ρ becomes sharply concentrated around some ξ, the out-
puts converge in distribution to q′ = ξ + q′′, so

∆c(Q,Q′) = D(σ,Q; 0) , (6)

which is the “size” (the root mean square deviation) of
the “noise”. For example, if σ has sharp position dis-
tribution at some value a, this is equal to |a|, since the
outputs will be off by a shift a (i.e., q′ ≈ q + a). Hence
one will choose σ with zero mean. The uncertainty prod-
uct then becomes ∆c(Q,Q′)∆c(P, P

′) = ∆σ(Q)∆σ(P ),
which is ≥ ~/2 by the preparation uncertainty relation
applied to σ. This proves (4) for the case of covariant
measurements, and at the same time provides examples
of minimum uncertainty measurements: all we have to
do is to choose σ as a centered minimum uncertainty
state, i.e., as σ = |Ψ〉〈Ψ| with Ψ a real valued centered
Gaussian wave function. The phase space distribution
associated to an input state ρ by this measurement M is
then the Husimi distribution [14].

The more technical part of the proof of (4) is to show
that for any measurement M there is a covariant one,
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say M with at most the same ∆’s. Basically, M is ob-
tained from M by averaging, the technical problem be-
ing that the parameter range of (q, p) over which one
has to “average” is infinite (see [11]). Let us introduce
Mε(∆Q,∆P ) as the set of measurements M such that,
for A = Q,P , D(ρ,A′; ξ) ≤ ∆A whenever D(ρ,A; ξ) ≤ ε
for given ∆A and ε. This is a convex set, and compact
in a suitable weak topology. We can write the covariance
condition as a fixed point equation for some transfor-
mations on the set of all observables, namely a unitary
transformation by a Weyl operator combined with a shift
in the argument. These transformations commute, and
leave Mε(∆Q,∆P ) invariant. Therefore, by the Markov-
Kakutani fixed point theorem this set, if non-empty, must
also contain a covariant element, which by construction
has at most the same uncertainties. This concludes our
sketch of the proof of (4).

UNCERTAINTY METRICS

The calibration criterion only involves highly concen-
trated states so that, in principle, on general input states
the optimal joint measurement might produce output dis-
tributions quite different from the ideal ones. One can
easily give examples of a projection valued observable A
and an “approximation” A′ for which the calibrated dis-
tance is a rather optimistic estimate. That is if we denote
by ∆(Q,Q′) a figure of merit based on comparison of all

states we might have ∆(Q,Q′) ≫ ∆c(Q,Q′). Note first
that in the covariant case this cannot happen: The state-
ment that Q′ can be simulated by adding fixed indepen-
dent noise to Q is valid for arbitrary input states, and any
reasonable definition of ∆(Q,Q′) should give the size of
the noise. However, in the general case we would need a
definition which is independent of that special form. The
idea is to define a metric D on probability distributions
which extends (2) in the sense that D(ρ,Q′; ξ) becomes
the metric distance between the output distribution of
Q′ and a point measure at ξ. Then we set

∆(Q,Q′) = sup
ρ

D(ρ,Q; ρ,Q′), (7)

where the expression on the right is the metric distance of
the two output distributions. Since ∆c takes the supre-
mum over the smaller set of highly concentrated states,
we have ∆(Q,Q′) ≥ ∆c(Q,Q′). The metric D on proba-
bility distributions is basically fixed by our requirements
as what is technically known as the Wasserstein-2 dis-
tance, which is a variant of the the Monge-Kantorovich
transport or “earth mover’s” distance (see [18] for a study
of such metrics). The problem addressed by Monge was
the cost of transforming a hill (earth distribution µ) into
some fortifications (earth distribution η), when the work-
ers had to be paid by the bucket and the distance covered.
A transport plan, also known as a coupling between the

measures µ and η would be a measure γ on R × R de-
scribing how much earth was to be moved from x to y.
This entails that the marginals of γ must be µ and η.
The cost in the Monge problem is then

∫

γ(dx dy)|x−y|,
which is then minimized by choosing an optimal γ. In
the Wasserstein-2 distance the cost function is chosen to
be quadratic in the distance and an overall root is taken
to bring the units back to a length:

D(µ; η) = inf
γ

(

∫

γ(dx dy)|x− y|2
)1/2

, (8)

where the infimum is over all couplings γ. Consider now
the case that η arises from µ by adding independent noise
with distribution ν, which amounts to the convolution
η = µ ∗ ν. This immediately suggests a transport plan,
namely shifting each individual element of the µ distri-
bution by the amount suggested by the noise (formally:
γ(dx dy) = µ(dx)ν(d(y− x))). This may not be optimal,
but gives the estimate D(µ;µ ∗ ν) ≤ D(ν; 0), the size of
the noise, where once again the second argument stands
for the point measure at zero. This says that the largest
distance is attained for a point measure µ, and therefore

∆(Q,Q′) = ∆c(Q,Q′) (9)

whenever Q′ is the marginal of a covariant measurement.
To summarize this section: if we define the deviation be-
tween Q and Q′ by a worst case figure of merit over all

states, the uncertainty relation once again holds. More-
over, the two notions coincide on all covariant measure-
ments, and in particular for the cases of equality.

CONCLUSION AND OUTLOOK

With the inequality (4) we have provided a general,
quantitative quantum version of Heisenberg’s original
semiclassical uncertainty discussion. This is a remark-
able vindication of Heisenberg’s intuitions, far beyond
the usual view, which takes the quantitative content of
the paper to be summarized entirely by the Kennard-
Robertson inequality, and sees the discussion of the mi-
croscope as no more than a heuristic order of magnitude
argument.

Our conceptual framework applies to any pair of ob-
servables, which are not jointly measurable. However,
evaluating the respective uncertainty bounds, which will
typically not be expressed in terms of the product of un-
certainties, is another matter. Explorations of some of
these generalizations are under way.

We have already expressed our dissatisfaction with the
proposed formalization of Heisenberg’s ideas by [4]. A
more detailed analysis is in preparation [19].
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