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Identification and Reconstruction of Chaotic Systems Using
Multiresolution Wavelet Decompositions

H.L. Wei, S.A. Billings
Department of Automatic Control and Systems Engineering, University of Sheffield
Mappin Street, Sheffield, S1 3JD, UK

A new modelling framework for identifying and reconstructing chaotic systems is developed based on
multiresolution wavelet decompositions. Qualitative model validation is used to compare the
multiresolution wavelet models and it is shown that the dynamical features of chaotic systems can be
captured by the identified models providing the wavelet basis functions are properly selected. Two basis
selection algorithms, orthogonal least squares (OLS) and a new matching pursuit orthogonal least squares

(MPOLS), are considered and compared. Several examples are included to illustrate the results.

1. Introduction

Intensive studies on nonlinear dynamics over the past few decades have shown that chaotic phenomena flourish
in nature and engineering systems. Chaos, which occurs widely in biology, chemistry, ecology, engineering,
medicine, meteorology, physics, and the social sciences [Parker & Chua, 1989], has attracted extensive interest
over many years with many analytical and experimental studies. Chaotic systems have been described both
quantitatively and qualitatively, and are often characterized by a number of dynamical invariants such as
Lyapunov exponents [Wolf et al., 1985; Eckmann et al., 1986; Brown et al., 1991], correlation dimensions
[Grassberger & Procaccia, 1983], the geometry of the attractors [Lorenz, 1963; Packard et al., 1980; Eckmann &
Ruelle, 1985; Milnor, 1985], Poincare maps and bifurcation diagrams [Guckenheimer & Holmes, 1983; Parker
& Chua, 1989].

Modelling plays a major role in analyzing, understanding and controlling chaotic systems. Since large noise-
free data sets are often required to accurately compute the dynamical invariants, models can be simulated to
generate the required data. Although a model is not always required to control a chaotic system, conventional
model-based control of chaos has been very successful [Chen & Dong, 1993].

Nonlinear system identification plays an important role in the modelling of chaotic systems. Most existing
nonlinear identification approaches can easily be applied to chaotic systems. Following the pioneering work by
Packard et al. [1980], Takens [1981], Crutchfield & McNamara [1987] and Farmer & Sidorowich [1987],
prediction and reconstruction of chaotic systems have become important topics in nonlinear dynamics. Several
approaches have been proposed for predicting and reconstructing chaotic systems. These include local, global, or
semi-local modelling methods, see, for example, the papers by Casdagli [1989], Abarbanel et al. [1989,1990],
Gouesbet [1991,1992], Linsay [1991], Albano et al. [1992], Principe et al. [1992], Smith [1992], Mees [1993],
Aguirre & Billings [1994,1995a], Cao et al. [1995,1997], Mendes & Billings [1997], Allingham et al. [1998],
Bagarinao et al. [1999], Billings & Coca [1999], Menard et al. [2000] and the references therein.

Chaotic systems often exhibit extremely sensitive dependence on initial conditions, that is, initially nearby
trajectories diverge and eventually become uncorrelated. This property imposes limits on the ability to make

long term predictions and also makes it difficult to determine whether the identified model is faithful to the



chaotic system under study. It follows that a simple comparison of predictors is not a good indicator of model
quality. To complement the statistical validation techniques [Billings & Voon, 1986], new model validation
techniques involving the calculation and reconstruction of dynamical invariants were proposed by Principe et al.
[1992]. The issue of dynamic modelling and dynamical equivalence was discussed in detail as an integral part of
system identification in Haynes and Billings [1994], Aguirre and Billings [1995a], and a number of studies
confirmed the importance of qualitative model validation techniques [Aguirre & Billings, 1994; Aguirre &
Billings, 1995b; Mendes & Billings, 1998; Billings & Coca, 1999; Billings & Zheng, 1999; Zheng & Billings,
1999].

An efficient nonlinear system identification methodology studied over the past two decades is the NARMAX
method which is based on an input-output model initially proposed by Billings and Leontaritis [1982],
Leontaritis and Billings [1985] and which has been successfully applied to many systems including chaotic
systems [Haynes & Billings, 1994; Aguirre & Billings, 1995a; Aguirre & Mendes, 1996; Billings & Coca, 1999;
Correa et al., 2000; Billings and Yang, 2003].

In this paper, a new modelling framework for identifying and reconstructing chaotic systems is developed
based on multiresolution wavelet decompositions. The multiresolution wavelet model, which is capable of
reconstructing dynamical invariants such as the attractors and Poincare maps of chaotic systems, provides an
applicable and effective representation for chaotic systems provided that the wavelet basis functions are properly
selected. Wavelets have been successfully applied to model chaotic systems by previous authors including Cao
et al.[1995, 1997], Coca and Billings [1997], Allingham et al. [1998] and Billings and Coca [1999]. The new
wavelet model proposed here is however similar to that adopted by Billings and Coca [1999] but different from
the approaches suggested by Cao et al. [1995] and Allingham et al. [1998].

A common and important problem in wavelet based modelling is how to select the significant wavelet basis
functions from a given over-complete wavelet dictionary in order to avoid over-parameterization and ensure a
parsimonious dynamical reconstruction. It follows that the basis functions selected from the same wavelet
dictionary based on different basis selection algorithms might be greatly different from each other. In addition, to
achieve the same approximation accuracy, the number of model terms selected by different algorithms may also
be different [Billings & Wei, 2003]. In this paper, two basis selection algorithms, the orthogonal least squares
(OLS) and a new matching pursuit orthogonal least squares (MPOLS), are considered and compared.

The outline of the paper is as follows. In Sec. 2, the multiresolution wavelet model for nonlinear system
identification is introduced. This includes brief descriptions on multiresolution wavelet decompositions, the
NARAMX representations for nonlinear systems, and the mutiresolution wavelet-based model structure. The
basis selection problem is discussed in Sec. 3. Three examples, the Henon map, the modified Van der Pol
oscillator and a one-dimensional cellular automata, are presented in Sec. 4. Finally, the main points of the work

are summarized in Sec. 5.

2. The Multiresolution Wavelet Models for Nonlinear System Identification
In this section, multiresolution wavelet decompositions are briefly reviewed. The intrinsic nonlinearity of a
system is then expressed by means of the wavelet-NARX representation and multivariable multiresoluttion

wavelet decompositions.
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2.1 Multiresolution wavelet decompositions
It is known that for identification problems it is useful to have a basis of orthogonal (semi-orthogonal or bi-

orthogonal) functions whose support can be made as small as required and which provides a universal
approximation to any I (R) function with arbitrary desired accuracy. Under some assumptions and

considerations, an orthogonal wavelet system can be constructed using multiresolution analysis (MRA) [Mallat,

1989; Chui 1992]. Assume that the wavelet and associated scaling function@ constitute an orthogonal

; 2 . . "
wavelet system, then any function f € L™ (R) can be expressed as a multiresolution wavelet decomposition

f)= a0, 0+, > d 0, (x) (1)
k

izjy k
where @, (x) = 2/ @(2 x—k)and 9, (x)= 27027 x~k), j,k € Z ,and the wavelet approximation

coefficient a jo.k 2nd the wavelet detail coefficient d ;& can be calculated in theory by the inner products:

G =< S0 >:.[f(x)¢fo.k (x)dx @)
dy =< [0, >= [ F(0)@,, (x)dx 3
The over-bar above the functions @(-) and @(-) in (2) and (3) indicates complex conjugate, and j; is an

arbitrary integer representing the lowest resolution or scaling level.

Using the concept of tensor products, the multiresolution decomposition (1) can be immediately generalised

to the muti-dimensional case, where a multiresolution wavelet decomposition can be defined by taking the zensor
product of the one-dimensional scaling and wavelet functions [Mallat,1989]. Let £ € L*(R?), then f(x) can

be represented by the mudtiresolution wavelet decomposition as

241
f(xw"'7xd):Zaju,kq)ja,k(xp'“axd)"'22 Zﬂ;i;)gqjjlz(x;:sxd) (C))
e =
where k = (k,,k,, -+, k,) € 7% and
" d 1
@, o, B =20 ] [ o %r~ k) (5)
i=1
d
Pl x,) =2"][99@ % k) (©)

i=1
with 77“) = ¢ or @ (scalar scaling function or the mother wavelet) but at least one 77“) =@ . In the two-
dimensional case, the multiresolution approximation can be generated, for example, in terms of the dilation and

translation of the two-dimensional scaling and wavelet functions
© Jik ks (x,%,) = ¢j,kl (X, )¢j,k2 (x;)

PO L 1) =0, ()@, (x,)

P L ) =0, (50, (1)
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Notice that if j, — —eo, the approximation representation (1) can be expressed using only the scaling

function ¢, that is, there exists a sufficiently large integer J, such that

d
f(x]"”’xd):Zal,kQJ,k(xl7.“7xd): Z 2fdl2H¢(2fo—ki) (8)
k

by by oriky i=1

2.2 The NARMAX representation for nonlinear systems
The NARMAX model representation, which was initially proposed by Billings and Leontaritis [Billings &

Leontaritis 1982, Leontaritis & Billings 1985], takes the form of the following nonlinear difference equation:

y0) = fy@=10,y@—n,)u@ =1, ,u-n,)e(—1), et —n,)) +e) ©)
where f is an unknown nonlinear mapping, u(¢) and y(#) are the sampled input and output sequences,

n,and 7, are the maximum input and output lags, respectively. The noise variable €(f) with maximum lag

n,, is unobservable but is assumed to be bounded and uncorrelated with the inputs and the past outputs. The

model (9) relates the inputs and outputs and takes into account the combined effects of measurement noise,
modelling errors and unmeasured disturbances represented by the noise variable €(#) . As a general and natural

representation for a wide class of linear and nonlinear systems, model (9) includes, as special cases, several
mode] types, including the Volterra and Wiener representations, time-invariant and time-varying AR(X), NARX

and ARMA(X) structures, output-affine and rational models, and the bilinear model [Pearson, 1995; 1999].

One of the popular representations for the NARMAX maodel (9) is the polynomial representation which takes

the function f(-) as a polynomial of degree £ and gives the form as

YO =65+ f, (x, )+, D, fi, (5, 0,3, )+

i =L iy =iy

n z " Zf (x, (0, x, @)y, %, (1)) + e() (10)

L=l fg=iyy

wherc@ii .., areparameters, n =n,_+n, +n, and
1+2 i y u e

by

.filizv- i

i

('xfl (I)sxil (f))' : 'ﬂxim (f)) = 9:’
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Jlx @ 1sm<e,
k=1

y(t—k) l<kEn,
X, (1) =qu(t—(k—n,)) n,tl<k<n, +n, (11)
il —(E—H, —#, )] #,+n,+1<k=<n, +n, +n,

The degree of a multivariate polynomial is defined as the highest order among the terms. For example, the
degree of the polynomial h(x,X,,x;)= ale T X + azxfxzxf is £ =2+142=5. Similarly, a
NARMAX model with polynomial degree £ means that the order of each term in the model is not higher than £ .

The NARX model is a special case of the NARMAX model and takes the form

y@) = fy@e -1, -,y —n,)u@ -1, ,u—n,)) +e) (12)



Similar to (11), (12) can be described using a polynomial representation with

y(t—k), 1<k<n,
x, () = (13)
u(r-—k-‘rn},), ny+1$k£n=ny+n“

2.3 The wavelet-based quasi-ANOVA expansions
Generally, a multivariate nonlinear function can often be decomposed into a superposition of a number of

functional components similar to the well known functional analysis of variance (ANOVA) expansions as below

Y(0) = £ (5 (0, 3,0+, 1)
S NI I TR O RN WSS

I<i<j<n 1€i< j<k<n

E Zf,‘iir..fm (x,'] (f)’xgz (Z),"',Xim (I)) Jr"'+f12mn (xl(r),xz(t),---,xn (f)) +€(t) (14)

1= < -<i, <0

=

where the first functional component f, o 1s a constant to indicate the intrinsic varying trend; fl. ; fl.j.,--- , are
univariate, bivariate, etc., functional components. The univariate functional components fl(vl) represent the

independent contribution to the system output that arises from the action of the ith variable X, alone; the

bivariate functional components f,; (X,,X;) represent the interacting contribution to the system output from the

input variables x; and x;, etc. Let X, (t) (k=1,2,...,n) be defined as (11) or (13), the quasi-ANOVA expansion

(14) can then be viewed as a special form of the NARMAX or NARX models for dynamic input and output

systems.

The expansion (14) can be referred to as the quasi-ANOVA decomposition of the NARAMX or NARX

models. Although the quasi-ANOVA expansion (14) involves up to 2" different functional components,
experience shows that a truncated representation containing the components up to the bivariate functional terms

is often sufficient

YO = fy+ 3 1, @)+ Y S £ (x, 0,x, () + e0) (15)

p=lg=p+l
This can often provide a satisfactory description of y(#) for many high dimensional problems providing that the
input variables are properly selected. The presence of only low order functional components does not necessarily
imply that the high order variable interactions are not significant, nor does it mean the nature of the nonlinearity

of the system is less severe. An exhaustive search for all the possible submodel structures of (14) is demanding

and can be prohibitive because of the curse-of-dimensionality. A truncated representation is advantageous and
practical if the higher order terms can be ignored. In practice, the constant term f;, can often be omitted since it
can be combined into other functional components.

In practice, many types of functions, such as kernel functions, splines, polynomials and other basis functions

can be chosen to express the functional components in model (14) and (15). In the present study, however,

mutiresolution wavelet decompositions will be chosen to describe the functional components. The functional



components [, (x,(#)) (p=1,2,...,n) and S (x, (), X, () (1= p<g<=n) can be expressed using the

multiresolution wavelet decompositions (1) and (4) or (8) as

£,G,@)=Ya%e (x, )+ )Y R, (x,1), p=12,--,n, (16)

Jjzi k

qu (x.u (), X @)= 2 Z (Xﬁf’lﬁ(? ¢Jﬁ_.f¢1 (xp (r))gbh,kz (xq (£))

k ks

Y 2D B0, (x, )0, (x, (1))

J2j ko kg

+ 2, 2 2 B2 0, (x, ()9 4, (x, (1)

Zi ko ok

+ 3NN By, (x, ), (x,@), 1S p<q<n. (17)

2ia k ky

Foa 5, @, x, @)=Y Yty 0, (x, ()0, (x,(1)) (18)

k&,

2.4 The wavelet-NARX model

Consider the NARX model (12) and assume that the nonlinear mapping f can be decomposed into a number of

functional components up to the rth-variate functional terms using the quasi-ANOVA expansion (14), then the

NARX model (14) can be expressed as

y() = f(x (1), x,(2), -, x, (1)) +e(t)

= F (x(#)) + F, (x()) +- -+ F_(x(1)) + e(2) (19)
where x(1) = [}Cl (r),x2 (1), X, (r)]T and
y(t—k), ISkSny
X, (t)= (19a)

u(t—k+n,), n,tl<ks=n=n, +n,

F ) =Y £.040) (19

i=1

OB I WACAORAO) 1

i=1 j=i+l

Fa@)= D fino (6@, @)% @), 2<r<n, (19)

1<i, <iy < --<i <
Each functional component _ﬁ.l _— (Jcl.1 ), X;, (£)=, %, (2)) can be approximated using the multiresolution

wavelet decompositions (1), (4) or (8). The multiresolution wavelet model (19) will be referred to as the wavelet-
NARX model, or WANARX [Wei & Billings, 2003], and will be used for identifying and reconstructing chaotic
systems. Some implementation issues on mutiresolution wavelet models such as data normalization, highest
resolution level determination, translation parameter selection and wavelet dictionary determination are
discussed in detail in [Billings & Wei, 2003; Wei & Billing, 2003].

Assume that M bases (scalar mother wavelet or scaling functions or multiplication of some scalar wavelet

and scaling functions) are required to expand the NARX model (19), and for convenience of representation also



assume that the M wavelet bases are ordered according to a single index m, that is, the wavelet dictionary

D={p, }¥_, then (19) can be expressed as a linear-in-the-parameters form as below:

m=1?

¥(t) =Y 6, p, ) +e) (20)

which can be solved using linear regression techniques. Note that for large n, and 71, , the model (20) might

involve a great number of model terms or regressors. Experience shows that often many of the model terms are
redundant and therefore are insignificant to the system output and can be removed from the model. An efficient
algorithm is required to determine which terms should be included in the model. The significant model term

selection problem is discussed in the next section.

3.  Model Term Selection
The selection of which terms should be included in the model is vital if a parsimonious representation of the
system is to be identified. For a selected basic wavelet and associated scaling function, once the initial resolution

scale level is given, simply increasing the ordersn, and 1, of the dynamic terms and the highest resolutions in

the multiresolution wavelet model will in general result in an excessively over parameterised complex model.
Fortunately, experience has shown that only a small subset of these model terms is significant and the remainder
can be discarded with little deterioration in prediction accuracy. Several possible algorithms can be used to
determine which terms are significant and should be included in the model, including the orthogonal least
squares (OLS) algorithm [Billings et al. 1988, 1989; Korenberg et al. 1988; Chen et al. 1989] and the matching
pursuit method [Mallat & Zhang, 1993].

Consider the regression equation (20). Define

P™ ={p, :1<i, <M; k=12,--,m}, m=12, ..M, (21)

4

The model term selection procedure is in fact an iterative process which searches through a nested term set in the

sense that

PO p@D .. p™ ... (22)

This makes both the complexity and the accuracy of the representation based on these term sets increase until a

suitable term set is found, that is, there exists an integer M, (generally M ; << M ), such that the model

1) =36, p, () +e(®) (3
k=1

provides a satisfactory representation for the dynamics under test.

3.1 The forward orthogonal least squares (OLS) algorithm

A fast and efficient model structure determination approach can be implemented using the forward orthogonal
least squares (OLS) algorithm and the error reduction ratio (ERR) criterion, which was originally introduced to
determine which terms should be included in nonlinear models [Billings et al., 1988, 1989; Korenberg et al.,

1988; Chen et al.,, 1989]. This approach has been extensively studied and widely applied in nonlinear system



identification, see, for example, the papers by Chen et al. [1991], Wang & Mendel [1992], Zhu & Billings
[1996], Zhang [1997], Hong & Harris [2001] and the references therein. The forward OLS algorithm involves a
stepwise orthogonalization of the regressors and a forward selection of the relevant terms in (20) based on the
error reduction ratio (ERR) [Billings et al. 1988, 1989]. The procedure can be briefly summarised as follows.

A compact matrix form corresponding to (20) is

¥=PB +E (24)
where Y =[y(1),52), -, YMNT , P=[py, P> P - 2 =00, 2,2+, p,(N)T . ©=([6,,6,,-+,6,, T,
2 =[e(l),e(2), --,e(N)]" . Assume that the regression matrix P can be orthogonally decomposed as

P=WA (25)
where A is an M X M unit upper triangular matrix and W is an N X M matrix with orthogonal columns
W, W,,* -+, W,, in the sense that WW=D= diadd,,d,, -, d,;]. Equation (24) can be expressed as

Y =(PA)AO)+E=WG+E (26)

whereG =[g,,8,.,""", 8u 1" is an auxiliary parameter vector, which can be calculated directly from ¥ and

W by means of the property of orthogonality as
Y Tw,

T
w; W,

g, L i=12M 27)

The parameter vector © is related to G by the equation A® = (G, and this can be solved using either a
classical or modified Gram-Schmidt algorithm [Chen et al. 1989].

The number M of all the candidate terms in model (20) is often very large. Some of these terms may be

redundant and should be removed to give a parsimonious model with only M, terms (M, << M ). Assume

that the residual signal €(#) in the model (20) is uncorrelated with the past outputs of the system, then the output

variance can be expressed as

1 T 1 < 2. 1-—]".—
EY Y==0 gwlw, +EE (28)
i=1

M

Note that the output variance consists of two parts, one is the desired output, (1/ N )21—1 g?w? W, , which can

be explained by the regressors, and the other part, (1/ N)E"Z, represents the unexplained variance. Thus
M g m : ; ; . . ) :

(1/N )Zi:] g W, W, is the increment to the explained desired output variance brought by w;, and the 1th

error reduction ratio, ERR, , introduced by w,, can be defined as

“wlw, Y'w)*
ERR, = 8% e y1009 =—E M) sq00%, i=12M . 29)
Y'Yy Y Y)w, w,)

This ratio provides a simple but effective means for seeking a subset of significant regressors. The significant
terms can be selected in a forward-regression manner according to the value of ERR,; . Several orthogonalization

procedures, such as Gram-Schmidt, modified Gram-Schmidt and Householder transformation [Chen et al., 1989]
can be applied to implement the orthogonal decomposition. See [Billings et al., 1988, 1989; Korenberg et al.,

1988; Chen et al., 1989] for details.



3.2 Matching pursuit orthogonal least squares (MPOLS) algorithm

Note that in the forward Gram-Schmidt OLS algorithm, at each step all the unselected regressors are made to
orthogonalize with the previously selected regressors, and most of the computational cost is based on these
orthogonalization transforms. An iterated orthogonal projection algorithm, the matching pursuit method,
proposed by Mallat and Zhang [1993] is a simple regressor selection algorithm which is relatively
computationally efficient. But the matching pursuit algorithm is less efficient than OLS, since the number of
regressors selected by the matching pursuit algorithm is almost always larger than that selected by OLS for the
same given threshold value of approximation accuracy. A trade-off between the efficiency and the computational
cost is considered here by combining the advantages of the forward OLS with the matching pursuit algorithm to
create a new algorithm called the matching pursuit orthogonal least squares (MPOLS) algorithm [Billings &

Wei, 2003]. The algorithm is described below.

For the output vector Y :[y(l),y(Q),---,y(N)]T in (20) or (24), find a vector p, from the candidate

regressor family {p;, p,,"*+, Py, } » so that p, is the “best” matching regressor to Y, i.e., p, makes the mean

squared error of the following linear regression

y@)=c,p, )+, @) (30)

achieve a minimum in the sense that
1 N 5 1 N 5 1 N "
— YO == —c,p,®) = min{— Y @& -c,p., (r)]‘} €20
N3 N3 m (N3

The “best” matching regressor P, can be found by means of a geometrical approach, see Figure 1. From Figure

1,

cosa:ﬁ—— (32)

VY'Y p, P, i
T

”P;H:”Y“COSO‘:—Y En (33)
Thus

- 2 2 2 1 T (YTPm)Z

Y@=l =l ~|en] =Y Y‘—};T“ (34)

t=1 mi'm

Y

Figure 1 Diagram of the least squares algorithm



Therefore,

YT 2
£ :Mgmax{%&,ISmSM} (35)
" p”lpﬂi

Set g, ()=p, @), w®O=q,0), g=C"w)ww), ERR =g (ww)/(X'Y), and

m@)=y@)—gw@).

At the second step, find a vector p, from the candidate regressor family {p,, :1<m<M,m#¢{ 1} .+ so that

P, is the “best” matching regrssor to 77, . Following the approach in (31) and (35), £, should be chosen as

! p.)’
T

,ISmSM,mi.é'l} (36)
pmprn

£, =arg max{

Set ¢, (t) = p, (t).Orthogonalize g, with W, as below

T
_ Wi 4,
Wy =gy~ T Wy (37)
1 W

Andsetg, = (Y w,)/(wiw,), ERR, = g5 (wiw,)/(YTY) ,and 1,(t) = 17,(z) — g,w,(2).
Generally, at step k, select

(n;;l pm )2
PP

m

Ek:a.rgmax{ ,ISmSM,mifl,mi.ﬁz,---,mifk_l} (38)

Set g, (1) = p,, (#) and orthogonalize g, with W, w,, -, W,_; as below

T T T
Wy g, Wy q Wi g
1 1k 21k k-11k
We =4y — 7 1 T W T T Wi (39)
w, W, W, W, W Wi

Calculate g, = (Y Tw, ) /(wiw,), ERR, = g; (w; w,) /(YY) and set1, (t) =1, (£) — g, w, (1)

A similar algorithm has been used for basis selection in wavelet neural networks [Xu, 2002]. Note that in the

MPOLS algorithm, only the most recently selected regressor ¢; = p, at step j is made to be orthogonal with
3

the previous selected regressors g, = P, (k=1,2,...j-1). Therefore, the computational load of the

orthogonalization procedure in OLS, which involves making all the unselected regressors orthogonal with the
previously selected regressors, is significantly reduced in the MPOLS algorithm. The computational cost of the
MPOLS algorithm is much less than that of theVOLS algorithm, and this makes the MPOLS algorithm much
faster than most existing OLS and fast OLS algorithms. Also notice that, for the same problem, MPOLS may
select different model terms (regressors) and different numbers of model terms compared with OLS even for the
same threshold value of termination. It is nearly always true that the MPOLS selects more model terms than that
of OLS. The comparison of computational efficiency and the performance efficiency of the MPOLS algorithm

compared with OLS will be illustrated via three examples provided in the next section.
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4. Numerical Examples
In this section, three numerical examples are given to demonstrate the modelling procedure proposed. The
comparisons of the performance and computational efficiency of the OLS and MPOLS algorithms are also

illustrated.

4.1 Example 1: Modelling the Henon map

The Henon map [Henon, 1976] is described by the equation

{x(t) =1—ax*(t—-1)+y@E-1) (40)

y(1) =Dbx(t—1)
where a=1.4, b=0.3. This is a popular example of two-dimensional maps, which is extremely sensitive with
respect to not only the initial conditicns but also the parameters a and b, see Fig. 2. These properties make it

difficult to obtain long term predictions. The objective here is to identify the system using a multiresolution

wavelet model without any prior knowledge about the system but only with an observational data set of x(f).

Three thousand data points were simulated using the Henon map (40) and noise with a variance of
0'3 =0.0001was added to the data. Denote by X (¢) (t=1,2,...,3000) the simulated data with the additive noise.

Only the first 250 points, which were taken from the time series after transients had died out, were used for

model estimation after normalization into [0, 1]. Denote by x(£)(t=1,2,...,250) the 250 normalized data points.

The initial wavelet model for the Henon map was chosen as

—
=
i

- TR
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y sI'J =0 <0 B0 ao 100 o 20 a0 s0 a0 1go

Fig. 2 Sensitivity dependence of the Henon map on () initial conditions (solid line is for x(0)=0, y(0)=0 and dashed line is
for x(0)=0, y(0)=10"?) and (b) parameters (solid line is for a=1.4, b=0.3 and dashed line is for a=14, b=0.3+10" ).
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() = Flxli—1), 2t — 2=, 2 —3)) F2lz)

5 4 L
=N f,(xt=pN+ D, D [, (xlt = p),x(t — q)) +e(2) (a1)

p=l g=p+1
where each univariate function component f , (x(t — p)) was expanded using the wavelet decompositions (16)

with the starting resolution scale j, =0 and the highest resolution scale j . =4, and each bi-variate

max
function component f, (x(¢ — p),x(t — g)) was expanded using the wavelet decompositions (18) with the

resolution scale J=2. The 4th order B-spline wavelet and scaling functions [Chui & Wang, 1992] were used in
these wavelet decompositions. After the initial model (41) was expanded using these wavelet decompositions,
815 candidate model terms (basis functions) were involved. Both the OLS and MPOLS algorithms were used to

select the significant model terms, and finally two parsimonious models were obtained with the form
My
x(1)=Y.6,p, () +e) (42)
k=1

where the basis functions p, (#) and the parameters &, identified using both the OLS and MPOLS algorithms
are listed in Table 1 and Table 2, respectively. In Table 1 and Table 2, @, , (x) = 21'/2(0(2} x—k) and ‘?j,k (x)

= 2”2¢(2f X — k) are the dth-order B-splne mother wavelet and scaling functions [Chui 1992]. Fig. 3 shows the

attractor (the first return map) computed from the noisy data set, the original Henon map, and the attractors
recovered from the OLS and MPOLS identified models. From Table 1 and Table 2 , it is clear that to achieve the

same approximation accuracy (corresponding to the shreshold value O for termination), MPOLS selects many

basis functions (19 terms) using much less time (0.99 sec) than the OLS algorithm (8 model terms were selected
over 3.91sec). The variables selected by OLS are x(¢-1) and x(z-2), these are the primary dependent variables for
the original system, clearly OLS has selected these correctly and has discarded other redundant variables. The
variables selected by MPOLS are x(z-1), x(#-2), x(-3), x(2-4), x(¢-5), and this means that the model is dimension
over-parameterized. Fig. 3 clearly shows that the OLS identified model is more adequate than the MPOLS
identified model. It should be pointed out that further improvement can be achieved by using more data points
and optimizing the threshold value for termination of the basis selection algorithms, but the objective in this
example was to show that the Henon map can be estimated fairly accurately from a very short noise corrupted

time series.



Table 1 Basis functions, parameters and the corresponding ERRs estimated using OLS for the Henon map (40)

Parameters
Nurmber ;?;5) 0, ERR, x100%
1 P, (x(t —2)) 8.69648098e-001 7.91252048e+001
2 @ (x(t—1)) -1.10046556e+000 1.92972751e+001
3 P 5 (x(t—2)) 1.19680558e+000 8.35830889¢-001
4 @, (x(z-1)) 2.84914870-003 4.42820859¢-001
5 @p, - (x(@ 1)) 1.76493082¢+001 1.54667941e-001
6 yplair—11) 1.82935775e+001 1.11990690e-001
7 @4 (x(2=2)) 3.38424997¢+000 3.06518989e-002
8 @ (x(t—2)) 1.10947761e-002 1.44695585¢-003

-5 3
Note: 1) The threshold value 0 =107, 2

k=1

ERR, >1-p.

2) The CPU time spent on selecting these model terms from all the candidate model term set is 3.91s.

Table 2 Basis functions, parameters and the corresponding ERRs estimated using MPOLS for the Henon map (40)

Number
k

Terms

(1)

Parameters

g

k

ERR, x100%

1

o, (x(t =2))

8.82406739e-001

7.91252048e+001

2

P, (x(t = 1))

-1.67466536e+000

1.92972751e+001

o, (x(t =2))

1.29634040e+000

8.3583088%¢e-001

(;‘91,] (x('t - 1))

5.94558765e+000

4.34775993e-001

@3‘5 (X(I - 2))

-3.69937585e-002

1.63703393e-001

@y (x(~1))

2.28567090e-002

6.02958808e-002

@4,73 (X(f - 1))

-2.53436201e-002

3.77007050e-002

¢4,13 (X(I - 3))

9.78029037e-003

2.10365316e-002

@, (x(t—=2))0, , (x(z—3))

2.52914399e-002

9.42034816e-003

10

Py (x(t ~3))

8.63856183e-003

4.76126788e-003

11

@4,_2 (JC(I - 1))

4.49091634e-003

1.87852057¢-003

12

@, (x(t=3))

7.30993491e-001

2.18241588e-003

13

@3,71 (I(f - 5))

-3.79557000e-003

1.21101178e-003

14

@y (x(z=1)

9.83784306e-003

1.32754274e-003

15

‘;04,11 (.X(f - 3))

1.83792597e-003

5.40838336e-004

16

@2__2 (X(f - 2))

1.02289921e-002

8.55385566e-004

17

¢4,11 (X(l' - 2))

1.54114623e-003

4.68976872e-004

18

Py 1 (x(t=3))9, , (x(t —4))

6.76125684e-003

4.56686214e-004

19

@, ,(x(t-35))

-1.86863493¢-003

3.09554532e-004

= 19
Note: 1) The threshold value 0 = 10 o , 2!;:1 ERRk =1- 0.

2) The CPU time spent on selecting these model terms from all the candidate model term set is 0.99s.
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Fig. 3 First return maps for (a) Henon map with additive noise on the measurements, (b) original noise-free Henon map, (c)
reconstructed from the OLS identified model and (d) reconstructed from the MPOLS identified model.

4.2

Example 2: Reconstructing the Poincare map for the modified Van der Pol oscillator

Consider the equation governing the dynamics of a forced oscillator with negative resistance [Ueda & Akamatsu,

198

1]

¥+ uy* =Dy+y’ =u@)

43)

where (£ =0.2, u(t) = Acos(@t) with A=17 and @ =4rad/s. This is known as the modified Van der Pol

oscillator [Moon, 1987], which settles to a strange attractor. This system was simulated and the data were

sampled at T=7 /80 . Noise with 3 = 0.001 was added to 628 simulated data points, which were normalized

to [0, 1] before model estimation. The normalized data points will be denoted by y(7) (#=1,2,...,628) and were

used for model estimation.

The initial wavelet model for the modified Van der Pol oscillator was chosen as

y(@) = f(x@ -1, x(—2),

14

+x(t —10)) +e(t)



10 4 5
=N £, (xt=p) + Y, Y, o (Xt = p),x(t ~ )
p=1

p=l g=p+l
+ frp (2@ = 1), x(t — 2), x(2 - 3)) +e(z) (44)
where x,(t) = y(t —i) for i=1,2,3,4,5 and x,(t) = u(t—i+5) for i=6,7,8,9,10. Each univariate function
component f, (x(t — p)) was expanded using the wavelet decompositions (16) with the starting resolution
scale j, =0 and the highest resolution scale j, =4, and each bi-variate function component

S g (2 — p),x(t —q)) was expanded using the wavelet decompositions (18) with the resolution scale J=2.

The tri-variate function component f,;(x(t —1),x(f —2),x(t —3)) was expanded using the wavelet

decomposition (8) with J=1. The 4th order B-spline wavelet and scaling functions [Chui & Wang, 1992] were
used in these wavelet decompositions. After the initial model (44) was expanded using these wavelet
decompositions, 1265 candidate model terms (basis functions) were involved. Both the OLS and MPOLS

algorithms were used to select the significant terms, and finally two parsimonious models were obtained with the
form of (42). The basis functions p, (f) and the parameters &, identified using the OLS algorithm are listed in

Table 3. The attractor and Poincare section calculated from the OLS identified wavelet model, which is listed in
Table 3, are compared with that of the noise-free original modified Van der Pol oscillator listed in Figs. 4 and 5.
The results clearly show that the OLS identified wavelet model is good representation of the system which
accurately reproduced the dynamics of the Van der Pol oscillator. The MPOLS algorithm was also used with the
same threshold value © for termination and 76 basis functions were selected over 99.86s. These basis functions
are not listed here due to the large number of selected terms. The MPOLS identified model could not reproduce
the attractor and the Poincare map of the Van der Pol oscillator correctly. In fact, even though the short term
predictions of the MPOLS model were very good, the model predicted outputs (the model free-run behaviour)
were very bad and oscillated with an amplitude that was greatly different from the original Van der Pol oscillator

and tended to diverge.

1]
o

Fig. 4 Attractors for (a) the original, noise-free modified Van der Pol oscillator (43) and (b) for the OLS identified model.

u(t) = Acos(awt), A=17, (0 =4rad/s and (L =0.2.
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¥

Fig. 5 Poincare sections for (a) the original system (43) and (b) obtained from the OLS identified model.

Table 3 Basis functions, parameters and the corresponding ERRs estimated using OLS for the modified Van der Pol oscillator (43)

u(t) = Acos(ax) , A=17, @ =4rad/s and 1 =0.2

Number & Terms p (£) Parameters 6, ERR, x100%
1 o1 (¥ =1) 1.35908173€+000 9.69044287e+001
2 Go, (Y -1) 7.39199745€-001 2.63270355€+000
3 o, (¥(t=3)) 4.14284625¢-001 3.38837349¢-001
4 G (Yt =1)y o (y(E—2)0; 0 (¥ —3)) 5.22584995¢-001 9.91985707e-002
5 o (Yt =1y 5 (Y& =200 53(¥(z—3)) 9.13656389€+001 1.37420686e-002
6 Py, (u(t —4)) -5.33318600e-004 4.79798321e-003
¥ Py (Yt =Dy o (¥t —2)) -1.17233604¢-002 3.06706331¢-003
8 @a—3 (¥t =20)Py 0 (¥(£=5)) 2.11908045¢-002 7.32419263e-004
9 g1 (u(t 1)) 3.28552255€-002 1.13258867¢-003
10 P21 (¥t = 2 1 (¥t =3)) 4.40680195e-002 3.16639753¢-004
11 P34 (¥ -1) 3.37224894e-002 2.45074831e-004
13 By 5 (Y =10y (¥ —4)) -1.69085298¢-002 2.40023352e-004
13 32 (¥( =2))95, (y(t = 3) 1.00797779-002 1.07146529¢-004
14 Boy (¥ = 1)y (¥(1 = 5)) 1.09288211e-002 7.81006703¢-005
15 @34 (¥ =3)) 1.38377466¢-003 7.06243831e-005
16 Po,0 (u(z =2)) -1.12423798¢-001 5.62692956¢-005
17 031 (y(t = 1))@y, (¥(2 =3)) 7.35190097¢-003 3.73003313¢-005
18 O (YE-1D)@y . (¥ =200y 5 (y(—3)) 6.96406971e-001 3.60984859€-005
19 @14 (¥ -1) 5.33474487¢-001 4.97655607¢-005

20 Gy 3 (y(t =30y 53 (¥(t —5)) 1.01546654e-001 3.46993291e-005

Note: D) @;u(x)= 2”%0(2”@' —k) and @, , (x) = 272 $(27 x — k) — the 4th-order B-splne wavelets and

scaling functions;
i 20
2) The threshold value p =107, )" " ERR, 21-p.

3) The CPU time spent on selecting these model terms from all the candidate model term set is 490. 92s.

4) The MPOLS algorithm was also used with the same threshold value 0 for termination and 76 basis

functions over 99.86s.
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4.3 Example 3: Extracting the CA rule from a cellular automaton pattern

Cellular automata (CA) are among the simplest mathematical representations of complex systems [Ilachinski,
2001], and are characterized by states that exist only on lattices of discrete sites (cells). Each site has a finite
number of possible states and site evolutions are determined by either a deterministic or a random rule, which
involves some finite neighbourhood on the lattice and a finite number of previous time steps. Two types of
problems, the forward problem and the inverse problem, are generally studied in cellular automata [Gutowitz,
1990]. Although the forward problem, which involves determining the natural property of a set of given rules
governing the cellular automata, has been extensively studied, the inverse problem, which is concerned with
finding a rule, or a set of rules, and quantitatively reproducing a given set of prescribed patterns, has received
relatively little attention and relatively few results have been achieved. Modelling and identification plays a key
role for solving the inverse problem in cellular automata, but few studies have been done on CA identification

[Adamatzky, 1994; Billings & Yang, 2003].

Extensive empirical evidence suggests that patterns generated by all one-dimensional CA evolving from
disordered initial states can be catalogued into 4 classes [Wolfram, 1983]. The CA rules in class 3 are
particularly attractive since in this class a particular site value depends on the values of an ever-increasing
number of initial sites and random initial values then lead to chaotic behaviour representing the essence of self—

organization in cellular automata.

The objective here is to identify a rule which governs a cellular automata based on partial observations of a
given CA pattern using the multiresolution wavelet model proposed in Sec. 2. Taking a one-dimensional CA as

an example, this can be done by choosing the initial model as
Sj (I) = f(Sj—p (I _1),Sj7p+1(1‘_1),"',8j_1 (t —1)’5_';(2 _1),SJ;+1 (t _'1):"'=Sj+q (t “1)) (45)

where § (¢) indicates the jth cell at time 7, 7, =max(p,g)=r,and r is the neighbourhood radius. Model

(45) can be expressed using the multiresolution representation (19) and then OLS or MPOLS algorithms can be
applied to obtain a parsimonious model, which can be used as the rule to reconstruct the CA pattern. The
property of the Haar wavelet and scaling functions makes the multiresolution Haar wavelet models appropriate

to represent binary cellular automata.

Rule2?2 in class 3 will be used as an example here. The 3-site one-dimensional rule, with von Neumann
neighbourhood, is shown in Table 4 and the pattern of 200X 200-site lattices generated by this rule with a set of
random initial values is shown in Fig. 6(a), where periodic boundary conditions were considered so that the first

site is a nearest neighbour of the n-th site in an n-site automata.

Table 4 The one dimensional three-site CA Rule 22--the local states and the updated central site values

54 @=Ds; ¢ =Ds ;=D 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

5;(2) 0 1 1 0 1 0 0 0

To identify the rule, the multiresolution wavelet model was initially chosen as

5,()=f(5;5¢-1),5,,(t=1).5,,@=1),5;(t-1),5,,,(t=1),5;,, —1),5,,,(~1))
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= f(xl (1), %, (£), 2, (1), X5 (1), x, (1), %5 (1), X4 (2), %, (1))
= Zf(x (1) + 2 wa, (x, (0),x, (0) + 2 2 N fos (6 @, x, 0, x, (2))

i =1i,=i+1 =1 i =i+l =iy +1
4 5 6 7
3, 2 PN EACEROEROEN()
L=liy=i;+liy= 1z4—c3+l
4 5
* 2 2 E Z Z fli‘zizfafi (x!l (f), xi’z (f)’ T xij (r))
il—l by=ip+l =iy 4l iy =igtlis=iy+1

+ Z Z ilf-ﬂ'zf-;fsfﬁ J1 (f), xi" (I) b xjﬁ (Z))

=l ig=ig+l

+ fiasser (1 (2), %, (0,7, X, (1)) (46)
where X, (t) = §g_, (t —1). Each univariate function component was decomposed using the Haar wavelet and
scaling (the first-order B-spline wavelet and scaling) functions as

Fi(x, () = al) @y e, )+ Y dS e, (x,(0)) @7)

J=0 kek;
where K ; ={0,1,--- ,27 —1}. Other function components were decomposed using the Haar scaling functions as

ofm _) 20m

A CAGRRE G Z Z A H%.,, (x5, @) (48)
where J;=3, J3=2, Ji=Js=1=Js=J7=1,and ¢(x) is the Haar scaling function defined as
1 for 0=x<l
P(x) = (49)

otherwise

The model (46) contains 5776 candidate basis functions (regressors) after decompositon into the

multiresolution wavelet model. The MPOLS algorithm was used to select the significant model terms and detect

the model structure based on 100 data points for the 7 contiguous column of sites {8, 5(),-, 5;(£), -,

§ ;05 (t) } (t=1,2,...,100). The final identified wavelet model for rule 22 was found to be

87 =0.125¢; (s, (£ =D)P50 (s;(t =1)) +0.12505 (s, ¢ =154 (51, ¢ —1)
+0.125¢, 5 (s ; (¢t =)@y 0 (5 1y E = 1)) =0.375¢, (5 ;- 1 =Dy (5, (t=D)P2 (5 ;11 - 1)
=925, (t-))P2° s, ¢ 1) +(2° s, (1 =127 s, (¢ ~1)
+6(2°s; (t-1)P(2° s, (¢ =D) =30(2%s 1, (t—INP(2% s ;1 =1)P(2% 5 1,1 (1 =1)
=0(s,, (t =D)p(s,;(t =1) + (s, ¢ =1)P(s ., (1 = 1)) +9(s; ¢ —1)(s,, (£ 1))
=3¢(s;, (1 =1)P(s,; (1 =1)g(s,, (1 —1)) (50a)

where
s, (1) = round(s (1)) (50b)
and the value of the function round(x) is defined as the integer that is nearest to the variable x. Clearly, the CA

neighbourhood was correctly selected. The reason that the function (50b) was introduced as a filter was to
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eliminate the round-off errors produced by the word-capacity limit of the computer or errors generated by the

boundary effects of the wavelet functions.

Notice that only part of the observational data of the CA pattern was used for model estimation. Data points
from any 7 contiguous columns of lattices {$_; (), -, Sj(l‘),' ty 85,3(2) } (:=1.2,...,100) can be used for

identification. No a priori knowledge of the system structured was assumed except that the neighbourhood radius
was restricted to be not great than 3. The final model structure identified by OLS was in this example identical to
that identified by the MPOLS algorithm. This is believed to be because of the special binary nat;.u'e of the 1D CA
problem. However, the CPU time taken by OLS to detect the model structure was much longer than for the
MPOLS algorithm. In this example, the CPU time spent on detecting the model structure using the OLS and

MPOLS algorithms was 68.32s and 3.82s, respectively.

The reconstructed pattern of 200X200-site lattice from the MPOLS identified model (50) with the same
random initial values as in the pattern of Fig. 6(a) is shown in Fig. 6(b). The pattern generated from the MPOLS
identified model (50) with a set of random initial values which are different from that in the pattern of Fig. 6(a)
is shown in Fig. 6(c). Simulation results show that the reconstructed pattern in Fig. 6(b) is exactly the same as
the original pattern in Fig. 6(a). The pattern in Fig 6(c) seems different from that in Fig. 6(a), but this is because

the initial vales in Fig. 6(c) are different from those in Fig. 6(a).

B | om0 M) 18 1B A
space space space

(2) (b) (©

Fig. 6 CA patterns for (a) the original pattern generated from Rule 22, (b) reconstructed from the MPOLS identified model (50) and with

the same initial values as that in (a), and (c) generated from the model (50) but with different initial values.

5. Conclusions

Multiresolution wavelet models have been successfully applied to identify chaotic systems including a cellular
automata example. It was assumed that the structures of the models were unknown. This is equivalent to the
situation which occurs in practice where the model of an unknown system is required and only input-output data
and very limited information about the system is available. Consequently the initial model search can involve
many model terms or regressors. Both the OLS and a new MPOLS algorithm were investigated as model
selection and identification procedures to select the most significant model terms using the new multiresolution

wavelet models. Qualitative model validation was used to compare the identified models. The results show that
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while MPOLS is computationally more efficient compared to OLS, the latter produces parsimonious models
with fewer model terms and accurately reproduces the dynamic invariants. The results suggest therefore that

MPOLS tends to produce overparameterised models.
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