UNIVERSITYW

This is a repository copy of Improving the associative rule chaining architecture.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/75674/

Version: Accepted Version

Book Section:

Burles, Nathan John orcid.org/0000-0003-3030-1675, O'Keefe, Simon orcid.org/0000-
0001-5957-2474 and Austin, Jim orcid.org/0000-0001-5762-8614 (2013) Improving the
associative rule chaining architecture. In: Mladenov, V, Palm, G, Appollini, B, Koprinkova-
Hristova, P, Villa, A and Kasabov, N, (eds.) Artificial Neural Networks and Machine
Learning - ICANN 2013. Lecture Notes in Computer Science . Springer , Berlin , pp. 98-
105.

https://doi.org/10.1007/978-3-642-40728-4_13

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Improving the Associative
Rule Chaining Architecture

Nathan Burles, Simon O’Keefe, and James Austin

Advanced Computer Architectures Group,
Department of Computer Science,
University of York,

York, YO10 5GH, UK
{nburles, sok, austin}@cs.york.ac.uk
http://www.cs.york.ac.uk

Abstract. This paper describes improvements to the rule chaining ar-
chitecture presented in [1]. The architecture uses distributed associative
memories to allow the system to utilise memory efficiently, and superim-
posed distributed representations in order to reduce the time complexity
of a tree search to O(d), where d is the depth of the tree. This new work
reduces the memory required by the architecture, and can also further
reduce the time complexity.

Keywords: rule chaining, correlation matrix memory, associative mem-
ory, distributed representation, parallel distributed computation

1 Introduction

Rule chaining is a common problem in the field of artificial intelligence; searching
a tree of rules to determine if there is a path from the starting state to the goal
state. The Associative Rule Chaining Architecture (ARCA) [1] uses correlation
matrix memories (CMMs)—a simple associative neural network [2]—to perform
rule chaining. We present an improvement to the original ARCA architecture
that reduces the memory required, and can also reduce the time complexity.

Rule chaining includes both forward and backward chaining. In this work we
describe the use of forward chaining, working from the starting state towards
the goal state, although there is no reason that backward chaining could not be
used with this architecture.

In forward chaining, the search begins with an initial set of conditions that
are known to be true. Each of the rules is then checked in turn, to find one for
which the antecedents match these conditions. The consequents of that rule are
then added to the current state, which is checked to decide if the goal has been
found. If it has not, then the search continues by iterating—if no further rules
are found to match then the search results in failure.

This is essentially a tree search, and so classical algorithms such as depth-first
search are commonly used. The time complexity of such an algorithm is O(b?),
where b is the branching factor and d is the depth of the tree. Reducing this to
O(d) therefore represents a potentially significant improvement.

2 Improving the Associative Rule Chaining Architecture

1.1 Correlation Matrix Memories (CMMs)

The CMM is a simple, fully connected, associative neural network consisting of
a single layer of weights. Despite their simplicity, associative networks are still
an active area of research (e.g. [3,4]). In this work we use a sub-class of CMMs,
where these weights are restricted to binary values, known as binary CMMs [5].

Binary CMMs use simple Hebbian learning [6]. Learning to associate pairs
of binary vectors is thus an efficient operation, requiring only local updates to
the CMM. This learning is formalised in Equation 1, where M is the resulting
CMM (matrix of binary weights), x is the set of input vectors, y is the set of
output vectors, n is the number of training pairs, and \/ indicates the logical
OR of binary vectors or matrices.

M = Vi, xiy] (1)

A recall operation may be performed as shown in Equation 2. A matrix
multiplication between the transposed input vector and the CMM results in a
non-binary output vector, to which a threshold function f must be applied in
order to produce the final output vector.

y = f(x"M) (2)

It is possible to greatly optimise this recall operation, using the fact that the
input vector contains only binary components. For the j* bit in the output,
the result of a matrix multiplication is the vector dot product of the transposed
vector x” and the j* column of matrix M. In turn the vector dot product is
defined as Z?:l x;M;;, where M, ; is the value stored in the 5™ column of
the i*" row of the CMM M. Given the binary nature of x it is clear that this
dot product is equal to the sum of all values M;; where x; = 1, formalised in
Equation 3.

Yi = f(ixi=1) Mjii) (3)

There are various options as to which threshold function, f, may be applied
during recall. The choice of function depends on the application, and on the
data representation used. ARCA uses superposition of vectors, so the selection
is limited to Willshaw thresholding, where any output bit with a value at least
equal to the (fixed) trained input weight is set to one [5].

1.2 Associative Rule Chaining

The Associative Rule Chaining Architecture stores multiple states superimposed
in a single vector using a distributed representation [7], which also helps to
provide more efficient memory use and a greater tolerance to faults than a local
representation [8]. For example, the superposition of two vectors {0 0 1 0 0}
and {1 0 0 0 0} is the vector {1 0 1 0 0}.

ARCA performs rule chaining using superimposed representations, hence re-
ducing the time complexity of a tree search. The main challenge overcome by the

Improving the Associative Rule Chaining Architecture 3

architecture is to maintain the separation of each superimposed state throughout
the search, without needing to separate out the distributed patterns or revert to
a local representation.

To solve this challenge, each rule is assigned a unique “rule vector” which
exists in a separate vector space to those used for the antecedent and consequent
tokens. ARCA stores the antecedents and consequents of rules in two separate
CMMs, connected by the rule vector [1], described further in Section 2.

2 Improving the ARCA Architecture

In the original architecture, two CMMs are used to separate the antecedents and
consequents of rules. When storing a rule, for example a — b, a unique “rule
vector” must be generated. This is essentially a label for the rule, but can be
considered as our example rule becoming a — rg — b.

The first CMM is used to store the associations between the superimposed
antecedents of a rule (a) and the assigned rule vector (r¢). This results in the
rule firing if the tokens in the head of each rule are contained within a presented
input, i.e. a — rg.

When training the second CMM, a slightly more complex method is required.
Initially, a tensor product (TP) is formed between the superimposed consequents
of a rule (b) and the rule vector (rp); this TP is “flattened” in row-major order
to form a vector (b : 79). The associations between the rule vector and this TP
are then stored in the second CMM. This means that when a rule fires from
the antecedent CMM, the consequent CMM will produce a TP containing the
output tokens bound to the rule that caused them to fire, i.e. 79 — (b : rg).
These tokens can then be added to the current state in order to iterate.

2.1 Using a Single CMM

In ARCA the separation of superimposed states during the recall process is
actually performed by the rule vector, rather than through the use of two CMMs.
We propose that this is unnecessary and we can use a single CMM mapping
directly from the antecedents to the consequents, reducing both the memory
required to store the rules and the time required to perform a recall operation.
To train this reduced ARCA requires a similar operation as originally used
when training the second CMM. Every rule is still assigned a unique rule vector,
which is used to form a TP with the superimposed consequents of the rule (b : rg).
The single CMM is now trained using the superimposed antecedents of the rule
as an input and this TP as an output, i.e. a — (b : rg). Upon presentation of an
input containing the tokens in the head of a rule, the CMM will produce a TP
containing the output tokens bound to the rule that caused them to fire.

2.2 Recall

Fig. 1 shows a recall process performed on the reduced ARCA. To initialise the
recall, an input state T'P;, is created by forming the TP of any initial tokens

4 Improving the Associative Rule Chaining Architecture

2% TP, .41
p
N _
TPzn E TPoutput

b ¢ b ¢ 5 2 P q pP+q

wn

g T2 T2 g

+—~

——= 2s«TP g

E * out2 ’é’

8 q -~
To T1 To T1 — z Ty T3 ro 4+ 73

« n

el azl

e
T3 T3

Fig. 1. A visualisation of the recall process within the reduced ARCA. The tensor
products (TPs) contain different token vectors bound to rule vectors. Each column is
labelled at the top with the tokens contained within the column. The position of each
column is defined by the positions of the bits set to one in the rule vector to which the
token is bound, labelled at the base of the column. The remainder of the TP consists
solely of zeros. The vector weight is 2, and hence each column appears twice.

with a rule vector. In the diagram we assume that the vector weight is 2, and
we initialise the search with two separate, but superimposed, inputs—b : rg and
[

The recall process can now begin, by recalling each column of TP;, from
the CMM in turn. The result of each column recall is an entire TP of equal
dimensions to the original input (T Ppy:,) containing the consequents of a rule,
bound to the rule that fired them. In our diagram each of these output TPs is
recalled twice, once for each column in T'P;,.

We need to combine these to form a single TP to allow the system to iterate.
As can be seen in the diagram, any antecedents will appear in T'P;,, a number of
times equal to the weight of a rule vector. Thus, the consequents will appear in
the same number of T'P,,;s, bound to the rule that caused them to fire. When
these are summed, the weight of a rule vector can therefore be used as a threshold
to obtain the final output—a single binary TP, TPy ipuz.

Before the system iterates, we need to check whether the search has com-
pleted. Firstly we can check whether the search should continue. If T Pyyipys
consists solely of zeros, then no rules have been matched and hence the search
is completed without finding a goal state.

If TP,utput is not empty, then we must check whether a goal state has been
reached. This is achieved by treating T'Pyupu: as a CMM. The superposition
of the goal tokens is used as an input to this CMM, and the threshold set to
the combined weight of these superimposed goal tokens. If the resulting binary

Improving the Associative Rule Chaining Architecture 5

vector contains a rule vector, then this indicates that this rule vector was bound
to the goal token and we can conclude that the goal state has been reached.

2.3 Time Complexity of the reduced ARCA

We have previously shown [1] that ARCA is able to search multiple branches of
a tree in parallel, while maintaining separation between them. This reduces the
time complexity of a search to O(d), where d is the depth of the tree. Contrasted
with a depth-first approach with a time complexity of O(b%), where b is the
branching factor, this is a notable improvement.

In order to compare the worst case time complexity of the original and the
reduced ARCA, we now perform a more detailed analysis. When binary matrices
and vectors are stored sparsely, the time complexity of a simple CMM recall
operation depends on the weight of the input vector wyx and the number of bits
set in each row of the matrix wyyp;). In the worst case, wyy;) will be equal to the
length of the output vector ly.

Using Equation 3, applied to all columns, the time complexity is found as the
time to sum each row MJi] where x; = 1, plus a linear scan through the output
vector to apply the final threshold. This is given in Equation 4.

TCrecall = wxly +1y (4)

In applying Equation 4 to the ARCA, we must consider the lengths and
weights of vectors used to represent tokens and rules as potentially different,
resulting in four terms: Iy, wy, [, and w,—representing the lengths and weights
of tokens and rules respectively.

It is also important to remember that this equation calculates the time com-
plexity of the recall of a single vector, where in ARCA every column of an input
TP is recalled in turn. As both the original and the reduced ARCA operate in the
same fashion, this multiplier can be ignored for the purpose of this comparison.

The worst case time complexity of recalling a single vector from the original
ARCA and the reduced ARCA can now be derived to find Equations 5 and 6
respectively.

TCoriginal = CMM1 + CMM2

= (wtlr + lr) + (U}rltlr + ltlr)
=lp(we + 1+ lg(we + 1)) (5)

Tcreduced = wtltlr + ltlr
=Lly(wg + 1) (6)
In order to find the relative parameters for which the reduced ARCA becomes
more efficient than the original ARCA we equate 5 and 6 and simplify as far as
possible, as in Equation 7.
lr(wt + 1+ lt(wr + 1)) = lrlt(wt + 1)
1+ ltwr = ’LUt(lt — 1) (7)

6 Improving the Associative Rule Chaining Architecture

This equation shows that in the worst case, if the weight of both rule and
token vectors is equal, that the original and the reduced ARCA will perform
essentially equally. If the weight of rule vectors is greater than that of token
vectors, then the reduced ARCA will outperform the original.

In reality, the worst case is not possible—if all of the rows of the matrix were
completely full, then it would be impossible to successfully recall any vector that
was originally stored. Rather than attempting to time a comparison, as this is
unlikely to provide accurate or fair results, we instead compare the memory
requirements experimentally.

2.4 Comparison of Memory Requirements

The time complexity of a recall operation is dependent on the number of bits
set in each row of the matrix. As such, a comparison of the memory required
by the original and the reduced ARCA also provides a good indication of any
improvement in the time complexity.

In order to compare the memory required, both variants of ARCA have been
applied to the same randomly generated problems. For each experiment a tree
of rules was generated with a given depth d and maximum branching factor b,
using the same procedure as detailed in previous work [1]. These rules were then
learned by both systems, and rule chaining was performed on them.

In all experiments, we fixed the vector weight for both rules and tokens
to be 4. This value results in sparse vectors over the range of vector lengths
investigated, and should provide good performance in the CMMs [9].

Given our analysis of the time complexity, using the same weight in both
types of vector would also be expected to result in very similar memory require-
ments in both systems, and so any deviation from this will indicate a difference
between the worst case and expected times.

The experiments have been performed over a range of values for d, b, and the
vector length. In order to further test our time complexity analysis we also varied
the token vector and rule vector lengths independently, on the expectation that
the comparative memory requirement would not vary.

The graphs in Fig. 2 are 3D scatter plots showing the memory requirement
of the reduced ARCA as a percentage of the memory required of the original
ARCA. The results clearly demonstrate that varying the relative token and rule
lengths has very little effect on the comparative memory requirement.

It is also clear that the memory required by the reduced ARCA tends towards
around 80% of that required by the original ARCA, which implies that the time
complexity in the expected case is likely to be similarly improved.

Where the colour of a point is black, then the recall success rate for both
architectures was at least 99%. As the colour of a point tends towards white (for
the shortest vector lengths), it indicates that the reduced ARCA continued to
achieve at least 99% recall success, but the original ARCA had a lower success
rate. In no cases was the recall success rate of the original ARCA higher than
that of the reduced ARCA, and so it can be concluded that the reduced ARCA
improves the storage capacity of the network, even while reducing the memory

Improving the Associative Rule Chaining Architecture 7

Comparison between the memory required for the reduced and original ARCA,
where token and rule vectors have the same length

é 5
%5
= £ 90

=
g2

L
3280
20
S 70
Ts
= £ 60
o
2B
= 50
26225

£
5% 200 20
25 150

100
25 0 =0
Length of vectors Number of rules

Comparison between the memory required for the reduced and original ARCA,
where rule vectors have twice the length of token vectors

ginal ARCA requirement

250

Memory required for reduced ARCA,

as % of ori

150 200

=g 50 100
Length of token vectors Number of rules

Comparison between the memory required for the reduced and original ARCA,
where token vectors have twice the length of rule vectors

ginal ARCA requirement

N
Nn
(8 [=)

175 250

200

Memory required for reduced ARCA,

as % of ori

125 150

75 55 50 100
Length of rule vectors Number of rules

Fig. 2. 3D scatter plots showing the memory requirement of the reduced ARCA as
a percentage of the memory requirement of the original ARCA. In the top plot, the
length of token and rule vectors are equal. In the middle plot, the length of token
vectors is double that of rule vectors. In the bottom plot, the length of rule vectors
is double that of token vectors. For all points, the recall success rate for the reduced
ARCA was at least 99%. As the colour tends from black to white, the recall success
rate for the original ARCA moves from >99% towards 0%.

8 Improving the Associative Rule Chaining Architecture

requirement. We chose to show the points at which recall success was at least
99%, as the nature of neural networks is that they may introduce a small amount
of uncertainty. This cut-off, however, could be selected at any point—including
100%—with the trade-off that higher accuracy results in lower network capacity.

3 Conclusions and Further Work

This paper has described further improvements to the ARCA, with a simplified
architecture which will aid in understanding, as well as reducing the memory
requirements, the execution time, and improving the capacity.

Our analysis indicated that the performance of the original and the reduced
architectures should be similar, if the token and rule vector weights are chosen
to be equal. Our experimentation, on the other hand, clearly demonstrated that
the reduced ARCA offers a 20% improvement over the original. This is due to
the limitations of the worst case complexity, as previously explained. In order
to improve the analysis, further work is required to create a better model of
the interactions between vector pairs stored in a CMM. With such a model,
the expected case could be analysed, based additionally on the number of rules
stored in the system. This analysis will improve the theoretical basis for the
application of ARCA to real rule-chaining problems.

References

1. Austin, J., Hobson, S., Burles, N., O’Keefe, S.: A Rule Chaining Architecture Using
a Correlation Matrix Memory. Artificial Neural Networks and Machine Learning—
ICANN 2012, 49-56 (2012)

2. Kohonen, T.: Correlation Matrix Memories. In: IEEE Transactions on Computers,
pp- 353-359. IEEE Computer Society, Los Alamitos (1972)

3. Gorodnichy, D.O.: Associative Neural Networks as Means for Low-Resolution Video-
Based Recognition. IJCNN 2005, 3093-3098 (2005)

4. Ju, Q., O’Keefe, S., Austin, J.: Binary Neural Network Based 3D Facial Feature
Localization. IJCNN 2009, 1462-1469 (2009)

5. Willshaw, D.J., Buneman, O.P., Longuet-Higgins, H.C.: Non-holographic Associa-
tive Memory. Nature 222, 960-962 (1969)

6. Ritter, H., Martinetz, T., Schulten, K., Barsky, D., Tesch, M., Kates, R.: Neural
Computation and Self-Organizing Maps: An Introduction. Addison Wesley, Red-
wood City (1992)

7. Austin, J.: Parallel Distributed Computation in Vision. In: IEE Colloquium on
Neural Networks for Image Processing Applications, pp. 3/1-3/3. (1992)

8. Baum, E.B., Moody, J., Wilczek, F.: Internal Representations for Associative Mem-
ory. Biol. Cybernetics 59, 217228 (1988)

9. Palm, G.: Neural Assemblies, an Alternative Approach to Artificial Intelligence.
Chapter: On the Storage Capacity of Associative Memories, pp. 192-199. Springer,
New York (1982)

	Improving the Associative Rule Chaining Architecture
	Introduction
	Correlation Matrix Memories (CMMs)
	Associative Rule Chaining

	Improving the ARCA Architecture
	Using a Single CMM
	Recall
	Time Complexity of the reduced ARCA
	Comparison of Memory Requirements

	Conclusions and Further Work

