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A B S T R A C T

Background

Birth size, perhaps a proxy for prenatal environment, might be a correlate of subsequent
breast cancer risk, but findings from epidemiological studies have been inconsistent. We re-
analysed individual participant data from published and unpublished studies to obtain more
precise estimates of the magnitude and shape of the birth size–breast cancer association.

Methods and Findings

Studies were identified through computer-assisted and manual searches, and personal
communication with investigators. Individual participant data from 32 studies, comprising
22,058 breast cancer cases, were obtained. Random effect models were used, if appropriate, to
combine study-specific estimates of effect. Birth weight was positively associated with breast
cancer risk in studies based on birth records (pooled relative risk [RR] per one standard
deviation [SD] [¼0.5 kg] increment in birth weight: 1.06; 95% confidence interval [CI] 1.02–1.09)
and parental recall when the participants were children (1.02; 95% CI 0.99–1.05), but not in
those based on adult self-reports, or maternal recall during the woman’s adulthood (0.98; 95%
CI 0.95–1.01) (p for heterogeneity between data sources ¼ 0.003). Relative to women who
weighed 3.000–3.499 kg, the risk was 0.96 (CI 0.80–1.16) in those who weighed, 2.500 kg, and
1.12 (95% CI 1.00–1.25) in those who weighed � 4.000 kg (p for linear trend¼ 0.001) in birth
record data. Birth length and head circumference from birth records were also positively
associated with breast cancer risk (pooled RR per one SD increment: 1.06 [95% CI 1.03–1.10]
and 1.09 [95% CI 1.03–1.15], respectively). Simultaneous adjustment for these three birth size
variables showed that length was the strongest independent predictor of risk. The birth size
effects did not appear to be confounded or mediated by established breast cancer risk factors
and were not modified by age or menopausal status. The cumulative incidence of breast cancer
per 100 women by age 80 y in the study populations was estimated to be 10.0, 10.0, 10.4, and
11.5 in those who were, respectively, in the bottom, second, third, and top fourths of the birth
length distribution.

Conclusions

This pooled analysis of individual participant data is consistent with birth size, and in
particular birth length, being an independent correlate of breast cancer risk in adulthood.

The Editors’ Summary of this article follows the references.
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Introduction

In 1990 Trichopoulos [1] suggested that prenatal exposure
to high levels of pregnancy oestrogens might affect the risk of
breast cancer. This hypothesis, which has since evolved to
include other in utero hormonal and biological factors [2],
sparked a considerable amount of research on the prenatal
origins of breast cancer, relying mainly on birth size measures
as indirect markers of the in utero environment. Published
estimates of the strength of the association between birth size
and breast cancer, however, have been far from consistent [3–
33], and several unanswered questions remain, including
uncertainty regarding the magnitude and shape of the
association as well as the extent to which it may be mediated,
confounded, and/or modified by known breast cancer risk
factors.

We set up a collaborative group to bring together and re-
analyse the original individual participant data from pub-
lished and unpublished studies on pre- and perinatal factors
and subsequent risk of breast cancer. This paper reports on
the birth size–breast cancer association. This re-analysis
provides several scientific advantages over previously pub-
lished overviews [34–36]. First, it is large and comprehensive,
comprising published and unpublished information on over
22,000 breast cancer cases from 32 studies, many of which
have been enlarged since their original publications. Second,
the availability of primary data from each individual
participant provided a unique opportunity to estimate
study-specific effects using similar definitions and adjust-
ments across studies. Third, it allowed a detailed investigation
of between-study heterogeneity and its possible sources.
Fourth, study-specific data could be combined, if appropri-
ate, to produce far more precise estimates of the association
of birth size with breast cancer risk than those obtained from
any single study.

Methods

Identification of Studies and Data Extraction
We attempted to identify studies that collected informa-

tion on at least one measure of birth size and were based on
incident breast cancer cases. Studies were identified by
computer-assisted searches (including PubMed and Embase)
up to the end of June 2007, manual searches of reference lists,
personal communication with investigators, and publicity
regarding our collaboration in international conferences.
The search strategy used the term ‘‘breast cancer’’ in
combination with ‘‘birth weight,’’ ‘‘birth size,’’ ‘‘birth length,’’
‘‘head circumference,’’ ‘‘ponderal index [PI],’’ and ‘‘gesta-
tional age’’ (details of search strategy available on request). A
total of 27 published and seven unpublished cohort and case-
control studies [3–33] were identified, including two twin
studies [10,11] and a cohort of premature or very low birth
weight babies [9,21]. One study [32] was excluded because
most of its participants contributed to a larger unpublished
study (Swedish Young Female Breast Cancer [SYFBC], Table
S1) and another [33] because its original individual partic-
ipant data could not be retrieved. The included studies refer
to independent study populations, with the exception of two
(Seattle Breast Cancer in Young Women [BCYW] [4] and
Seattle Perinatal Factors and Breast Cancer [PFBC] [7], Table
S1) that were conducted in the same population but used

different sources of birth size information. Data from the
smallest one (Seattle PFBC; 442 cases and 393 non-cases) were
excluded from the analyses whenever appropriate (as
indicated in Figures 1, 2, S1, and S2). Each participating
study had previously obtained all relevant ethics approvals;
only nonidentifiable data were sent to the London School of
Hygiene & Tropical Medicine (LSHTM).
Data on individual participants were obtained in a stand-

ardised format. They included measures of birth size (i.e.,
weight, length, and head circumference) and, if available, data
on potential confounding factors, mediators, and effect
modifiers (Tables 1, S1–S3). These individual-level data were
centrally collated and crosschecked at LSHTM, with data
quality queries clarified by the principal investigators. As the
birth size distributions were very different in the twin studies
[10,11] and in the cohort study of premature/low birth weight
babies [9,21] (Tables S4–S6), these were examined separately.
Analyses were restricted to singletons in the remaining
studies and will hereafter be referred to as singleton studies.
Participants were further excluded from all studies if they
had a known history of cancer other than nonmelanoma skin
cancer at entry into the study (i.e., at recruitment/start of
follow-up), and if all birth size data were missing. For the two
Nurses Health Studies [31], only nested case-control data
were provided for the pooled analyses. Because of these
exclusions and updated follow-up/recruitment in some
studies [22,23,27,31], study sizes may differ from those
reported in the original study-specific publications.

Statistical Methods
The primary exposure of interest was birth size as

measured by weight (kg), length (cm), head circumference
(cm), and PI (defined as weight [kg]/height [m]3) at birth.
These measures were examined as quantitative (for incre-
ments of approximately one standard deviation [SD], i.e., 0.5
kg for weight, 2 cm for length, 1.5 cm for head circumference,
and 2.5 kg/m3 for PI) and as categorical variables. In the
analyses of singleton studies, birth weight was categorised
according to commonly used categories (,2.500, 2.500–2.999,
3.000–3.499 [baseline], 3.500–3.999, and �4.000 kg); for four
studies [29–31] birth weight data were only available as
predefined categories equivalent to these except in one study
[30] in which the three middle categories were collapsed into
a single one (Table S4). Categories for birth length, head
circumference, and PI were defined by quartiles of their
overall distributions among all participants in cohort studies
and non-cases in case-control studies. Study-specific quartiles
for birth weight, length, and PI (no data were available for
head circumference) were similarly generated in each twin
study [10,11] and in the cohort of premature/low birth weight
babies [21].
Assessment of birth size–breast cancer associations was

performed primarily using a two-stage approach [37,38].
Study-specific effects were first estimated and, if appropriate,
pooled using a random effects model under the assumption
that individual studies estimate different exposure effects
because of potential heterogeneities in populations and data
quality, but with the interest focused on their mean value.
These pooled effects will hereafter be referred to as ‘‘two-
stage,’’ with the standard errors calculated from the inverse of
the sum of the adjusted weights [38]. Study-specific effects
were estimated as rate ratios in cohort studies and odds ratios

PLoS Medicine | www.plosmedicine.org September 2008 | Volume 5 | Issue 9 | e1931373

Birth Size and Breast Cancer Risk



in case-control studies (hereafter referred to as relative risks

[RRs]) using models appropriate for each study design (i.e.,

Cox proportional hazard or Poisson regression for cohort

studies; conditional logistic regression for nested [all based

on risk-set sampling] and individually matched case-control

studies; and logistic regression for frequency-matched case-

control studies) [39].

The analytical time scale for cohort studies was age, with

the beginning of the follow-up defined as the age at

recruitment into the study or the age when outcome

ascertainment became possible (e.g., through linkage to

cancer registries). Follow-up ended at the age of breast

cancer diagnosis, death, emigration, or last follow-up,

whichever occurred earlier. RRs for cohort studies were thus

adjusted for age at diagnosis. The proportional hazards

assumption was checked in Cox models graphically, by

comparing stratum-specific cumulative incidence curves

before fitting the models, and formally via the test of

proportionality based on Schoenfeld residuals [40]. In

Poisson models the assumption of time-constant effects (i.e.,

proportionality) was assessed by testing the significance of

interactions between birth size measures and age. RRs for

cohort studies were additionally adjusted for calendar year by

stratification. The matching variables specified for each case-

control study (e.g., year of birth, calendar period, recruitment

centre, area of residence, or ethnicity) were accounted for in

the estimation of RRs either through matched analyses (for

individually matched studies) or adjustment (for frequency-

matched studies). The RRs quoted in the text refer to these

minimally adjusted RRs unless otherwise specified. The

statistical significance of each birth size–breast cancer

association, and of quadratic departures from the assumption

of linearity of effects, were assessed within each study by

likelihood ratio tests and for pooled estimates by Wald tests.

Possible sources of between-study heterogeneity were inves-

tigated and formally tested using the Cochran Q statistic and

the I2 quantity based on standard cut-off points [41,42]. Two-

stage pooled estimates of groups of RRs were only calculated

if there was no statistically significant evidence of systematic

heterogeneity. The influence of individual studies was

assessed by sequentially dropping each one before pooling

study-specific estimates.

To increase statistical precision, one-stage pooled analyses,

in which overall pooled estimates are derived from a single

model, were also conducted on the subset of cohort studies of

singleton women with birth records information. Random

effects multivariable Cox regression (frailty) models [43],

which account for within study clustering, were fitted to

assess exposure-response relationships for each birth size

variable and to estimate their joint associations with breast

Figure 1. Minimally Adjusted Pooled Breast Cancer RRs Stratified by Source of Birth Size Data in Relation to Categorical Birth Weight (Singleton Studies

Only)

The area of the black squares is inversely proportional to the variance (on the log scale).
doi:10.1371/journal.pmed.0050193.g001
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cancer risk. These models were also used to estimate the
breast cancer cumulative incidence curve corresponding to
the baseline birth length category (i.e., 49.0–49.9 cm).
Cumulative incidence curves for the other birth length
categories were obtained by multiplying the baseline curve
by the corresponding category-specific RRs. A similar
approach was used to calculate cumulative incidence curves
for the five birth weight categories (taking the 3.000–3.999 kg
category as the baseline).

As the availability and classification of potential confound-
ers varied from study to study, adjustment for confounding
was performed separately for each variable, or group of
variables, within each study and then pooled using the two-
stage procedure. Consequently, the number of cases and non-
cases involved in each analysis varied accordingly. To assess
whether the birth size associations were modified by age,
analyses were stratified by age at breast cancer diagnosis (,45
y; 45–54 y, �55 y) for case-control studies and by a time-
changing indicator of current age for cohort studies. Analyses
were similarly stratified by menopausal status at diagnosis in
the subset of studies with this information.

Two-stage and one-stage pooled analyses were repeated
after excluding extreme birth size observations (i.e., values

outside the singleton/twins/premature-specific means 6 4

SDs). Small study bias was assessed via the Egger funnel plot

asymmetry test [44] and other forms of publication bias by

meta-regression. All statistical analyses were performed in

Stata [45]. All tests of significance are two-sided.

Results

Characteristics of the Study Participants
A total of 32 studies contributed to these analyses, including

22,058 women with newly diagnosed invasive or in situ breast

cancer and 604,854 non-cases. The characteristics of the

participating studies are summarised in Table 1 (further

details in Tables S1–S3). Information on birth weight was

based on birth records, parental recall when the women were

6–7 y old, mother’s recall during the woman’s adulthood, and

on self-reports in adulthood. In analyses by source of birth

weight data, the two last categories produced similar effect

estimates and thus were combined into one single category of

adult reports. Data on categorical birth weight were available

for all 32 studies, whereas data on continuous birth weight and

on other measures of birth size were available for a smaller

number of studies (Tables 1 and S2).

Figure 2. Minimally Adjusted Study-Specific and Pooled Breast Cancer RRs Stratified by Source of Birth Size Data in Relation to Continuous Birth Weight

(Singleton Studies Only)

The area of the black squares is inversely proportional to the variance (on the log scale).
doi:10.1371/journal.pmed.0050193.g002
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Table 1. Summary Characteristics of the 32 Participating Studies

Characteristic Category Sub-Category Number

of Studies

Cases Non-Cases All

n Percent n Percent n Percent

All — — 32 22,058 100 604,854 100 626,912 100

Study design Cohort a — 14 5,116 23.2 560,483 92.7 565,599 90.2

Nested case-control — 3 5,247 23.8 26,196 4.3 31,443 5.0

Individually matched case-controlb — 6 2,517 11.4 7,608 1.3 10,125 1.6

Frequency matched case-control — 9 9,178 41.6 10,567 1.8 19,745 3.2

Year of publication 1996–2000 — 8 7,755 35.2 32,517 5.4 40,272 6.4

2001–2007 — 17 10,445 47.3 149,856 24.8 160,301 25.6

Unpublished — 7 3,858 17.5 422,481 69.8 426,339 68.0

Geographical region Western Europe Nordic countriesc 15 6,759 30.6 521,653 86.2 528,412 84.3

— UK 4 805 3.7 40,758 6.7 41,563 6.6

Eastern Europe Poland 1 1,764 8.0 1,792 0.3 3,556 0.6

North America US 11 12,488 56.6 40,348 6.7 52,836 8.4

Asia China 1 242 1.1 303 0.1 545 0.1

Ethnicity — — 32 — — — — — —

European descent — — 19,888 90.2 597,529 98.8 617,417 98.5

Non-European descent — — 1,569 7.1 3,545 0.6 5,114 0.8

Missing — — 601 2.7 3,780 0.6 4,381 0.7

Source of birth data Birth records — 19 4,368 19.8 427,789 70.7 432,157 68.9

Parental recall when woman was a child — 1 2,887 13.1 107,003 17.7 109,890 17.5

Adult reportsd — 12 14,803 67.1 70,062 11.6 84,865 13.5

Year of birth — — 32 — — — — — —

,1940 — — 9,367 42.5 59,259 9.8 68,626 11.0

1940–1949 — — 6,450 29.2 70,962 11.7 77,412 12.4

1950–1959 — — 4,522 20.5 58,302 9.6 62,824 10.0

1960–1969 — — 588 2.7 20,085 3.3 20,673 3.3

1970– — — 85 0.4 393,565 65.1 393,650 62.8

Missinge — — 1,046 4.7 2,681 0.4 3,727 0.6

Age at diagnosis (y) — — 32 — — — — — —

,30 — — 312 1.4 — — — —

30–39 — — 2,951 13.4 — — —

40–49 — — 5,154 23.4 — — — —

50–59 — — 5,904 26.8 — — — —

60– — — 6,672 30.3 — — — —

Missinge — — 1,065 4.8 — — — —

Year of diagnosis — — 32 — — — — — —

1958–1979 — — 776 3.5 — — — —

1980–1989 — — 3,355 15.2 — — — —

1990–1999 — — 11,825 53.6 — — — —

2000– — — 4,591 20.8 — — — —

Missinge — — 1,511 6.9 — — — —

Birth weight (kg)f,g — — 29 — — — — — —

,2.500 — — 1,659 7.6 28,654 4.8 30,313 4.9

2.500–2.999 — — 4,117 18.9 91,327 15.1 95,444 15.3

3.000–3.499 — — 9,402 43.1 228,763 37.9 238,165 38.1

3.500–3.999 — — 4,626 21.2 182,697 30.3 187,323 30.0

�4.000 — — 2,021 9.3 71,913 11.9 73,934 11.8

Birth length (cm)f,h — — 11 — — — — — —

,49.0 — — 469 13.0 82,677 20.0 83,146 20.0

49.0–49.9 — — 412 11.4 63,974 15.5 64,386 15.5

50.0–50.9 — — 764 21.2 90,293 21.9 91,057 21.9

�51.0 — — 1,968 54.5 175,968 42.6 177,936 42.7

Head circumference (cm)h,i — — 9 — — — — — —

,33.0 — — 99 6.7 41,647 10.3 41,746 10.3

33.0–33.9 — — 214 14.4 66,779 16.5 66,993 16.4

34.0–34.9 — — 387 26.1 109,372 26.9 109,759 26.9

�35.0 — — 785 52.9 188,180 46.4 188,965 46.4

aIncludes 47 cases and 1,319 non-cases from a Swedish cohort of premature/low birth weight babies (SPVLBW).
bIncludes 186 cases and 186 non-cases from two Swedish twin studies (Swedish Like-Sexed Twin Study [SLSTS] and Swedish Opposite-Sexed Twin Study [SOSTS]).
cDenmark, Finland, Norway, Sweden.
dBased on self-reports in adulthood except for 20% of the participants in one small cohort (National Cancer Institute Diethylstilbestrol Combined Cohort Study [NCI DES]) and all
individuals in two frequency-matched case-control studies (Seattle Perinatal Factors and Breast Cancer [PFBC]: 442 cases; 393 non-cases; Shanghai Breast Cancer Study [SBCS]: 242 cases;
303 non-cases) in which birth size data were based on maternal recalls during the woman’s adulthood.
eMissingness was mainly due to one study for which no information was available on date of birth and diagnosis.
fValues shown in the table are for singletons; corresponding categorical distributions in the two twin studies (SLSTS and SOSTS) and in the cohort of premature/low birth weight babies
(Swedish cohort of Premature and Very Low Birth Weight [SPVLBW]) are given in Tables S4 and S5.
gMedian (25th and 75th percentile) for continuous birth weight (in kg), in all the 25 singleton studies with such data, is 3.300 (2.977, 3.639) in cases and 3.400 (3.070, 3.730) in non-cases; in
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Birth Size and Breast Cancer Risk
Two-stage pooled analyses of RRs, stratified by source of

birth size information, showed that the risk of breast cancer

in singletons increased with increasing birth weight catego-

ries in studies based on birth records or on parental recalls in

childhood (although significant only for the first, p for linear

trend (pt) ¼ 0.001), but not in those based on adult reports

(Figure 1; study-specific estimates available in Table S4).

Continuous analysis of birth weight (restricted to 25 studies;

Figure 2) revealed a similar pattern. A 0.5-kg increment

(about one SD) in birth weight was associated with a

statistically significant increase in risk in studies based on

birth records (pooled RR¼ 1.06 [95% confidence interval (CI)

1.02–1.09]; p¼ 0.002) and a borderline significant increase in

those based on parental recalls when the women were

children, but not in studies based on adult reports, with

statistical evidence of heterogeneity between birth weight

data sources (p¼ 0.003). Categorical and continuous analyses

of birth weight stratified by study design revealed a positive

trend in risk with increasing birth weight categories in data

from cohort, nested case-control, and individually matched

case-control studies (albeit only statistically significantly for

the latter), but not in data from frequency-matched case-

control studies (Figures S1 and S2). There was evidence of

between study-design heterogeneity of the continuous birth

weight effect (p ¼ 0.03), but it was accounted for by

differences in birth data sources when examined via meta-

regression of the birth weight RRs on both study design and

birth data sources (p-value for study-type heterogeneity ¼

0.67; for adult reports versus other sources ¼ 0.08).

Data on birth length and head circumference were

available, respectively, for 11 and nine singleton studies, all

derived from birth records. Two-stage pooled analyses

stratified by study design showed no statistical evidence of

heterogeneity within or between strata in either categorical

or continuous analyses (Figures 3, 4, and S4; study-specific

estimates available in Tables S5 and S7) and, thus, overall

pooled RRs were estimated. Breast cancer risk increased with

increasing birth length (pt ¼ 0.004; Figure 3), with women �

51 cm long at birth having 17% (95% CI 2%–35%) higher risk

Figure 3. Minimally Adjusted Pooled Breast Cancer RRs in Relation to Categorical Birth Length, PI, and Head Circumference (Singleton Studies Only)

The area of the black squares is inversely proportional to the variance (on the log scale).
doi:10.1371/journal.pmed.0050193.g003

the 16 studies with birth records: 3.400 (3.060, 3.730) in cases and 3.430 (3.110, 3.750) in non-cases; in the study with parental recall when women were 6-7 y old: 3.300 (3.000, 3.650) in
cases and 3.300 (3.000, 3.600) in non-cases; in the eight studies with adult reports: 3.182 (2.863, 3.629) in cases and 3.175 (2.889, 3.629) in non-cases.
hCategories based on quartiles of the overall distribution among all participants in cohort studies and non-cases in case-control studies. The median (25th and 75th percentile) of
continuous birth length (in cm) is 51 (50, 52) in cases and 50 (49, 51) in non-cases; the median (25th and 75th percentile) of continuous head circumference (in cm) is 35 (34, 36) in cases
and 34 (33, 35) in non-cases.
iData available only in singleton studies.
doi:10.1371/journal.pmed.0050193.t001
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of developing breast cancer relative to those in the baseline

category. Women with a head circumference �35 cm had an

11% increase (95% CI �5% to 29%) in risk relative to those

in the baseline category, whereas those with a head circum-

ference ,33 cm had a 10% decrease (95% CI�30% to 15%)

(pt¼ 0.01) (Figure 3). These estimates corresponded to pooled

RRs of 1.06 (95% CI 1.03–1.10) per one SD (¼2 cm) increment

in birth length (Figure 4) and 1.09 (1.03–1.15) per one SD (¼

1.5 cm) increment in head circumference (Figure S4). In

contrast, there was no association with categorical (Figure 3)

or continuous PI (pooled RR per 2.5 kg/m3 increment¼ 1.01;

0.97–1.04; Figure S3; study-specific estimates available in

Table S6).

The two twin case-control studies, both based on birth

records, showed stronger associations of breast cancer risk

with continuous birth weight (pooled RR per one SD

increment ¼ 1.57; 95% CI 1.20–2.07) and continuous birth

length (1.23; 1.01–1.49) than those found among singleton

studies, and a positive association with PI (1.36; 1.06–1.75)

that was not observed in the latter (Figure S5). No association

Figure 4. Minimally Adjusted Study-Specific and Pooled Breast Cancer RRs in Relation to Continuous Birth Length (Singleton Studies Only)

The area of the black squares is inversely proportional to the variance (on the log scale).
doi:10.1371/journal.pmed.0050193.g004

Table 2. Separate (Univariable) and Mutually Adjusted (Multivariable) Breast Cancer Incidence Rate Ratios for Continuous Weight,
Length, and Head Circumference at Birth in Singletons

Variable Univariable Multivariable

Rate Ratioa (95% CI) Rate Ratioa (95% CI)

Birth weight (per 0.5 kg increment) 1.07 (1.01–1.14) 0.98 (0.89–1.08)

Birth length (per 2 cm increment) 1.10 (1.03–1.16) 1.09 (1.00–1.19)

Head circumference (per 1.5 cm increment) 1.07 (1.01–1.14) 1.03 (0.96–1.12)

aEstimated using random effects Cox proportional hazards models fitted on the age timescale on seven cohort studies (1,210 cases/404,970 non-cases) with continuous birth size data
from birth records (Population Study of Women in Gothenburg [PSWG], Helsinki Birth Cohort Study [HBCS] I, II, and III, Uppsala Birth Cohort Multigenerational Study [UBCoS Multigen],
Saint Olav’s University Hospital Birth Cohort [SOUHBC], and The Swedish Young Female Breast Cancer Study [SYFBC]).
doi:10.1371/journal.pmed.0050193.t002
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between any of these birth size measures and breast cancer

risk was found in the cohort study of premature/low birth

weight babies, which was also based on birth records (Figure

S5; study-specific estimates available in Tables S4–S6).

Shape of the Birth Size–Breast Cancer Association in

Singletons
In the subset of singletons in cohort studies based on birth

records, all with continuous birth size data, the one-stage

pooled dose-response plot for birth weight suggested a

nonlinear (quadratic) relationship, with RR for women at the

extremes of the distribution being slightly lower than

predicted by the linear model. However, the test for deviation

from linearity was not statistically significant (p¼ 0.20; Figure

S6). The plots for birth length and head circumference were

more consistent with a linear association (p-value for depar-

ture from linearity: 0.39 and 0.58, respectively; Figure S6).

Independence of Effects of the Various Birth Size
Measures in Singletons
Birth weight and birth length were strongly correlated with

each other (r ¼ 0.79, p , 0.001, in the subset of cohorts with

birth record data), and both were correlated with head

circumference (r ¼ 0.61 and r ¼ 0.51, respectively; p , 0.001

for both). Simultaneous one-stage pooled analysis of these

three variables in the subset of cohort studies of singletons

based on birth records showed that birth length was the

measure with the strongest independent association with

breast cancer risk (Table 2). The association with birth weight

disappeared after adjustment for birth length and head

circumference, while the association with birth length

persisted, and remained of borderline significance, after

adjustment for birth weight and head circumference.

In this subset of cohort studies, all from developed

countries, the cumulative incidence of breast cancer by age

Figure 5. Pooled Breast Cancer RRs, Minimally Adjusted and Further Adjusted for Various Potential Confounding Factors in Relation to Continuous Birth
Weight (Restricted to Singleton Studies Based on Birth Records)

Adjustments for maternal age (continuous), maternal height (continuous), maternal weight (continuous), maternal parity (categorical: 0, 1, 2, �3),
parental SES (study-specific categories: paternal SES for Medical Research Council National Survey of Health and Development [MRC NSHD]; maternal
SES for Saint Olav’s University Hospital Birth Cohort [SOUHCB], Trondheim & Bergen Population-based Case-Control Study [TBPCCS], and Swedish study
on Pre-Natal Factors and Breast Cancer [SPNFBC]; and parental/paternal occupation for Carolina Breast Cancer Study [CBCS]), preterm (binary), age at
menarche (categorical: ,12 y, 12.0–12.9 y, �13 y), adult height (continuous), adult BMI (continuous), adult parity (categorical: 0, 1, 2, �3), age at first
birth (categorical: nulliparous, ,20 y, 20–29 y, �30 y), and adult SES (study-specific categories: adult SES for MRC NSHD, Helsinki Birth Cohort Study
[HBCS] I, Population Study of Women in Gothenburg [PSWG]; and occupation for Malmö Diet and Cancer Study [MDCS]).
doi:10.1371/journal.pmed.0050193.g005
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80 y is estimated to be 10.0 per 100 singleton women in those

who were shorter than 49 cm at birth and 10.0, 10.4, 11.5,

respectively, per 100 singleton women who were 49.0–49.9,

50.0–50.9, and �51.0 cm at birth. Similarly, and as data on

birth weight are more widely available, the cumulative

incidence is estimated to change from 10.0 per 100 singleton

women in those who weighed less than 2.500 kg at birth to 9.4,

10.4, 10.9, and 11.6, respectively, per 100 singleton women

who weighed 2.500–2.999, 3.000–3.499, 3.500–3.999, and

�4.000 kg at birth. About 45%–50% of women in these

cohorts were � 50 cm long, or � 3.5 kg, at birth. If the

observed effect estimates are valid, and assuming that birth

size reflects some underlying process that is causally related

to breast cancer, it is estimated that about 4.5%–5.0% of

breast cancers by age 80 y in these study populations are

attributable to length � 50 cm, or weight � 3.5 kg, at birth.

Consistency of the Findings
There was little evidence that the associations between the

various birth size variables and breast cancer risk in single-

tons were confounded or modified by other peri- and

postnatal factors in data from birth records (Figures 5 and

6), or adult reports (Figure S7). Even variables that were

significantly associated with birth size, such as maternal

height and maternal parity (e.g., correlation coefficients with

birth length: r¼ 0.24 and r¼ 0.07, respectively; p , 0.001 for

both), woman’s adult height (r¼ 0.29, p , 0.001) and parental

and woman’s adulthood measures of socioeconomic status

(SES) (p , 0.01 and p , 0.05, respectively), did not explain the

positive association with breast cancer risk. In particular,

adjustment for maternal height or the woman’s adult height

attenuated only slightly the effects of birth weight and length

(Figures 5 and 6). Similarly, adjustment for the woman’s adult

Figure 6. Pooled Breast Cancer RRs, Minimally Adjusted and Further Adjusted for Various Potential Confounding Factors in Relation to Continuous Birth

Length (Restricted to Singleton Studies Based on Birth Records)

Adjustments for maternal age (continuous), maternal height (continuous), maternal weight (continuous), maternal parity (categorical: 0, 1, 2, �3),
parental SES (study-specific categories: paternal SES for Medical Research Council National Survey of Health and Development [MRC NSHD]; maternal
SES for Saint Olav’s University Hospital Birth Cohort [SOUHCB], Trondheim & Bergen Population-based Case-Control Study [TBPCCS] and Swedish study
on Pre-Natal Factors and Breast Cancer [SPNFBC]; and parental/paternal occupation for Carolina Breast Cancer Study [CBCS]), preterm (binary), age at
menarche (categorical: ,12 y, 12.0–12.9 y, �13 y), adult height (continuous), adult BMI (continuous), adult parity (categorical: 0, 1, 2, �3), age at first
birth (categorical: nulliparous, ,20 y, 20–29 y, �30 y), and adult SES (study-specific categories: adult SES for MRC NSHD, Helsinki Birth Cohort Study
[HBCS] I, Population Study of Women in Gothenburg [PSWG]; and occupation for Malmö Diet and Cancer Study [MDCS]).
doi:10.1371/journal.pmed.0050193.g006
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body mass index (BMI) did not affect the birth size effects

(Figures 5 and 6). Neither continuous gestational age (pooled

RR per 1 wk increment ¼ 0.99; 95% CI 0.96–1.03) or being

preterm (unpublished data) was associated with breast cancer

risk. Few studies collected data on the woman’s use of oral

contraceptives (OC) or hormone replacement therapy (HRT)

(Table S3), but their findings indicate that the birth size–

breast cancer associations reported here are unlikely to have

been confounded by ever use of these exogenous hormones

(minimally adjusted and OC-adjusted pooled RRs per 2 cm

increment in birth length: 1.14 (95% CI 0.82–1.61) and 1.14

(0.82–1.61), respectively; similarly, minimally adjusted and

HRT-adjusted pooled RRs: 1.08 (0.92–1.25) and 1.07 (0.86–
1.34), respectively).

The effect of categorical (Figure S8; study-specific estimates

available in Table S8) or continuous birth weight (Figure 7)

was not modified by age (defined as current age for cohort

studies and age at diagnosis for case-control studies). There
was also no evidence of any interaction between age and

continuous birth length, PI, or head circumference (Figure 7).

Menopausal status was known for 33% of the cases, but

analysis restricted to the subset of studies with this

information showed no difference in the birth size effects

between pre- and postmenopausal women.

Sensitivity analysis showed that none of the categorical or

continuous pooled birth size associations reported here was

dominated by any single study. The association of birth size

with breast cancer risk in birth record data persisted after

exclusion of 1,510 in situ tumours among the case-control

studies and censoring 28 diagnoses of in situ tumours in

cohort studies (6% of all cases). Birth cohort (defined by the

median year of birth in each study) and geographical area

(North America, Western Europe, Eastern Europe, and Asia)

did not explain any further between-study heterogeneity

beyond that accounted for by source of birth size data.

The findings did not appear to be affected by study size bias

(Egger funnel plot asymmetry test: p ¼ 0.20). There was no

statistical evidence of publication bias among the studies

included in these analyses (Table S9).

Discussion

We analysed individual participant data on over 22,000

women with breast cancer from 32 epidemiological studies of

the association between birth size and breast cancer. This

pooled analysis provided evidence of moderate positive

trends in the risk of breast cancer among studies based on

birth records, with risk increasing with increasing birth

weight, length, and head circumference. Source of birth size

data was identified as the main source of between-study

heterogeneity, with positive associations of birth size with

breast cancer risk found only in data from birth records and,

Figure 7. Minimally Adjusted Pooled Breast Cancer RRs in Relation to Continuous Weight, Length, PI, and Head Circumference at Birth Stratified by Age
(Restricted to Singleton Studies Based on Birth Records)

doi:10.1371/journal.pmed.0050193.g007
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to a lesser extent, in data from parental recalls when the
women were aged 6–7 y, but not in data from self-reports or
maternal recalls when the women were adults.

Simultaneous adjustment for weight, length and head
circumference at birth showed that length, perhaps as a
measure of linear growth, was the strongest predictor of risk
despite the fact that the latter tends to be more poorly
measured than weight or head circumference [46,47]. Such
finding should not however be overinterpreted because of the
strong collinearities among these variables.

The birth size effect did not appear to be confounded or
modified by known breast cancer risk factors. In particular,
and contrary to previous reports [18,23,31], there was no
evidence that the birth size effect was stronger for premeno-
pausal breast cancer. The association between birth size and
breast cancer risk was observed consistently in women born
over a period of several decades, and in different geo-
graphical areas.

Strengths and Limitations
Because of its large size this pooled analysis provided

greater statistical power than any of the contributing
individual studies and, therefore, more precise estimates
than those previously published. It was also possible to
standardise the way in which the exposure and confounding
variables were defined and coded, the choice of which
variables to control for, and the type of analysis conducted,
thereby removing these potential sources of heterogeneity
across studies. The possible influence of bias needs to be
considered. Publication bias is a general problem for pooled
analyses. Because inclusion in this pooled analysis was not
dependent on publication, this re-analysis is likely to have
been less affected by publication bias than meta-analyses of
the published literature. The two nonparticipating studies
[32,33] showed no association between birth weight and
breast cancer, but they were based on small numbers of cases
(12 and 74, respectively). We found no evidence of publica-
tion bias when examining the effect of study size, or year and
type of publication.

Bias within studies, such as information or selection bias,
might also have influenced the results. Exposure measure-
ment error could have been a problem as we found evidence
of statistical heterogeneity of effects by source of birth size
data. Reports of birth weight by the participants themselves
in adulthood, or by their mothers when the participants were
adults, are likely to be more prone to measurement error
than those based on birth records or on parental recall when
the participants were children. This remark is consistent with
the clear digit preference patterns found in the birth weight
data reported by the women themselves, or their parents, but
not in those from birth records (unpublished data). These
errors are, however, likely to be mainly nondifferential and so
likely to impose an attenuating bias in univariable analyses
that use these sources of data as exposure measurements.
Although differential misclassification is possible in studies in
which exposure information was collected after diagnosis, it
is unlikely that participants would have been aware of a
possible link of birth size with breast cancer risk. Thus, the
variability in results across the various sources of birth weight
data might simply reflect different degrees of attenuation of
the true birth weight effect due to different levels of random
exposure misclassification. Selection bias could have been a

problem, particularly in case-control studies. Although all
case-control studies in this re-analysis were population-based,
selection bias might still have occurred in studies with
relatively low participation. We did not find evidence that
studies with low participation levels provided systematically
discrepant results (p for heterogeneity ¼ 0.88). Bias due to
incomplete follow-up is unlikely because all cohorts had high
degrees of completeness.
Finally, the impact of potential confounding factors was

evaluated by comparing effect estimates unadjusted and
adjusted for single or multiple potential confounders. The
results showed little variation. The availability of information
on many potential confounding variables is a major strength
of our pooled analysis. One drawback is that information for
many of them was restricted to a few studies and therefore we
could only assess the impact of each potential confounder
separately, or only of groups with few of them at a time, when
pooling data. Moreover, some of these factors were probably
measured with some error. Thus, we cannot exclude residual
or unmeasured confounding by these or other factors.

Biological Plausibility and New Perspectives
These results provide no direct evidence about possible

mechanisms underlying the birth size–breast cancer associa-
tion. Trichopoulos’s initial assumption [1] was that birth size
was a correlate of foetal oestrogen exposure. Oestriol
represents 90% of the oestrogens produced during preg-
nancy [48]. Birth size indicators have been found to be
correlated with maternal oestriol levels [49] but, not with
foetal levels [50]. Maternal and/or foetal levels of other growth
factors, such as insulin-like growth factors [51,52], leptin and
adiponectin [53–55], and alpha-phetoprotein [56] have also
been reported to be associated with birth size. The maternal
and/or foetal hormonal environment associated with large
birth size may alter programming of the breast, making it
more susceptible to cancer initiation by endogenous hor-
mone levels and other carcinogens later in life [57]. This
altered programming may involve epigenetic changes in the
expression of genes linked to cell proliferation, survival, and
differentiation; these changes are likely to occur in the foetal
mammary stem cells that give rise to all mammary epithelial
structures and/or in cells that influence stem cell self-renewal
and fate [58]. If pregnancy hormones are the real exposure of
interest the use of a surrogate measure, such as birth size, may
lead to considerable exposure misclassification with likely
attenuation of the true effect. A moderate correlation of
birth size with pregnancy hormone levels of about r¼ 0.35, as
found with maternal oestriol [49,59], implies that the
observed RR of 1.06 per one SD increment in birth weight
would correspond to a RR as large as 1.17 for one SD increase
in the underlying true exposure (although the corresponding
95% CI would be wider). If, however, the in utero origins of
breast cancer result from a complex interplay of several
hormonal and nonhormonal processes [60], birth size may, in
fact, be a better cumulative summary measure of all relevant
exposures than measured levels of any single hormone.
Foetal growth is a predictor of a woman’s growth and

development during childhood and early adult life, and both
age at menarche and adult height [61] are associated with
breast cancer risk. Thus, the observed association between
foetal growth and breast cancer may be partly mediated
through postnatal growth. This pathway would be consistent
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with our finding of a stronger association of breast cancer
with birth length than birth weight, as birth length for
gestational age has been shown to be a stronger predictor of
adult height than birth weight for gestational age [62,63].
However the magnitude of the birth size effect was only
slightly reduced after adjustment for adulthood height (but
on the basis of a small number of cases, Figures 5 and 6),
suggesting that the effect of birth size on risk may be only
partly mediated through childhood growth [22,23]. Similarly,
the woman’s BMI in adulthood did not confound the birth
size–breast cancer associations. This was true even at
premenopausal ages when adult BMI was inversely associated
with breast cancer risk and thus any potential confounding by
this variable would have lead to an underestimation of the
true birth size effects.

Conclusions
This pooled analysis of individual participant data provides

a comprehensive and detailed description of the association
between birth size and breast cancer risk. Its findings are
consistent with positive associations at both pre- and
postmenopausal ages, and are largely independent of post-
natal risk factors including adult body size. This study is an
important addition to previous meta-analyses of published
results [34–36] as it offers a comprehensive assessment of
possible sources of between-study heterogeneity, and it
clarifies the role of several potential confounders, mediators,
and effect modifiers. The magnitude of the observed effect,
although modest, is similar to those reported for other more
established breast cancer risk factors. The RR per one SD
increment in birth length of 9% is of similar magnitude to
that associated with one SD increase in adult height in our
data, and similar to an increase of about 7% for each
additional 10 g of alcohol consumed on a daily basis [64].
Assuming causality, we estimated that about 5% of all breast
cancers in developed countries could be attributable to high
birth size (length � 50 cm or weight � 3.5 kg). The prevalence
of high birth weight has been increasing in many countries
[65,66], consequent to rises in maternal prepregnancy BMI
and maternal weight gain during pregnancy [67–69], but as
this increase appears to reflect mainly rises in PI rather than
birth length [70] it may not necessarily translate into an
increase in the population attributable fraction. Even if real,
the positive association of birth size with breast cancer would
have to be interpreted in the context of U-shaped inverse
associations of birth size with all-cause mortality [71],
particularly mortality from circulatory diseases [71]. Never-
theless, continued investigation of the pathways through
which prenatal factors may affect breast cancer risk, and the
extent to which their effects may be mediated or modified by
later life risk factors, may identify new targets for prevention
of this disease in the future.
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Editors’ Summary

Background. Last year, more than one million women discovered that
they had breast cancer. In the US, nearly 200,000 women will face the
same diagnosis this year and 40,000 will die because of breast cancer.
Put another way, about one in eight US women will have breast cancer
during her lifetime. Like all cancers, breast cancer begins when cells
acquire genetic changes that allow them to divide uncontrollably and to
move around the body (metastasize). This uncontrolled division leads to
the formation of a lump that can be detected by mammography (a
breast X-ray) or by manual examination of the breasts. Breast cancer is
treated by surgical removal of the lump or, if the cancer has started to
spread, by removal of the whole breast (mastectomy). Surgery is usually
followed by radiotherapy, chemotherapy, and other treatments designed
to kill any remaining cancer cells. Unlike some cancers, the outlook for
women with breast cancer is good. In the US, for example, nearly 90% of
affected women are still alive five years after their diagnosis.

Why Was This Study Done? Scientists have identified several factors
that increase a woman’s risk of developing breast cancer by comparing
the characteristics of populations of women with and without breast
cancer. Well-established risk factors include increasing age, not having
children, and having a late menopause, but another potential risk factor
for breast cancer is birth size. A baby’s weight, length, and head
circumference at birth (three related measures of birth size) depend on
the levels of hormones (including estrogen, a hormone that often affects
breast cancer growth) and other biological factors to which the baby is
exposed during pregnancy—its prenatal environment. The idea that
prenatal environment might also affect breast cancer risk in later life was
first proposed in 1990, but the findings of studies that have tried to
investigate this possibility have been inconsistent. Here, the researchers
re-analyze individual participant data from a large number of studies into
women’s health conducted in Europe, Northern America, and China to
get more precise information about the association between birth size
and breast cancer risk.

What Did the Researchers Do and Find? The researchers identified 32
published and unpublished studies that had collected information on
birth size and on the occurrence of breast cancer. They then obtained
the individual participant data from these studies, which involved more
than 22,000 women who had developed breast cancer and more than
600,000 women who had not. Their analyses of these data show that
birth weight was positively associated with breast cancer risk in those

studies where this measurement was recorded at birth or based on
parental recall during the study participant’s childhood (but not in those
studies in which birth weight was self-reported or maternally recalled
during the participant’s adulthood). For example, women with recorded
birth weights of more than 4 kg or more had a 12% higher chance of
developing breast cancer than women who weighed 3–3.5 kg at birth.
Birth length and head circumference were also positively associated with
breast cancer risk, but birth length was the strongest single predictor of
risk. Finally, the amount by which birth size affected breast cancer risk
was not affected by allowing for other established risk factors.

What Do These Findings Mean? These findings provide strong
evidence that birth size—in particular, birth length—is a marker of a
woman’s breast cancer risk in adulthood although the mechanisms
underlying this association are unclear. The researchers note that the
observed effect of birth size on breast cancer risk is of a similar
magnitude to that of other more established risk factors and estimate
that 5% of all breast cancers in developed countries could be caused by a
high birth size. Because practically all the studies included in this pooled
analysis were done in developed countries, these findings may not hold
for developing countries. Further investigations into how the prenatal
environment may affect breast cancer risk might identify new ways to
prevent this increasingly common cancer.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0050193.

� This study is further discussed in a PLoS Medicine Perspective by
Trichopoulos and Lagiou

� The US National Cancer Institute provides detailed information for
patients and health professionals on all aspects of breast cancer,
including information on risk factors for breast cancer (in English and
Spanish)

� The MedlinePlus Encyclopedia provides information for patients about
breast cancer; Medline Plus also provides links to many other breast
cancer resources (in English and Spanish)

� The UK charity Cancerbackup also provides detailed information about
breast cancer

� Cancer Research UK is the UK’s leading charity dedicated to cancer
research
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