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1. Introduction
Modern healthcare systems involve the collection of a significant amount of routine data
for audit purposes. Audit data has a significant advantage over clinical trial data in that it
can show how treatments and procedures work in everyday practice with the full spectrum
of patients rather than in carefully controlled trials with strict patient eligibility criteria.
Clinical audit data therefore has the potential to be a valuable resource in many aspects of
front line health care provision.

The greatest concerns in using audit data for research is missing and implausible data,
which are inevitable when large volumes of data are collected. Missing and implausible
data have the potential to bias statistical analysis if they cannot be appropriately addressed.
Biases in clinical applications are particularly problematic since treatment strategies or
healthcare policy could be based on flawed findings. The potential for missing data to un-
dermine the validity of results has often been overlooked in medical applications (REF
WOOD & WHITE 2004), partly because statistical methods to tackle missing data prob-
lems have not been widely available to medical researchers.

A number of methods have been proposed to deal with missing data including us-
ing only complete cases; using a missing category indicator (REF VACH & BLETTNER)
and replacing missing values with the last measured value (REF: CARPENTER). None of
these approaches is statistically valid and they will often lead to very serious bias. Single
imputation of missing values usually causes standard errors to be too small, since it fails
to account for the fact that we are uncertain about the missing values. Specifically sin-
gle mean imputation shrinks standard errors unacceptably. Single regression imputation,
whilst marginally better than mean imputation, tends to grossly exaggerate correlations.
Complete case analysis is also unsatisfactory because even if missingness is not severe in
any single variable, the combined effect when a number of variables are used in an analysis
can be very large.

For some time multiple imputation has been suggested as a promising approach for
dealing with missing data (REF RUBIN & LITTLE), although it is not until recently that
coherent guidelines for its use have been suggested in the medical literature (REF STERN,
CARPENTER & WHITE). Multiple imputation allows for the uncertainty about the miss-
ing data by creating several plausible imputed datasets and combining the results from
each of them. Because we can never know the true values of the missing data the multiple
imputation procedure must create multiple copies of the data from the empirical predictive
distributions of the observed values. As such multiple imputation is based on a Bayesian
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2 B. A. Cattle

approach. Standard statistical methods are then used to fit the model of interest in each
dataset, and the results differ because of the uncertainty about the imputed values. The
results are only meaningful when averaged together to give overall estimated associations.
Estimates and standard errors are calculated using Rubin’s rules (REF RUBIN 1987) which
take into account the within and between imputation variation. Recent developments in sta-
tistical software permit some degree of automation of the process of multiple imputation;
see ICE in Stata (REF ROYSTON) or MICE in R (REF VAN BUREN).

In this paper we study the Myocardial Infarction National Audit Project (MINAP)
database (REF RCP REPORTS). MINAP was first collected data in 2000 and originally
recorded information on each patient presenting to hospitals in England and Wales suffer-
ing with a myocardial infarction. The dataset has since expanded so that it covers all aspects
of patient care of patients having acute coronary syndromes (ACS). Data is now collected
from 234 acute hospitals in England and Wales, and the priority is to provide useful data
with which to analyse patient care (REF UCL DATA COLLECTION MANUAL). The MI-
NAP dataset considered in this paper spans the four calendar year period between 2004 and
2007 inclusive, in which there are a total of 340,983 admissions recorded. Of these admis-
sions 290,483 ultimately had a diagnosis of ACS, 32,385 patients had non-ACS diagnoses
such as chest pain with uncertain cause whilst 10,115 patients had no diagnosis recorded.

We determine the extent of missing data and implausible data in key fields for risk
modelling. Risk modelling is an important part of ACS care because it can be used to guide
treatment strategies depending upon the classification of the patients degree of risk assessed
using established risk factors. There are several important risk score in ACS management,
including the Global Registry of Acute Coronary Events (GRACE) score (REFS); the TIMI
Risk Score for Unstable Angina/Non-ST Elevation myocardial infarction (REFS) and the
Evaluation of Methods and Management of Acute Coronary Events (EMMACE) risk score
(REF EMMACE & EMMACE II). These risk scores provide the basis of our decisions
about which variables to impute to allow the datasets to be used for risk modelling. We have
also included variables that were identified as clinically important for ACS management
specifically in the UK.

We aim to improve the usability of MINAP data beyond its current level by taking
positive action to address the concerns relating to missing data. We develop a multiple im-
putation scheme to mitigate the effects of missing data in MINAP following the guidelines
suggested in (REF STERN, CARPENTER & WHITE). We investigate the effects of mul-
tiple imputation on the dataset, and perform an example analysis based on the EMMACE
risk score (REF EMMACE), to demonstrate the differences in the numerical results.

2. Multiple imputation

(a) Multiple imputation using chained equations

The multiple imputation procedure consists of several independent steps that when
combined produce the multiply imputed analysis results of interest. Beginning with the in-
complete data, a number of imputations (i.e. multiple imputations) are performed yielding
a collection of imputed data sets. The analysis of interest is then performed in each of the
imputed data sets. The results of the analysis in each imputed data set are then combined
to produce the final multiply imputed analysis result.

Let Yj , j = 1, . . . , p be one of p incomplete variables and Y = (Y1, . . . , Yp). The
observed and missing parts of Yj are Y obs

j and Y miss
j , respectively. Let the number of
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imputations be m ≥ 1. The i-th data set is denoted Y (i) with i = 1, . . . ,m. Let Y−j =
(Y1, . . . , Yj−1, Yj+1, . . . , Yp) denote the collection of p − 1 variables in Y except Yj . Let
Q denote the quantity of interest (a regression coefficient, say), but more generally any
quantity of interest.

Imputation is achieved using chained equations to allow imputation of variables which
themselves depend on missing values. Hypothetically let the complete data Y be a partially
observed random sample of the multivariate distribution P (Y |θ). Assume further that the
multivariate distribution of Y is specified completely by θ, a vector of unknown parameters.
The objective is to find the multivariate distribution of θ, either explicitly of implicitly.
The chained equations obtains an estimate of the posterior distribution of θ by sampling
iteratively from conditional distributions of the form

P (Y1|Y−1, θ1)

...
P (Yp|Y−p, θp)

Starting from a random draw from the observed marginal distributions, the k-th iteration
of chained equations is a Gibbs sampler that successively draws

θ
∗(k)
1 ∼ P (θ1|Y obs

1 , Y
(k−1)
2 , . . . , Y (k−1)

p )

Y
∗(k)
1 ∼ P (Y1|Y obs

1 , Y
(k−1)
2 , . . . , Y (k−1)

p , θ
∗(k)
1 )

...
θ∗(k)p ∼ P (θp|Y obs

p , Y
(k)
2 , . . . , Y (k)

p )

Y ∗(k)
p ∼ P (Yp|Y obs

p , Y
(k)
1 , . . . , Y (k)

p , θ∗(k)p )

where Y (k)
j = (Y obs

j , Y
∗(k)
j ) is the k-th imputed variable at iteration k. Observed that

previous imputations only enter the present imputation through it’s relationship with other
variables and not directly, meaning that unlike many applications of MCMC convergence
can be very fast.

Once the m imputed datasets have been created the next step is to estimate Q̂ =
(Q̂(1), . . . , Q̂(m)) which is the vector of imputed estimates, which differ because the impu-
tations in each of the m datasets are different reflecting our uncertainty about the imputed
value. The estimates Q̂ are finally then pooled using Rubin’s rules, which are described in
Subsection 2b.

(b) Estimation of parameters: Rubin’s rules

Following multiple imputation we have a number of plausible possibilities for each
missing entry, reflecting our uncertainty about the imputed values. To generate estimates
or models from the imputed data sets we perform out analysis in each of the imputed
datasets and combine the results using Rubin’s rules. Rubin’s rules state that the average
of the parameter of interest is the multiply imputed estimator and its sampling variance is
the average of the completed data sampling variances inflated by the between completion
variance (REF RUBIN).
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Mathematically, let θ̂m, m = 1, . . . ,M , be the set of complete estimates of the pop-
ulation quantity θ and let ŝ2m be the estimates of the completed data sampling variances.
Then the multiply imputed estimator of θ is defined by Rubin’s rules as

θ̃ =
1

M

M∑
m=1

θ̂m (2.1)

and its sampling variance is estimated by

s̃2 = Û + (1 + 1/M)B̂ (2.2)

where

Û =
1

M

M∑
m=1

s2m (2.3)

and

B̂ =
1

M − 1

M∑
m=1

(
θ̂m − θ̃

)2
. (2.4)

The first term Û estimates the sampling variance of θ̂ that would be realised if data were
complete. The second term B̂ is an inflation term due to missingness and gives the appro-
priate inflation for M → ∞. The term B̂/M is a correction to account for having used a
finite number of imputations.

3. Imputation scheme

(a) Variable selection

As a general rule using every bit of available information yields multiple imputations
that have minimal bias (REF MENG 1995; COLLINS 2001). This principle suggests that
the number of predictors should be as large as possible. Practically however, the imputation
scheme should be at least as rich as the models that the analyst intends to use for their
statistical modelling after the imputations: a property referred to as congeniality (REF
MENG 1994). When the imputation and the analysis model are congenial then multiple
imputation gives results that are asymptotically equivalent to maximum likelihood.

Because our intention is to provide imputed datasets that will be applicable for general
modelling of risk of early mortality following heart attack, we have attempted to include as
many variables as possible that might be of interest to analysts. Using several risk scores
as a guide we constructed a list of variables of interest to impute and we have also included
additional variables, known as auxiliary variables, that can improve prediction of the miss-
ing values in the variables of interest. The subset of variables to be imputed is summarised
in Table 1.

Table 1 has been divided into patient demographics, medical history, drug usage and
diagnostic variables for convenience. The index of multiple deprivation score is a mea-
sure of the social status of the patient and is based on the patients address (REF IMDdocs
online). There are several ACS diagnoses that are of importance in MINAP. ST-elevation
myocardial infarction (STEMI) is diagnosed using the electrocardiograph (ECG) due to
a characteristic elevation of the ST-segment on the ECG trace, (REF). Any myocardial
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Table 1. Variables and summary of missing data. Key: †primary percutaneous coronary interven-
tion surgery; ‡coronary artery bypass graft surgery; ∗angiotensin-converting enzyme inhibitor;
∗∗angiotensin II receptor antagonist.

Variable Variable type % missing Imputation method
Demographics
Age Continuous 0.4 Predictive mean matching
Mortality (alive/dead at 30 days) Binary 4.7 Predictor only
Month of admission Categorical 2.9 Polytomous regression
Ethnicity Categorical 23.8 Polytomous regression
Index of multiple deprivation (IMD) Continuous 16.2 Predictive mean matching
Total ACS related admissions Continuous 4.9 Polytomous regression
Hospital of admission Categorical 0.0 Predictor only
Medical history
Hypertension Binary 4.2 Default imputation
Stroke Binary 9.8 Default imputation
Peripheral vascular disease Binary 9.7 Default imputation
Heart failure Binary 9.5 Default imputation
Renal failure Binary 9.9 Default imputation
Myocardial infarction Binary 5.0 Default imputation
Hyperlipidemia Binary 10.6 Default imputation
Previous/existing angina Binary 6.4 Default imputation
Previous PCI† Binary 8.9 Default imputation
Previous CABG‡ Binary 8.6 Default imputation
History of smoking Categorical 11.1 Polytomous regression
History of diabetes Categorical 3.8 Polytomous regression
Drug usage
Thiazide Binary 20.6 Default imputation
Beta blocker Binary 43.7 Default imputation
Loop dieuretic Binary 19.9 Default imputation
ACE inhibitor∗ Binary 19.2 Default imputation
ACEARB∗∗ Binary 19.1 Default imputation
Spironolactone Binary 21.1 Default imputation
Diagnostics
Electorcardiograph (ECG) Categorical 9.6 Polytomous regression
Final diagnosis Categorical 3.0 Polytomous regression
Cholesterol Continuous 34.0 Predictive mean matching
Troponin biomarker concentration Categorical 14.5 Polytomous regression
Glucose concentration Continuous 46.9 Predictive mean matching
Heart rate Continuous 14.4 Predictive mean matching
Systolic blood pressure Continuous 15.8 Predictive mean matching

infarction that does not show this characteristic ST-segment elevation is referred to as non-
STEMI (NSTEMI), and there are several subcategories of NSTEMI depending upon chem-
ical biomarkers, such as Tropoinin (REF DIAGNOSIS GUIDANCE). Troponin is a chem-
ical biomarker that is released when cardiac muscle dies, and is a positive indication that
a myocardial infarction has been experienced by the patient even when the ST-elevation
is not present. Full details of the diagnostic guidance we have used can be found in (REF
EHJ PAPER).
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(b) Missingness mechanisms

Missingness mechanisms are assumptions about the data that describe the way in which
we believe the missing data are, or are not, related to the observed data. It should be noted
that they are assumptions, which justify the analysis and are not themselves properties of
the data. Four mechanisms are acknowledged to exist, and these are as follows:

• Missing completely at random: there are no systematic differences between the ob-
served values and the missing values.

• Missing at random: any systematic difference between the missing values and the
observed values can be explained by differences in observed data

• Missing not at random: even after the observed data are taken into account, system-
atic differences remain between the missing values and the observed values.

• Missing by design: the data are missing because of the design of the questionnaire or
data collection strategy.

If data are assumed to be missing completely at random then the observations constitute
a random sample of the ‘full’ dataset and no bias will be present in analyses as a conse-
quence of missing data. Multiple imputation assumes that data are missing at random: that
is the observed variables are predictive of the missing values. Analyses based on multi-
ply imputed data will avoid bias only if enough variables that predict the missing values
are included in the imputation models. Failure to do so may render the missing at random
assumpition implausible and analyses based on the data may be biased. If the data are as-
sumed to be missing not at random, then the missing values depend on some additional
factor that has not been observed and which cannot be used to predict the missing val-
ues. Data that are missing by design can be dealt with, for example by inverse probability
weighting methods (REF), but are not considered further in this paper.

The important issue is that there is is sufficient plausibility in the missing at random
assumption to justify the belief that the missing values can reasonably be predicted by
the observed values. Including as many predictors as possible tend to make the missing at
random assumption more plausible (REF SCHAFER 1997), although including more than
15 to 25 predictors gives a negligible increase in the variance explained in the prediction
equations (REF VAN BUREN 1999).

A common misunderstanding of multiple imputation is that it is restricted to data as-
sumed to be missing at random. There are techniques to deal with data that have been
assumed to be minning not at random, details of which may be found in (REF: RUBIN 87;
LITTLE 2009; ALBERT & FOLLMAN 2009).

(c) Missingness patterns

We examined the pattrerns of missingness to gain further insight into the possible ways
by which the data came to be missing. In data which is collected longitudinally through the
patients stay we looked for monotone missingness: that is Yj is observed only if Yj−1 is
observed. In doing so no bobvious patterns were found. We also looked at which variables
might have an effect on missingness in other variables. The most significant observation
was that when missing values occur, systolic blood pressure and heart rate are most often
missing sumultaneously as shown in Table 2.
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Table 2. Missing value patterns in systolic blood pressure and heart rate.

Percent Systolic BP (mmHg) Heart rate (bpm)
83 recorded recorded
13 missing missing
2 recorded missing
<1 missing recorded

100%

Table 2 shows that where either of systolic blood pressure or heart rate is missing, the
most common situation is that both will be missing. Simultaneous missingness constitutes
13% of all of the cases, but over 80% of those cases in which one or both values is missing.

We used logistic regression with the outcomes ‘missing’ and ‘not missing’ for each
variable that we imputed to identify potential predictors. Where non-linear realtionships
were found using powers of predictors we also examined these relationships in more detail
using generalised additive models: see Subsection 3g.

(d) Handling interactions: imputation by splitting

The most important interaction that we discovered in the MINAP data is between age
and sex. Because of the potential importance of this interaction in risk modelling it must be
included in the imputation scheme. Generally speaking, female patients tend to have their
heart attacks later in life compared to males: see Figure 1. There is also a dependence of 30
day mortality on the patient’s year of admission, partly as a result of changing processes
of care and treatments (REF THROMBO/PCI). The dependence of mortality rate on year
is considered further in Subsection 3h.

20 40 60 80 100
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00

0
0.

01
0
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02

0
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Male

Figure 1. Age and sex interaction. Histograms showing the age distribution by sex.

An additional factor to consider is that the amount of missing data in most variables
decreases over time. Table 3 tracks the missingness of several key variables over the four
year period considered. It is evident that the overall trend is a reduction in the amount of
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Table 3. Missingness by year in a selection of variables

2004 missing % 2005 missing % 2006 missing % 2007 missing %
Age 1.9 0.9 0.2 0.2
Systolic blood pressure 18.8 16.4 13.6 13.9
Heart rate 16.0 14.2 13.1 13.9
Glucose 79.6 50.7 29.0 21.8

missing data year-on-year but that in some variables, most noticeably glucose, there is a
marked variation between the years. The variation in glucose missingness can be explained
by changing practices in data collection during the four year period.

Because MINAP is a very large database and imputation of the whole dataset is compu-
tationally challenging, we have addressed imputation of these interactions by splitting the
dataset according to sex and year of admission. This constitutes imputation by splitting.
Splitting reduces the computational burden, ensures the imputations respect the age–sex
interaction, the variations of outcome with year and the annual variation of missing data.

(e) Default imputations

Conditions that the patient has previously suffered from can affect their risk of mortal-
ity, as can the various standard drug therapies on admission. In MINAP both the medical
history and drug therapies are reported using ‘yes/no’ fields. After discussions with cleri-
cal and medical staff we determined that the pragmatic approach to imputing the missing
‘yes/no’ responses was to impute a ‘no’ response if the information was missing, provided
that other information did not imply that ‘no’ would be the wrong response. We chose this
approach because it is more likely that a condition or treatment would go unrecorded (i.e.
missing) if the patient had no history of that condition or did not receive the treatment. In
instances where the patient had been given a treatment (i.e. the entry should be ‘yes’) it
would be negl01igent to have not recorded this information. Table 1 shows the imputation
scheme used for each variable including those for which default imputation has been used.

(f ) Non-normal variables

Multiple imputation assumes of normality of the variables being imputed, and it is im-
portant to check that this assumption will be approximately satisfied. For those variables
that are found to have a non-normal distribution a transformation to approximate normality
is required. A Box–Cox transformation or logarithmic transformation will usually suffice
(REF WHITE). After imputation the transformation can be reversed to recover the dis-
tribution of the imputed variable on its natural scale. In this work we have opted for the
logarithmic transformation for the variables heart rate, systolic blood pressure and glu-
cose, all of which are sufficiently non-normal to cause concern about the validity of the
normality assumption.

Figure 2 shows the QQ-plots for heart rate and its logarithmic transform. The heart
rate variable shows non-normality over much of the distribution, whereas the logarithmic
distribution, although not perfect in the left tail, is somewhat closer to normality than the
untransformed variable.
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Figure 2. QQ-plot of heart rate (left) and the logarithm of heart rate (right).

(g) Non-linear associations

It is important to consider the possibility of non-linear associations between the con-
tinuous variables as an incorrect assumption of linearity will bias the higher-order terms
towards the null. We did extensive analysis for each variable to identify potential predic-
tors, and to quantify the associations between the variables and the potential predictors.
We used generalised additive models (GAMs) (REF HASTIE &/or WOOD) to explore po-
tential predictors for the continuous variables and to identify non-linear relationships. A
generalised additive model is a generalised linear model with a linear predictor involving a
sum of smooth functions, usually cubic splines, of the covariates. Because the generalised
additive model is a sum of smooth functions it is able to identify characterize non-linear
regression effects. A further advantage of generalised additive models is that there is a de-
gree of automation to the fitting of the smooth functions (REF WOOD & R LIBRARY),
and so the specification of the model in the computer software is no more challenging than
an ordinary linear model.

The generalised additive model output shown in Figure 3 suggests by inspection that
the age of male patients depends upon the square of their systolic blood pressure, whilst it
depends on the cube of heart rate.

There are a selection of methods for imputing variables that have non-linear relation-
ships with their predictors. In this paper we have opted to use predictive mean match-
ing (PMM) to deal with non-linearity in the prediction equations (REF LITTLE 1998).
PMM is a general-purpose semi-parametric imputation method in which the imputations
are confined to the observed distribution. PMM can also preserve non-linear relations even
if the structural part of the model is not correctly specified. Furthermore PMM can handle
non-mormal distributions (see Subsection 3f), although for robustness we have used the
logarithmic transformation.

A possible disadvantage of PMM is that it may fail to produce enough between im-
putation variation when the number of predictors is small (REF VAN BUREN). As the
sample sizes in MINAP are very large and the number of predictors is also large, we be-
lieve that PMM offers a useful method of imputing continuous variables and preserving
non-linear relationships in the prediction equations. Moreover, partly to mitigate concerns
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Figure 3. Generalised additive model for male age showing that age has different non-linear
associations with systolic blood pressure and heart rate.

regarding insufficient between imputation variation, we have elected to use 25 imputations
in our work rather than the ‘standard’ five imputations suggested in some of the literature
(REFS). (REF WHITE) also advises using more than five imputations, and suggests that at
least 20 imputations is advisable.

(h) Effect of seasonal variation

It is generally accepted in the cardiology literature that admissions for heart attack
show seasonal variations (REFS). In most places in the world there are substantially more
admissions with generally poorer outcomes in the winter months, although the reasons for
this are not yet clearly understood. By analysing admissions and mortality data using time
series, we have also discovered an important seasonal variation in the MINAP data.

Figure 4 summarises the time series analysis of 30-day mortality. The four plots in
Figure 4 from top to bottom show the original mortality data; the seasonal component of
the mortality data; the year-on-year trend and the unexplained (random) variation. There
is a cyclic seasonal component showing peaks of mortality at the start of each year (winter
months) and troughs near the middle of each year (summer months). There is also a gen-
erally decreasing trend in mortality year-on-year as shown by the trend plot. To capture
the seasonal variation in the imputations we included the month of admission to hospital
in the imputation scheme, and the variation between years is captured by the splitting; see
Subsection 3d.

(i) Inclusion of the outcome as a predictor

It is important to include the outcome variable (in this case mortality status at 30 days)
as a predictor in the imputation model. Failing to include the outcome will severely dilute
the associations between the outcome and the other variables (REF MOONS ET AL 2006
& QRISK PAPERS). If imputation is being performed on data with a survival outcome,
then both the event and the censoring must be imputed (REF. VAN BUREN 1999). Missing
outcomes will also be imputed, but the results of the imputations are excluded in the final
analyses. The imputed outcomes are discarded because a correctly imputed outcome adds
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Figure 4. Time series decomposition of the number of deaths reported per day for the four year
period January 2004 to December 2007.

nothing except Monte Carlo error whilst an incorrectly imputed outcome adds more error
(REF CANTAB NOTES).

(j) Clustering

The MINAP data are collected from many hospitals, each of which may experience a
different patient profile (i.e. clustering), and this effect could be taken into account by per-
forming a multi-level imputation with hospital of admission included as a random effect.
There are very few multi-level imputation packages available (REFS MLWIN & MICE),
and this continues to be an active area of research.

Because the clusters (hospitals) are generally very large, we included the hospital of
admission as a fixed-effect and therefore some allowance is made for the fact that MINAP
is a multi-centre observational study. The errors induced by this decision are unlikely to
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bias the results of analyses based on our imputed data, unless the clustering is explicitly
the focus of the analysis.

(k) Potential problems

Collinearity might be encountered with variables that are linearly related, or almost so.
The solution is to carefully redefine the imputation model to reduce or remove the dupli-
cated information in the prediction equations. We encountered collinearity whenever using
the hospital of admission and the index of multiple deprivation (IMD) score as predictors
for the same variable. Because heart attack patients are most likely to be taken to a hospital
close to their home address, the IMD score and the hospital of admission carry very similar
information; that is the IMD scores of patients close to each hospital will be similar. The
solution was to use the hospital of admission as a predictor for missing IMD scores, and
then to use the IMD score, rather than hospital and IMD score, to predict other missing
variables. This approach also had the very significant advantage of reducing the computa-
tional burden because the hospital of admission is now used only in the imputation of one
variable.

Perfect prediction occurs during the imputation if one of the predictor variables always
takes a particular value, i.e. the predictor has no variation. Several statistical packages that
have multiple imputation libraries, including MICE in R (REF VAN BUREN R CODE)
and Stata (REF ROYSTON), avoid this by using augmented logistic regression. Briefly,
the augmented logistic regression procedure adds a small number of extra observations
into the dataset so that no prediction is perfect, and then assigns very low weights to these
observations thus ensuring successful draws from the predictive distribution.

Feedback is a potential problem with correlated predictors. For example, a higher im-
puted value of one predictor will produce a higher than average imputation for the corre-
lated variables. If the correlations are strong these higher imputed values are fed back into
the imputations for the original predictor and the cycle continues. Such behaviour should
be identified and remedied.

Incompatibility occurs when the joint distributions of predictors do not exist in an an-
alytical sense. For example two linear regression specify a joint multivariate normal given
certain regularity conditions (ARNOLD & PRESS 1989). The joint distribution of a linear
regression and a proportional odds regression model is unknown and yet is easily specified
in multiple imputation software. The simulation work that is available suggests that incom-
patibility is not a serious problem in practice (REF VAN BUREN 2006; DRECHSLER &
RASSLER 2008).

Failure to converge. It is of particular importance to check convergence of the Gibbs
sampler when using the PMM algorithm as it can be sensitive to the imputation model
and in the worst cases may become locked at the first imputation. Locking of the sampler
should also be anticipated when using passive imputation, which is the imputation of values
directly using a combination of other imputed variables. An example of passive imputation
might be the imputation of body mass index (BMI) when mass or height are imputed. BMI
could be imputed directly (i.e. passively) from the formula BMI = mass/height2. Ex-
amples of poor convergence and locking of the sampler are shown in (REF VAN BUREN).
Assessment of convergence for our imputations is covered in Subsection 4a.
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4. Results

(a) Checking the imputations: convergence

There is no definitive method for checking the imputations or the within imputation
iterations of the Gibbs sampler. The chain mean and standard deviation at each iteration
can be plotted and on convergence the different streams should freely intermingle without
showing any definite trends (REF VAN BUREN). In general convergence of the MICE
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Figure 5. Examples of chain means and standard deviations for cholesterol, log heartrate and log
systolic blood pressure.

algorithms in R, when healthy, is also rapid even if the starting imputation is poor. This is
because previous imputations enter the current imputation only through their relations with
the other variables and not directly. Although the default setting of five iterations is often
sufficient, in this work we used 10 within imputation iterations for additional assurance of
successful convergence.

The iterations shown in Figure 5 show healthy performance of the Gibbs sampler for
cholesterol, log heartrate and log systolic blood pressure. The chain means and standard
deviations in Figure 5 show healthy convergence of the sampler for each of the variables
shown. Some variables, for example troponin, show a definite trend in the early iterations.
This trend however, is replaced by the desirable freely intermingled chains after a small
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Figure 6. Examples of chain means and standard deviations showing an early trend becoming
healthy convergence.

number of iterations. Figure 6 shows an example of this behaviour and highlights that for
those variables for which there is an initial trend, the ultimate performance of the Gibbs
sampler over the 10 iterations is satisfactory.

We have investigated the chains for each variable, and we are satisfied that convergence
is satisfactory for each of our imputations.

(b) Plausibility of missing at random assumption

In Section 3b we mentioned that to make the missing at random assumption plausi-
ble it was important to include for each variable as many predictors as possible. In setting
up our imputations we have ensured that we have included as many clinically relevant
predictors as possible for each variable unless there was reason to do otherwise. For exam-
ple, collinearity prevented hospital of admission and IMD score being used as predictors
simultaneously for some variables; see Subsection 3k.

In general, a good imputed value is one that could have been observed had it not been
missing. The missing at random assumption can never be tested on the observed data (REF:
VAN BUREN), but we can check that the imputations are plausible by comparing the
distributions of the observed and imputed values for each imputed data set. If there are large
differences between the observed and imnputed values it would be important to consider
why the differences have ocurred.
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Figure 7. Examples of observed and imputed distributions for female age (top) and male age
(bottom) in 2004.
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Figure 7 shows the observed and imputed distributions for age for both sexes in each
of the 25 imputed datasets (see also Figure 1). The observed and imputed distributions
are similar in each of the imputed datasets, which suggests that the missing at random
assumption is plausible. The left skew of the female distribution has also been correctly
represented by the imputation scheme. Some imputations appear to predict a lower peak
for the age distribution with the consequence of a higher density across the whole age
range; for example imputation 3 of the females. A similar effect occurs in the males in, for
example, imputation 20. Figure 7 also shows that the different distributions of the male and
female ages are correctly represented, confirming that imputing by splitting has captured
the age–sex interaction mentioned in Subsection 3d. In general the differences between the
observed and imputed distributions are minor, and so the imputations are plausible.

(c) Comparison of imputed data and complete case analyses

An important consideration when considering the usefulness of multiple imputation
is that the number of complete cases available diminishes with each variable added to an
analysis. For example, the missingness of age is 0.4%, but if this were included in a com-
plete cases analysis with cholesterol, the missingness for the analysis would be in excess
of 34%. Therefore an imputation in one variable has value in all of the others because of
the additional cases that can be reclaimed for the analysis.

We present a comparison between the results that would be realised using complete
cases analysis and those obtained using our multiply imputed data sets. The imputed results
are calculated using Rubin’s rules as outlined in Subsection 2b. Table 1 of (REF MORROW
CIRCULATION 2000) provides the univariate risk of 30-day mortality stratified by pre-
senting characteristics. We have used this table as a guide for comparing demographics
between our datasets, but have also included some additional variables that we included
in our imputations. Table 4 compares complete cases and imputed data for those patients
diagnosed with ST-elevation myocardial infarction in MINAP. There are some variables in
Table 1 of (REF MORROW CIRCULATION 2000) which are not routinely recorded in
MINAP, and these have been omitted from Table 4 for clarity.

Table 4 shows that there is little difference in mean age between the complete case and
multiply imputed datasets. This is as expected since the overall missingness in age is very
low (0.4%). The largest difference in mean age occurs in male patients and is 0.5 years.
The multiply imputed data suggests more patients over 75 years than the complete cases
data and vice-versa with patients over 65 years. There are minor differences between the
means for glucose, systolic blood pressure, heart rate and IMD score. The multiply imputed
data predicts nearly 6000 more smokers or ex-smokers than the complete cases data would
suggest and 3000 more non-smokers. The factors in the cardiovascular risk section were
all imputed using a negative default imputation and so the number of positive indications
does not change between the datasets.

Table 5 compares complete and imputed MINAP data sets using the Evaluation of
Management and Methods for Acute Coronary Events (EMMACE) risk score. Table 5
shows the odds ratio for mortality per standard deviation with 95% confidence intervals
and t-values for complete case analysis and multiple imputation.

The most obvious observation is that there is a large increase in the number of cases
available when the imputed data is used. For the four years the percentage increase in the
number of cases included in the analyses are 22%, 19%, 17% and 24% respectively. The
increase in the number of cases taken over all of the years is 20%. Therefore complete cases
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Table 4. Comparison of complete cases and imputed data characteristics for patients diagnosed
with ST-elevation myocardial infarction. Key: ∗Imputed by default method; † Primary percutaneous
coronary intervention surgery; ‡ Coronary artery bypass graft surgery.

number of Complete cases Multiply imputed MINAP
complete cases MINAP data data (113,445 cases)

Age, years (population) 112,888 66.04 (65.96,66.12) 66.02 (65.94,66.10)
Age, years (female) 33,774 72.17 (72.03,72.32) 72.18 (72.04,72.32)
Age, years (male) 78,291 63.40 (63.31,63.50) 63.45 (63.36,63.54)
>75 years 32,697 33,438 33,608
>65 years 60,624 61,365 64,259

Heart rate 97,611 78.80 (78.66,78.94) 78.80 (78.66,78.93)
Systolic BP 96,298 137.75 (137.56,137.94) 137.60 (137.43,137.78)
Glucose 61,637 8.46 (8.44,8.50) 8.53(8.50,8.56)
Cholesterol 84,881 5.27 (5.26,5.28) 5.24 (5.23,5.26)
IMD score 94,759 21.59 (21.49,21.70) 21.57 (21.49,21.70)
Risk factors
Smoking status 102,044

Current 38,849 44,792
Past 30,760 36,747
Never 23,383 26,187
Not known 9052 11,185

Diabetes 106,362 14,518 18,010
Prior hypertension∗ 106,008 44,248 44,248
Cardiovascular history
Peripheral vascular disease∗ 102,394 3525 3525
Cerebrovascular disease∗ 102,237 6221 6221
Prior PCI† ∗ 103,493 5586 5586
Prior CABG‡ ∗ 103,804 2850 2850
Prior angina ∗ 105,591 21,256 21,256

analyses will contain only four fifths of the data that is available from the multiply imputed
data sets, showing the value of multiple imputation to access information from cases that
would otherwise be lost to missingness. Using more variables in a model would inevitably
entail more data lost to missingness when analysing complete cases, and therefore a greater
benefit, in terms of case recovery, from using the multiply imputed data.

The results for both the complete cases and multiply imputed analyses show that a one
standard deviation increase in age (appromimately 13 years) increases the odds of death at
30 days by 10%. A one standard deviation increase in heart rate (approximately 22 beats
per minute) increases the risk of mortality by 5%, whilst a one standard deviation increase
in systolic blood pressure (typically 30 mmHg) results in a 5% decrease in mortality risk.
The larger number of cases available in the multiply imputed data has the effect of shrink-
ing the confidence intervals, which can quickly be assessed by noting the generally inflated
t-values. This increased precision in the estimates reinforces the benefit of using the multi-
ply imputed data.

5. Conclusions
We have presented multiple imputation for a national cardiac care routine audit database.
Despite criticisms of the use of audit data for research where there are missing values, we
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Table 5. Comparison of complete case and impued results using the EMMACE risk score variables.
Odds ratios quoted per standard deviation. Number of cases appear in bold at the top of each anal-
ysis.

Mortality at Complete t 95% Imputed t 95%
30 days OR value Conf. Interval OR value Conf. Interval
2004 23,525 30,217
Age 1.0954 3.47 (1.0404,1.1533) 1.1001 4.05 (1.0504,1.1520)
Heart rate 1.0335 1.27 (0.9824,1.0872) 1.0197 0.83 (0.9737,1.0679)
Systolic BP 0.9560 -1.71 (0.9081,1.0065) 0.9440 -2.39 (0.9003,0.9897)
2005 24,294 29,843
Age 1.1452 5.00 (1.0859,1.2078) 1.1461 5.54 (1.0922,1.1444)
Heart rate 1.0380 1.44 (0.9866,1.0920) 1.0272 1.12 (0.9799,1.0768)
Systolic BP 0.9398 -2.33 (0.8919,0.9902) 0.9606 -1.61 (0.9147,1.0089)
2006 23,309 28,157
Age 1.0866 2.87 (1.0193,1.1067) 1.0945 3.42 (1.0393,1.1527)
Heart rate 1.0510 1.79 (0.9998,1.0047) 1.0492 1.86 (0.9975,1.1037)
Systolic BP 0.9492 -2.37 (0.9963,1.0001) 0.9489 -1.95 (0.9003,1.0002)
2007 19,068 25,228
Age 1.0579 1.68 (0.9906,1.1299) 1.0667 2.19 (1.0068,1.1301)
Heartrate 1.0916 1.79 (1.0254,1.1620) 1.0858 2.91 (1.0273,1.1477)
Systolic BP 0.9575 -1.82 (0.8970,1.0221) 0.9664 -1.15 (0.9117,1.0245)
All years 90,196 113,445
Age 1.1020 6.80 (1.0716,1.1333) 1.1070 7.91 (1.0794,1.1352)
Heart rate 1.0471 3.34 (1.0192,1.0758) 1.0387 3.01 (1.0133,1.0648)
Systolic BP 0.9543 -3.31 (0.9282,0.9811) 0.9577 -3.32 (0.9336,0.9825)

have demonstrated that careful use of multiple imputation could improve the amount and
quality of data in such databases.

We have attempted to impute a large number of variables that we feel are important to
generiac risk modelling (Table 1). As an important caveat to our work however, it should
be noted that imputations are analysis specific, and it is vital to check for each analysis that
the imputation schemes used are robust and compatible with the proposed analysis. Failure
to check the compatibility of a proposed analysis with the imputation models and the use
of an incompatible analysis model will almost certainly result in biased analyses.

We considered each variable in terms of amount of missing data, and how that miss-
ingness was related to other variables (e.g. systolic blood pressure and heart rate are of-
ten simultaneously missing). We also considered important interactions such as age–sex,
outcome–year, and missingness–year and accounted for these by splitting the MINAP
dataset by sex and year: imputation by splitting.

We considered which variables we expected to have non-normal distributions, such
as concentrations of biomarkers, and used transformations and appropriate imputation
schemes to handle these. For continuous variables we also used an imputation scheme
that accounted for non-linear behaviour between variables variable and their predictors.
Because mortality and admissions for acute coronary syndromes are known to vary sea-
sonally we also accounted for this in our imputations. As MINAP is a multi-centre obser-
vational study we have also included the hospital of admission as a fixed effect in order to
take some account of clustering.

We have checked our imputations both to assess convergence and the plausibility of the
missing at random assumption upon which the imputations are founded. Convergence was
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shown to be satisfactory. Although it is impossible to check the missing at random assump-
tion using the observed data, we are satisfied that we have included sufficient predictors to
render the missing at random assumption plausible. Furthermore there are no significiant
differences between the observed and imputed distributions which adds further evidence
to the plausibility of the missing at random assumption.

We showed that there are minor differences between the means for the continuous
variables (Table 4) although there are relatively insignificant. Table 4 does demonstrate the
multiply imputed data predicts a larger number of smokers and diabetics (proportions?)

From our results using the EMMACE risk score variables, imputation improves infor-
mation content of data by recovering missing cases. This is reflected in greater precision
of estimates of odds ratios. Therefore the main improvement given by our multiply im-
puted data is an improvement in the number of cases that can be analysed in comparison
to complete cases analysis. Table 5 shows that year-on-year the analyses based on imputed
datasets contain approximately 20% more cases than the complete cases analysis.

In conclusion we beleive that our imputation scheme can be used to improve the num-
ber of cases available for analysis in the Myocardial Infarction National Audit Project. In
so doing the robustness and utility of MINAP data is improved beyond its current levels.
This will assist MINAP in achieving its priority goal of providing useful data with which
to analyse patient care.

Acknowledgements
The funding of the British Heart Foundation is gratefully acknowledged. The dedicated
assistance of John Birkhead during the early phase of this work is also gratefully acknowl-
edged.


