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Electron magnetohydrodynamic �EMHD� turbulence in two dimensions is studied via
high-resolution numerical simulations with a normal diffusivity. The resulting energy spectra
asymptotically approach a k−5/2 law with increasing RB, the ratio of the nonlinear to linear time
scales in the governing equation. No evidence is found of a dissipative cutoff, consistent with
nonlocal spectral energy transfer. Dissipative cutoffs found in previous studies are explained as
artificial effects of hyperdiffusivity. Relatively stationary structures are found to develop in time,
rather than the variability found in ordinary or MHD turbulence. Further, EMHD turbulence
displays scale-dependent anisotropy with reduced energy transfer in the direction parallel to the
uniform background field, consistent with previous studies. Finally, the governing equation is found
to yield an inverse cascade, at least partially transferring magnetic energy from small to large scales.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3111033�

I. INTRODUCTION

Turbulence plays a crucial role in a wide variety of geo-
physical and astrophysical fluid flows. In this paper we
present results on a particular type of plasma turbulence in
which the flow is entirely due to the electrons, with the ions
forming a static background. The equation governing the
electrons’ self-induced magnetic field is then

�B

�t
= − � � �J � B� + RB

−1�2B , �1�

where J=��B and RB=�B0 /nec, with � as the conductiv-
ity, B0 as a measure of the field strength, n as the electron
number density, e as the electron charge, and c as the speed
of light. See, for example, Goldreich and Reisenegger,1 who
derived this equation in the context of magnetic fields in the
crusts of neutron stars. More generally though, it is appli-
cable in many weakly collisional, strongly magnetic plasmas,
so other applications could include the sun’s corona or the
earth’s magnetosphere.

Turbulence governed by Eq. �1� is known as electron
magnetohydrodynamic �EMHD�, Hall MHD, or whistler tur-
bulence. Based on its �at least superficial� similarity to the
vorticity equation governing ordinary, nonmagnetic turbu-
lence,

�w

�t
= � � �u � w� + Re−1�2w , �2�

where now w=��u. Goldreich and Reisenegger1 argued
that Eq. �1� would initiate a turbulent cascade to small length
scales, thereby accelerating neutron star magnetic field decay
beyond what Ohmic decay acting on large length scales
could achieve. They suggested in particular that the turbulent
spectrum would scale as k−2 with a dissipative cutoff occur-
ring at k�RB.

However, there are also some quite fundamental differ-
ences between Eqs. �1� and �2�. In Eq. �2� the dissipative
term contains more derivatives than the nonlinear term, so on
sufficiently short length scales the dissipative term will al-
ways dominate. In contrast, in Eq. �1� the two terms both
contain two derivatives, so it is conceivable that the nonlin-
ear term will always dominate even on arbitrarily short
length scales. As pointed out by Hollerbach and Rüdiger,2

one obtains a dissipative cutoff only if one assumes that the
cascade is local in Fourier space, coupling wave numbers
only to their immediate neighbors.

Indeed, whether the coupling is local or not is another
important difference between Eqs. �1� and �2�. In Eq. �2� it is
at least predominantly local; for example, very small scale
structures see the largest structures as an essentially uniform
background flow that simply advects them along but without
altering the nature of the small scale turbulence. In contrast,
in Eq. �1� there is no such translational invariance; adding
even an exactly uniform background field alters the dynam-
ics of the small scale structures �as we will show in details
below�. Similarly, in classical MHD turbulence, adding a
background flow has no essential effect, but adding a back-
ground field does.

In this paper we present high-resolution numerical simu-
lations of Eq. �1� in a two-dimensional �2D� periodic box
geometry, designed specifically to address such questions as
whether there is a dissipative cutoff or not, and whether the
coupling is local or not. In contrast to previous
simulations,3–8 we do not employ hyperdiffusivity, which
would of course disrupt this feature that the two terms in Eq.
�1� have the same number of derivatives, and hence intro-
duce an artificial dissipative cutoff. We also consider the
question of whether Eq. �1� is capable of yielding an inverse
cascade and find that magnetic energy can be at least par-
tially transferred from small to large scales.a�Electronic mail: cjw@maths.leeds.ac.uk.
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II. EQUATIONS

For 2D fields, we may decompose B as

B = Bp + Bt = � � �aêz� + bêz, �3�

where a and b depend only on x, y, and t but not on z.
Equation �1� then yields

�a

�t
= RB

−1�2a − �aybx − axby� �4�

and

�b

�t
= RB

−1�2b + �ay�
2ax − ax�

2ay� , �5�

where subscripts indicate derivatives.
Continuing our comparison of Eqs. �1� and �2�, it is in-

structive to note also that in Eq. �2� we would only have u
=up=�� ��êz�, yielding

��2�

�t
= Re−1 �4� − ��y��2��x − �x��2��y� . �6�

Any additional ut=vêz would simply be advected by �
as a passive scalar, but without any influence back on �.
This difference between Eqs. �4� and �5� on the one hand and
Eq. �6� on the other merely reflects once again some of the
differences between Eqs. �1� and �2�, in this case the lack of
translational invariance in Eq. �1�.

We solve Eqs. �4� and �5� by expanding a and b in Fou-
rier series in x and y and using standard pseudospectral tech-
niques for the evaluation of the nonlinear terms with dealias-
ing according to the 2/3 rule. The code employs the FFTW

library9 to achieve massive parallelization on a suitable su-
percomputer. The time integration is done using a second
order Runge–Kutta method. We performed a variety of runs,
typically employing 64 processors, with the highest extend-
ing to k=682 in Fourier space, corresponding to N=2048
collocation points in real configuration space. Because of the
two derivatives in the nonlinear term, the required time steps
are unfortunately very small, roughly proportional to 1 / �N2�.
Values as small as �3�10−8 were used, requiring O�107�
time steps in total to reach t=0.2.

A. Initial conditions

Since we are interested in freely decaying rather than
forced turbulence, we need to carefully consider the nature of
our chosen initial conditions. We will present the results for
three different sets of runs.

First, to study homogeneous forward cascades, we start
off with random O�1� energies in all Fourier modes up to k
=�kx

2+ky
2=5, making sure that the poloidal a and toroidal b

components have comparable amounts of energy. After ini-
tialization the overall amplitude of the field is rescaled to
ensure that the rms value of �B�=1 at t=0.

Second, to study nonhomogeneous forward cascades, we
start off with the same initialization as above but now add a
uniform field Cêx, where C=1, 2, or 4. Note though that such
a uniform field cannot be represented by an expansion of the

form �3�, at least not if a and b are to be periodic in x and y.
Instead, this field is simply added in to Eq. �3� directly, re-
sulting in suitably modified Eqs. �4� and �5�.

Third, to explore the possibility of inverse cascades, we
return to the C=0 case without any large scale magnetic field
and now inject energy into modes in the range 10�k�20.
The question then is how much of this initial energy moves
to k�10 and how much moves to k�20.

Finally, for all three sets of results, each individual run
was repeated with a number of different random initial con-
ditions to ensure that the results presented here are indeed
representative.

B. Ideal invariants

Equations �4� and �5� also have some useful associated
diagnostics, corresponding to quantities that are conserved in
the ideal RB

−1→0 limit. Specifically, we have equations for
the energy and the magnetic helicity,

d

dt

1

2
� B2dV = − RB

−1� J2dV , �7�

d

dt

1

2
� A · BdV = − RB

−1� B · JdV , �8�

where A is the vector potential defined by B=��A. Note
though that in the presence of a uniform background field,
helicity is not even defined,10 let alone conserved.

These two equations are valid in both two and three
dimensions. In two dimensions only, we have the additional
quantity of the mean squared magnetic potential known as
anastrophy,

d

dt

1

2
� a2dV = − RB

−1� �ax
2 + ay

2�dV , �9�

which is in some ways perhaps analogous to enstrophy,
which is also defined only for Eq. �6� in 2D, but not for Eq.
�2� in three-dimensional �3D� space. However, anastrophy is
not the same as enstrophy, and there does not appear any
reason why conservation of anastrophy would necessarily
imply an inverse cascade in the way that conservation of
enstrophy forces inverse cascades to exist in 2D hydrody-
namic turbulence.

In addition to the physical insight that they yield into the
nature of the Hall nonlinearity, these various integrated quan-
tities also offer useful diagnostic checks of the code. Reas-
suringly, we found that all of them �except helicity in a uni-
form field, of course� were satisfied to within 0.1% or better
by all of our runs.

III. RESULTS

A. Large-scale initial conditions

The energy spectrum Ek of 3D hydrodynamic turbulence
is characterized by Ek�k−5/3, the familiar Kolmogorov law.11

In 2D, the conservation of enstrophy forces an inverse cas-
cade, which leads to a much steeper spectrum Ek�k−� with
��3. In the case of 2D MHD turbulence, the spectral energy
transfer rate is reduced, which leads to a flatter energy spec-
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trum Ek�k−3/2, the Iroshnikov–Kraichnan spectrum.12 Re-
cent studies on EMHD turbulence have found, via methods
that all employ hyperdiffusivity, a 5/3 Kolmogorov spectrum
for small scales kde�1, equivalent to k�O�RB�, and a
steeper 7/3 spectrum for longer wavelengths.3–7

In the upper plot of Fig. 1, we show the poloidal and
toroidal energy spectra of our solutions for RB=10, 30, 100,
300, 1000, and 3000 evolved to a time t=0.2. The energy
spectra have been stationary since approximately t=0.12 and
time averaging between 0.12 and 0.2 reveals an identical
spectrum and no further information. We interpret this to
mean that our simulations are resolved and evolved to a suit-
able time for inspection of the quasistationary cascade.

Both poloidal and toroidal energy spectra start out much
the same at low k and then lower RB spectra smoothly drop
off with increasing k, while higher RB spectra maintain a
linear gradient in the log-log plot. Transfer of energy to
higher k is then more efficient at higher k. The spectra are
asymptotically approaching an energy spectrum Ek�k−	,
where 	=2.5
0.1. In the lower plot of Fig. 1, we show
compensated energy spectra to show this approach to
k−5/2Ek=1 with increasing RB. Our value of 	 is not compat-
ible with �2 predicted by Goldreich and Reisenegger1 for
3D EMHD turbulence. Their prediction was calculated using
a phenomenology based on Kraichnan’s arguments �the
whistler effect�, which has been shown by Dastgeer et al.5 to
have little effect on the energy spectrum of 2D EMHD;
rather it is thought to influence the subtle properties of the
cascade like anisotropy, which we will discuss further in Sec.
III B. The spectral index we find is much more compatible
with 	=7 /3 found by Biskamp et al.4 via numerical simula-
tion for the kde�1 regime.

None of the spectra shows any sign of a dissipative cut-
off. By definition, the dissipation scale should occur when
the local value of RB is O�1� in Eq. �1�. It is unclear though

when this occurs since the definition of RB does not involve
length scales. If the coupling is purely local in wave number,
then this definition does involve length scales after all, since
the B0 that should be used is the field at that wave number
only, rather than the total field. That is, according to the
definition of Hollerbach and Rüdiger2 where this argument
was first developed, we have

RB� = RB�B�/B� , �10�

where the primed quantities are the small-scale local values
and the unprimed are the large-scale global. If we now sup-
pose a k−5/2 energy spectrum, then B� /B�k−5/4 and so RB� is
reduced to O�1� when k�RB

4/5. So, at RB=1000 we would
see a dissipative cutoff at k�250. We do not see a dissipa-
tive cutoff at this scale. We can reconcile this by realizing
that this argument crucially depends on the coupling being
local in Fourier space: if this does not hold, then RB� =RB,
and there is simply no definite dissipation scale as we find
here.

We conclude therefore that the nonlinear term is able to
dominate at all length scales and the coupling is nonlocal in
Fourier space. This is not entirely unexpected since both the
terms in Eq. �1� contain two derivatives, but it is in contrast
to previous studies. It should be emphasized that other au-
thors have been unable to properly address the question of a
dissipative cutoff since hyperdiffusivity has masked the ef-
fect of the nonlinear term at high k. This may also explain
the discrepancy between the spectral index of 5/2 that we
find and previous values of 7/3.

In Fourier space then, EMHD turbulence bears a strong
resemblance to ordinary MHD turbulence. We would like to
know if this resemblance carries over into real configuration
space. In Fig. 2, we show the three component fields at three
times: the initial fields at t=0 �top row�, intermediate fields

FIG. 1. Energy spectra of homoge-
neous 2D EMHD turbulence at t=0.2.
Across the top row are shown spectra
for both toroidal and poloidal fields for
RB=10, 30, 100, 300, 1000, and 3000.
Across the bottom row are compen-
sated energy spectra k5/2Ek.
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at t=0.1 �middle row�, and fully developed turbulent fields at
t=0.2 �bottom row�. In classical and MHD turbulence, a
fully developed turbulent field in real configuration space
would bear no resemblance to the initial field, but here the
fields are much more structured and fully developed turbu-
lent fields strongly resemble initial fields. This appears to be
a unique characteristic of decaying EMHD turbulence.

We would also like to address the energy decay of the
field with particular respect to any dependency of the decay
rate on the value of RB. Biskamp et al.3 in the first study of
2D EMHD reported that the energy dissipation rate is inde-
pendent of the value of the dissipation coefficient, repre-

sented by RB here. In contrast to this, we find that the energy
decay is much slower at higher RB, as plotted in Fig. 3.

B. Large-scale initial conditions in the presence
of a background field

EMHD turbulence, like classical and MHD turbulence,
is isotropic when allowed to freely decay. In the presence of
a background flow, classical turbulence remains isotropic
since it is locally coupled in Fourier space. Small-scale struc-
tures are simply advected along by the large-scale flow,
whether or not that has a uniform background contribution.

FIG. 2. �Color online� Plots of the RB=1000 solution in real configuration space at t=0 �top row�, t=0.1 �middle row�, and t=0.2 �bottom row�.The fields have
been rescaled onto grids of 100�100 points.
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Numerical simulations of MHD turbulence have found it to
be strongly anisotropic in the presence of a background
field.13,14 This has been attributed to the excitation of Alfvén
waves, which preferentially propagate parallel to the external
magnetic field and hinder the cascade process perpendicular
to the external field.

In EMHD turbulence, recent numerical studies employ-
ing hyperdiffusivity5,6 have revealed similar strongly aniso-
tropic behavior. This can only be the result of asymmetry in
the nonlinear spectral transfer process relative to the external
magnetic field. In the context of local energy coupling in
Fourier space, mediation by whistler waves has been pro-

posed as the only way this asymmetry could be achieved5

with the method detailed in Ref. 15. The spectrum of 2D
anisotropic EMHD turbulence has also been shown to ex-
hibit a linear relationship with an external magnetic field.6

In order to understand how hyperdiffusivity has affected
previous studies we have introduced a background field into
the governing equations as discussed above and calculated
solutions for RB=100 and 300 at a spatial resolution of 5122

points in real configuration space. We present our results in
Fig. 4. Across the top row, we show 2D energy spectra for
RB=100 with C=0, 1, 2, and 4. In the isotropic case with no
background field, i.e., C=0, energy is evenly distributed be-

FIG. 3. A plot of energy against time
for RB=10, 30, 100, 300, 1000, and
3000, increasing from left to right.

FIG. 4. �Color online� Fourier power spectra and real space fields at t=0.2 for 2D EMHD turbulence in the presence of a background field. We show 2D
Fourier power spectra of a, the poloidal field, for RB=100 at C=0, 1, 2, and 4 across the top row. Across the bottom row we show the corresponding Bx fields
in real configuration space.
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tween x and y, as indicated by circular contours. In the case
of C=1 we find that energy transfer to larger k has been
suppressed in the x direction parallel to the background field.
EMHD turbulence has become anisotropic in the presence of
a uniform background field with normal diffusivity. The ef-
fect becomes more pronounced for C=2 and C=4. The evo-
lution of modes parallel and perpendicular to the field is
clearly different, as the spectral cascade in the parallel wave
numbers is clearly suppressed. This suppression has been
attributed to excitation of whistler waves, which act to
weaken spectral transfer along the direction of propagation.6

Across the bottom row, we show the corresponding Bx fields.
For C=0, the field is isotropic, but as the value of C is
increased, structures are stretched in the x direction corre-
sponding to increasingly inhibited energy transfer in x but
not in y, perpendicular to the field direction.

This result is in agreement with Cho and Lazarian7 who
found scale-dependent anisotropy in numerical studies of 3D
EMHD turbulence employing hyperdiffusivity. Our simula-
tions also support the linear relationship between 2D EMHD
turbulence and strength of external magnetic field found by
Dastgeer and Zank.6 At RB=300 we reassuringly find that the
field is more anisotropic.

It is worth noting here that since Eq. �1� is scale
invariant—we can apply the equation over the whole of a
system or just a small section with RB unchanged—if you
take a very small box, then this box will see the large-scale
field as a background field, and therefore one would expect
the smallest scales in the system, for example, a neutron star,
to be anisotropic.

C. Intermediate-scale initial conditions

In classical turbulence, the exchange of energy and en-
strophy � is coupled in Fourier space according to

�E

�t
= − k2��

�t
, �11�

hence, energy injected at intermediate scales experiences a
transfer to both higher and lower wave numbers in order to
satisfy this coupling and simultaneously conserve energy and
enstrophy. This is the inverse cascade of energy to lower k
�larger scales�.16 In MHD turbulence, energy and magnetic
helicity are coupled in the same way and an inverse cascade
occurs in order to simultaneously conserve these two qua-
dratic ideal invariants. To investigate whether an inverse cas-
cade occurs in decaying EMHD turbulence, we inject energy
over the wave number range 10�k�20 as detailed above
and evolve the magnetic field.

In Fig. 5 we show the solution for RB=1000 at various
times. To fully resolve the solution in a reasonable amount of
computational time we have chosen to evolve the field to t
=0.2 at a resolution of 20482 real space points, then to t
=1.0 with 10242 points, and finally to t=15.0 with 5122

points. For this reason the energy spectra have different ex-
tents in Fourier space at the different times t=0.0 �dashed
line�, 0.1, 1.0, 3.0, 6.0, and 15.0. We include the full infor-
mation, rather than just cutting off the plot at k=100, to
demonstrate that our solutions are indeed fully resolved. The
spectra show that energy is clearly transferred to k�10 in an
inverse cascade with the spectral peak shifting to k=2 but
not maintaining the same amplitude. Some energy has also
transferred to k�20 resulting in an overall spectrum compa-
rable to a forward homogeneous cascade at late time. At t
=0.1 the spectrum has a spectral index of �5/2 for k�10. At
late time this has steepened to �−3. Between t=12 and t
=15, the spectral index has stabilized. The inverse cascade
phenomenon becomes less pronounced at lower values of RB

with no inverse cascade at all below RB=300.

FIG. 5. Evolution of the Fourier
power spectra for RB=1000 showing
an inverse cascade of energy to k
�10. Spectra are shown at t=0.0
�dashed line�, 0.1, 1.0, 3.0, 6.0, and
15.0. Note the changes in resolution
from N=2048 at t=0.1 to N=1024 at
t=1.0 to N=512 at later times.

042307-6 C. J. Wareing and R. Hollerbach Phys. Plasmas 16, 042307 �2009�

Downloaded 13 May 2013 to 129.11.77.197. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions



In Fig. 6 we show the evolution of the field by including
the real configuration space fields at times t=0.1, 3.0, and
15.0. The initial field containing intermediate scale structure
can be seen to develop large scale structures, which unlike
ordinary or MHD turbulence again appear to be relatively
stationary.

Previous work has considered inverse cascade action in
driven, rather than decaying, 2D EMHD turbulence.8 There
the authors found a forward cascade of energy and an inverse
cascade of mean squared magnetic potential or anastrophy.
Between the forcing length scale and the artificial dissipative
cutoff, the authors found a k−7/3 energy spectrum consistent
with our results at t=0.1. It remains unclear though why the
spectrum steepens at late time. Previous work17 has found a

tendency toward energy condensation in forced 2D classical
turbulence. There the condensation is a finite size effect of
the biperiodic box, which occurs after the standard inverse
cascade reaches the size of the system. It leads to the emer-
gence of a coherent vortex dipole. It is important to note that
the dipole contains most of the injected energy and since we
are simulating decaying EMHD turbulence, we do not inject
any energy which could power the emergence of such a
structure. The real field in Fig. 6 shows no evidence of col-
limated dipole structure and in fact a large number of iso-
lated vortices can be seen, a characteristic of fluid turbulence
noted in Ref. 8. Here then we deduce that we are seeing the
first direct demonstration of the dual cascade phenomenon in
decaying 2D EMHD turbulence.

FIG. 6. �Color online� Plots of the RB=1000 solution in real configuration space at t=0.1 �top row�, t=3.0 �middle row�, and t=15.0 �bottom row�. The fields
have been rescaled onto grids of 100�100 points.
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IV. CONCLUSIONS

We have investigated the nature of decaying 2D EMHD
turbulence with normal diffusivity and compared it with clas-
sical and MHD turbulence and studies on 2D EMHD with
hyperdiffusivity. We have found that EMHD turbulence ex-
periences an isotropic forward cascade of energy to higher
wave number �smaller spatial scales� asymptotically ap-
proaching Ek�k−5/2 with increasing RB �inversely propor-
tional to a dissipation coefficient� in broad agreement with
previous studies. We have found that there is no dissipative
cutoff at the predicted wave number k�RB

4/5 and argue that
this is consistent with nonlocal coupling in Fourier space, the
most important result of this paper. Hyperdiffusivity has pre-
viously clouded this issue and introduced an artificial cutoff.
Only now, when we can avoid its use, has the true nature
become clear. We have also found that fully developed
EMHD turbulence appears to be strongly structured, retain-
ing a similarity with the initial field at late time, very much
unlike classical or MHD turbulence and a point not noted in
previous literature. Our study of EMHD turbulence with nor-
mal diffusivity has been found to display scale-dependent
anisotropy in the presence of a uniform background field, in
good agreement with previous studies employing hyperdiffu-
sivity. Further, our results support previous studies which
found that the strength of the anisotropy is linearly related to
the external field strength. Finally, we have discovered that
decaying EMHD turbulence is capable of yielding an inverse
cascade, at least partially transferring magnetic energy from
intermediate to large length scales. This result may be par-
ticularly significant for the magnetic fields of neutron stars,
where the protoneutron star that emerges from a supernova

explosion may well have a primarily small-scale disordered
field. A Hall-induced inverse cascade may then be a mecha-
nism whereby it acquires a large-scale ordered field.
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