
promoting access to White Rose research papers

White Rose Research Online
eprints@whiterose.ac.uk

Universities of Leeds, Sheffield and York
http://eprints.whiterose.ac.uk/

This is an author produced version of a paper published in ECAI 2010 - 19th
European Conference on Artificial Intelligence

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/75460/

Published paper:

Dubba, KSR, Cohn, AG and Hogg, DC (2010) Event Model Learning from
Complex Videos using ILP. In: Coelho, H, Suder, R and Wooldridge, M, (eds.)
ECAI 2010 - 19th European Conference on Artificial Intelligence. 19th European
Conference on Artificial Intelligence, Lisbon, Portugal. IOS Press , 93 – 98.

http://dx.doi.org/10.3233/978-1-60750-606-5-93

http://eprints.whiterose.ac.uk/75460/

Event Model Learning from Complex Videos using ILP
Krishna S. R. Dubba and Anthony G. Cohn and David C. Hogg 1

Abstract. Learning event models from videos has applications rang-
ing from abnormal event detection to content based video retrieval.
Relational learning techniques such as Inductive Logic Program-
ming (ILP) hold promise for building such models, but have not
been successfully applied to the very large datasets which result from
video data. In this paper we present a novel supervised learning frame-
work to learn event models from large video datasets(∼ 2.5 million
frames) using ILP. Efficiency is achieved via the learning from inter-
pretations setting and using a typing system. This allows learning to
take place in a reasonable time frame with reduced false positives.
The experimental results on video data from an airport apron where
events such as Loading, Unloading, Jet-Bridge Parking etc are learned
suggests that the techniques are suitable to real world scenarios.

1 Introduction

The task of learning event models can be formulated as the represen-
tation of time series data from tracking objects in videos and mining
this in a supervised or unsupervised fashion for patterns obeying cer-
tain constraints. These patterns can be used for analysing the videos,
content retrieval, event recognition and anomaly detection. The prin-
cipal assumption that we make in this work is that it is the collective
behaviour and interaction of objects rather than the individual be-
haviour that make an event. This is the main reason why we pay more
attention in our work to analysing the interactions of the objects using
spatio-temporal primitives. Because of the relational nature of such
data, ILP is an apt choice for learning patterns from this data.

We selected events involved in an airport apron because these events
are semantically rich and involve interactions of objects. The videos
are collected from an airport apron area using 8 static cameras (Fig 1)
that have different views at the same scene. This setting is used to
make sure that no information is lost because of occlusions and view
points and is more robust than using a video from single view point.
Tracking is done separately on all the 8 video streams and fused to get
global 3D data for objects moving on a scene-based ground plane [7].

In our framework, the tracking data is converted to relational data
where the relations are spatio-temporal relations among objects. We
give minimal supervision which is in the form of approximate intervals
and regions (when and where) related to the event. We term this
Deictic Supervision. From this information, the necessary relational
facts are extracted from the relational data and used for learning
event models. Each positive example obtained from supervision thus
naturally consists of a set of spatio-temporal facts. In order to learn
from supervision of this form it is natural to use the learning from
interpretations setting [5] since each such set of facts can be viewed
as an interpretation. An advantage which accrues from the use of
this setting is more efficient testing of hypotheses as these can be

1 University of Leeds, Leeds, UK, email:{dksreddy,agc,dch}@comp.leeds.ac.uk

evaluated locally in each interpretation rather than the global database
as in the standard ILP setting [3].

Learning event models from this kind of spatio-temporal data is
particularly challenging because of the presence of multiple objects,
uncertainty from the tracking and especially the time component
as this increases the size of the relational data (the number of tem-
poral relational facts is quadratically proportional to the number of
intervals present). Since the data is huge and also noisy because of
ambiguity and errors in object detection and tracking, a hypothesis
can trigger many false positives. The search space is also huge be-
cause of the scale of the data. We tackle these problems by careful
use of constraints and systematically using the type hierarchy of the
objects involved in the events. The main novelty of the paper is the
presentation of a deictically supervised framework to learn clausal
event models from large video data sets using the learning from in-
terpretations setting and using techniques from many sorted logic
for representing and using a tree structured type hierarchy in getting
efficient models that have better performance than when learned us-
ing classical ILP techniques. A proper type refinement operator is
explored that is very generic and can be applied in any domain as long
as object types have a hierarchy.

The paper is organised as follows. First we discuss the related work
and formally introduce conceptual apparatus and notation that we use
throughout the paper. In Section 3, we formalize the problem and
in Section 4 we introduce the type refinement operator. In Section 5
we explain the experiments for learning event models in the airport
apron domain and discuss and evaluate our results. We conclude and
mention a few possible directions for future work in Section 6.

2 Related Work

Much of the work in event analysis, for example [1, 7, 9], for video
surveillance does not involve learning the models. Event models are
hand coded using different representations and are used for recogniz-
ing the events in videos. These models are biased in the sense that
they are not necessarily optimally matched to target instances, and
they are not adaptive to changes in the manifestation of event classes.
There are several lines of work in learning event models automatically
from videos depending on the techniques and representations used for
learning event models. Representation of events forms the crux of the
problem as it constrains the learning methodologies that can be used.

That event models and protocols can be discovered from a spatio-
temporal database was demonstrated by Fernyhough et al. [6] but
was constrained to handle only interactions between two objects.
Moyle et al. [12] demonstrated using a simple blocks world that
Domain Specific Axioms can be learned from temporal observations
using an ILP framework.

In work by Needham et al. [14], the Progol system [13] was used
to learn the protocols of table top games from real sensory data from

a video camera and microphone. ILP was used in an unsupervised set-
ting where only positive examples were used to learn rules governing
the games. A key aspect of this work are methods for spatio-temporal
attention applied to the sensor data from audio and video devices.
These identify subsets of the sensor data relating to discrete concepts.
Symbolic description of the continuous data is obtained by clustering
within continuous feature spaces from processed sensor data. The
Progol ILP system is subsequently used to learn symbolic models
of the temporal protocols presented in the presence of noise and
over-representation in the symbolic data input to it.

Konik et al. [10] applied ILP techniques for relational learning
from observations. The authors used artificially created examples and
behaviour observation traces generated by AI agents. The behaviour
observations were stored in an episodic database in the form of first-
order logic sentences and rules and then ILP techniques were applied
to learn planning rules like go-to-door etc. Graph based representation
has also been used for relational learning especially in event learning.
Recently, Sridhar et al. [17] used graphs for representing the time
series data for unsupervised learning of event classes from video.

Some work has been done in using types in ILP [15]. Though a
proper refinement operator was not defined, the technique relied upon
replacing a generic type of an object in the hypothesis by the lgg (least
general generalization) of the corresponding variable bindings from
the Prolog query of the hypothesis in database. This operator considers
only the positive examples and ignores the negative examples, so
is suitable only in positive only mode and also expects the data to
be clean (without noise), whereas we define an upward refinement
operator for Progol like ILP systems that also considers negative
examples and is robust to noise in type information.

There has been some work in modelling and recognition of events
from an airport apron [8, 19]. In [19] the authors used an unsupervised
learning approach and trajectories as primitives. Their focus is on
anomaly detection. Since interactions among objects are ignored,
semantically meaningful models are not obtained. In [8], the authors
attempted to model a Dynamic Bayesian Network for jointly solving
event recognition and broken tracks linking problems. The event
model is a set of discrete states which expresses how the actors in the
event interact over time. They assume the states are strictly ordered
and this may limit learning some events that involve complex temporal
relations like during, overlaps etc.

The important aspect to note here is that most of the work in this
area has been done on either artificial data [12] or very simple real
world data [6, 14] that involves few objects and the events are of short
duration. In our case, the tracked data from videos is huge and at the
same time more complex and noisy, with more objects; moreover a
semantically rich event can be as long as 4,000 frames.

2.1 Deictic Supervision

The main problem in supervised learning is collecting the training
data. Since there is in general no well defined framework for the no-
tion of event, it is difficult to annotate videos with event labels. Also
the spatial and temporal components of events have to be identified as
part of the event which further complicates the labelling. A solution to
this is what we term ‘Deictic Supervision’. Instead of giving the exact
objects involved in the training examples we only give a bounding
spatial and temporal extent of each example event. The spatial extent
is an approximate rectangle indicating the area where the event is
happening in the video and the temporal extent is an interval and the
learning algorithms should be able to induce reasonable models even
with this data. This makes preparation of training data easy and the

Figure 1: Experimental set-up: Different camera views and the fused 3D view
(only 7 of 8 views showed).

learning process more robust and unbiased to the labelling. Delineat-
ing spatio-temporal volumes (cuboids) in videos from which to learn
feature-based representations of actions such as hand gestures is not
without precedent in the computer vision literature [11], but our use
here extends it to multiple simultaneous actors and relational descrip-
tions. Note that deictic supervision is different from semi-supervised
learning where only part of the training data is labelled, whereas in
deictic supervised learning the extent of labelling is reduced to a
minimum but all positive training data is labelled. The tracked data is
used to compute spatial relations among the objects in the videos. We
use the Surrounds (S), Touches (T) and Disconnected (D) [17] spatial
relations and Allen’s temporal relations [2] to represent the relational
data (Fig 2).

Def 1. Temporally Extended Spatial Relation: A temporally extended
spatial relation between obj1 and obj2 over an interval [t1,t2] is
represented as

rel(obj1,obj2, intv(t1, t2))

where rel ∈ {S, T,D},
intv(t1, t2) is the time interval and

t1, t2 are the bounding frame numbers.

Figure 2: Spatial & Allen’s temporal relations

Note that a spatial relation between two solid objects is actually
the spatial relation between their bounding boxes on the ground plane
obtained from tracking.

For supervised learning, we need positive and preferably negative
examples too of event instances. In order to reduce the supervision
involved, we only get information of when and where the event hap-

pened, i.e. a deictic interval and a deictic zone. Note that the user does
not explicitly give exactly which objects are involved in the event.

Def 2. Deictic interval and region: Let T(e,v) andR(e,v) be the deictic
temporal and spatial terms for an event instance e in video v. T(e,v)

is an interval indicating when the event happened and R(e,v) is a
polygon on the ground plane indicating where the event happened.

R(e,v) is obtained by hand-delimiting the event in the image plane
with a rectangle and back-projecting this rectangle automatically into a
minimum enclosing rectangle on the ground plane using homography.
In Fig(3), a video is visualized in 2D space-time as a cuboid. A
positive example for an event is another cuboid contained in it. The
complement of this inner cuboid can be considered as negative spatio-
temporal region for the event. Each inner cuboid corresponds to a
Herbrand Interpretation in the learning from interpretations setting.

Def 3. Herbrand Interpretation of an Event: Let T(e,v) and R(e,v) be
the deictic spatial and temporal terms for an event e in video v. Let Γv

be the set of spatial relational facts of v and Ov be the set of objects
in v. The set of facts EI ⊆ Γv is called the Herbrand Interpretation
of the event iff it contains all the facts in Γv whose temporal interval
is not disjoint with the deictic interval except those relations whose
objects are disconnected from the deictic region.

EI = {SR(obj1, obj2, intv(t1, t2)) :

{obj1, obj2} ∈ Ov ∧
SR ∈ {S, T,D} ∧
TR(Te,v, intv(t1, t2)) where TR /∈ {before, after} ∧
S1(Re,v, obj1, intv(M,N)) ∧ S2(Re,v, obj2, intv(X,Y)) ∧
{S1, S2} ∈ {S, T} ∧
TR1(Te,v, intv(M,N)) ∧ TR2(Te,v, intv(X,Y)) ∧
{TR1, TR2} /∈ {before, after}
}

The set of Herbrand Interpretations of an event form the positive
examples for the learning phase. The rest of the relations in the videos
form the negative region where if an event model fires an instance in
this region, it is considered as a false positive.

3 Learning from Interpretations setting
In the learning from interpretations setting, every example is a set of
facts. The mapping of each example to a class is independent of other
examples. To specify formally [3]:
Given:

• A set of classes C (each class label c is a nullary predicate).
• A set of classified examples E (each element of E is of the form

(Ei, c) with Ei a set of facts and c a class label)
• and a background theory B,

Find: a hypothesis H (a Prolog program), such that for all (Ei, c) ∈
E:

• H ∧ Ei ∧B � c, and
• ∀c′ ∈ C − {c} : H ∧ Ei ∧B 2 c′

The hypothesis is a Prolog rule that has a head and body, where
the head’s predicate is same as the class label. The search process
for hypothesis starts with an initial hypothesis which has a nullary

time

2D space

Positive example

Figure 3: Positive example of an event in a video in 2D space-time dimensions.

predicate as head and an empty body. This initial hypothesis is re-
fined using Progol’s refinement operator [13] and also by the type
refinement operator which will be explained below. Progol’s refine-
ment operator is based on the most-specific clause also called bottom
clause. The Most-specific clause can be found from training examples,
mode declarations and background knowledge. Mode declarations
are user defined syntactic biases in the form of predicates that specify
what predicates from the background knowledge are expected in the
target hypothesis and also the nature of the variables (input, output
or constant). Once this most-specific clause is formed, the sub-lattice
bounded from below by the most-specific clause is searched using
an A* like search algorithm and selecting the hypothesis that has a
maximum score calculated based on number of positive and negative
examples covered, length of hypothesis etc.

Once a satisfactory hypothesis is found, an argument representing
temporal information can be introduced into the head in order to
explicitly represent when the event occurs – this is useful when using
the hypothesis for event monitoring – it allows the interval during
which the event occurs to be explicitly flagged when viewing the
video. An issue to be resolved is exactly when an event occurs given
that it consists of multiple overlapping temporal intervals. Given the
list of all intervals λ occurring in the body of the hypothesis, various
possibilities present themselves. One could take the maximal interval
which exactly spans all intervals in λ. Or one could take the interval
which exactly spans the interval from the first transition (i.e. pair of
meeting intervals involving the same pair of objects) to the last such
transition. Clearly there are other possibilities too. Ultimately this is
probably a domain dependent decision. For our purposes here, we
take the list of all intervals in λ. We also note that this head can be
used as a relational fact in some other higher level model (e.g. a global
model that describes the whole turn-around).

4 Typed ILP
When the input data is huge and noisy, there are several problems an
ILP system can face. One of these is that hypothesis evaluation can
take a lot of time because of the size of the data. Also as the noise
will tend to make the hypothesis over general: this can trigger many
false positives. Using a typed ILP system can speed up evaluation
because of typed arguments in the hypothesis and also reduce the
number of false positives because of avoiding certain cases where
the types of the arguments do not match. In most ILP systems, any
type hierarchy of objects is not integrated tightly into the learning
process. For example in Progol, types of the objects are used only
in mode declarations and since it assumes a flat type hierarchy of
the domain, the search procedure cannot take any type hierarchy into
consideration. However, a learning system can exploit a type hierarchy
to reduce over generalization. For example, if the tracking system
sometimes confuses two types of objects (τ1, τ2) such that some
objects of type τ1 are misclassified as type τ2, then standard Progol

can only generalize to an arbitrary object without type restrictions.
A variable without type restrictions will be satisfied by any type of
object when instantiating the Prolog rule. However a more specific
generalization can be enforced by the learning system with a type
variable τ1 t τ2 from the type hierarchy which is satisfied2 only
by objects of type τ1 or τ2 thereby reducing false positives. In this
section, we explain how the type hierarchy of the domain can be
tightly integrated into any ILP system.

If we wish to use an existing Prolog engine for hypothesis evalua-
tion then some way of encoding type using terms must be found. There
are several ways of doing this depending on whether the structure of
the object type hierarchy is a tree or a lattice. We use the type repre-
sentation method presented in [4] that can deal with tree structured
type hierarchy and develop a refinement operator and incorporate this
representation in the hypothesis search procedure.

We will write τi @ τj , if τi is a subtype of τj and τi 6= τj . For
each type τi, we introduce a rank 1 functor symbol τ ′i . Then every
object O of type τn in a hypothesis can be represented by the term
τ ′1(τ ′2(. . . τ ′n(O) . . .)) where τ1, . . . , τn is the maximal sequence of
types such that τn @ . . . @ τ2 @ τ1. We denote this representa-
tion function by Υ.

For example, let s1, s2, s3, s4 be types such that s3 @ s2 @ s1
and s4 @ s2 @ s1. Then any object O of type s3 can be represented
as follows:

Υ(O) = s1(s2(s3(O)))
An advantage of using this representation is that ordinary unifi-

cation can be used to determine whether two types are compatible.
For example, the types of two objects, Oi and Oj are not compatible
if Υ(Oi) is not unifiable with Υ(Oj), for example: s1(s2(s3(Oi)))
will not unify with s1(s2(s4(Oj))) but will unify with s1(s2(Ok)).

4.1 Type refinement operator
A refinement operator is used to traverse through the hypothesis lattice.
There are two types of refinement operators: upward and downward.
We write Hg � Hs if Hg is a more generic hypothesis than Hs.
If we assume that the top most element of the hypothesis lattice is
the most generic hypothesis and the bottom most hypothesis is the
most specific hypothesis, then the upward refinement operator can be
defined as follows (the downward refinement operator can be defined
in a similar fashion):

Let Ł be the set of all possible hypotheses. An (upward) refinement
operator ρ is defined such that for a hypothesis H , ρ produces only
generalizations of H, ρ(H) = {Hg | Hg � H,Hg ∈ Ł}.

We define the (upward) type refinement operator ρt as an operator
that generalizes the object types of H . Apart from object types, the
structure of H and members of ρt(H) is identical.

Def 4. We define the type generalizing operator as follows:
generalize type(τ ′1(τ ′2(. . . τ ′n−1(τ ′n(O)) . . .))) =

τ ′1(τ ′2(. . . τ ′n−1(O) . . .))

The type refinement operator, ρt, applies the generalize type
operator to a selected object term present in a hypothesis resulting in
a more generic hypothesis.

The type refinement operator ρt is non-optimal as it generates
redundant hypotheses because type generalization may occur in mul-
tiple orders. Since the cost of generating hypotheses is negligible
when compared to the cost of evaluating [18] them, this is not of great
concern if care is taken to identify and discard duplicate hypotheses.

2 A variable of type τ1 t τ2 can unify with variable of type τ1 or τ2

5 Experimental Results and Evaluation

Evaluation of this approach to event learning was performed in the
airport apron domain. For experiments, 7 turn-arounds 3 were used
where each turn-around was shot using 8 cameras from different
angles and each video is on average 50,000 frames long (15 frames
per sec). Tracking was done on each of the 8 videos of a turn-around
and fused together to get 3D data on ground plane. The tracking data
is noisy because of low quality, bad light and weather conditions and
low contrast of cctv videos. The noise can be presence of phantom
objects, some objects missing, wrong types of vehicles, inaccurate
bounding boxes, broken trajectories, object identity inconsistencies
etc. which are standard problems in any computer vision tracking
system. Each turn-around is separately processed to get relational
data that consists of a set of spatial relations among the vehicles
and zones (Fig 4) on the apron which are drawn according to the
International Air Transport Association (IATA) specifications. Some
automatic post processing is needed to remove spurious relations that
are present because of noise in the tracked data. For example if some
object disappears for a while (because of occlusion) and reappears,
there will be a break in the relational continuity and some very short
duration relations are present because of flickering in the bounding
boxes. Prolog rules that decide the temporal rules among intervals are
considered as background information in the ILP system.

Figure 4: Zones defined in the airport apron area

Currently we are working with 5 IATA events namely Rear Load-
ing, Rear Unloading, Aircraft Arrival, Aircraft Departure, Jet Bridge
Positioning. Each event is of different duration and involves different
types of vehicles and occurs at different places in the apron. Within
each event, there is high variability because of noise in tracking and
also because of irrelevant objects entering the event scene. Positive
example instances are provided by knowledge engineers who have
expertise in the IATA protocols and apron activities. Note that some
events might not be present or may occur multiple times in some
turn-arounds.

The Herbrand Interpretations of an event obtained using the de-
ictic intervals and regions are used as positive examples and the
complement as negative region of the event to start the system. An
example of such an interpretation for the event Rear Loading is
given in Fig(5). The learning algorithm constructs the most-specific
clause and uses Progol’s refinement operator for hypothesis refine-
ment. Besides this, we also use our type refinement operator. The
object type hierarchy in our domain can be represented as a tree
(Fig 6). So an object O of type Loader can be represented as
Object(Vehicle(Heavy Vehicle(Loader(O)))) and is not compatible
with Object(Vehicle(Heavy Vehicle(Mobile Stairs(Y)))) but compati-
ble with Object(Vehicle(heavy Vehicle(Z))). Note that intervals and
zones are not included in the type hierarchy since these do not suffer

3 A turn-around is the duration of a plane entering and leaving the apron area

Figure 5: Visualization of a Herbrand Interpretation for a Rear Loading event
instance. Each row represents a sequence of spatial relations between an object
pair. Objects involved and their types are not shown (best viewed in colour).

from visual noise. While traversing the hypothesis lattice, candidate
hypotheses are evaluated on positive examples to get their positive
score. To get the negative score the candidate hypothesis is queried in
the complement of the positive region and the number of instances
satisfying the query is considered as the negative score. This means
the negative examples are based on the hypothesis that is being eval-
uated. An alternative way of getting negative examples would be to
randomly get some chunks from the negative region and use them as
negative examples. This may be appropriate for getting hypotheses
for classification purposes, but may be of little use for hypotheses that
have to be used for recognition purposes in continuous video data.

Object

Person Aircraft V ehicle

Light V ehicle

Gpu Transporter

Heavy V ehicle

Mobile Stairs Loader Conveyor Belt

Figure 6: Tree structured object type hierarchy in the airport apron domain.

We used very generic constraints to prune the hypothesis space
including pruning hypotheses with dangling variables; hypotheses
whose terms in the body are not well connected; those having temporal
relations with intervals that do not appear in spatial relations etc.

The whole system is implemented in Python. For speed, some
modules are implemented in Cython and SWI-Prolog is used as the
underlying Prolog engine for evaluating hypotheses. Sample rules
learned for Aircraft Arrival and Rear Loading events are given be-
low. For example the Aircraft Arrival rule can be interpreted as:
an aircraft arrives when the aircraft bounding box surrounds the
right AFT Bulk TS Zone and then moves forward thereby changing
the relation to touches. This happens when the aircraft arrives and
is moving to its position. The rule also correctly identifies that this
bounding box should belong to an object of type aircraft.

aircraft_arrival([intv(T1,T2),intv(T3,T4)]) :-
surrounds(obj(aircraft(V)),

right_AFT_Bulk_TS_Zone,
intv(T1,T2)),

touches(right_AFT_Bulk_TS_Zone,
obj(aircraft(V)),
intv(T3,T4)),

meets(intv(T1,T2),intv(T3,T4)).

rear_loading([intv(T1,T2),intv(T3,T4)]) :-
touches(left_TK_Zone,

obj(veh(heavy_veh(V1))),
intv(T1,T2)),

touches(obj(veh(V2)),
left_TK_Zone,
intv(T3,T4)),

during(intv(T3,T4),intv(T1,T2)).

We followed the standard machine learning leave-one-out testing
methodology for testing performance. All turn-arounds except one
are used for training and the remaining one is used as test case. This
process is iterated until each turn-around is used as test case exactly
once. The results of our experiments are summarised in Tables 1 &
2. The second column shows the number of positive instances in
the 7 turn-arounds. The third column shows the number of times
the event hypothesis fired in positive spatio-temporal regions in all 7
testing iterations. The last column gives the number of times the event
hypothesis fired in the negative spatio-temporal region in each of the
testing iterations.

From the tables it is clear that using type information can increase
the overall performance. Some events are hard to recognize because
of bad tracking data, for example, Jet Bridge Positioning.

Events pos ex 4 2

Rear Loading 10 8 [0, 1, 1, 1, 1, 3, 0]
Rear Unloading 5 4 [1, 2, 0, 0, 0, 0, 1]
Aircraft Arrival 7 7 [1, 0, 1, 2, 0, 2, 3]
Aircraft Departure 7 4 [14, 2, 0, 0, 1, 1, 0]
Jet Bridge Positioning 7 4 [0, 2, 0, 2, 1, 1, 1]
4 True Positives (all iterations) 2 False Positives (in each iteration)

Table 1: Recognition results using types (leave-one-out testing)

Events pos ex 4 2

Rear Loading 10 7 [1, 0, 2, 1, 4, 0, 2]
Rear Unloading 5 1 [4, 1, 0, 0, 1, 1, 0]
Aircraft Arrival 7 2 [2, 3, 0, 8, 1, 6, 16]
Aircraft Departure 7 4 [3, 3, 7, 4, 1, 1, 1]
Jet Bridge Positioning 7 1 [0, 0, 2, 11, 8, 1, 4]
4 True Positives (all iterations) 2 False Positives (in each iteration)

Table 2: Recognition results without using types (leave-one-out testing)

The detailed recognition results for some events are given in Fig 7.
Each subplot is for an event and in each subplot a strip represents the
time line in a video. The ground truth (GT) is represented as blue patch
and recognized events (RE) are represented as green and transparent
patch for true positive and false positive respectively. In some cases
the temporal extent of recognized event instances is long because of
some spatial relations that are important in the event extends beyond
the deictic interval of the event.

6 Conclusion and Future Work
In this paper, we have proposed and successfully applied a novel super-
vised framework for learning event models from a huge, complex and
noisy video dataset. We also presented an upward type refinement op-
erator that reduces false positives and gives semantically meaningful
hypotheses. This type refinement operator is generic and can be ap-
plied in any domain where the object types form a hierarchy (though
the specific current implementation using functors requires a tree
structured hierarchy; having a tree structured hierarchy is beneficial
from a computational viewpoint in limiting the type generalisations
i.e. there are no multiple ancestors). The experimental results are

(a) (b)

(c) (d)

Figure 7: Recognition of events using the learned event models using leave-one-out testing (best viewed in colour). In each strip: GT denotes ground truth
intervals (blue), RE denotes retrieved event intervals (green: true positive, transparent:false positive). Length of all the strips is set to length of the longest video.

promising and since the data used is from a real world scenario, the
system has potential for deployment in the real world.

There is scope for much further work. The models that we learn are
local and do not see a global picture when recognizing an event i.e.
there is no account taken of global constraints such as event ordering
etc (for example Aircraft Arrival occurs before Aircraft Departure).
One possible direction is to learn and use a global model (or higher
level event models) to decide when to fire the individual events. The
spatial relations that we used are very coarse grained. It is possible that
fine grained spatial relations might give more semantically meaningful
models whilst using fuzzy spatial relations [16] might cope better with
the noise present in the tracking data. Event models can be made more
efficient by learning additional constraints like duration of the events,
number of vehicles involved etc and searching more of the hypothesis
space using parallel ILP techniques. Some domains might not have
a well defined tree-like object type hierarchy. In such cases a lattice
structured type hierarchy is more suitable though this will increase
the search space enormously.

7 Acknowledgements
We thank colleagues in the Co-Friend project consortium (www.co-
friend.net) for their valuable inputs to this research, and the EU Frame-
work 7 for financial support (Co-friend FP7-ICT-214975).

REFERENCES
[1] M. Albanese, V. Moscato, A. Picariello, VS Subrahmanian, and

O. Udrea, ‘Detecting Stochastically Scheduled Activities in Video’,
in Proc. of IJCAI, pp. 1802–1807, (2007).

[2] J.F. Allen, ‘Maintaining knowledge about temporal intervals’, Commu-
nications of the ACM, 26(11), 832–843, (1983).

[3] H. Blockeel, L. De Raedt, N. Jacobs, and B. Demoen, ‘Scaling up
inductive logic programming by learning from interpretations’, Data
Mining and Knowledge Discovery, 3(1), 59–93, (1999).

[4] A. Bundy, L. Byrd, and CS Mellish, ‘Special-purpose, but domain-
independent, inference mechanisms’, in Progress in Artificial Intelli-
gence, pp. 93–111. London: Ellis Horwood, (1985).

[5] L. De Raedt, ‘Logical settings for concept-learning’, Artificial Intelli-
gence, 95(1), 187–201, (1997).

[6] J. Fernyhough, A. G. Cohn, and D. C. Hogg, ‘Constructing qualita-
tive event models automatically from video input’, Image and Vision
Computing, 18(2), 81–103, (2000).

[7] J. Ferryman, M. Borg, D. Thirde, F. Fusier, V. Valentin, F. Bremond,
M. Thonnat, J. Aguilera, and M. Kampel, ‘Automated scene understand-
ing for airport aprons’, LNCS, 3809, 593, (2005).

[8] Anthony Hoogs and A. G. Amitha Perera, ‘Video activity recognition in
the real world’, in Proc. of AAAI, pp. 1551–1554, (2008).

[9] Y.A. Ivanov and A.F. Bobick, ‘Recognition of visual activities and
interactions by stochastic parsing’, IEEE Trans. PAMI, 22(8), (2000).

[10] T. Könik and J.E. Laird, ‘Learning goal hierarchies from structured
observations and expert annotations’, Machine Learning, 64(1), 263–
287, (2006).

[11] I. Laptev and P. Pérez, ‘Retrieving actions in movies’, in ICCV, (2007).
[12] S. Moyle and S. Muggleton, ‘Learning programs in the event calculus’,

LNAI 1297, 205–212, (1997).
[13] S. Muggleton, ‘Inverse entailment and Progol’, New Generation Com-

puting, 13(3&4), 245–286, (1995).
[14] C.J. Needham, P.E. Santos, D.R. Magee, V. Devin, D.C. Hogg, and A.G.

Cohn, ‘Protocols from perceptual observations’, Artificial Intelligence,
167(1-2), 103–136, (2005).

[15] Y. Sasaki, ‘Applying type-oriented ILP to IE rule generation’, in Proc.
Workshop on Machine Learning and Information Extraction, (1999).

[16] S. Schockaert, M. De Cock, and E. E. Kerre, ‘Spatial reasoning in a fuzzy
region connection calculus’, Artif. Intell., 173(2), 258–298, (2009).

[17] M. Sridhar, A. G. Cohn, and D. C. Hogg, ‘Learning functional object-
categories from a relational spatio-temporal representation.’, in Proc. of
ECAI, pp. 606–610, (2008).

[18] A. Srinivasan, ‘A study of two sampling methods for analyzing large
datasets with ILP’, Data Mining & Knowledge Discovery, 3(1), (1999).

[19] Tao Xiang and Shaogang Gong, ‘Video behavior profiling for anomaly
detection’, IEEE Trans. PAMI., 30(5), 893–908, (2008).

