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From Video to RCC8: exploiting a Distance
Based Semantics to Stabilise the Interpretation

of Mereotopological Relations

Muralikrishna Sridhar and Anthony G Cohn and David C Hogg

University Of Leeds, UK,
{krishna,agc,dch}@comp.leeds.ac.uk. ??

Abstract. Mereotopologies have traditionally been defined in terms of
the intersection of point sets representing the regions in question. Whilst
these semantic schemes work well for purely topological aspects, they
do not give any semantic insight into the degree to which the differ-
ent mereotopological relations hold. This paper explores this idea of a
distance based interpretation for mereotopology. By introducing a dis-
tance measure between x and y, and for various Boolean combinations
of x and y, we show that all the RCC8 relations can be distinguished.
We then introduce a distance measure which combines these individ-
ual measures which we show reflect different paths through the RCC8
conceptual neighbourhood – i.e. the measure decreases/increases mono-
tonically given certain monotonic transitions (such as one region expand-
ing). There are several possible applications of this revised semantics; in
the second half of the paper we explore one of these in some depth – the
problem of abstracting mereotopological relations from noisy video data,
such that the sequences of qualitative relations between pairs of objects
do not suffer from “jitter”. We show how a Hidden Markov Model can
exploit this distance based semantics to yield improved interpretation of
video data at a qualitative level.

1 Introduction

Mereotopologies have traditionally been defined in terms of the intersection of
point sets representing the regions in question. This is true for both RCC8[14],
the 4- and 9- intersection calculi[3, 6] and indeed many other mereotopologies
covered in [2]. Alternatively, Galton [8] gives a semantics in which the eight RCC
relations are distinguished by whether all, some or none of x is inside y or not,
and vice versa, and whether there are shared boundary points or not.

Whilst these semantic schemes work well for purely topological aspects, they
do not give any semantic insight into the degree to which the different mereotopo-
logical relations hold. The authors in [1] and [5] provide a way of describing
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relations between regions which have uncertain boundaries. However, neither
provides an alternative semantics for mereotopology, nor do they address the
issue of learning a robust transformation function from metric to qualitative
relations.

For EC [2], and PO [9], more granular calculi have been designed which
distinguish the degree to which these relations hold; however, to our knowledge,
the other RCC8 relations have not been so refined. In any case these refinements
are at the calculus level (rather than the semantic level), and are discretised
(a finite number of refinements) and with no metric on the refinements. For the
other relations, the degree of holding has not been covered at all in the semantics
of the relationship (though there are fuzzy versions of RCC[16]).

This paper explores this idea of a distance1 based interpretation for
mereotopology. By introducing a distance measure between x and y, and for var-
ious Boolean combinations of x and y, we show that all the RCC8 relations can
be distinguished. We then introduce a distance measure which combines these
individual measures which we show reflects different paths through the RCC8
conceptual neighbourhood graph (CNG) – i.e. the measure decreases/increases
monotonically given certain monotonic transitions (such as one region expand-
ing) as previously discussed in [4].

There are several possible applications of this revised semantics. First, we
note that [11] present a way of approximating constraint satisfaction in reduced
expressivity constraint networks by using the idea of a relation ‘almost’ holding
– the semantics presented here would fit well with this technique.

A second application, which we explore more extensively, is an application to
abstracting qualitative spatial relations from video data. In video data, objects
are frequently represented by shape abstractions such as minimum bounding
rectangles (MBR). However, visual noise and other errors introduced by video
processing frequently result in instability in mereotopological relations over time,
when these are defined point-set theoretically – i.e. ‘jitter’ can result as relations
change frequently depending on the exact position and size of the MBR. We show
how using a distance based metric can result in a much more stable qualitative
spatial abstraction; the distance based semantics can be used to decide when
to transition between relations. We show that good transition points can be
learnt automatically by training an HMM [13]. The impact of this improved
technique for abstracting qualitative spatial relations from noisy video data can
be demonstrated in a procedure to learn event classes from video data.

The rest of the paper is structured as follows. Section 2 introduces the pro-
posed distance based semantics for RCC. Section 3 proposes a way of using this
semantics within a HMM based framework, in order to handle noise in video.
Section 4 describes experiments on real video data for validating the effective-
ness of the proposed approach in handling noise, in relation to the traditional

1 In this paper, we refer to distance as a numerical description of how proximal regions
are, without necessarily assuming it is a metric. What is important, as described be-
low, is that it captures certain monotonicity properties over ther conceptual neigh-
bourhood graph.



approaches. In sections 5 and 6 we summarize the work, and point out certain
limitations that provide insights into interesting directions for future research .

2 A Distance Based Semantics for RCC

In [14], the binary primitive C(x, y), x is connected to y was introduced with
the semantics that the closure of the region x shares a point with the closure of
region y. From this primitive C(x, y), the eight jointly exhaustive and pairwise
disjoint relations of RCC8 can be defined:

< = {DC,EC,PO,TPP,NTPP,EQ,TPPi,NTPPi}

The 4-intersection model of [6] from which an essentially equivalent set of eight
relations can be derived is defined in terms of examining the patterns of inter-
section between the interior and boundary point sets of a pair of regions x and
y: each relation is characterised by a particular combination of ∅ and ¬ symbols,
denoting empty and non-empty intersections respectively.

y

Fig. 1. The RCC8 relations x (green) and y (orange) along with their conceptual
neighbourhood. The six circles relating the various Boolean combinations of x and y
are also depicted when they have non zero diameter.

In this section, we introduce an alternative semantics for RCC8 (and thus
effectively also for Egenhofer’s relations). For the sake of simplicity, we restrict
our analysis to rectangular one-piece regions with no holes. We discuss the lim-
itations of the proposed framework for other shapes in section 6 pointing to



possible ways of generalizing our current approach. We confine our attention
here to rectangles aligned to two orthogonal axes, which naturally correspond
to rectangular bounding boxes, that are obtained using low video analysis. It is
worth noting that addressing the noise arising from low level video analysis has
partly inspired the proposed approach.

Our point of departure from previous work is to note that the standard se-
mantics says nothing about how far apart two regions are when they are discon-
nected (DC). In much earlier work, a CanConnect(x, y, z) relation was introduced
[10] which holds when the rigid body x is sufficiently large so as to be able to
connect regions y and z if translated into a suitable position. This gives rise to
the idea of measuring the degree of disconnection between x and y by a third re-
gion. We wish to choose a canonical shape region for this, and the obvious choice
is the n-sphere for n-dimensional space. Although RCC can be interpreted in ar-
bitrary dimensions, for the sake of simplicity we restrict our attention in this
paper to 2D, so we thus measure the degree of disconnectedness between a pair
of regions x and y by the smallest circle which can connect them. We will call
this circle c1(x, y). As x and y approach each other, the diameter of c1(x, y) will
decrease until they become EC, and the diameter of c1(x, y) is zero2.

Inspired by this, we now introduce further circles to provide a measure for
the other RCC8 relations. Considering the RCC conceptual neighbourhood, the
next relation to hold after EC is PO. A circle c2(x, y) being the largest circle in
the intersection of x and y neatly captures the degree to which x and y partially
overlap – as x and y transform/translate towards TPP/TPPi/EQ, so the diameter
of c2(x, y) will increase3.

If we now consider the value of the expression |c1(x, y)|−|c2(x, y)|, (where |...|
denotes the diameter of the circle) then it can easily be seen that it will start off
positive, reduce to 0 when EC(x, y) holds, and then become negative for all the
other relations. To distinguish all eight relations, we need to introduce further
measurements. We can do this by considering the other Boolean combinations
of x and y. Thus c3(x, y) denotes the smallest circle which can connect y to the
complement of x; dually c4(x, y) denotes the smallest circle which can connect
x to the complement of y; c5(x, y) denotes the largest circle in the region x− y
and c6(x, y) denotes the largest circle in y − x. These circles are all depicted for
the RCC8 relations in figure 1.

To show that these six circles are sufficient to distinguish all the RCC8 re-
lations, consider Figure 2. By inspection of the columns labelled by c1(x, y) −
c6(x, y), it can be seen that each row is unique, and thus the RCC8 relation which
holds can be determined by inspection of these six circles and whether their di-
2 Technically a circle has to have a non-zero diameter. But for convenience, here we

refer to a point as a circle of diameter 0.
3 It may be noted that in some cases, the diameter of c2 and (other circles defined

below) may not change for prolonged periods (e.g. if we were to take two rectangles
of the same height and translate one of them horizontally inside the other). However,
since the principal purpose of the work is give more information near the relation
boundaries, it is sufficient that the diameter of these circles changes significantly
near these boundaries.)



c1(x,y) c2(x,y) c3(x,y) c4(x,y) c5(x,y) c6(x,y)

minC(x,y) maxC(xy) minC(‐x,y) minC(x,‐y) maxC(x‐y) maxC(y‐x)

DC + 0 0 0 + +

EC 0 0 0 0 + +

PO 0 + 0 0 + +

TPP 0 + 0 0 0 +

NTPP 0 + 0 + 0 +

EQ 0 + 0 0 0 0

TPPi 0 + 0 0 + 0

NTPPi 0 + + 0 + 0

Fig. 2. A table showing whether the diameter of the six circles are 0 or non zero for
the RCC8 relations. minC(x, y) denotes a minimum sized circle which can connect x
and y and maxC(x) denotes the maximal sized circle which can fit into x.

ameter is zero or non-zero, in just the same way as the 4-intersection model
allows the eight Egenhofer relations to be distinguished. Here we require eight
values to characterise each relation rather than the four in the 4-intersection
model (though less than the nine of the 9-intersection model).

This thus gives an alternative way of defining the standard set of eight
mereotopological relations, which differs from the RCC8 definitions based on
C(x, y), or the 4-/9-intersection model, or indeed the modal semantics found e.g.
in [15]. This may have some theoretical interest, but our purpose in defining this
semantics was to address a problem arising in abstracting RCC8 relations from
video (in fact, the problem also occurs even in the simpler RCC-5 calculus – see
our earlier work in which we briefly outline a much simpler version of the ap-
proach here for RCC-5[19, 18]). Typically in video interpretation, objects/blobs
are identified and then tracked, such that a unique identifier can be associated
with the different positions of the object at different times. However, it is not
just the position of the object which can change, the shape can change too,
either because it actually changes shape (as in the case of a person changing
their posture), or because, in the image plane, an object appears to get larger
as it moves closer to the camera, or because of visual noise which results in the
the object detection software assigning a different shape to the object in differ-
ent frames. It is this final problem which is of particular concern to us, since
the changes are not “real changes” but rather artefacts of the software system.
Often the size/position of the object will change rapidly from frame to frame,
resulting in “jitter”. Such problems are well known and endemic in computer
vision. The use of shape abstraction primitives, such as bounding boxes, or the
convex hull of an object can help alleviate these problems but the issue still re-
mains. The problem of interest to us here is when this jitter causes undesirable
changes of spatial relation – for example when two objects approach each other,
the RCC8 relation between the bounding boxes may not simply transition from



DC to EC and then to PO following the arcs in the RCC8 conceptual neighbour-
hood. Rather, there is likely to be a jittering of relations, such as DC, EC, PO,
EC, DC, PO, EC, PO, DC, EC, PO (where each of these relations indicates that
it holds over some maximal interval with no intervening relations). There are a
variety of computer vision smoothing techniques (such as a Kalman filter [20])
which can be applied to the tracks and shape abstractions which can help reduce
such jitter; however we have not found these to be satisfactory, possibly because
they are not specifically aimed at the discretisations of a qualitative calculus,
but generally simply aim to smooth in continuous spaces such as are generally
found in low level computer vision representations.

Our approach, detailed in the second half of this paper, is to try to learn
when to transition from one relation to another. We do this by training a Hidden
Markov Model (HMM) with one state for each relation. In order to build such an
HMM, it is convenient to have a variable which can be used to assess which state
holds. The idea of using the distance based semantics for RCC8 is attractive
in this regard since it allows the possibility of combining the different circle
measures to produce an overall measure which can be used to decide when to
transition from each relation; a vector of measures could also be used, e.g. taking
each circle diameter individually as in input, but this makes the learning task
more difficult.

So we turn to the question of how to combine the circular measures to provide
an appropriate value for the HMM. Consider the path through the conceptual
neighbourhood DC, EC, PO, TPP, NTPP – this can be seen in the first five rows of
the table in figure 2. Initially c1, c5, c6 all have positive diameter whilst the others
have zero diameter. Then c1 becomes zero, followed by c2 becoming non zero,
then c5 becomes zero, then c3 becomes non zero, then finally c4 becomes non
zero. Thus c1 and c5 have become zero, whilst c2 and c4 have become non-zero;
c3 and c6 remain unchanged. Note that all changes are qualitatively monotonic
along this path, i.e. there is no change back to a previous qualitative value.

It may also be remarked that, assuming the change in size/position of x
and y is monotonic (i.e. x/y change smoothly and without “reversal” between
the relations DC and NTPP), then the actual metric value of the ci(x, y) will
in general4 be monotonic too; e.g. consider |c5(x, y)|: its value will be constant
whilst DC and EC hold, but once PO starts to hold, then the diameter of c5(x, y)
will steadily reduce until it becomes zero on the transition to TPP.

For the dual path, DC, EC, PO, TPPi, NTPPi, a similar analysis applies, but
with the roles of c3/c4 flipped and similarly for c5/c65. This leads to a formulation
of a measure d(x, y) in which c1, c5 and c6 contribute positively to the measure
and c2, c3, c4 negatively:

d(x, y) = |c1(x, y)|+ |c5(x, y)|+ |c6(x, y)| − |c2(x, y)| − |c3(x, y)| − |c4(x, y)|
4 Some limitations on this monotonicity are discussed in section 6.
5 We could also analyse the other paths through the conceptual neighbourhood of

RCC8, and indeed the various processes which engender these, following the analysis
of [4] .



However, this measure is dependent on the absolute sizes of x and y; e.g.
if x and y are both scaled to twice their size, then |c5(x, y)| will double too.
Thus it is appropriate to normalise the measure. Rather than normalise the
entire expression, it is better to normalise each component; this also allows for
the possibility of x or y changing their size over time (such as when the entire
transition from DC to NTPP is caused by an expansion of the region y [4].
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Fig. 3. Illustration of circles c1 to c6 as the relationships changes from DC to NTPP.
The thick line represents the normalized region based distance obtained using c1 to c6

(Original in colour).

We thus consider the normalisation to be applied to each of the ci(x, y) ex-
pressions. The term c1(x, y) is independent of the size of x and y but is dependent
on the size of the universe (we assume here a bounded universe, such as the field
of view in a camera image); thus we divide |c1(x, y)| by δ(x ∪ −x), where δ(x)
denotes the diameter of largest circle inside the bounding box of x, as a measure
of the size of x. For c2(x, y), the maximum value will be when the smaller region
is part of the other, so normalising by dividing by the minimum of x and y is
appropriate. For c3(x, y), it only has non zero diameter when NTPP(x, y) holds.
The maximum value for |c3(x, y)| is 0.5 ∗ (δ(y)− d(x)), ie when circles on which
δ(x) and δ(y) are based are concentric. So this suggests normalising |c3(x, y)| by
dividing by 0.5 ∗ (δ(y)− δ(x)). c4(x, y) is dual to c3(x, y), so the term should be
divided by 0.5∗ (δ(x)− δ(y)). For the |c5(x, y)| term, the maximum value is δ(x)
so this is the normalising factor, and dually for the |c6(x, y)| term, it should be
divided by δ(y). This results in a revised, normalised distance measure:



d(x, y) =
|c1(x, y)|
δ(x ∪ −x))

+
|c5(x, y)|
δ(x)

+
|c6(x, y)|
δ(y)

− (1)

|c2(x, y)|
min(δ(x), δ(y))

− |c3(x, y)|
0.5 ∗ (δ(x)− δ(y))

− |c4(x, y)|
0.5 ∗ (δ(y)− δ(x))

The normalized measures for each of the circles c1 to c6, together with the
normalized region based distance d(x, y) is shown in figure 3. Below we refer to
d(x, y) as the Region Based Distance (RBD) between x and y.

3 Application to Handling Noise in Video

Recent work [19] [17] has shown the benefits of qualitative spatio-temporal rela-
tionships in representing and learning about human activities. In [19], activities
are regarded as being composed of events, which are modelled as interactions
between a set of objects in space and time. Events such as unloading, represent-
ing interactions between trolleys, planes and loaders, were learned from videos
of aircraft activities.

Interactions were represented in terms of a graph structure that captures
the temporal evolution of qualitative spatial relationships between the respec-
tive pairs of objects. These pairwise spatial relationships were computed from
their tracks, where a track is simply a temporal sequence of minimum bounding
rectangles (MBR) covering each object. However, visual noise and other errors
introduced by video processing frequently result in instability in mereotopologi-
cal relations over time, when these are defined point-set theoretically – i.e. ‘jitter’
can result as relations change frequently depending on the exact position and
size of the MBR.

The following describes a solution to this problem using a HMM that over-
lays a temporal model in order to regularizing these rapidly flipping spatial
relationships. The states of the HMM are labelled by the RCC8 relationships.
The observations are a sequence of region based distances between the respective
pairs of object MBRs. The probability distribution between the states and the
observations are modelled by an observation model for each state. With a trained
HMM, it is possible to predict the most likely sequence of spatial relationships
given a sequence of observed RBDs.

The regularizing effect of the HMM is achieved by defining transition prob-
abilities on RCC8 in such a way that it encourages objects to remain in the
same state, while allowing transitions that are constrained by the connections in
the RCC8 CNG. In other words, the HMM prevents rapidly flipping transitions
by encouraging transitions to take place only when there is sufficient evidence
from the observations, that is compelling enough to proceed to the next state.
We show that good transition probabilities and observation model can be learnt
automatically by training the HMM on manually annotated training videos. In
this manner, the HMM learns a temporal model that can be regarded as an ap-
proximation of the way humans perceive these spatial transitions. The following
describes the proposed approach more formally.



Optimal Spatial Sequence for a Pair of Tracks

1. Let τ = (..., ot, ...), τ ′ = (..., o′
t, ...) be a pair of tracks. It is assumed that all

the corresponding MBRs ot ∈ τ and o′
t ∈ τ ′ are observed together6.

2. Let D(τ, τ ′) = (..., d(ot, o′
t), ...) be an observed sequence of RBDs between

(τ, τ ′). Here d(ot, o′
t) is the RBD (equation 1) between corresponding MBRs

(ot, o′
t) at time t.

3. Let S(τ, τ ′) = (..., s(ot, o′
t), ...) be a hypothesized sequence of qualitative spa-

tial relationships between (τ, τ ′). Here s(ot, o′
t) ∈ < is the hypothesized spa-

tial relationship between the corresponding MBRs (ot, o′
t) at time t.

The goal is to use a HMM model Θ to predict the most likely sequence of
spatial relationships Ŝ(τ, τ ′), given a sequence of observed distances D(τ, τ ′),
between the tracks τ, τ ′

Ŝ(τ, τ ′) = arg max
S(τ,τ ′)

P (S(τ, τ ′)|D(τ, τ ′), Θ)

A HMM to Obtain an Optimal Spatial Sequence

In order to address this problem, we formulate a HMM that models the joint
probability distribution of the observed and hidden states as given by the tuple
Θ = (<, A,B, π), where

1. < are the states of the HMM. They correspond to the spatial states in RCC8.
2. A = (aij)ij is the state transition matrix representing the probability aij =
P (stt+1 = sj |stt = si) of transition from state stt = si ∈ < to stt+1 = sj ∈
<. Only those transitions that are physically possible, as given by the CNG
of the RCC8 have non-zero transition probabilities.

3. B = (bi(δt))it is the observation model, where bi(δt) represents the proba-
bility P (δt|stt = si) of observing a RBD δt while being in state stt = si ∈ <.
The observation models for each state si ∈ < are modelled as normal distri-
butions7 N (µi, σ2

i ). Here µi represents the mean RBD for the state si and
σ2
i represents the variance of this distance for this state.

4. π = (πi)i is the initial state distribution, where πi represents the probability
of state stt = si ∈ < being the initial state.

The above HMM model Θ is trained with a dataset of sequences of region
based distances (between tracks) that are manually annotated with the subjec-
tively correct spatial relations. The Baum-Welch algorithm [13] is used to learn
the parameters of the model Θ of the HMM. For a given pair of co-temporal
tracks, a Viterbi decoder [13] is used to find the most likely sequence of spatial
relationships.
6 We are interested in computing the spatial relationships only when the objects are

observed together [19].
7 While non-symmetric distributions may be better suited as observation models, the

normal distribution offers the simplicity with respect to learning the parameters of
the model. We have also experimentally observed that the results with the normal
distribution closely approximates those arising from these non-symmetric distribu-
tions.



4 Experiments

The following paragraphs describe the two video datasets and the evaluation of
the proposed approach on these two datasets.

Datasets

Two real video datasets are used to evaluate the proposed framework. The first
consists of activities in an airport apron showing servicing of aircraft between
flights. The second video dataset consists of activities representing simple verbs
such as throw (a ball), catch etc. We will henceforth refer to these two datasets
as the airport apron dataset and person-ball verbs dataset respectively.

The processing of the real data sets involved two stages: detection and track-
ing. For the first stage, a multi-class object detector [12] based on HOG features
was trained on a separate part of the dataset and applied to each frame of the
rest of the dataset. The trained classes for the aircraft apron datasets were (i)
plane; (ii) trolley; (iii) loader; (iv) bridge; (v) plane-puller. The trained classes
for the person-ball verbs dataset were person and ball respectively. The second
stage involves applying our implementation of the tracking technique reported
in [21] to the detected blobs. We chose this technique since it performs global
optimization to obtain the most likely set of tracks.

Evaluation of the HMM based Procedure

The following experiment evaluates the proposed framework and compares it
with the point set intersection technique, which is regarded as the baseline.
In order to train and test the HMM, the tracked dataset is randomly divided
into two parts: The first consisting of two thirds is used for training, and the
remaining for testing. Ten such random partitions are created for evaluation. The
training data is hand annotated by associating pairs of tracks in the training set
with a corresponding sequence of spatial relationships8. These annotations are
subjectively assigned by the annotators. A part of an annotated sequence is
shown in figure 4.

Instead of labelling the entire data of several thousand frames, only those
segments where there are changes in spatial relationships are considered for
training and testing the HMM. This is because the main purpose of the HMM is
to learn a stable transition between the spatial states, rather than parts where
there is a high certainty of the spatial states.

For the airport apron dataset, a total of 27 training segments and 14 test
segments were prepared. For the person-ball verbs dataset, a total of 10 training
segments and 5 test segments were prepared. In these segments, those pairs of
tracks for which the spatial relationships change are first identified. These pairs
are subjectively labelled, with the appropriate spatial relationship for each frame,
8 This is because the purpose of the HMM is to learns a mapping from a pair of tracks

to a corresponding sequence of spatial relationships.



... ... ... ...

Fig. 4. A segment with which the HMM based procedure for obtaining spatial relation-
ships is trained and evaluated. Some images from a segment that has been manually
annotated for training and evaluating the HMM are shown. An example of an anno-
tation in the form of a sequence of spatial relationships is shown for a pair of tracks
corresponding to a loader and trolley respectively.

in which both the tracks are observed. The segments are also provided with
respective episodes9for this sequence of spatial relationships. One such segment
is illustrated in figure 4.

The HMM is trained on the training segments for each random partition.
The trained HMM is then applied on the test segments for the corresponding
random partition. This gives rise to a sequence of spatial relationships between
pairs of tracks on the test segments. A corresponding sequence of episodes are
constructed from the inferred sequence of spatial relationships, for the sake of
evaluation which is described below. Two such sequences for the verb catch and
another event where the trolley detaches from a loader are illustrated in figure
6.

Qualitative Evaluation The performance of the HMM is evaluated qualita-
tively by examining the sequence of qualitative relationships obtained using the
proposed approach and comparing it with the corresponding sequence obtained
using the traditional point set intersection based computation. Figure 5 illus-
trates such a comparison, as explained in the corresponding caption. It can be
seen that for this video sequence, the use of a HMM with the distance based
semantics plays a significant role in eliminating noise arising from jitter of the
bounding boxes. Other examples of correctly inferred spatial relationships for
the airport and person-ball verbs datasets are shown in Figure 6.

Quantitative Evaluation The proposed approach can be quantitatively eval-
uated in two ways. The first involves evaluating the extent to which the HMM
outputs a correct sequence of episodes. The accuracy is reported in terms of the
mean and variance of the percentage of test segments for which the sequence

9 Episodes are defined in [17] as sequence of spatial relationships such that within
each episode the same spatial relation holds, but a different spatial relation holds
immediately before and after the episode.



Fig. 5. Some images sampled from the video footage of a scene depicting a person
jumping over a ball, with bounding boxes on them. At the top of each image are two
bands showing the spatial relationships (PO in blue and DR in red) up until the time
of the depicted frame. For this video sequence, it can be observed that the HMM
based on the distance based semantics has eliminated noise arising from jitter of the
bounding boxes. The noise is evident in the band corresponding to the traditional point
set intersection (PSI) based approach. For example, in the middle frame in the bottom
row, it can be seen that prior to this point, both the PSI and HMM have inferred a
DRrelationship, but the PSI relationship jitters back to PO in this frame, whilst the
HMM relationship is stable at DR.

Fig. 6. Examples of correctly inferred spatial relationships for the airport and person-
ball verbs datasets. Each image represents a sample from the sequence of images,
corresponding to the interval, during which the spatial relationships given below hold.
These spatial relationships have been inferred by the proposed approach. Note that
the relation in the bottom row is PO according to PSI semantics, but is inferred as EC
by the HMM.



of episodes exactly correspond to those segments in the ground truth, across
the 10 random train-test partitions. These results for the proposed HMM based
approach and the traditional point set intersection based approach for the two
datasets are reported in Table 1.

Aircraft Apron Person-Ball Verbs

HMM 82.3%, 7.1% 90.6%, 6.2%

Point Set Intersection 30.8%, 13.2% 67.9%, 10.4%

Table 1. Results evaluating the extent to which the inferred sequence of episodes
exactly correspond to those segments in the ground truth. Each entry consists of the
mean and variance respectively.

Aircraft Apron Person-Ball Verbs

HMM 66.1%, 2.2% 81.1%, 2.0%

Point Set Intersection 27.8%, 11.2% 57.8%, 8.3%

Table 2. Results evaluating the extent to which the outputted episodes temporally
align with those of the ground truth. Each entry consists of the mean and variance
respectively.

The second evaluation involves evaluating the extent to which the outputted
episodes temporally align with those of the ground truth. This evaluation is
restricted only to those those segments whose sequence of episodes obtained
from the HMM matches the ground truth. This is because the purpose is to
understand the extent of deviation in temporal alignment, despite the fact that
the episodes have been matched correctly. A good alignment ensures a reduced
chance of structural difference in temporal relationships (amongst the episodes)
between the ground truth and the output of the HMM. Accuracy is measured in
terms of the mean and variance of the percentage of temporal overlap, between
the outcome of the HMM and the ground truth, across the 10 random partitions.
These results for the proposed HMM based approach and the traditional point
set intersection based approach for the two datasets are reported in Table 2.

It can be concluded that the HMM significantly outperforms the traditional
point intersection based technique. In particular, the potential advantage of using
the HMM based approach using the RBDs on RCC8, for inducing stable sequence
of qualitative spatial relationships from video data, has been demonstrated.



5 Summary

This paper explores this idea of a distance based interpretation for mereotopol-
ogy. By introducing a distance measure between two regions x and y, and for
various Boolean combinations of x and y, we show that all the RCC8 relations can
be distinguished. We then introduce a distance measure which combines these
individual measures which we show reflect different paths through the RCC8
conceptual neighbourhood (i.e. the measure decreases/increases monotonically
given certain monotonic transitions, such as one region expanding). In contrast
to traditional definitions of mereotopologies, in terms of point set intersections,
our region based distance measures the degree to which the different mereotopo-
logical relations hold. We have demonstrated how a Hidden Markov Model can
be used to exploit this distance based semantics to yield improved interpretation
of video data at a qualitative level.

6 Limitations and Future Work

There are a number of avenues of further work which might be fruitfully explored.
For simplicity in this work we limited the regions considered to bounding boxes
aligned to orthogonal axes. If this assumption is relaxed then the RBD measure
can fail to work as expected. Figure 7 illustrates three such regions, where c5
remains constant as the orange shape translates from left to right. One possible
solution that we are currently investigating is to formulate a semantics that is
based on a separate analysis of projections of a region along the horizontal and
vertical coordinate axes respectively.

Fig. 7. Examples of regions where the proposed distance measure between regions can
fail, as the smaller orange shape translates left to right. All though c2 and c4 will
change as expected, c5 will remain constant!

Again for simplicity, in this paper we only considered computing the most
probably RCC8 relation for each pair regions considered in isolation. In general,
there will be multiple objects and it is necessary to ensure that their spatial
relationships are globally consistent. For example, consider the relations be-
tween three regions x, y, z and the three relations R1(x, y), R2(y, z), R3(x, z).
The proposed approach does not ensure path consistency (i.e. the most probable
interpretation of R1(x, y), R2(x, y) and R3(x, y) might not be mutually consis-
tent e.g. R1 = R2 = TPP, whilst R3 = TPPi). Thus an interesting possibility



for future work is to couple HMMs between each pair of objects and introduce
constraints between them. It would be worthwhile to evaluate evaluate whether
such a coupling improves performance in abstracting stable qualitative spatial
relations between multiple objects. Am alternative way of ensuring a globally
consistent set of spatial relations is to check for this property on the most prob-
able set of spatial relations, and if inconsistency is detected, then to choose the
most probable set with this property.

Another direction for future work is to carefully analyse all the different
processes over the conceptual neighbourhood graph to be found in [4] in terms
of the RBD measure defined here, and to build a system which can recognise
processes reliably from video data. Another avenue of research is to explore
different formulations of the RBD from the six individual circle metrics: should
they be weighted (are some not relevant/useful) – it might appear that c2 is less
useful since c5 and c6 capture much of what c2 does, except in very particular
cases of transition.

It will also be interesting to investigate if the HMM can be used to learn topo-
logical relationships[7] and to what extent these learnt relationships are quali-
tatively interesting or how they compare to qualitatively interesting topologies
such as RCC8, when applied to a video event analysis tasks [19]. Mereotopologies
such as RCC8 are not the only kind of qualitative spatial calculi, and another av-
enue of research would be to use HMMs to learn when to transition between the
relations of other qualitative spatial calculi other than mereotopologies. Finally
we note that if a probabilistic approach to QSR is desired, whereby for example,
RCC8 relations have probabilities attached to them (for use in stochastic logic
programming), then the HMM could provide such probabilities.
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