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Abstract

Estimation errors introduced in the identification of
nonlinear systems are analysed. The influence of record
length, mean level, power and bandwidth of the input excitation,
the effects of input and output noise and errors introduced
by the decomposition techniques are investigated. Experimental
design and input selection are discussed and the results are

illustrated by simulated examples.




1 Introduction

Although there have been several applications of nonlinear
identification techniques based on either the Volterra or Wiener
series most of the authors assume that only the first two terms in
the functional expansions are present or that higher order terms
can be neglected. This situation is in many ways inevitable
because of the large number of data pqints and excessive computations
associated with the identification of third and higher terms using
correlation analysisl. The problem is particularly difficult in
the Volterra series case because whilst it is easy to decouple the .
identification of the first two kernels when there is no contribution %
due to higher order terms the existence of significant higher order

terms invalidates this approach and multilevel inputs have to be

applied to isolate the contribution of each kernel prior to |
identificationz. This problem does not arise in the Lee and
Schetzen3 procedure because of the corthogonality of the functionals.
However it has recently been suggested4 that third and higher order
terms cannot be accurately estimated using this algorithm in
continuous time because of fundamental errors associated with this
approach. Other authors have considered alternative expansions

of the input-output map and algorithms have been developed for
systems which can be represented by interconnections of linear
dynamic and static nonlinear elements5'6. The advantage of this

approach is that even systems containing very violent nonlinearities

can be identified in a manner which preserves the system structure
and provides a concise description of the process. Because

practical identification based on the Volterra or Wiener series



is often restricted computationally to systems containing just

the first two kernels most authors have applied these techniques
to systems which can be represented by the block orientated models
discussed above.

Analysis of the estimation errors associated with the Lee
and Schetzen procedure using CSRS inputs have been investigated
by Marmarelis . Similar studies have revealed anomalies
associated with pseudorandom inputs and correlation analysis
based on the Volterra serieslo'll.

In the present study an analysis of the estimation errors
associated with the identification of a class of nonlinear systems
is considered. The results are derived for an algorithm based
on the theory of separable processesl2 and the general model
illustrated in Fig.l but apply equally to the identification of
the first and second order Volterra kernels assuming higher order
terms can be neglected. Errors introduced into the estimation of
the first and second order correlation function estimates are
investigated by analysing the effects of record length, internal
noise, finite bandwidth and variance of the Gaussian input. The
selection of inputs and errors introduced in the estimation of

the individual elements of the general model are considered and

simulations are included to illustrate the results obtained.

2. Identification Algorithms

Consider a nonlinear system which can be described by a

truncated Volterra series consisting of just the first two terms
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z(t) = f glv('rl)U(t—Tl)dTl + ’_U qzv(rl,Tz)u(tHTl)u(t—rz)

—00 ]

dTldT2 (1)

If u(t) is a zero mean white Gaussian noise signal where
¢uu(t) = A8(t), estimates of the first and second order Volterra

kernels can be obtained by computing the first and second correlation

functions to yield

¢uz, (o) = calglv(oJ (2)
¢uuz, (01,02) = a2g2vtcl.c2) (3)
2 .
where @, = A, o, = 2)7, eqn (3) represents the symmetrical second

order kernel and the superscript ' is used throughout to indicate
a zero mean process,
Alternatively, if the system has the structure of the general
model illustrated in Fig.l a similar identification procedure can
be used to determine estimates of the individual component subsystems.
. ; 5,12 | ;
By considering the theory of separable processes it can readily

be shown that for an input u(t)+b where u(t) is a zero mean separable

white Gaussian process and b is a nonzero mean level

o

¢uz.(0) = ulCF Imhl(Tl)hz(U*Tl)dTl = alCFglg(O) (4)
Puuzr (07 705) o :OL:ZCFF-fh2(Tl)hl(Ol_Tl)hl(GZ_Tl)dTl |
01_0'2—0' - |

= a2LFFg2g(U,0) (5)

If the nonlinear element can, in theory, be represented by a
k ,
polynomial vy (t) = E Yiql{t) then provided hl(t} is stable, bounded-
i=1




inputs bounded-outputs, CF and CFF are constant scale factors
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1 i (2r+i-M) (2qg)! 2 g-1

c_=—5 ), (s M = (A [ n “(0)as)
FF 2A2 jop L 2o 2r+i-M "x 2(q l)(q—l)! s
(7)
_ N-2r+l _ M-2r i, 1 odd
where u_ = bfhl(e)de, Pl = 5 r a4 =5 : N “Liel, T eesh
_{fi ; 1 even
M=1i-1, iocaa 2
co k Gl i . oo
1 = ; - - - -

z' (t) = [ hz(e)_Z vy oL (u [..] hy ()b (1 ) (a(t=1-8)...ult-t, _ -6)

- ® i=1 r=o o

- u(t-1t,-6)...u(t-1. -8)dr....drt.
i 1= 1 s 4
(8)

The estimates of eqn (4) and eqn (5) with Ol = 0, =0 can be decomposed

to yield estimates of the linear subsystems u hl(t) and u h, (t) where

1 22

My and u, are constantg> A polynomial, a series of straight line
segments or any other suitable function can then be fitted to the
nonlinear element to complete the identification. Notice that because
the identification of the linear and nonlinear components are
completely decoupled systems with very violent nonlinearities can
be identified using the above algorithm. An input with a mean level b
is used to ensure that all terms in CF and CFF exist.

Comparison of egns (2) and (3), (4) and (5) respectively shows

that the identification procedure for the Volterra system egn (1) and

the general model are identical except for scale factors. This is




because the results for the general model yield estimates of the
first two Volterra kernels scaled by the constants CF and CFF even
though the Volterra expansion for this system may contain numerous
higher order terms. The effects of the higher order terms reduce
under the theory of separable processes to the form of eqns (4) ang
(5) for this model structure5'12.

The identification algorithm for the general model can be
applied to feedforward, feedback and multiplicative systems composed
of linear dynamic and static nonlinear elements with only slight
modifications. This provides a unified identification procedure
for systems within this class and avoids the difficulty of isolating
the contribution of each kernel which would be necessary if the

identification were based on the Volterra series expansion.

34 Error Analysis

The application of correlation analysis to the identification
of either the Volterra system eqn (1) or the general model Pig.l;
introduces various errors which are Primarily due to finite record
length and finite stimulus bandwidth. The effect of these, and
other errors due to internal noise on the estimates of egns (2),

(3) and (4) and (5) are analysed in the following sections.

3.1 Errors due to finite record length

The first and second order correlation functions associated with
the estimates of eqns (2), (3) and (4), (5) must inevitably be

computed from a finite data record of length R
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z'(t)u(t-g)dt

w!P
O‘—b

uzr

(9

¢ ] (Ul

uuz

bd[l—'

j 2" (Bu(t-0, )u(t-o,)at (10)
0

The effect of the finite record length R on these estimates can be

investigated by computing the variance of the estimates.

3.1.1 The Volterra model

Consider the variance of the estimate of the first order Volterra
kernel

var[;lv(G)J = E{[ %—é Z,(U)JZ} - {E[ %—&uz‘(o)]}z

u

R R
5] (E[z'(u)u(u—c)z'(v)u{v—cﬂ
O 0O

1
A2R

- E[gr(u)u(u-o)]g[z'(u)u(v—o)]dudv (11)

Substituting from egn (1)

S

varl_glv } ==z L / {f 9y -E)qlv(T2)dT2

+ glv(o—g)glv(£+c)}dg + A2 ff gzvz(T3,T4)dT3dT4

+ 4 _4 {mgzv(13—5,0)g2V(T3,o)dT3dg -

w

4 {mg2 T37E:0-8) g, (1,,048)dr de
T o *
+ £ [ 9y, (0-E 1, +0)g, (a+g, 1) ar,aE)

= %*(c + Ac2)

1 (12)




where = and G, are constants which depend upon the first two
Volterra kernels of the system under study. Thus the variance

of the estimate for the first order kernel is directly proportional
to A, the variance of the input excitation and inversely proportional

to the record length R.

Consider the variance of the estimate of the second order kernel

R R
3 1
var[g, (0. ,0,)] = [ [ {elzrwutu-0)ulu-0.)
2v 12 4)\ASLRQ 5 B 1 2
z'(v)u(v-ol)u(v—oz)] = E[z'(u)u{u—cl)u(u—oz)]
E[}‘(v)u(v—dl)u(v—cz)J}dudv (13)

Substituting egn (1) into eqn (13) and simplifying yields

- . 1 k2 k35 k4E
varﬂgzv(cl,cz)J = Zﬁ'{k - _T_+ ——§—+ —;5—} for cl # 02 (14)
A

T
002 .
where € = f ) uu(t)dt, and ki' i =1,..4 are constants which depend
- 00
upen the first two Volterra kernels of the system under study and
are defined in Appendix 9.1. Assuming that ¢uu(t) can be approximated
by a triangular function centred on the origin with height ¢uu(0)

and base width 2At, then

» o= ¢ (04t (15)
2¢2uu(8)At (16)
£ 7 3

and egn (14) can be expressed as
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[A k2 2k3 2k4
var|g, (o_,c )T = oo i + e}
2viT1772 R 1 ¢uu(O)At 3A 6 (O)At2
uu
K
1 2
=i {Kl + 7o) } g, ¥ o, (17)
uu
k k k
' 273 2 2 4
Whers ¥ =g &8 .9 and K_ = %2 4 £ _&
il 1 3 Atz 2 At 3 At2
When o = 62 =g
L9, 0 4R ' 12 3
A
2
a,€ ace  (0) ¢ (0)
+—— 4+ q_ + 5 + o2
5 2
A A
O.E
¥ 82 } (18)
A

where ui, i=1...8 are constants defined in Appendix 9.2.

Combining
eqns (15), (16) and (18)
o o o
B 1 1 2 3
var[g (G,O)] i T s N AL S L —
2v 4R ¢u (0) At " {O)atQ 6 (O)At3
uu u
20 o o 20

6 7 8

Tt a o+ =2 + —

6 (0) At L5 At At2 3At

uu
B
1 1
= — —_— + = =
iR {¢ ) 62 } for oy o, o (19)
uu
o a Q, 20
where Bl = —%—+ —2§—+ ~§§—+ 42 (20)
At At 3At
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d B = + E§.+ iz_.+ 8
o Sy = T 2 | 3t (21)

The variance of the estimate of the second order kernel is therefore

inversely proportional to the record length and to the variance of

the input signal.

3.1.2 The General Model

Consider initially the general model assuming Yl,y

g = 1 and
Y, = O for i>2 such that eqns (4) and (5) reduce to
" 1
9400 = fhz(ﬂ)hl(c—e)dﬂ = T35 bupr () (22)
é (o,0) = fh (8)h 2(0~8)d@ SPUSE S ¢ (o) (23)
2g 2 1

2A2(1+3bp) uzz'

where p = fhl(T)dT, for a non-zero mean input ul(t) = u(t)+b.

Substituting eqn (22) in eqn (11) yields the variance of the first

order correlation function

i 1

2
var {X?IIEBT-¢UZ'(U)} = ?IiigTﬁ'(cl+Rcz+b 03) (24)

where the constants cl and c, are defined by egn (12) and

c3 = 4fffg2g(Tl:T2)g2g(Tl,T4)dTldT2dT4
+ 4fffgzg(O"ErTl)gzg(U+ErT2JdTldT2d£ (25)

Similarly for the second order correlation function, substituting

eqn (23) in (13) gives




— o
var { < 6 (0,0} = —1 { el + 8.} (26)
22 (1+3bp) uuz' 4R (1+3bp) ¢uu(0) 2
h B 8 + EE'B
where l At 3
n T
83 - X_ﬁi_f fff ng 1 ey )g2 (T 1Ty )dt dT dr dg + ZE (3fffg2 ,T2)

, d + ’ .
g2g(T3 T4)dTldT2 T3dT4 fffgzg(o Tl)gzg(c+g Tz)dTldT2dg

g jffg2g(0—€.Tl)gzg(U.Tz)drldedg + 2fffg2g(o—£,rl)gzg(g+g,T2)dT dr,,de)

L

+ 16ffg2g(a,Tl)g2g<g,T2)dTlaT2

For the case when Yy #0 for i =1,...k and b # O then

1 i 2
var{ KE;' uz,(o)} = (fl+Af2+A Fot...) (27)

1. 1 Ql
var{ 5 ¢uu (o8] = E— 50 + 9 +¢ R +¢ 24 + ...

21 ¢C uu

F
(28)

where fi = F (Y 'Y i41’ k ib.; hl h2)

=
I

= F ’ P oo oy
i 2y # Yy rPrhy sh)

are in general nonlinear functions for i = 1,2...k.

Inspection of eqns (12), (17) and (19) for the Volterra model
and egns (27), (28) for the general model shows that the estimates
are consistent and the rms error decreases as 1/vR. The variance
of the estimates is a function of the record length R, the input

signal variance, the mean level of the input b and the specific system
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under identification. Notice that in general the estimates of the

Volterra kernels for 0. = 02 will have a larger variance than

il
estimates of the non-diagonal points (Ul # 62) because of the
presence of low order integral terms. Comparison of eqns (12) and
(24), (19) and (26) respectively shows that it ig very difficult

to formulate a simple procedure to determine an optimum value for
the mean level of the input b without considering specific systems.

However the simulation results indicate that suitable selection of

b can result in a significant reduction in the variances.

3.2 Errors due to the Gaussian white noise stimulus

Since band-limited Gaussian white noise must be used in the
identification algorithms this inevitably introduces various errors
in the estimates. The two main sources of error introduced in
this manner are convolution and statistical errors which are

investigated below for the general model.

3.2.1 Convolution errors

The autocorrelation function of a white Gaussian process of
limited bandwidth Bo and spectral density of A watts/cycle is given

by

sin(ZWBO(Tl—Tz))

[0} u(Tl,T2) = 2BOA (29)

u ZWBO(Tl*Tz)

Convolution errors can be determined by inserting egn (29) in the

expected value of the estimate of glg(o)

&



= 1% =

E[&lg(o)j - %El_"fjhl(rl)hz(s)éuu(c-e-rl)dedTl,]

sinZWBO(G—S—T )

1
= ffhl('rl)h2(8) (2BOA) W dedTl (30)

_ _ v, i,
hl(Tl) = hl(c 9) + hl (o 6)(11 o-8)
h ) (5-g) ,
+ —-——Er———— (Tl-c+6) < (31)

Since ¢uu(-) is an even function, the integration Over a symmetric
interval around (0-8) will eliminate the odg order terms in the

Taylor exXpansion. Thus

A 7 1 (0-8+g) sinQWBo(o—6~T )
E[glgm)] =~ I 00 f h (1) T Gty
(0~-8-0) 1

and substituting frop (31)

(2n)

. 1 v Py (0-6)  x 2n-1_
E[glg(c)l ﬂ;fh2(6) ¥ —mr— [ & sin(2mB_£)dzas
n=o =1
(32)
;= n P g
= {f(hz(e)hl(cr—s) - ?nglbn Ay 46 } (33)

where r»>>1/B ig the settling time of the sinec function, ¢ = o=-6-71
o

and




= T3
s o
b = f EZn-l sin(27B _£)dg
n o
(@]
2n-1 2n-j-1 .
= B (2n.l) ————— cos(2mB_r+20) (34)
& | +1 o 2
j=o (ZWBO)

From (33) and (34) as the input bandwidth increases the influence of
the second term in egn (33) is reduced and the estimate tends towards
an unbiased estimate.

Following a similar derivation for the estimate of gzg(g,o}

vields

83, (0,0)] = Sf[[n,(O)h (t)h (r.)4 (o-6-1.)
2g 5 canid Tl et 1271 W 1
¢uu(o—8—rz)drldT2d8

(2B A)2 21B (g-0-1.)
o o 1

= =f[fn,( '
= 8)h_(t.)h_(t.) sin
A2 2 177171 2 4W2802 (O—G—Tl)

2mB (g-6-1.)
o

. v
S Tomem,) A, dr,el8
(2n)
w H (o-9) r
1 1 2n~-1
== [ hye) Z T (2m) ! [ & sin(2nB g, )dE,)

m n=o —-r

O e 8

) e [t el B £.)dg.)de
(2m) ! 2 0-2 2
m=0 =

(35)




= Pl

(2m)
© h (0-6)
= {/n,(8)h %(o-0)as +[ 2fn_ (6)h, (0-8) ( ] =
2 1 T g 1 e (2m) !
¥ oome1 1
Ir 5y sin(2mB_£,)dE,)de + - fh2(8)hl(cr—6)
. hl(2n) (c-8) r .,
( Z STy f El SLn(ZWBOEl)dgl)
n=1 ~35
4 o 1 (2n)
- fh2(8) = () T B (0-8)b )
s n=1
- hl(Zm)( -0)
( Z ~—GmT— - b )de I} (36)
m=1

where 51 = G—G—Tl, 52 = g-0-7

¢
Inspection of eqns (33) and (36) shows that convolution errors

can be reduced by increasing the bandwidth of the input stimulus

such that the first terms in egqns (33) and (36) dominate and the

estimates tend to become unbiased. Unfortunately increasing the

input bandwidth increases the statistical errors in the estimates

as shown below and a compromise in the selection of BO must be sought.

3.2.2 Statistical errors

To evaluate the statistical errors in the estimates consider
initially ;lg{c) evaluated by taking the average of a finite number
M of samples V(ti,G) = z'(ti)u(ti—c) for all samples of v(ti,o) which
are independent such that the mean Square error in the estimate is

given by




- T5

1 5 2
=533 E[{.z (z'(ti)u(ti—<3—¢uz,(c))} ]
AC_M i=1
iy
M
1 2
=5 E[{ ] (v(t.,0)0-¢ _,(c))}"]
A2C 2M2 =] i uz
F
= ——— [V (t,0] - Evie,0)?) (37)
AC_M
2
%
"o -
F
where ¢ 2 is the variance of Vv(t,o). But from egn (8)
v
2 o Xk k i J i .
(z' (t)u(t-0))" = ffh2<el)h2(ez)_g ) Y5 E LoGe)
0] i=1l j=1 ¥.=0 r, =0 1 2
1 2
rl r2 jm @
T e e« Jhytngd o (e WROCA ) esh 64, )
b X 5 o L1 15 r, 11 1 j-x,

P ;
(1i+3 r rz) integrals

[u(t—Tl—Gl)...u(t—Ti_rl—Gl)—u(t—Tl—Si)...u(t—Ti_rl—Sl)J

. [ﬁ(t—A —82)...u(t—T “92)‘u(t_Al"82)---u(t'T._r _e)J

% 2 4™

=

u2(t—c)dT o RO o Ly i a8, el de. das (39)
L -2 i-r, 1 j-x,

and combining this with eqn (37) gives
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E[(g}lgfa)—glg(o))zj

l)hl(Al)

B e f?hz(el)hz(ez)ylsz? h, (1
(0] (0]
(¢uu(0)¢uu(11+el+xl—82)+¢uu(o—Tl—S)¢uu(c—hl-e2)drldxl
4 2Y1Y2uxf£T hl(Tl)hl(Al)hl(A2)(¢uu(o—Al—el)¢uu(c—A2—ez}
uu

+ ¢ (o)¢uu(rl+el-;\l—ez))dTldAldAZJr o] ae, (40)

For a band limited Gaussian white input

S (w) = 1 A
uu 0 w>w
mo (wot)
and ¢uu(t} = - sin TS (41)
o
where w, = 2WBO. Inserting eqn (41) in eqn (40)

E[<§lg(a>—glg(o>)2]

1 “s 2
= = 5 3 (Yl +2'Y1Y2]JX f hl()\)dl-f-...)
ATC_™M am
F
Y%
: 2 1 2 ’
f |G(jw) “dw + 5 (Yl +2Yly2u¥/£l(A)dA
-w 4T
(@]
W
© jwa 2 )
+ .0 [ ewe™awl ‘.. .. [-
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w
w o
C o ) 2
=5 { i f ]G(jw)) dw
ATC_™M -w
F e}
w
© -jwo
| [ ewe vy, , } (42)
-w
o]

where G(jy) = Hl(jw)Hz(jw) and

1 2
° T an? RSTRELSR PN OV

~

Similarly, the mean square error for g2g(c,oJ can be evaluated

to yield

E[(gzg(a,c}-gzg(c,a) ) 2_]

2 w
1 BmO 5 o
» C— " | 6w |duw+
412C 2M 4 A 1
FF m ey
l2wOY12 Y Suo 5
3 l [ Gliwe” "dw|“+... } (43)
am )
(@]

Equations (42) ang (43) clearly indicate that the bandwidth
of the Gaussian white stimulus must be as small as Possible and the
number of independent samples must be large in order to reduce the
statistical error. The former requirement is however in direct
conflict with the need to increase the input bandwidth to reduce

convolution errors. The experimenter must therefore seek a compromise

A

p——
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4. Errors due to noise

Inevitably in any identification experiment data recorded will
include some amount of noise. In practice several noise sources
may co-exist and in the present investigation the effects of noise
at the input and output of the system are studied. To simplify the
analysis the effect of each noise source is considered separately

assuming that the other error sources do not exist.

4.1 Noise at the input

Noise at the input of the system can be induced by various
factors. If the input signal u(t) deviates from a true Gaussian
signal because of experimental limitations this can be regarded as
an input noise source which is transmitted through the system as
illustrated in Fig.2(i). Measurement errors associated with the
input signal can also be considered as an input noise source as
illustrated in Fig.2(ii), and both these cases are investigated
below.

Consider the system depicted in Fig.2(i) where the system
output z*(t) can be expressed as

z¥*(t) =
i

Il 1%

. f...fgi(Tl;...Ti}(U(t—Tl)+H(t“Tl)+b)...

sso (ulk=7. )+ult=1,)+b)dr. ...d71, (44)
i i 1 i

and the first order correlation function ig given by

¢ (o) [é*(t)—z*(t)](u(t-o)+n(t—cn

n*g#*!

If

¢

rrg () * 0y, (0)

1l

k
¢ , (o) + ) E (o) (45)
zZ'u i=ll
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where Ei(c), i =1,2...k are the errors due to the input noise n(t).
For the Volterra model egqn (1) where k = 2, b = 0 the errors are
defined by

©

E, (0) = é glv(Tl)(¢un(U—Tl)+¢nn(0—Tl))dTl

gf ng(Tl'TZ)(¢(uu}'n(0_T

Ez(c) = l,c—T2)+
¢unu(o—Tl,0—T2)+¢(nn),u(0~Tl,G—T2)
+ 2¢unn(U—TlrU“T2)+¢(nn),n(U—Tl,O—Tz)dTlde (46)
If u(t) and n(t) are independent zero mean processes then
@
E.(0) = [ g (t)¢ (o-1.)dr
1 0 lv' "1  "un 1 i (47)
Ez(o) =0

For the general model, assuming that n(t) and u(t) are zero mean

and independent, the errors are

[e=]

By (@) =y, £ h2(e)jhl<rl}¢un(c-Tl—e)drlde

(=}

Eylo) = 2uy, ghz(S}Ihl(Tl)¢nn(0—rl—9)dTldT2d8

etc. (48)

Similarly for the second order correlation function

¢z*'u*u*(01'62) - ¢z*'uu(gl'g2)+2¢z*'un(01'62)+¢z*'nn(cl'c2)
k
= 49
by, b0y Y .Z EE, (0, ,0,) (49)

i=1
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where EE, (o ), 1 =1,2,..k are the error terms which, assuming

119149,

n(t) and u(t) are zero mean and independent, are given by

Il

EEl(Ul,Gz) 0

EE, (0),0) = [[a, (v)im) U 48 (0-7))8 (0,-1))

- ¢{nn),nn(Gl—Tl,Gz”Tz)}dTldT2 (50)
for the Volterra model, and
EEl(Gl'GZ) =0
EE, (0, ,0,) = Y2fh2(G)IIhl(Tl)hl(Tz){4¢uu(Ul—Tl—8)
Mo VT M oy a8y =Ty~ T, -0 i A (511

for the general model.
If the input noise is a measurement noise on u(t), as illustrated

Faz)

in Fig.2(ii) it is easy to show that the errors Ei(o), eei(a 5

d
are Zero when u(t) and n(t) are zero mean and independent.

As expected input noise which is transmitted through the system
will result in biased estimates where the bias is given by eqns
(47), (48) and (50) and (51). The rms error induced by this bias
can be shown to decrease with the square root of the record length
and if the noise cannot be reduced by improved experimental conditions

the record length should be as long as possible to minimise the

influence of this bias.




where EEi(Gl,dz), i=1,2..k are the error terms which, assuming

n(t) and u(t) are zero mean and independent, are given by

EE1(01'02) =0
EE, (07,0)) = [[a,, (1)t 9T 1y, (057Ty)

= ®(an) 1nn (91771 10,7 T,y) JaT AT, e

for the Volterra model, and
EEl(Ul,U2) =0
EE, (0,,0,) = Ythz(e)ffhl(Tl)hl(r2){4¢uu(dl—Tl—e)
-T -6 = -T -

00 97T 1y van 197 7T 809,150 baT, ar, g8 (319

for the general model.

If the input noise is a measurement noise on u(t), as illustrated

in Fig.2(ii) it is easy to show that the errors ei(G), Eei(cl,62)

are zero when u(t) and n(t) are zero mean and independent.

As expected input noise which is transmitted through the system

will result in biased estimates where the bias is given by eqgns

(47), (48) and (50) and (51). The rms error induced by this bias
can be shown to decrease with the square root of the record length

and if the noise cannot be reduced by improved experimental conditions

the record length should be as long as possible to minimise the

influence of this bias.

T R



w B =

4.2 Noise at the output

Any additive noise no(t) which is induced on the output
measurements z(t) will introduce the error terms ¢un (o) and

o
[} (0. ,0,) on the estimates of the first and second order

uun 172
o
correlation functions respectively. Providing the noise no(t)
and u(t) are zero mean and independent these terms will tend to
zero and the estimates will be unbiased.
The effects of internal noise can be investigated in an

analogous manner and will result in biased estimates similar to

the case of input noise which is transmitted through the process.

5. Errors Introduced by Decomposition

If the identification is based on the general model representation
estimates of the individual component subsystems ulhl(t), u2h2(t)
and F[-] can be obtained by decbmposing13 the information contained
in the first and second order correlation functions. The
decomposition techniques used in this procedure and the errors

which are introduced are briefly studied in the following sections.

5.1 Errors introduced by the multistage least squares procedure

The estimates of eqns (4) and (5) can be decomposed using a
13
multistage least squares algorithm to yield estimates of the
individual linear component subsystems ulhl(t) and uzhz(t} where
14

Ul and uz are unknown constants. It has recently been shown
however that this direct approach tends to magnify the errors

inherent in the first and second order correlation functions.

oo e LB ; ;
These errors can be reduced considerably by minimising thr criterion
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((¢

O

J ,(i)—wl(i))z +{¢uuz,(i,i)-w2(i))2] (52)

uz

I
| 112

i

to estimate ulhl(l) and U2h2(l) where

1l
=
o=

1
by (8 = wu, LBy (D
(53)

1l
=
=

. - E . L
EN Z h,“(3)h, (1-3)

The criterion of egn (52) exploits the full information contained
in the first and second order correlation functions and eliminates

many of the errors incurred by previous algorithms.

5.2 Errors introduced in the identification of the nonlinear-element

Once the parameters associated with the linear subsystems of
the general model have been estimated the nonlinear element can be
identified by fitting either a polynomial approximation using a
least squares algorithm or by fitting a series of straight line
segments using a minimisation procedure5 or a histogram based method.
The errors associated with each of these approaches are investigated
below.

If the nonlinear element is to be identified as a power series
nonlinearity, a simple least squares algorithm can be implemented
using the input/output egn

Z = ¢6 (54)
where Z is a vector of output measurements, é is a vector of unknown

polynomial coefficients and ¢ is a matrix of elements computed from

'8 x5
the estimates of the linear subsystems ¢(i,j) = Hy Z hz(k)qj(i—k).
k=0




A

The least squares estimate of the unknown parameters 6 = (¢T¢)_1¢TZ

will be unbiased providing no input noise sources exist and the
output measurement noise has zero mean and is independent of the
input and noise free output. Biased estimates will be obtained
if input noise sources are present since identifiability conditions
are violatedlS.

If the nonlinearity is to be approximated by fitting a series

of straight line segments this can be achieved by minimisingl6

o ~ 2
J= ) (z(i)-z(i))

i=1
» Mo &
where z(i) =y Z h,(3)f{g(i-3)}
2 2
J=1
(55)
a N
qi) = ) hy(Puli-3)
j=1
and f{q(i)} is the function describing the nonlinearity. The

advantage of this approach compared with the least squares method
based on a polynomial approximation is that very violent nonlinearities
such as degdzone, saturation etc can be easily characterized by
estimating the slopes and breakpoints of the straight line segments.
Alternatively, if ﬁ2(z_l) is minimum phase, ?(i) can be estimated
from ?(i) = gz_l(z_l}z(i), a(i) is given by egn (55) and an amplitude
histogram relating g(i) and é(i) can be produced. This can be
obtained digitally by dividing the range of é(i) into an appropriate
number of class intervals and averaging the corresponding values of

~

y(i). TE Hz(z_l) is minimum phase this approach will provide the




experimenter with a graphical estimate of the shape of the nonlinear

element and should indicate whether a polynomial fit or a straight

line segment approximation is appropriate.

6. Simulation Results

A general model consisting of a linear system

-1 0,y
Hl(z ) = ) ) (56)
1-1.5z +0.65z

in cascade with the nonlinear element
. . 2 s F - 4 .
y(i) = qg(i)+2.0q" (1) +3.0q (i)+4.0g 7 (i) (57)

followed by a second linear system

-1 O.lznl
H2(Z ) = =7 5 (58)
1-1.4z "+40.55%

was simulated on a PDP-10 digital computer, The variation of the
variances of the first and second order correlation functions with
respect to the mean level b of the Gaussian white input process were
evaluated from 20 independent measurements for each value of b.

A total of 3000 data points were used for each measurement with the
standard deviation of the input maintained at a constant level of
2.0. The results, which are illustrated in Fig.3 clearly show

the significant influence of b on the variance of the estimates.

As expected from the theoretical analysis the selection of b to

minimise the variance of the first and second order correlation
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functions is often a compromise. Inspection of Fig.3 shows that
for the example considered b should be in the range 0.4-0.5 to
achieve the best results.

The variance of the first and second order correlation functions
plotted as a function of the standard deviation of the input signal
with a constant zero mean level is illustrated in Fig.4. Inspection
of Fig.4 clearly shows the importance of selecting the standard
deviation of the input to ensure that the variance of the estimates
is as small as possible.

A comparison of the estimated correlation functions éuz'(G)
and éuuz'(g'd) with wl(c} and wz(c) eagn (53) computed using the
original multistage least squares and the modified algorithm eqn (52)
are illustrated in Fig.5. The improvement in the estimates using
the criterion of egn (52) is clearly evident from Fig.5 especially
for the second order correlation function.

Estimates of the nonlinear element are illustrated in Fig.6.
Since H2(z_l) is minimum phase the estimates were obtained by
constructing an amplitude histogram. A summary of the identification

results is given in Table 1.

7. Conclusions

Estimation errors involved in the identification of a class of
nonlinear systems have been analysed. Expressions for the variance
of the first and second order ccrrelation function estimates have
been derived and shown to be dependent upon the record length, mean

level and power of the input and the structure of the system under
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investigation. Whilst the record length should be as long as
possible to reduce the variances it is difficult to formulate

simple rules to determine the optimum value of the mean level and
power of the input because of the nonlinear nature of the expressions
and the dependence upon the specific system under investigation.

The simulation results do however indicate that suitable selection
of these parameters can result in a considerable reduction in the
variance of the correlation functions. In practice the

investigator must conduct some short experiments to determine the
influence of A and b on the estimates.

The use of band-limited Gaussian white noise in the estimation
procedure introduces both statistical deviations in the values of
the estimates and a bias due to iﬁperfect deconvolution.

Increasing the input bandwidth reduces the convolution errors

but increases the statistical errors, and hence a compromise must
be sought. This can be achieved by selecting the input bandwidth
to be just larger than the system bandwidth and making the record
length as long as possible.

Additive noise on either the input or the output measurements
can induce bias in the estimates but providing the noise is not
transmitted through the system and the input and noise are
independent this bias tends to zero. Additional errors can be
induced by the decomposition algorithms associated with the general
modgl but these can often be minimised by using a suitable algorithm.

The identification of nonlinear systems is a very difficult
task and careful design of experiments and selection of input
parameters is needed to reduce the statistical variations in the

estimates and increase the probability of success.
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9. Appendices

9.1 Variance of the second order kernel o. # g,

The constants ki, i=1,...4 associated with the variance of

the estimate of the second order kernel, eqn (14) are defined as

' 2 2
k1 = 8fg2v (1,02)d1+7fgzv (T,Ul)dr+3fg2v(T+02 Ul,cl)

; g2v(T,02)dT+3fg2V(r+ol-o2,02)gZV(T,Ul)dT

' 5 = =

& 2[g2v(r o, 02;201 U2)gzv(T,262 Ul)dT
+g.- - - +

+ fgzv(r g, 01,202 cl)gzv(r,2cl 02)dT

fgzv(Zol—Uz,T+02—ol)g2v(r,2c2—ol)dt

+ fg2V(202—cl,T+ol—02)gzv(r,2ol—02)dT

+ Ja,,(0,:0))9, (o,1)dt+fg, (30,-20,,20,-0,)9, (20,-0,,7)dr
+ 2[g, (20,-0,+1)9, (20,-0,,1*0,-0,)dr

+ 4fg, (0,+€,0,)9, (0,0, -E)dE+sfg, (o, +E,0)g, (0,,0,-E)dE
+ 4fg, (0,+E,0,%E)g, (0 -E,0,-E)dE

+ 4fg2v(02—5,01)g2v(o2+£,al)d£+4fg2v(01—£,ol)g2v(02+5,02)dg

+

fg2v(1+cl—o2,ol)gzv(dz,T)dT (59)

2 2
= + -
k 2glv (Gl)+3glv(ol)glv(02) i (02)+glv(2cl cz)glv(cl)

2
+ glv(202—ol)glv(201—02) (60)
k. = ff2g 2(T 7. )dT_dr (61) '
3 2v 1L*>2 1 2
2
ky = fglv (1)drt | (62)

where all the integrations are between the limits of -« to +«.




9.2 Variance of the second order kernel g, = 9,

The constants o i =1...8 associated with egn (18) are defined

as
= 8 2( ) 63
A = Pdiy W 163}
ay = 2[q, (0)g; (o+E)AE+2[g, (o)g, (0-£)AE (64)
oy = [[g (1-E)g; (1) arag (65)
2
a, = 2[g, “(Ddr (66)
a. = 32fg 2(T u)dT+l6f (0,0-E)g, (o.,0+E)dE
5 2v 9oy 9 2v
+ 4fq, (0-E,0-E)g, (0+E,0+E)dAE (67)
T co
oy = _:I|" {m(4g2v(r—g,o)gzv(T,U+£)+3g2v(U,T)92V(O+EuT+E)
‘ + 492V(T-Er0—€)gzv(T,U)+4g2v(1,c—£)g2v(c,r+g}
|
|
5 + gzv(c-g,o)g2v(0+6,r))drdE (68)
|
|
T oo
a, = 2 -£ f{mg2v(Tl—E,T2—E)g2v(‘rl,T2)dTldT2dE (69)
a, = 2[/[qg 2(T 1,)dT. At (70)
8 2v 1T 27 12

where all the limits of integration which are not included in the

above egns are between -« and +«.
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Figure Captions

The general model

Input noise sources

(1) Noise due to the Statistical deviation of the
input signal
(ii) Noise due to measurement errors
Normalised variances of the estimates of the lst and

2nd order correlation functions, for = 1.1 sec, versus

the mean level of the input signal, x(t) = u(t)+b;
the standard deviation of x(t) is constant (= 2.0)
Normalised variances of the estimates of the lst and
2nd order correlation functions, for

= 1.1 sec, versus

the standard deviation of the input signal, x(t) = u(t)+b

where b = 0.0

Comparison of the estimated and computed Cross-correlation
functions

———————— estimated

computed, using multi-stage least squares

results

computed, using optimised parameters
(1) First order correlation functions

(ii) Second order correlation functions

Nonlinear element characteristics estimated by using

the Histogram Approach
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x(t)=u(t)+b

n(t)

)=u(t)+b + ¥+

PROCESS

x*(t)=u*(t)+b

ase (i) noise due to the statistical
deviations of the input
signal

Fig. 1. The general model

x(t)=u(t)+

b z(t)

u(t)+ L¥

—®~ PROCESS |t

x*(t)=u*(t)+b

Case (ii)

Fig.2. 1Input noise sources

noise due to
measurement errors
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Fig.5(i). First order correlation functions

0-042

Fig.5(ii). Second order correlation functions

Fig.5. Comparison of the estimated and computed cross-correlation
functions

estimated

* — computed using multistage least sguares results

— — — computed using optimised parameters
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Fig.6. Non-linear element characteristics using the
Histogram Approach




