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Abstract 

 

The Eastern Arc Mountains (EAMs) of Tanzania and Kenya support some of the most 

ancient tropical forest on Earth. The forests are a global priority for biodiversity 

conservation and provide vital resources to the Tanzanian population. Here, we make a first 

attempt to predict the spatial distribution of 40 EAM tree taxa (38 species), using generalised 

additive models, plot data and environmental predictor maps at 1 km resolution. The results 

of three modelling experiments are presented, investigating predictions obtained by (1) two 

different procedures for the stepwise selection of predictors, (2) down-weighting absence 

data, and (3) incorporating autocovariate terms to describe fine-scale spatial aggregation. In 

response to recent concerns regarding the extrapolation of model predictions beyond the 

restricted environmental range of training data, we also demonstrate a novel graphical tool 

for quantifying envelope uncertainty in restricted range niche-based models (envelope 

uncertainty maps). We find that even for taxa with very few documented occurrences useful 

estimates of distribution can be achieved. Initiating selection with a null model is found to 

be useful for explanatory purposes, whilst beginning with a full predictor set can over-fit the 

data. We show that a simple multimodel average of these two best-model predictions yields 

a superior compromise between generality and precision. Down-weighting absences shifts 

the balance of errors in favour of higher sensitivity, reducing the number of serious mistakes 

(i.e., falsely predicted absences); however, response functions are more complex, 

exacerbating uncertainty in larger models. Spatial autocovariates help describe fine-scale 

patterns of occurrence and significantly improve explained deviance, though if important 

environmental constraints are omitted then model stability and explanatory power can be 

compromised. We conclude that the best modelling practice is contingent both on the 
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intentions of the analyst (explanation or prediction) and on the quality of distribution data. 

Generalised additive models have potential to provide valuable information for conservation 

in the EAMs, but methods must be carefully considered, particularly if occurrence data are 

scarce. 

 

Keywords: Eastern Arc Mountains; tropical trees; generalised additive models; stepwise selection; model 

averaging; prevalence; spatial autocorrelation; extrapolation uncertainty. 

 

 

Introduction 

 

Research into the habitat requirements of species plays a fundamental role in planning for 

their future conservation, particularly if external pressures such as disturbance and climatic 

change threaten their persistence. Vegetation surveys provide point data for many taxa, but 

invariably survey sites are too sparse or spatially biased for species distributions to be 

estimated directly (Küper et al., 2006). One solution is to model the likelihood of occurrence 

as a function of the local environment, using the available distribution data and 

environmental variables as predictors of habitat suitability. Species distribution models have 

been used previously for biodiversity analysis (Austin, 1999; Ferrier et al., 2002b), 

improved sampling of rare and endangered species (Engler et al., 2004; Guisan et al., 2006), 

determination of reserve boundaries (Ferrier et al., 2002a; Araújo et al., 2004), historical 

reconstruction (Richards et al., 2007) and assessment of climate change impacts (Thomas et 

al., 2004; McClean et al., 2005). All of these applications could prove extremely useful for 

the Eastern Arc Mountains of Tanzania and Kenya (EAMs; Lovett, 1985), one of the most 

important regions for conservation in the world (Olson and Dinerstein, 1998; Stattersfield et 

al., 1998; Myers et al., 2000), yet to our knowledge no regional-scale predictive model for 

tree distributions in this area has been published. 

 

The EAMs are a particularly challenging environment to model, characterised by steep 

climatic gradients that must be portrayed at a high spatial resolution if the environmental 

tolerances of taxa are to be properly described. The study presented here uses generalised 

additive models (GAMs; Hastie and Tibshirani, 1990) to parameterise the responses of 38 

large tree species (40 taxa, including subspecies and varieties) to a number of climatic and 

topographic gradients. GAMs are a semi-parametric class of regression model, chosen 

because of their ability to describe highly non-linear responses (Yee and Mitchell, 1991; 

Austin, 2007). The aim is to assess the potential of this data-driven tool for assisting research 
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and conservation in the EAMs – the application of GAMs to small environmental datasets is 

increasingly common, but often due consideration is not given to pitfalls such as over-fitting. 

 

As is common for studies of this nature, the distribution data available to us are not well 

suited to high-resolution raster-based regression analysis. Impediments to model 

performance may include mislocated or misidentified samples, low sample size and 

prevalence, and a biased or restricted distribution of occurrence data. In order to obtain 

robust estimates of species distributions, and for the benefit of other studies faced with 

similar challenges, we compare baseline model predictions with those that incorporate 

down-weighted absences (Maggini et al., 2006) and spatial autocovariates (Augustin et al., 

1996). Given that predictions can be highly sensitive to the predictor sets used for modelling 

(e.g., Dormann et al., 2008), we also calibrate and compare three different methods for 

model selection: two best-model stepwise procedures and one multimodel. 

 

Model selection 

 

The goal of selection is to construct as parsimonious a predictor set as possible whilst 

retaining sufficient information to predict the given distribution. A widely used procedure is 

to select predictors in a stepwise manner, beginning with either a null model (forward 

selection) or a full model (backward selection) and adding or removing predictors according 

to their impact on a global measure of model performance (Eberhardt, 2003). Marginal 

statistics can be biased by the inevitable collinearity amongst environmental predictors 

(Cohen et al., 2003; Graham, 2003), and so the use of null hypothesis tests during selection 

is best avoided. Issues of multiple testing (Pearce and Ferrier, 2000a; Whittingham et al., 

2006) and arbitrary levels of statistical significance (Mickey and Greenland, 1989; Rushton 

et al., 2004) further enforce this standpoint. Multimodel inference has been proposed as an 

alternative to best-model stepwise procedures. Anderson et al. (2000) for instance describe 

an approach called information-theoretic (IT), in which a number of good models are 

identified from an a priori set of hypotheses (predictor sets) and then compared using 

Akaike Information Criterion (AIC; Akaike, 1973), or combined in a model-average using 

Akaike weights. Although not strictly adhering to the IT philosophy of multimodel 

inference, many studies now adopt the use of AIC in stepwise procedures. 

 

Data bias 

 

With absences often far outweighing presences, particularly for rare and less well-known 
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species, low sample prevalence is a common problem that can lead to misleading 

evaluations (Manel et al., 2001; Engler et al., 2004; McPherson et al., 2004). A standardised 

prevalence can be achieved by applying weights to the absence data prior to 

parameterisation, as demonstrated by Maggini et al. (2006) in their modelling of 

Switzerland’s forest communities. The technique was shown to perform well, improving 

both the accuracy and stability of predictions. Maggini et al. found that the application of 

weights increased the overall probabilities of occurrence, and also report that the balance of 

model fit may have been altered. It is the latter in which we see potential for improving our 

predictions: absence ‘observations’ are inherently unreliable (Anderson, 2003), and since 

misclassifications distort the modelled relationship between species and environment it 

follows that a strategic reduction in the dependence of models on absence data could be 

beneficial. Simulations based on use-availability data (resource selection function 

modelling; Johnson et al., 2006) suggest that logistic regression is relatively robust to 

contamination rates of below 20% – a level that could well be exceeded in our data. 

 

Another source of error is the tendency for nearby locations to be alike in terms of the 

communities they support, a trend known as spatial autocorrelation (SAC). If a regression 

model cannot explain fully the observed spatial clustering then its residuals exhibit spatial 

structure, violating the assumption that they should be independent and identically 

distributed. There are two reasons why this kind of error is common in niche models. First, 

predictors rarely contain sufficient information to describe fully the observed species 

aggregation (Guisan and Thuiller, 2005); missing pieces of the puzzle include dispersal 

patterns, competition/mutualism and disturbance. Second, ecologists are inclined to visit 

sites in more accessible locations and areas of particular interest, yielding a spatially 

clustered sampling distribution that may not be representative of SAC in the candidate 

predictors. Over recent years, the number of ecological studies to address SAC in models 

has increased, with a majority reporting significant improvements in model fit (Dormann, 

2007b). Augustin et al. (1996) modelled deer populations using autologistic regression, a 

form of auto-model (Besag, 1974) that has since been applied to a variety of species 

distribution model (Miller et al., 2007). In previous application to GAMs, this method for 

describing localised spatial dependence has performed well (e.g., Segurado and Araujo, 

2004); however recent studies warn that autologistic (autocovariate) models may 

underestimate the environmental controls on a species distribution (Dormann, 2007a; 

Dormann et al., 2007). 
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Envelope uncertainty 

 

The breadth of niche-space spanned by the distribution data may not be sufficient to fully 

represent the study region, particularly if projecting models under climate change scenarios. 

This is a common problem in the estimation of species distributions, though there are few 

tools available for estimating the associated uncertainty in predictions (Pearson and Dawson, 

2003; Thuiller et al., 2004; Pearson et al., 2006; Dormann, 2007c). For GAMs specifically, 

model uncertainty arises because response shapes are constructed using non-parametric 

smoothers – each smoother focuses on a specific portion of the data, and so the modelled 

response does not naturally extend past the limits of the training data. In essence, the 

problem is the same for all predictive models: that attempts to predict species occurrence 

beyond the documented niche-breadth are subject to high uncertainty, particularly if more 

than one environmental factor is under-represented (Thuiller et al., 2004). At a time when 

extrapolations into unknown climate-space are increasingly in demand, the development of 

methodologies to address this issue has been identified as a priority for research (Araujo and 

Guisan, 2006). The solution we present is to accompany model predictions with envelope 

uncertainty maps (EUMs), which allow the analyst to identify geographical locations where 

the profile of environmental conditions at sample sites results in high model uncertainty. 

 

 

Methods 

 

Study region 

 

The EAMs are part of the Eastern Afromontane Biodiversity Hotspot (Mittermeier et al., 

2004) and are defined as those ancient crystalline mountains under the direct climatic 

influence of the Indian Ocean (Lovett, 1990). Beginning in the Taita Hills of southern 

Kenya, they extend down through eastern Tanzania to the Udzungwa Mountains in the south 

(Fig. 3.1). The mountains are a chain of 13 disjoint blocs, isolated from the surrounding 

lowlands since the Miocene about 30 million years ago (Schlüter, 1997). Today they support 

3300-5700 km2
 of moist tropical forest, though it has been estimated that this may be less 

than 30% of the original forest cover (Burgess et al., 2007b). Much of the remaining area is 

protected by forest and nature reserves, national parks and community-based management, 

many covering critical water catchments; the EAMs are a source of drinking water and 

hydroelectric power for over half of Tanzania’s urban population. The archipelago-like 

distribution of mountain blocs promotes significantly higher range-size rarity than is found 
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in some other high biodiversity tropical ecosystems (Taplin and Lovett, 2003; Burgess et al., 

2007a), rendering EAM flora particularly sensitive to further fragmentation. Species 

richness scores are high and the concentrations of endemism are exceptional (Burgess et al., 

2007b), though many hundreds of endemic plants and animals are threatened by extinction. 

Around 500 vascular plant species are putatively endemic, including over 80 tree species 

(Lovett et al., 2006). Subject to significant anthropogenic pressure and harbouring such high 

biodiversity per unit area, the EAMs have been identified as one of Earth’s most fragile 

biodiversity hotspots (Brooks et al., 2002). 

 

 

 

 

 

Figure 3.1. Map showing the 13 crystalline blocs that comprise the Eastern Arc 

Mountain chain. Encircled dots locate the 201 modelling points. Note the clustered 

distribution of samples – a classic problem in species distribution modelling. Region for 

model extrapolation was the full map extent: 32.5°E–40.5°E, 1.5°S–10.5°S. 
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Tree data 

 

The tree database collates observations from 363 variable area plots visited between 1979 

and 1994. Since some of our target species’ ranges extend beyond the EAMs (e.g., Hemp, 

2006), we included plots from other forested mountains such as Mt. Kilimanjaro, and also 

from the nearby coastal forests (Coastal Forests of Eastern Africa Biodiversity Hotspot; 

Mittermeier et al., 2004). All plots share a common sampling method, whereby a focal point 

is chosen and the nearest 20 trees measuring at least 20 cm diameter at breast height are 

recorded. Lists of trees occurring outside the plots were also included in the database where 

available. Using field notes of location and altitude, we identified 201 distinct 30 arc-sec 

(920 m) grid cells across which the samples were collected (Fig. 3.1). The choice of scale is 

an important consideration for modelling; in the EAMs climatic conditions vary rapidly over 

short spatial scales, and so we used the finest cell size allowed by the field data. A coarser 

grid would aggregate more sites, reducing the impact of SAC and mislocation errors in the 

data, but critically for our study area might omit important changes in habitat across the 

altitudinal gradient. A species was recorded absent from a grid cell if there was no record of 

presence in either the plot data or the tree lists. These absences should be considered 

‘pseudo-absences’ because the lists are not exhaustive and the 20-tree method is unlikely to 

capture all species present at a given site. A full list of the tree species modeled, including 

their sample prevalence, is presented in Appendix 3A. For further details of the field data we 

refer the reader to Lovett (1998). 

 

Environmental predictor variables 

 

Climatic and topographic predictor maps were used to estimate the environmental conditions 

at each site and to extrapolate predictions to the wider Eastern Arc region. Climate surfaces 

were obtained from the Centre for Resource and Environmental Studies, Australian National 

University (http://cres.anu.edu.au/). The grids are based on climate station data collected 

between 1920 and 1980, and provide estimates of mean monthly rainfall and mean daily 

temperature extremes at a spatial resolution of three arc minutes (5.5 km). To achieve 

consistency with the 30 arc-sec resolution of the tree data, we interpolated the surfaces using 

a distance-weighted average of the 16 nearest neighbours. Derived predictors were then 

calculated to better represent the climatic gradients directly affecting species distributions 

(Table 3.1). Absolute minimum temperature is as described by Prentice et al. (1992), 

potential evapotranspiration follows the Thornthwaite (1948) method, and annual moisture 

index is the ratio of mean annual precipitation to potential evapotranspiration. Our 
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temperature-days variable is derived similarly to the growing degree-days measure 

commonly applied in temperate zones. Its inclusion here provides species-specific 

information on climatic suitability across all 12 months of the year. Since the phenologies of 

modelled taxa are not known, we bounded suitable conditions for growth using the presence 

records: for each species i, the upper bound was the maximum value of tmeanw across all 

sites where species i occurs; the lower bound was the minimum tmeanc (refer to Table 3.1 

for abbreviations). 

 

 

Table 3.1. Summary of environmental predictor variables. Climatic range is high because of Mt. Kilimanjaro 

(5895 m AMSL). 

 

Predictor Description Units 
Mean Range 

Sites All cells Sites All cells 

       

gradient* Angle from horizontal ° 7.242 1.533 28.88 64.58 

trasp* Wetness/radiation index –  0.6720 0.5366 1.000 1.000 

trange* Annual temperature range °C 15.85 16.07 8.672 13.10 

pptdry* Precipitation driest month mm 11.95 4.949 54.11 94.80 

pptann1 Mean annual precipitation cm 107.4 87.14 121.1 194.1 

pptwet1 Precipitation wettest month mm 229.1 186.4 389.3 437.0 

tmean2 Mean temperature °C 21.20 22.71 14.01 36.44 

tmeanw2 Mean temp. warmest month °C 23.23 24.69 14.03 36.45 

tmeanc2 Mean temp. coldest month °C 18.44 20.23 14.75 36.23 

tmaxw2 Max. temp. warmest month °C 28.83 30.46 13.58 38.50 

tminc2 Min. temp. coldest month °C 13.15 14.52 17.56 33.75 

tabsmin2 Absolute minimum temp. °C 4.486 7.228 22.45 51.94 

tdays(2) Temperature-days °-days – – – – 

pet2 Potential evapotranspiration cm/year 105.4 115.1 99.77 223.9 

ami2 Annual moisture index cm/year 1.093 0.7918 2.041 4.997 

       

* = independent [abs(r) < 0.7]; 1 = first correlation group; 2 = second correlation group; () = species-specific 

 

 

Topographic data were from the Shuttle Radar Topography Mission, U.S. Geological Survey 

(http://srtm.usgs.gov/). Two predictors were derived from the partial derivatives of elevation 

(Horn, 1981): gradient of the slope and a transformation of aspect (Table 3.1). The digital 

elevation model was supplied at a resolution of three arc-sec (92 m); derived predictors were 

rescaled to 30 arc-sec for compatibility with the tree data. In order to overcome the problems 

associated with using a circular predictor variable (i.e.,, 0° ≡ 360° on a compass) we used a 

cosine transformation of aspect to obtain a symmetric wetness/radiation index (Roberts and 
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Cooper, 1989). Plots of aspect against rainfall showed that on average slopes facing east-

south-east receive the most rainfall during the dry season, when moisture carried by the trade 

winds is most critical, and so these slopes were allocated the highest wetness indices, and 

west-north-west facing slopes the lowest. 

 

 

 

 

Figure 3.2. Environmental coverage of predictor variables. Background: annual temperature range (left) and 

precipitation during the wettest month (right). Foreground: proportional distance (DX) of these predictors from 

the calibration envelope. Distance maps can be combined in a contribution-weighted average to yield envelope 

uncertainty maps (EUMs). 

 

 

In order to evaluate how well the 201 modelling points captured the environmental range of 

our study region, the proportional ‘distance’ of each grid cell from the calibration envelope 

was calculated with respect to each predictor (Fig. 3.2). Envelope uncertainty maps (EUMs) 

estimate the associated model uncertainty using an average of these distance maps, weighted 

according to the relative contributions of predictors in a model. Cell i is given by 

 

EUM i =
CX DX i

X ∈S

∑
CX

X ∈S

∑
, 

where S is the predictor set, CX is the contribution of predictor X, and DXi is the proportional 

distance of Xi from the calibration envelope: 

{ }
,

ˆˆ
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where X̂ denotes the calibration subset. In this paper we define predictor contributions to be 

the percentage drop in explained deviance when predictor X is removed from the final 

model. As a rule of thumb, Dormann (2007c) recommends that one should not extrapolate 

further than 1/10th of the parameter range (i.e., DX should not exceed 0.1). Particular caution 

is therefore recommended for grid cells where the EUM > 0.1, since this indicates that at 

least one predictor has been extrapolated beyond the 1/10th level. 

 

Statistics for calibration and evaluation 

 

Model performance was assessed using the proportion of explained deviance (D2
), area 

under the receiver-operating characteristic curve (AUC; Green and Swets, 1974) and an 

associated measure of generalisation error (GE; see below). Predictions of occurrence were 

on a continuous scale, from zero to one. For direct comparison with the tree data, these were 

dichotomised by maximising the sum of sensitivity (proportion of presences correctly 

predicted) and specificity (proportion of absences correctly predicted), a method shown to 

perform well by Liu et al. (2005) in their comparative study. The AUC is a threshold-

independent measure, incorporating both type I (false positive) and type II (false negative) 

error rates, and is largely unaffected by sample prevalence (McPherson et al., 2004). In a 

recent critique of the AUC (Lobo et al., 2008), the lack of spatial information and validity of 

symmetric error-weights are questioned – two weaknesses that could be mitigated by the use 

of EUMs and absence-weights, respectively. For testing the significance of differences 

between models we used the Wilcoxon rank sum (Mann–Whitney) test, a statistic closely 

related to the AUC (Pearce and Ferrier, 2000b). 

 

Since occurrence data were too scarce to partition into independent sets for training and 

testing, we used cross-validation (CV; Stone, 1974) to assess generality. First the data were 

partitioned into ten disjoint subsets of roughly equal size. The model was then fitted to nine 

of them and assessed using the withheld fraction as pseudo-independent test data – this step 

was repeated ten times, each time omitting a different fraction of data. The entire procedure 

was repeated 20 times and results were averaged to give the final cross-validation index 

(Kohavi, 1995). To ensure that the subsets of data used to train and test models reflected the 

true sample prevalence, partitions were stratified such that prevalence was approximately 

equal between folds (Parker et al., 2007; see also Appendix 3B). 

 

For a particular model, the severity of generalisation error can be gauged by comparison of 

the cross-validated and resubstituted AUC (subscripted ‘CV’ and ‘RS’), where resubstitution 
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refers to the reuse of training data for testing. For a standardised comparison across all 

models, we used the following measure. 

 

GE =
AUCRS − AUCCV

AUCRS − 0.5
 ,  AUCCV < AUCRS (> 0.5) 

That is, the proportion of above chance AUC that is lost under cross-validation. Lower 

values are best: GE ≈ 0 indicates a very stable model, provided that extrapolation sites are 

within the environmental range of the training data; GE ≈ 1 warns that discriminatory ability 

at unvisited sites could be no better than that of a null model; GE > 1 only when AUCCV < 

0.5 (worse than chance). 

 

Statistical calculations were performed in R 2.3.1 (R-Development-Core-Team, 2009) using 

functions from the ‘gam’ and ‘ROC’ packages, together with custom R code. For spatial 

analyses we used GRASS GIS 6.0 (GRASS-Development-Team, 2009). The manipulation 

of map layers and calibration of models were automated using shell scripts and executed in 

Windows XP via a Linux emulation layer (http://cygwin.com/). 

 

Modelling experiments 

 

The 201 sites were located on predictor maps and the corresponding cell values were 

extracted for model calibration. GAMs were then fitted to the data using a logit link and 

binomial error term (Yee and Mitchell, 1991). Given that response shapes can vary greatly 

in natural systems, both between species (Pearce and Ferrier, 2000a) and with respect to 

different environmental gradients (Austin, 2002), we determined the effective number of 

parameters for smoothers (degrees of freedom, df) separately for each species-predictor pair, 

such that df in [1, 4] at intervals of 0.25. Where df = 1 we fitted parametric curves in order to 

reduce the uncertainty of extrapolating smooth functions (Hastie and Tibshirani, 1990); for 

higher degrees of freedom the smooth terms were retained. A schematic summary of the 

modelling procedure is shown in Fig. 3.3; details of the experiments are as follows. 

 

Selecting predictors 

 

All predictor pairs were tested for collinearity using Pear- son’s correlation coefficient (r). If 

two predictors were highly collinear [abs(r) > 0.7] then the one that yielded the highest 

univariate AUCCV was entered for selection. The motivation for this step was to allow 

predictors conveying subtly different information (e.g., tminc and tabsmin) to be available 
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for all species, without excessive overlap in the data – highly correlated data are not 

parsimonious and may bias selection (Cohen et al., 2003; Graham, 2003). Other studies have 

used factor analysis to similar effect, reducing the full predictor set to a smaller number of 

uncorrelated factors (e.g., Bakkenes et al., 2002). We experimented with a range of 

thresholds before deciding on the appropriate level [abs(r)] at which predictors should be 

separated. Fixing the threshold at 0.7 was found to create three distinct subsets, such that 

predictors were either uncorrelated with all others or belonged to one of two mutually 

exclusive correlation groups (Table 3.1). To dampen sensitivity to weaker correlations, and 

those too non-linear to be detected by the Pearson coefficient, we cross-validated stepwise 

procedures (Hastie et al., 2001; Maggini et al., 2006) and avoided hypothesis tests in favour 

of global measures of model performance (Anderson et al., 2000). 

 

Two stepwise selection procedures were employed to further promote parsimony amongst 

solutions. The first, forward-backward selection (denoted ‘FB’), began with an empty 

predictor set, sequentially added/removed variables according to the resultant change in 

AIC, and was complete when AIC ceased to improve. After each selection step the 

generality of predictions was assessed, and the final model was that which achieved the 

highest AUCCV. The formula for AIC consists of two terms: the first evaluates model fit 

using a log-likelihood function; the second is a penalty term proportional to the number of 

predictors in the model. Its purpose here was to identify a set of candidate models from 

which the most robust could be selected by cross-validation. 

 

The second method was backward-forward selection (denoted ‘BF’). This time the 

procedure began with a full model and variables were removed/added according to BIC 

(Bayesian Information Criterion; Akaike, 1978). Again, the final model was determined by 

AUCCV. BIC was preferred here because it penalises large models more heavily than AIC, 

encouraging the removal of noise variables and the selection of more parsimonious 

solutions. A simple multimodel solution (denoted ‘MM’) was achieved by weighting the two 

best-model predictions according to their respective above chance AUCCV values (AUCCV − 

0.5), and taking the average. 

 

Weighting absences 

 

In baseline models presence records and absence records were treated with equal confidence, 

assuming no contamination of one class by the other. With weighted models we attempted a 

more realistic portrayal of the data by placing greater emphasis on observed presences (P) 
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than on absences inferred from plot data (A). This was achieved by the weighting absence 

data by a factor of P/A (< 1 for all species), forcing a standardised prevalence of 0.5. The 

intention was to tilt the balance of errors away from false negatives and toward false 

positives (McPherson et al., 2004). Such a shift is desirable because a presence observation 

necessitates suitable conditions for growth, whilst an absence record could be a consequence 

of the restricted sampling regime, or of ecological factors beyond the scope of the model 

(Anderson, 2003). 

 

 

 

 

Figure 3.3. Schematic of the modelling procedure. 
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Figure 3.4. Boxplot comparisons of model performance in the different experiments. Box whiskers extend up to 

150% of the interquartile range of each box. Upper: area under the receiver-operating characteristic curve (AUC). 

Middle: generalisation error (GE). Lower: proportion of deviance explained (D2). Model type: B, baseline; W, 

weighted; S, spatial. Selection: FB, forward-backward; BF, backward-forward; MM, multimodel.  
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Spatial autocovariates 

 

Autocovariate terms were used to describe fine-scale spatial clustering in species 

distributions. The first step was to obtain preliminary estimates of the distributions, for 

which we used weighted model predictions. Autocovariate terms were then derived such that 

each grid cell (i) was a distance-weighted average across a set of neighbours (ki):
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where pj is the probability of occurrence in neighbouring cell j, and dij is the Euclidean 

distance between i and j (Augustin et al., 1996). Four autocovariates were calculated for 

each model, with neighbourhoods represented by squares of side 3, 5, 7 and 9 cells (2.8, 4.6, 

6.4 and 8.3 km, respectively). The autocovariate included in the final model was that which 

led to the greatest improvement in explained deviance. Larger neighbourhoods were not 

included because seeds are typically heavy, limiting wind dispersal. Birds and mammals 

may carry fruits further, but successful establishment would be fragmented by the rapidly 

changing landscape and restricted environmental ranges of taxa. Spatial models were not 

constructed for multimodels because there was no formula to which to append the 

autocovariate. 

 

 

Results 

 

Baseline models (B) 

 

Our interpretation of Swets (1988) analysis of the AUC measure is that for ecological 

studies a value in the range [0.7, 0.9) indicates a reasonable or good model and a value in the 

range [0.9, 1.0] indicates an excellent model, although any model with AUC > 0.5 should 

provide some discriminatory power. Following this classification for each of the 40 taxa, 27 

forward-backward (FB) models and 36 backward-forward (BF) models produced 

reasonable, good or excellent predictions. For two species, Syzygium cordatum and 

Tabernaemontana pachysiphon, the FB solution was a null model (no predictors were added 

to the formula). For the same two species, BF returned non-trivial but highly unstable 

solutions (GE = 0.82 and 0.68, respectively). In general the FB method selected more 
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parsimonious models with fewer predictors and better generalisation error. Conversely, BF 

models tended to be larger and better equipped to capture the observed deviance, though 

performance suffered under cross-validation (Table 3.2; Fig. 3.4). These two selection 

methods agreed for just five species. Baseline multimodels achieved a useful compromise, 

returning higher precision than FB models but with lower generalisation error than BF 

models. Moreover, for nearly half the taxa the multimodel produced higher AUCCV than 

either of the best-model predictions. 

 

Weighted models (W) 

 

Applying weights to the absence data significantly altered the distribution of smoother 

complexity (p < 0.01): for baseline models the distribution was positively skewed, with 

simpler curves constructed for most predictors; for weighted models, the distribution was 

shifted in favour of more complex response shapes. This altered the predictor sets chosen by 

selection, and ultimately resulted in different spatial predictions (Table 3.2; Figs. 4 and 5). 

For FB selection, predictor sets chosen during weighted and baseline model calibration 

differed for 27 of the 40 taxa, with seven null models; for BF selection they differed for 26. 

Inspection of response curves showed that the change in smoother complexity had increased 

uncertainty, especially near the limits of the training data (Fig. 3.5). 

 

Under FB selection the impact on the AUC was not significant, though other statistics 

revealed important differences: the mean proportion of errors that were false negatives 

decreased by 23% compared with baseline models (increased sensitivity), and the mean 

value of D2
 was significantly higher. Under BF selection, weighted models tended to fit the 

training data very well – all but one species (S. cordatum) achieved reasonable to excellent 

AUC and the mean value of D
2
 was particularly high (Fig. 3.4). As for FB models the error 

distribution was also much improved, with a 46% reduction in the proportion of errors that 

were false negatives. BF models remained prone to over-fitting though, a problem that 

appears to have been exacerbated by the weights. Prediction error was again dampened by 

model averaging, with the weighted multimodel returning the highest mean AUC under 

cross-validation. 

 



 

 

 

 

Figure 3.5. Baseline and weighted model predictions for Macaranga capensis (forward-backward selection). From left to right: probability of occurrence (%), presence-

absence (maximising sum of sensitivity and specificity), response curves for selected predictors (including standard errors) and envelope uncertainty. 
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Table 3.2. Significance of differences between modelling experiments. With respect to the area under the 

receiver-operating characteristic curve (AUC), generalisation error (GE) and proportion of explained deviance 

(D2). Model type: B, baseline; W, weighted; S, spatial. Selection method: FB, forward-backward; BF, backward-

forward; MM, multimodel. 

 

  AUC    GE    D2  

            

Baseline selection 

 FB BF MM  FB BF MM  FB BF MM 

FB – *** ***  – *** ***  – *** *** 

BF – – ns  – – **  – – ns 

            

Forward-backward models 

 B W S  B W S  B W S 

B – ns ns  – ns **  – * *** 

W – – ns  – – ns  – – ns 

            

Backward-forward models 

 B W S  B W S  B W S 

B – *** ***  – *** **  – *** *** 

W – – ns  – – ns  – – * 

            

Multimodels 

 B W   B W   B W  

B – *   – **   – ***  

            

***, p ≤ 0.01; **, p ≤ 0.05; *, p ≤ 0.1; ns, not significant (Wilcoxon rank sum tests, two-sided) 

 

 

Spatial models (S) 

 

The inclusion of a spatial autocovariate increased the pro- portion of explained deviance in 

all cases. Spatial models were significantly better at correctly predicting presences and 

absences (Table 3.3), and for BF selection they were also more stable (Fig. 3.4). Model size 

was typically larger in BF models and so climatic and topographic constraints were better 

represented alongside the autocovariate: the mean collective contribution of environmental 

predictors was 11% in FB models and 24% in BF models; the mean contribution of the 

autocovariate was 20% and 21%, respectively. 

 

The neighbourhood size chosen for the autocovariate varied between species and no 

particular scale was superior overall (Appendix 3C). Visual inspection of the predicted 

distributions showed the environmental preferences of taxa to be more clearly delineated in 
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spatial models: fine- scale patchiness in weighted model predictions had been smoothed, 

revealing what appear to be more realistic spatial patterns (e.g., Fig. 3.6a). There were some 

cases however where the incorporation of an autocovariate led to over-fitting. The spatial 

model for Syzygium micklethwaitii yielded a prediction with perfect discriminatory ability 

but high generalisation error (Fig. 3.6b). In this example the non-spatial model is more 

useful for inference since it retains a realistic gradient of suitability. 

 

 

 

 

 

 

 

Figure 3.6. Weighted and spatial predictions for (a) Neoboutonia macrocalyx, focussing on the Usambara 

Mountains, and (b) Syzygium micklethwaitii, focussing on the Udzungwa Mountains. Scale bar shows probability 

of occurrence (%). 
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Table 3.3. Performance of predictors in non-spatial (baseline and weighted) models. Percentage selection rate in 

group, mean contribution to model, mean contribution of other covariates when selected. Predictor contributions 

are defined as the percentage drop in explained deviance when removed from the final model, standard errors in 

parentheses. 

 

 

 

Predictors and envelope uncertainty 

 

Both topographic variables were independent of correlation groups, as were trange and 

pptdry. These four predictors were the most frequently selected for inclusion in the final 

model, and each contributed similarly to model performance. The most popular predictor 

overall was pptdry. In the first correlation group, pptann and pptwet were chosen a similar 

number of times, though pptann was marginally better at explaining deviance. In the second 

correlation group tmeanc contributed the least to D2
 and was the least frequently selected, 

Predictor Selection rate Contribution (s.e.) 
Covariate 

contribution 

 

Independent 

gradient – 19.61 (1.44) 18.34 

trasp – 18.75 (1.46) 18.50 

trange – 19.66 (1.47) 18.54 

pptdry – 19.85 (1.45) 19.58 

mean – 19.47 (1.46) 18.74 

 

Group 1 

pptann 49.41 22.30 (2.52) 19.09 

pptwet 50.59 18.05 (2.10) 18.14 

mean – 20.18 (2.31) 18.62 

 

Group 2 

tmean 6.35 33.83 (6.12) 27.59 

tmeanw 5.56 25.31 (4.88) 21.21 

tmeanc 3.17 14.60 (5.16) 28.57 

tmaxw 7.14 23.68 (5.28) 20.00 

tminc 15.87 18.28 (2.00) 24.10 

tabsmin 8.73 18.53 (3.10) 26.19 

tdays 7.94 36.09 (6.01) 26.32 

pet 26.98 19.50 (2.39) 26.56 

ami 18.25 16.15 (2.39) 22.12 

mean – 22.89 (4.15) 24.74 

 

Total times selected: Independent, 343; Group 1, 85; Group 2, 126 
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often dropped in favour of similar measures such as tminc and tabsmin. Predictors that 

describe moisture availability, such as pet and ami, were often included but their mean 

contributions were below average. The most successful descriptor of deviance was the 

temperature-days variable, which when removed from the final models resulted in a mean 

drop in D2
 of 36% (Table 3.3). 

 

The environmental range of survey sites was generally good, with the exception that climatic 

predictors lacked coverage near the summit of Mt. Kilimanjaro (Table 3.1; Fig. 3.5). The 

only notable shortfalls were for trange and pptwet: both were within the calibration envelope 

for most of the study region, but trange was up to 30% beyond the envelope near the Maasai 

Steppe, and pptwet was up to 9.2% beyond the envelope for a small area south of the Pare 

Mountains (Fig. 3.2). 

 

 

Discussion 

 

The potential of GAMs to estimate the distribution of EAM trees shows promise, with a 

number of models achieving a high level of predictive success. However, it is clear from our 

experiments that the distributions predicted are highly sensitive to the modelling method 

employed. Selection procedures frequently disagreed, produced different spatial predictions, 

and yet often returned similar validation scores. These findings illustrate the importance of 

understanding the biases imposed by the selection procedure in use, and of not relying solely 

on validation scores as evidence of good model performance – consideration should also be 

given to the chosen predictor set and spatial patterns predicted. Whittingham et al. (2006) 

advise against the use of stepwise procedures, arguing that there is rarely a true ‘best model’ 

for selection to identify and that different predictor sets are likely to explain the response 

equally well. This conjuncture is supported by our experiments, though we suggest that 

studies with access to more extensive distribution data are likely to find greater agreement 

between selection methods. 

 

Whilst forward-backward models often lacked precision, particularly if neither topographic 

predictor was selected, they invariably produced stable predictions using minimal predictor 

sets, and are therefore likely to be more useful than backward-forward methods for inferring 

causal relation- ships. Backward-forward selection described the data well but retained too 

many predictors to avoid over-fitting. Given the disagreement between selection procedures, 

there is a good argument for favouring expert opinion over computer selection (but see: 
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Pearce et al., 2001; Seoane et al., 2005). Regardless, automated procedures remain 

necessary when deriving models for a large number of taxa, particularly if their ecologies are 

not well known. The multimodel, averaging forward-backward and backward-forward 

predictions according to their relative cross-validated performance, identified a superior 

trade-off between generality and precision that in many cases outperformed both 

conventional selection procedures (higher AUCCV). The weakness of this method is the need 

to compute two sets of predictions, increasing computation time. However, if models are 

lacking, either in fit or stability, we think it prudent to investigate other selection options as a 

matter of course, in which case the computation of a model average would be trivial. Other 

kinds of multimodel have also produced favourable results (Anderson et al., 2000; Johnson 

and Omland, 2004; Hartley et al., 2006; Dormann et al., 2008), and appear to be generally 

superior to best-model approaches for predictive purposes. 

 

Both the performance and reliability of models were correlated with sample prevalence, such 

that low prevalence led to more discriminative but less stable models. This may reflect the 

fact that restricted range tree species in the EAMs typically cover a narrow altitudinal range 

(Lovett, 1996; Lovett et al., 2001), making their climatic preferences easier for models to 

capture but rendering them highly sensitive to errors in the distribution data. The 

relationship was found to be stronger for weighted models than for baseline models due to 

the higher levels over-fitting. In contrast to our results, Maggini et al. (2006) found that 

weighting absences improved model performance without impairing stability. A probable 

reason for the difference in our results is the comparatively high instability of our baseline 

models: the more robust baseline predictions tended to remain stable in the weighted 

experiment, whereas those with high GE suffered from further over-fitting. We did observe a 

useful shift in the error distribution, such that weighted model predictions were much less 

likely to contain false negative errors. During recent field expeditions to Nguu and North 

Pare (Fig. 3.1), we found that the higher sensitivity of weighted models gave a better 

indication of the actual forest distributions, especially for spatial models. Further ground-

truthing of this result is encouraged. 

 

In the spatial experiment we aimed to improve weighted model predictions by including an 

autocovariate to account for fine-scale spatial clustering. In agreement with previous 

applications of this technique (e.g., Augustin et al., 1996; Segurado and Araújo, 2004), 

spatial models fitted the training data more accurately than non-spatial models and were 

superior for describing fine-scale patterns in distribution. Where model size was large (five 

or six predictors) spatial models also had lower generalisation error. For smaller model sizes 
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though the contribution of autocovariates in explaining deviance was around twice that of 

environmental predictors, which may be a cause for concern given recent suggestions that 

autocovariates can lead to biased predictions (Dormann, 2007a; Dormann et al., 2007). One 

should certainly be sceptical of extrapolations into different points in time (e.g., historical 

reconstruction or climate change studies) since spatial dependencies could well be different 

(Guisan and Thuiller, 2005). The degree to which predictions of this kind can be truly 

representative of the actual distributions will always be uncertain, because we cannot be sure 

to what extent a species realised ecological niche is restricted by its environmental tolerance 

and to what extent by competition/mutualism with other species (Pulliam, 2000). 

Community interactions are expected to play an important role in such an ancient ecosystem, 

though the relevant spatial scales are not well understood. In New Zealand’s old-growth 

forests, attempts have been made to model competition between tree species using logistic 

regression: Leathwick and Austin (2001) found that including the presence/absence of one 

species as a covariate alongside climatic constraints could improve the predicted distribution 

of another. This study was based on community compositional data for just two competing 

species; here we are concerned with a web of interactions involving tens, possibly hundreds 

of taxa, presenting a far greater challenge for modelling. 

 

The optimum neighbourhood size for a particular tree often differed according to the 

selection procedure used to obtain the initial prediction, and so did not provide much insight 

into the processes underpinning SAC. This might simply reflect the high variability in 

predictor sets chosen by selection and the associated omission of different autocorrelates 

(Lichstein et al., 2002). It may also be the case that no single range-specific autocovariate 

could carry sufficient information to identify the true scales at which aggregation occurs 

(van Teeffelen and Ovaskainen, 2007). Dispersal is one factor known to drive spatial 

patterns, but this mechanism is under-researched in the EAMs and few empirical data are 

currently available for parameterising/validating models. We also draw attention to the fact 

that clustering was assumed by autocovariates to be roughly isotropic, i.e.,, apparent in equal 

measure in all directions (neighbourhoods were approximated by squares). However, spatial 

patterns may actually be elongated in some areas as a result of elevational migration. It was 

further assumed that SAC operates similarly in different regions, which is unlikely to be the 

case given the high topographic heterogeneity of the study area. The possibility that 

regression parameters could reflect local rather than global trends has been investigated by 

Fotheringham et al. (2002) and appears to work well in some settings (e.g., Brunsdon et al., 

2007), though we have reservations as to the suitability of geographically weighted 

regression for our dataset (cf. Austin, 2007). 
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Dichotomising probabilities of occurrence using the sensitivity-specificity threshold, we 

compared the different areas of occupancy forecast by models (Appendix 3D). On average, 

the number of cells predicted present was similar across the baseline, weighted and spatial 

experiments, despite often large differences in occurrence probabilities (e.g., Fig. 3.5). In the 

selection experiment, forward-backward models were the least well constrained by 

environmental variables, resulting in the greatest areas of predicted occupancy. Interestingly, 

the number of cells predicted present by the multimodels was similar to that forecast by 

backward-forward models. Multimodels contained the most information and also gave the 

highest AUC under cross-validation, and so we are inclined to trust the magnitude of 

backward-forward area pre- dictions more than those yielded by the forward-backward 

method. 

 

The frequency with which moisture related variables were selected by models is not 

surprising given that the EAMs are under the direct climatic influence of the Indian Ocean 

(Lovett, 1990; Marchant et al., 2007). The gradient of the slope, in addition to indicating 

moisture availability via its relationship with run-off, also helps to distinguish montane 

habitats from the surrounding lowlands. The wetness/radiation index performed well, 

reflecting the importance of moisture carried by trade winds during the drier months. 

Response curves constructed for climatic predictors were not calibrated with respect to the 

environmental extremes found near the summit of Mt. Kilimanjaro, and so predictions of 

occurrence in these grid cells are subject to high uncertainty. The sample sites were 

otherwise found to cover a wide breadth of environmental conditions and were generally 

representative of the Eastern Arc region. Where extrapolations beyond the envelope 

occurred, the worst affected models were those that relied heavily on the predictor 

contributions of annual temperature range and rainfall during the wettest month. The 

shortfall in these predictors had the greatest impact on forward-backward models, where 

model size was smaller. For Macaranga capensis we found that the highest occurrence 

probabilities were obtained by extrapolating beyond the range of the training data. The 

weighted model in particular predicts that this pioneer tree, usually associated with 

submontane and riverine forests (Lovett et al., 2006), should also be suited to the Maasai 

Steppe, a lowland savannah habitat. The EUM confirms that the grid cells with the highest 

envelope uncertainty correspond precisely with the region deemed most favourable by the 

model. Here inference can only be made after inspecting response curves beyond the limits 

of the training data. Because EUMs pinpoint the locations where a model may be weakest, 

we suggest they might also be useful in targeting field sampling in a way that most improves 

data quality. 
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Conclusions 

 

GAMs can provide useful information for conservation in the EAMs, even when the 

frequency of documented occurrence is low. Indeed it was the modelling method employed 

and the quality not quantity of distribution data that mattered most. However, there were a 

number of instances where over-fitting seriously compromised the generality of predictions, 

and we recommend that the application of GAMs to small datasets be approached with care. 

If over-fitting cannot be avoided, then the parametric terms of generalised linear models 

should be considered in preference to data-driven smoothers. With respect to the different 

methodologies investigated, our main observations are as follows. 

 

1. Forward-backward selection is less discriminative than backward-forward selection, but 

is the more useful of the two for explanatory purposes. Backward-forward selection 

retains more ecologically relevant detail but can suffer from high prediction error. 

Multimodels provide a useful compromise, and are arguably the best choice for 

predictive purposes. 

2. Models calibrated with weighted absence data are superior in terms of overall accuracy 

and have better sensitivity, though they can be especially vulnerable to over-fitting if 

the distribution data are not well described by environmental predictors. 

3. Including a spatial autocovariate improves model fit and better represents spatial 

clustering in predictions; the stability of models may however suffer if environmental 

constraints are inadequately represented. 

4. Envelope uncertainty maps display important information that should be taken into 

account when drawing inference from predictions, especially if a model is to be 

extrapolated into novel parameter space. 

 

This work involved the parameterisation of environmental response functions for 40 taxa of 

large tree, targeted for modelling because of historical patterns occurrence (Mumbi et al., 

2008), endemism (Lovett et al., 2006) and conservation interest (http://iucnredlist.org/). It is 

hoped that further analysis of response shapes will add to our understanding of their habitat 

preferences, and specifically the degree to which environmental controls restrict their 

distributions. 
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Appendix 3A.    Tree species modelled 

 

Species 
code 

Family Species/taxon name 
Presences 

(prevalence) 

    

sp1 Anacardiaceae Sorindeia madagascariensis Thouars ex DC. 41 (0.20) 

sp2 Annonaceae Lettowianthus stellatus Diels 11 (0.05) 

sp3 Apocynaceae Tabernaemontana pachysiphon Stapf 21 (0.10) 

sp4 Aquifoliaceae Ilex mitis (L.) Radlk.   18 (0.09) 

sp5 Araliaceae Polyscias stuhlmannii Harms 15 (0.07) 

sp6 Araliaceae Polyscias fulva (Hiern) Harms 41 (0.20) 

sp7 Celastraceae Maytenus acuminata (L.f.) Loes. 29 (0.14) 

sp8 Chrysobalanaceae Parinari excelsa Sabine 41 (0.20) 

sp9 Combretaceae Terminalia sambesiaca Engl. & Diels 15 (0.07) 

sp10 Euphorbiaceae Croton macrostachyus Hochst. ex Delile 17 (0.08) 

sp11 Euphorbiaceae Drypetes gerrardii Hutch. 28 (0.14) 

sp12 Euphorbiaceae Drypetes natalensis (Harv.) Hutch. 11 (0.05) 

sp13 Euphorbiaceae Drypetes usambarica (Pax) Hutch. 16 (0.08) 

sp14 Euphorbiaceae Macaranga capensis (Baill.) Benth. ex Sim  
var. capensis 

21 (0.10) 

sp15 Euphorbiaceae Macaranga capensis (Baill.) Benth. ex Sim  

var. kilimandscharica (Pax) Friis & M. G. Gilbert  

41 (0.20) 

sp16 Euphorbiaceae Neoboutonia macrocalyx Pax 17 (0.08) 

sp17 Lauraceae Ocotea usambarensis Engl. 41 (0.20) 

sp18 Leguminosae (Fabaceae): 
Mimosoideae 

Newtonia buchananii (Baker f.)  
G. C. C. Gilbert & Boutique 

48 (0.24) 

sp19 Loganiaceae Anthocleista grandiflora Gilg 21 (0.10) 

sp20 Loganiaceae Nuxia congesta R. Br. ex Fresen. 40 (0.20) 

sp21 Meliaceae Trichilia emetica Vahl. 10 (0.05) 

sp22 Monimiaceae Xymalos monospora (Harv.) Warb. 46 (0.23) 

sp23 Myricaceae Morella salicifolia (Hochst. ex A. Rich.) Verdc. & 
Polhill 

28 (0.14) 

sp24 Myrsinaceae Myrsine melanophloeos (L.) R.Br. 51 (0.25) 

sp25 Myrtaceae Syzygium guineense (Willd.) DC. 

subsp. afromontanum F. White 

47 (0.23) 

sp26 Myrtaceae Syzygium micklethwaitii Verdc. 14 (0.07) 

sp27 Myrtaceae Syzygium cordatum Hochst. 13 (0.06) 

sp28 Oleaceae Olea capensis (L.)  
subsp. macrocarpa (C. H. Wright) I. Verd.  

29 (0.14) 

sp29 Oleaceae Olea europea (L.) 
subsp. cuspidata (Wall. ex G. Don) Cif. 

12 (0.06) 

sp30 Palmae (Arecaceae) Phoenix reclinata Jacq. 27 (0.13) 

sp31 Podocarpaceae Afrocarpus falcatus (Thunb.) C. N. Page 12 (0.06) 

sp32 Podocarpaceae Podocarpus latifolius (Thunb.) R.Br. ex Mirb. 35 (0.17) 

sp33 Rosaceae Hagenia abyssinica J.F. Gmel. 18 (0.09) 

sp34 Rosaceae Prunus africana (Hook.f.) Kalkman 29 (0.14) 

sp35 Sapindaceae Dodonea viscosa Jacq. 14 (0.07) 

sp36 Sapotaceae Chrysophyllum gorungosanum Engl. 33 (0.16) 

sp37 Sterculiaceae Dombeya torrida (J.F. Gmel.) Bamps 18 (0.09) 

sp38 Sterculiaceae Leptonychia usambarensis K. Schum. 19 (0.09) 

sp39 Ulmaceae Celtis africana Burm.f. 11 (0.05) 

sp40 Ulmaceae Trema orientalis (L.) Blume 21 (0.10) 

    

Nomenclature follows Lovett et al. (2006). 
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Appendix 3B.    Stratified cross-validation 

 

Given the low number of presences for many taxa and the use of cross-validation during 

model calibration, it was important to ensure that the subsets of data used to train and test 

models reflected the true sample prevalence. Stratifying cross-validation such that 

prevalence was consistent between partitions reduced both variance and pessimistic bias in 

the estimation of the AUC. The ten-fold method was preferred to leave-one-out cross-

validation (LOOCV) because it provides a more robust measure of model stability, 

particularly when repeated multiple times. Our tests with LOOCV showed that for baseline 

models it was also marginally more pessimistic than ten-fold, despite of the greater 

proportion of data available for training (Appendix 3D). For weighted models the values of 

AUCCV and AUCLOOCV were closer, suggesting that down-weighting absences might reduce 

stratification bias. 

 

 

Above. Histogram of prevalence across the 201 sample locations. The lowest prevalence permitted by our 

modelling procedure was 0.05 (10 presences), because stratified ten-fold cross-validation requires that each fold 

contain at least one presence record. 

 

Left. Comparison of cross-validation 

methods, using Drypetes natalensis as an 

example. How many repetitions are 

required for consistent results? Averaged 

over 100 runs for stratified and 

unstratified cross-validation, results 

show mean AUC values ± ten standard 

errors. Dashed line shows the result from 

leave-one-out cross-validation (N-fold). 

Vertical lines indicate the number of 

repetitions required for s.e. < 0.0003. 
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Appendix 3C.    Neighbourhood size for spatial autocovariates 

 

Neighbourhood sizes that minimised explained deviance in the spatial experiment (width of 

neighbourhood square, number of cells). Refer to Appendix 3A for species names. 

 

Species 
code 

Neighbourhood size 
Species 
code 

Neighbourhood size 

Forward-backward Backward-forward Forward-backward Backward-forward 

      

sp1 5 9 sp21 9 9 

sp2 3 3 sp22 9 9 

sp3 5 9 sp23 9 3 

sp4 – 5 sp24 3 3 

sp5 9 7 sp25 3 5 

sp6 3 5 sp26 – 3 

sp7 7 9 sp27 9 3 

sp8 9 9 sp28 7 5 

sp9 3 9 sp29 – 3 

sp10 9 5 sp30 3 9 

sp11 9 5 sp31 3 7 

sp12 – 7 sp32 3 3 

sp13 3 3 sp33 – 5 

sp14 3 5 sp34 7 9 

sp15 9 9 sp35 9 7 

sp16 9 9 sp36 – 7 

sp17 7 3 sp37 3 7 

sp18 9 5 sp38 – 9 

sp19 9 7 sp39 3 3 

sp20 3 3 sp40 9 9 

      

Forward-backward: mean = 6.16, median = 7 

Backward-forward: mean = 6.10, median = 6 
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Appendix 3D.    Species-specific results 

 

Results from modelling experiments, detailed by species (see Appendix 3 for species 

names). From left to right: area under the receiver-operating characteristic curve (AUCRS, 

resubstituted training data; AUCCV, stratified 10-fold cross-validation; AUCLOOCV, leave-

one-out cross-validation); generalisation error (GE); explained deviance (D
2
); 

presence/absence cut-point; sensitivity and specificity at this cut-point; number of grid cells 

predicted suitable for the species. 
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Baseline models: forward-backward selection 
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sp1 0.74 0.67 0.66 0.29 0.12 0.11 0.81 0.60 21394 

sp2 0.72 0.65 0.63 0.30 0.07 0.05 0.82 0.61 421148 

sp3 0.67 0.63 0.61 0.24 0.06 0.16 0.79 0.51 223438 

sp4 0.68 0.61 0.58 0.40 0.06 0.09 0.71 0.64 654270 

sp5 0.69 0.67 0.64 0.10 0.07 0.08 0.71 0.59 681076 

sp6 0.67 0.64 0.61 0.20 0.06 0.08 0.83 0.51 250372 

sp7 0.80 0.75 0.75 0.17 0.18 0.13 0.86 0.61 86333 

sp8 0.84 0.81 0.78 0.09 0.20 0.09 0.91 0.81 170296 

sp9 0.71 0.58 0.55 0.62 0.11 0.10 0.44 0.89 5435 

sp10 0.92 0.86 0.86 0.15 0.43 0.14 0.89 0.92 293153 

sp11 0.68 0.65 0.62 0.16 0.05 0.11 0.56 0.73 52242 

sp12 0.81 0.70 0.68 0.36 0.17 0.10 0.79 0.70 62036 

sp13 0.88 0.83 0.82 0.15 0.25 0.05 0.91 0.80 502100 

sp14 0.77 0.71 0.70 0.21 0.15 0.10 0.71 0.72 34261 

sp15 0.75 0.74 0.73 0.03 0.14 0.10 0.98 0.39 568572 

sp16 0.66 0.65 0.63 0.08 0.07 0.10 0.93 0.37 565894 

sp17 0.76 0.71 0.70 0.16 0.13 0.10 0.96 0.47 336861 

sp18 0.69 0.68 0.67 0.05 0.09 0.22 0.84 0.50 425298 

sp19 0.83 0.80 0.79 0.10 0.21 0.07 0.94 0.67 132737 

sp20 0.75 0.70 0.69 0.21 0.14 0.22 0.85 0.61 32667 

sp21 0.78 0.74 0.74 0.12 0.17 0.24 0.80 0.71 171969 

sp22 0.82 0.79 0.79 0.09 0.25 0.16 0.88 0.63 94454 

sp23 0.76 0.72 0.72 0.14 0.16 0.25 0.55 0.90 205934 

sp24 0.89 0.88 0.88 0.03 0.30 0.15 0.83 0.91 295372 

sp25 0.71 0.67 0.66 0.20 0.11 0.28 0.54 0.86 10426 

sp26 0.71 0.61 0.58 0.46 0.07 0.15 0.78 0.61 439504 

sp27 0.67 0.63 0.59 0.24 0.05 0.05 0.83 0.47 345107 

sp28 0.78 0.71 0.70 0.25 0.17 0.20 0.74 0.67 157091 

sp29 0.91 0.86 0.86 0.13 0.43 0.22 0.80 0.92 27642 

sp30 0.78 0.73 0.72 0.17 0.13 0.30 0.56 0.89 217405 

sp31 0.82 0.78 0.77 0.13 0.23 0.11 0.90 0.61 448853 

sp32 0.75 0.74 0.73 0.03 0.13 0.18 0.83 0.60 550821 

sp33 – – – – – – – – – 

sp34 0.65 0.64 0.63 0.08 0.05 0.20 0.77 0.48 342629 

sp35 0.89 0.84 0.84 0.12 0.33 0.09 0.86 0.82 24942 

sp36 – – – – – – – – – 

sp37 0.74 0.72 0.70 0.11 0.11 0.05 1.00 0.45 680240 

sp38 0.60 0.57 0.52 0.32 0.02 0.09 0.81 0.36 273575 

sp39 0.65 0.64 0.64 0.05 0.07 0.10 0.40 0.93 107119 

sp40 0.72 0.70 0.69 0.10 0.11 0.17 0.89 0.47 355242 

          

mean 0.75 0.71 0.70 0.18 0.15 0.14 0.79 0.66 270208 

median 0.75 0.71 0.69 0.15 0.13 0.11 0.82 0.62 236905 
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Baseline models: backward-forward selection 
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sp1 0.84 0.71 0.70 0.39 0.22 0.08 0.90 0.63 43052 

sp2 0.72 0.65 0.63 0.30 0.07 0.05 0.82 0.61 421148 

sp3 0.69 0.63 0.61 0.32 0.07 0.18 0.73 0.61 178928 

sp4 0.80 0.59 0.58 0.69 0.15 0.11 0.71 0.78 403058 

sp5 0.69 0.67 0.64 0.13 0.07 0.08 0.71 0.59 681076 

sp6 0.78 0.58 0.53 0.74 0.14 0.10 0.89 0.62 365584 

sp7 0.84 0.73 0.72 0.34 0.23 0.15 0.82 0.72 63670 

sp8 0.84 0.81 0.78 0.09 0.20 0.09 0.91 0.81 170296 

sp9 0.81 0.53 0.51 0.90 0.22 0.06 0.88 0.59 145052 

sp10 0.95 0.85 0.85 0.23 0.51 0.17 0.89 0.94 288678 

sp11 0.92 0.79 0.78 0.31 0.37 0.12 0.94 0.80 51715 

sp12 0.88 0.69 0.68 0.51 0.27 0.10 0.95 0.72 80009 

sp13 0.88 0.82 0.81 0.16 0.26 0.05 0.91 0.77 472874 

sp14 0.88 0.74 0.72 0.38 0.30 0.14 0.81 0.84 47054 

sp15 0.78 0.69 0.68 0.33 0.19 0.17 0.88 0.57 274456 

sp16 0.76 0.62 0.61 0.53 0.13 0.18 0.66 0.76 46086 

sp17 0.82 0.71 0.70 0.34 0.20 0.17 0.79 0.73 104347 

sp18 0.78 0.69 0.68 0.32 0.20 0.28 0.78 0.64 143382 

sp19 0.90 0.79 0.79 0.26 0.31 0.11 0.94 0.79 56596 

sp20 0.80 0.69 0.69 0.37 0.19 0.21 0.85 0.65 70541 

sp21 0.82 0.73 0.72 0.28 0.23 0.24 0.83 0.72 94813 

sp22 0.89 0.79 0.79 0.25 0.36 0.18 0.93 0.76 85960 

sp23 0.82 0.73 0.73 0.28 0.24 0.31 0.55 0.94 138977 

sp24 0.95 0.83 0.83 0.26 0.49 0.22 0.92 0.96 265119 

sp25 0.78 0.66 0.66 0.42 0.18 0.24 0.66 0.79 25125 

sp26 0.83 0.66 0.66 0.51 0.21 0.13 0.85 0.68 99850 

sp27 0.95 0.75 0.74 0.44 0.43 0.16 0.92 0.91 15136 

sp28 0.84 0.69 0.69 0.44 0.24 0.14 0.94 0.60 223287 

sp29 0.97 0.86 0.87 0.24 0.59 0.10 1.00 0.87 33842 

sp30 0.82 0.70 0.69 0.36 0.20 0.23 0.85 0.68 251412 

sp31 0.85 0.77 0.77 0.23 0.27 0.11 0.93 0.63 448802 

sp32 0.81 0.74 0.73 0.23 0.21 0.14 0.93 0.59 301476 

sp33 0.76 0.55 0.52 0.82 0.13 0.06 0.85 0.59 200723 

sp34 0.65 0.64 0.63 0.09 0.05 0.20 0.77 0.48 342629 

sp35 0.97 0.90 0.90 0.14 0.55 0.12 0.93 0.90 53470 

sp36 0.73 0.57 0.56 0.68 0.13 0.11 0.71 0.68 248870 

sp37 0.81 0.66 0.65 0.48 0.18 0.06 0.93 0.58 369912 

sp38 0.77 0.55 0.53 0.83 0.13 0.12 0.86 0.73 186184 

sp39 0.65 0.65 0.64 0.04 0.07 0.10 0.40 0.93 107119 

sp40 0.76 0.67 0.67 0.34 0.15 0.29 0.65 0.77 94322 

          

mean 0.82 0.70 0.69 0.38 0.23 0.15 0.83 0.72 192366 

median 0.82 0.69 0.69 0.34 0.21 0.14 0.86 0.72 144217 
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Baseline multimodels 
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sp1 0.81 0.70 0.69 0.36 0.19 0.12 0.76 0.73 17777 

sp2 0.72 0.65 0.63 0.31 0.07 0.05 0.82 0.61 421148 

sp3 0.68 0.63 0.61 0.28 0.07 0.15 0.82 0.49 258707 

sp4 0.76 0.61 0.57 0.60 0.11 0.09 0.82 0.66 629437 

sp5 0.69 0.67 0.64 0.09 0.07 0.08 0.71 0.59 681076 

sp6 0.74 0.61 0.58 0.53 0.09 0.08 0.94 0.56 353643 

sp7 0.83 0.74 0.73 0.27 0.21 0.14 0.86 0.68 70896 

sp8 0.84 0.81 0.78 0.09 0.20 0.09 0.91 0.81 170296 

sp9 0.76 0.55 0.52 0.83 0.15 0.07 0.63 0.74 83035 

sp10 0.94 0.86 0.86 0.19 0.48 0.15 0.89 0.93 303473 

sp11 0.92 0.79 0.78 0.31 0.30 0.12 0.89 0.84 40495 

sp12 0.87 0.70 0.70 0.45 0.23 0.12 0.89 0.78 53927 

sp13 0.88 0.83 0.81 0.12 0.26 0.05 0.91 0.78 490520 

sp14 0.85 0.74 0.72 0.32 0.25 0.15 0.71 0.83 18404 

sp15 0.77 0.72 0.71 0.19 0.16 0.17 0.85 0.56 294318 

sp16 0.73 0.64 0.62 0.37 0.11 0.16 0.79 0.60 102968 

sp17 0.80 0.72 0.70 0.27 0.18 0.11 0.96 0.56 230123 

sp18 0.76 0.69 0.68 0.26 0.16 0.24 0.88 0.55 272413 

sp19 0.88 0.81 0.79 0.19 0.27 0.09 0.94 0.75 76974 

sp20 0.80 0.71 0.71 0.30 0.17 0.28 0.75 0.76 18647 

sp21 0.81 0.74 0.73 0.20 0.21 0.25 0.83 0.75 118974 

sp22 0.88 0.80 0.80 0.20 0.32 0.20 0.88 0.75 65364 

sp23 0.80 0.73 0.72 0.23 0.22 0.25 0.59 0.89 176967 

sp24 0.91 0.88 0.88 0.07 0.42 0.14 0.92 0.92 332387 

sp25 0.76 0.67 0.67 0.34 0.15 0.27 0.56 0.82 11078 

sp26 0.81 0.67 0.66 0.45 0.17 0.13 0.85 0.66 161996 

sp27 0.94 0.79 0.77 0.34 0.36 0.14 0.92 0.94 13563 

sp28 0.82 0.71 0.71 0.35 0.21 0.19 0.80 0.69 154268 

sp29 0.97 0.87 0.88 0.20 0.54 0.18 0.93 0.90 27309 

sp30 0.82 0.72 0.72 0.31 0.18 0.28 0.73 0.83 184573 

sp31 0.84 0.78 0.78 0.17 0.25 0.11 0.93 0.60 450491 

sp32 0.79 0.75 0.74 0.14 0.18 0.22 0.73 0.73 280462 

sp33 – – – – – – – – – 

sp34 0.65 0.64 0.63 0.08 0.05 0.20 0.77 0.48 342629 

sp35 0.95 0.88 0.88 0.16 0.48 0.11 0.86 0.89 41431 

sp36 – – – – – – – – – 

sp37 0.78 0.70 0.69 0.30 0.15 0.04 1.00 0.43 680447 

sp38 0.72 0.56 0.52 0.74 0.07 0.10 0.86 0.54 228553 

sp39 0.65 0.64 0.64 0.05 0.07 0.10 0.40 0.93 107119 

sp40 0.75 0.70 0.69 0.21 0.13 0.18 0.89 0.53 308557 

          

mean 0.81 0.72 0.71 0.28 0.21 0.15 0.82 0.71 217749 

median 0.81 0.71 0.71 0.27 0.18 0.14 0.86 0.73 173632 
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Weighted models: forward-backward selection 
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sp1 0.74 0.65 0.63 0.37 0.14 0.51 0.81 0.56 45546 

sp2 0.65 0.61 0.61 0.26 0.08 0.49 0.82 0.52 751681 

sp3 0.64 0.61 0.60 0.22 0.05 0.43 0.88 0.37 457182 

sp4 – – – – – – – – – 

sp5 0.70 0.68 0.68 0.10 0.12 0.53 0.79 0.56 694878 

sp6 0.77 0.67 0.66 0.39 0.20 0.52 0.89 0.58 387197 

sp7 0.77 0.73 0.73 0.14 0.15 0.45 0.82 0.66 83594 

sp8 0.81 0.79 0.79 0.05 0.25 0.44 0.91 0.69 351505 

sp9 0.71 0.59 0.58 0.54 0.12 0.56 0.44 0.89 5440 

sp10 0.90 0.85 0.85 0.13 0.44 0.49 0.89 0.79 407486 

sp11 0.69 0.66 0.66 0.15 0.07 0.34 1.00 0.32 372303 

sp12 – – – – – – – – – 

sp13 0.94 0.83 0.82 0.27 0.58 0.51 1.00 0.83 229045 

sp14 0.85 0.74 0.75 0.30 0.29 0.46 0.95 0.71 90049 

sp15 0.75 0.74 0.74 0.03 0.16 0.37 0.88 0.51 338540 

sp16 0.73 0.66 0.66 0.28 0.12 0.35 0.93 0.42 277180 

sp17 0.82 0.73 0.73 0.29 0.27 0.41 0.93 0.61 194677 

sp18 0.69 0.68 0.68 0.07 0.10 0.44 0.84 0.50 461690 

sp19 0.84 0.77 0.77 0.23 0.32 0.51 0.82 0.74 97072 

sp20 0.77 0.70 0.70 0.25 0.17 0.47 0.85 0.63 32773 

sp21 0.77 0.75 0.75 0.08 0.22 0.47 0.88 0.58 215701 

sp22 0.76 0.73 0.72 0.12 0.20 0.51 0.61 0.77 91447 

sp23 0.72 0.71 0.71 0.06 0.11 0.48 0.72 0.67 147475 

sp24 0.94 0.81 0.81 0.30 0.59 0.48 1.00 0.83 434070 

sp25 0.69 0.65 0.64 0.22 0.09 0.51 0.59 0.78 17084 

sp26 – – – – – – – – – 

sp27 0.73 0.58 0.57 0.65 0.16 0.54 0.75 0.63 308626 

sp28 0.77 0.71 0.71 0.20 0.20 0.43 0.89 0.55 257171 

sp29 – – – – – – – – – 

sp30 0.78 0.74 0.73 0.15 0.16 0.56 0.71 0.73 324872 

sp31 0.77 0.76 0.75 0.04 0.15 0.34 0.93 0.51 388590 

sp32 0.75 0.74 0.74 0.03 0.14 0.45 0.85 0.59 557024 

sp33 – – – – – – – – – 

sp34 0.65 0.64 0.64 0.08 0.06 0.45 0.77 0.50 329889 

sp35 0.78 0.76 0.76 0.07 0.20 0.63 0.71 0.78 57192 

sp36 – – – – – – – – – 

sp37 0.84 0.74 0.74 0.29 0.33 0.59 1.00 0.66 378559 

sp38 – – – – – – – – – 

sp39 0.67 0.52 0.52 0.91 0.10 0.61 0.40 0.93 113265 

sp40 0.71 0.70 0.70 0.04 0.11 0.47 0.80 0.57 316507 

          

mean 0.76 0.70 0.70 0.22 0.20 0.48 0.82 0.64 279252 

median 0.76 0.71 0.71 0.20 0.16 0.48 0.85 0.63 308626 
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Weighted models: backward-forward selection 
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sp1 0.88 0.70 0.69 0.47 0.37 0.39 1.00 0.68 73568 

sp2 0.96 0.65 0.64 0.67 0.60 0.58 1.00 0.88 246162 

sp3 0.76 0.55 0.55 0.82 0.17 0.47 0.79 0.63 90106 

sp4 0.86 0.51 0.50 0.97 0.32 0.54 0.88 0.79 303555 

sp5 0.90 0.52 0.51 0.95 0.39 0.46 0.93 0.75 282147 

sp6 0.90 0.58 0.58 0.81 0.39 0.54 0.94 0.78 382911 

sp7 0.86 0.72 0.71 0.40 0.33 0.47 0.86 0.74 66309 

sp8 0.91 0.56 0.54 0.86 0.50 0.64 0.91 0.87 104118 

sp9 0.90 0.54 0.52 0.91 0.42 0.50 1.00 0.78 110231 

sp10 0.97 0.79 0.79 0.37 0.64 0.63 0.94 0.93 282084 

sp11 0.94 0.77 0.78 0.39 0.52 0.56 0.94 0.87 29023 

sp12 0.90 0.70 0.69 0.50 0.43 0.45 1.00 0.72 67646 

sp13 0.97 0.61 0.59 0.76 0.68 0.63 1.00 0.91 166910 

sp14 0.92 0.78 0.79 0.33 0.48 0.63 0.90 0.87 54375 

sp15 0.82 0.70 0.70 0.38 0.26 0.52 0.78 0.71 136965 

sp16 0.82 0.63 0.63 0.58 0.26 0.40 0.97 0.54 124153 

sp17 0.85 0.72 0.72 0.38 0.36 0.43 1.00 0.66 116149 

sp18 0.82 0.70 0.71 0.36 0.26 0.62 0.67 0.83 64097 

sp19 0.93 0.74 0.74 0.44 0.56 0.57 1.00 0.85 39553 

sp20 0.82 0.70 0.70 0.38 0.23 0.48 0.85 0.71 61985 

sp21 0.81 0.74 0.74 0.23 0.27 0.46 0.93 0.64 181472 

sp22 0.89 0.78 0.79 0.28 0.40 0.53 0.83 0.84 61078 

sp23 0.86 0.70 0.70 0.45 0.32 0.44 0.90 0.70 401593 

sp24 0.98 0.77 0.76 0.45 0.79 0.60 1.00 0.94 354581 

sp25 0.81 0.66 0.65 0.49 0.23 0.36 0.95 0.51 121408 

sp26 0.89 0.65 0.66 0.61 0.41 0.46 1.00 0.75 125538 

sp27 0.98 0.69 0.68 0.60 0.70 0.59 1.00 0.92 18822 

sp28 0.85 0.70 0.71 0.43 0.32 0.44 0.94 0.68 165059 

sp29 0.99 0.87 0.88 0.25 0.81 0.72 1.00 0.97 33751 

sp30 0.83 0.70 0.71 0.39 0.26 0.55 0.78 0.78 166891 

sp31 0.87 0.75 0.75 0.32 0.36 0.39 1.00 0.64 519086 

sp32 0.80 0.73 0.74 0.23 0.23 0.38 0.95 0.57 303805 

sp33 0.92 0.50 0.49 0.99 0.48 0.55 1.00 0.83 169248 

sp34 0.65 0.64 0.64 0.10 0.06 0.46 0.77 0.50 329887 

sp35 0.99 0.90 0.90 0.18 0.84 0.77 1.00 0.97 23081 

sp36 0.84 0.55 0.54 0.85 0.27 0.58 0.71 0.82 195811 

sp37 0.92 0.64 0.63 0.67 0.49 0.58 1.00 0.81 169939 

sp38 0.79 0.50 0.49 0.99 0.21 0.42 1.00 0.55 180849 

sp39 0.93 0.52 0.48 0.96 0.49 0.55 1.00 0.84 164666 

sp40 0.72 0.70 0.70 0.10 0.12 0.40 0.89 0.45 380214 

          

mean 0.88 0.67 0.67 0.53 0.40 0.52 0.93 0.76 171721 

median 0.89 0.70 0.70 0.45 0.38 0.53 0.95 0.78 150816 
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Weighted multimodels 
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sp1 0.87 0.70 0.70 0.46 0.28 0.37 1.00 0.62 46384 

sp2 0.95 0.68 0.66 0.61 0.40 0.64 0.91 0.93 206072 

sp3 0.71 0.59 0.59 0.57 0.09 0.52 0.73 0.62 185036 

sp4 – – – – – – – – – 

sp5 0.75 0.67 0.67 0.32 0.14 0.54 0.79 0.65 647126 

sp6 0.86 0.64 0.63 0.62 0.24 0.59 0.78 0.83 302319 

sp7 0.83 0.73 0.73 0.31 0.24 0.48 0.82 0.74 61834 

sp8 0.84 0.78 0.78 0.19 0.27 0.47 0.91 0.75 292247 

sp9 0.87 0.55 0.53 0.87 0.24 0.44 0.94 0.76 145776 

sp10 0.95 0.85 0.85 0.22 0.52 0.59 0.89 0.91 337941 

sp11 0.93 0.78 0.78 0.36 0.38 0.56 0.89 0.87 26316 

sp12 – – – – – – – – – 

sp13 0.96 0.80 0.80 0.34 0.57 0.55 1.00 0.87 193690 

sp14 0.90 0.78 0.79 0.30 0.38 0.54 0.90 0.84 56897 

sp15 0.79 0.73 0.73 0.22 0.20 0.40 0.88 0.58 292191 

sp16 0.79 0.66 0.66 0.45 0.18 0.47 0.90 0.58 131372 

sp17 0.85 0.73 0.73 0.34 0.27 0.41 0.96 0.65 143825 

sp18 0.79 0.71 0.71 0.28 0.19 0.48 0.88 0.59 247869 

sp19 0.80 0.68 0.68 0.41 0.30 0.47 0.82 0.67 81663 

sp20 0.81 0.71 0.71 0.31 0.20 0.47 0.88 0.65 38198 

sp21 0.80 0.75 0.75 0.17 0.22 0.52 0.83 0.70 142424 

sp22 0.88 0.78 0.78 0.27 0.33 0.46 0.88 0.73 94834 

sp23 0.82 0.72 0.72 0.32 0.23 0.36 0.97 0.56 473737 

sp24 0.97 0.81 0.80 0.35 0.66 0.56 1.00 0.91 377097 

sp25 0.79 0.66 0.66 0.43 0.18 0.41 0.83 0.60 47630 

sp26 – – – – – – – – – 

sp27 0.98 0.72 0.72 0.53 0.55 0.56 1.00 0.91 17233 

sp28 0.83 0.72 0.72 0.33 0.24 0.45 0.91 0.66 180995 

sp29 – – – – – – – – – 

sp30 0.83 0.73 0.73 0.32 0.20 0.54 0.83 0.74 211851 

sp31 0.84 0.77 0.77 0.20 0.25 0.37 1.00 0.60 496825 

sp32 0.78 0.75 0.75 0.13 0.19 0.51 0.76 0.73 271233 

sp33 – – – – – – – – – 

sp34 0.65 0.64 0.64 0.07 0.06 0.46 0.74 0.51 315043 

sp35 0.99 0.88 0.89 0.22 0.64 0.59 1.00 0.97 26794 

sp36 – – – – – – – – – 

sp37 0.91 0.69 0.68 0.53 0.34 0.60 1.00 0.81 204731 

sp38 – – – – – – – – – 

sp39 0.92 0.48 0.45 1.06 0.32 0.48 1.00 0.81 202659 

sp40 0.71 0.70 0.70 0.08 0.11 0.45 0.85 0.51 315015 

          

mean 0.85 0.71 0.71 0.37 0.29 0.49 0.89 0.72 206511 

median 0.84 0.72 0.72 0.32 0.24 0.48 0.89 0.73 193690 
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Spatial models: forward-backward selection 
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sp1 0.73 0.64 0.63 0.37 0.15 0.45 0.90 0.51 47155 

sp2 0.66 0.60 0.59 0.35 0.08 0.44 0.91 0.44 799290 

sp3 0.68 0.61 0.61 0.38 0.09 0.53 0.61 0.65 267164 

sp4 – – – – – – – – – 

sp5 0.71 0.63 0.62 0.41 0.14 0.45 0.86 0.51 704839 

sp6 0.76 0.68 0.68 0.32 0.20 0.51 0.89 0.57 402397 

sp7 0.80 0.74 0.73 0.21 0.24 0.57 0.79 0.75 64565 

sp8 0.82 0.78 0.79 0.12 0.26 0.39 0.91 0.66 361760 

sp9 0.81 0.69 0.69 0.39 0.23 0.46 0.81 0.71 602218 

sp10 0.92 0.88 0.88 0.09 0.49 0.54 0.89 0.85 382879 

sp11 0.68 0.63 0.62 0.30 0.11 0.41 0.94 0.45 198565 

sp12 – – – – – – – – – 

sp13 0.95 0.86 0.87 0.21 0.70 0.70 1.00 0.91 117676 

sp14 0.89 0.81 0.82 0.19 0.41 0.65 0.86 0.86 55147 

sp15 0.77 0.75 0.75 0.07 0.18 0.66 0.59 0.81 75668 

sp16 0.80 0.72 0.72 0.27 0.24 0.56 0.76 0.73 183307 

sp17 0.85 0.72 0.73 0.36 0.32 0.53 0.89 0.69 140616 

sp18 0.74 0.71 0.71 0.11 0.15 0.41 0.90 0.47 528320 

sp19 0.89 0.80 0.80 0.25 0.45 0.42 1.00 0.66 136213 

sp20 0.80 0.70 0.70 0.32 0.22 0.49 0.83 0.64 27964 

sp21 0.78 0.76 0.75 0.10 0.22 0.54 0.78 0.70 148039 

sp22 0.83 0.79 0.79 0.12 0.29 0.55 0.68 0.83 317731 

sp23 0.73 0.70 0.70 0.13 0.12 0.46 0.72 0.64 171792 

sp24 0.98 0.87 0.85 0.24 0.82 0.81 1.00 0.95 164066 

sp25 0.70 0.64 0.64 0.31 0.10 0.51 0.63 0.75 14221 

sp26 – – – – – – – – – 

sp27 0.75 0.64 0.63 0.45 0.19 0.51 0.83 0.60 444505 

sp28 0.81 0.72 0.71 0.31 0.27 0.52 0.86 0.65 204149 

sp29 – – – – – – – – – 

sp30 0.79 0.74 0.74 0.18 0.22 0.56 0.68 0.78 292962 

sp31 0.77 0.74 0.74 0.09 0.18 0.42 0.83 0.60 260912 

sp32 0.75 0.74 0.73 0.05 0.15 0.43 0.83 0.61 543616 

sp33 – – – – – – – – – 

sp34 0.65 0.63 0.63 0.16 0.07 0.48 0.79 0.49 320161 

sp35 0.80 0.76 0.76 0.13 0.21 0.42 0.86 0.63 212122 

sp36 – – – – – – – – – 

sp37 0.85 0.81 0.81 0.12 0.39 0.53 0.93 0.73 361628 

sp38 – – – – – – – – – 

sp39 0.74 0.35 0.31 1.65 0.16 0.41 0.90 0.54 420617 

sp40 0.71 0.69 0.68 0.11 0.12 0.39 0.89 0.48 481060 

          

mean 0.78 0.71 0.71 0.27 0.25 0.51 0.83 0.66 286464 

median 0.78 0.72 0.72 0.21 0.21 0.51 0.86 0.65 260912 
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Spatial models: backward-forward selection 
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sp1 0.94 0.82 0.81 0.28 0.62 0.55 1.00 0.82 38252 

sp2 1.00 0.60 0.62 0.80 1.00 0.01 1.00 1.00 91235 

sp3 0.77 0.59 0.59 0.66 0.20 0.41 0.91 0.57 172857 

sp4 0.89 0.54 0.54 0.90 0.39 0.56 0.88 0.79 414473 

sp5 0.91 0.53 0.52 0.93 0.44 0.50 0.93 0.82 240624 

sp6 0.94 0.71 0.72 0.52 0.57 0.56 0.94 0.84 346245 

sp7 0.88 0.75 0.75 0.35 0.38 0.39 0.93 0.72 71253 

sp8 0.97 0.64 0.63 0.71 0.76 0.51 1.00 0.96 55450 

sp9 0.93 0.58 0.57 0.82 0.51 0.53 1.00 0.80 128832 

sp10 0.98 0.85 0.85 0.27 0.76 0.48 1.00 0.91 295523 

sp11 0.95 0.79 0.79 0.36 0.61 0.57 0.94 0.91 26828 

sp12 0.99 0.71 0.71 0.56 0.78 0.66 1.00 0.96 32757 

sp13 1.00 0.64 0.64 0.72 1.00 0.01 1.00 1.00 125498 

sp14 0.94 0.81 0.81 0.28 0.59 0.38 1.00 0.81 134333 

sp15 0.84 0.74 0.74 0.30 0.30 0.52 0.83 0.75 141835 

sp16 0.90 0.74 0.74 0.41 0.43 0.48 0.97 0.74 124958 

sp17 0.86 0.74 0.75 0.33 0.38 0.43 0.96 0.70 100539 

sp18 0.89 0.72 0.73 0.43 0.40 0.52 0.84 0.79 155040 

sp19 0.92 0.71 0.72 0.50 0.59 0.45 1.00 0.84 48672 

sp20 0.83 0.72 0.72 0.33 0.26 0.41 0.92 0.64 89729 

sp21 0.83 0.76 0.76 0.21 0.30 0.44 0.93 0.63 181975 

sp22 0.90 0.79 0.80 0.27 0.43 0.53 0.88 0.83 65657 

sp23 0.90 0.71 0.71 0.46 0.43 0.52 0.86 0.78 376909 

sp24 1.00 0.73 0.73 0.55 1.00 0.01 1.00 1.00 161628 

sp25 0.85 0.67 0.67 0.51 0.29 0.40 0.93 0.66 116575 

sp26 0.91 0.70 0.70 0.51 0.48 0.50 0.96 0.80 111526 

sp27 0.99 0.73 0.74 0.52 0.82 0.77 1.00 0.96 12280 

sp28 0.91 0.76 0.76 0.36 0.48 0.49 0.97 0.72 173739 

sp29 1.00 0.83 0.85 0.33 0.98 0.76 1.00 1.00 31599 

sp30 0.86 0.76 0.77 0.28 0.34 0.49 0.85 0.77 161457 

sp31 0.87 0.74 0.74 0.35 0.40 0.46 0.97 0.69 456731 

sp32 0.81 0.73 0.74 0.24 0.24 0.35 0.95 0.56 273061 

sp33 0.95 0.60 0.58 0.79 0.62 0.69 1.00 0.91 177411 

sp34 0.65 0.63 0.62 0.18 0.07 0.49 0.77 0.49 329138 

sp35 1.00 0.81 0.81 0.38 1.00 0.01 1.00 1.00 95358 

sp36 0.91 0.70 0.69 0.53 0.47 0.41 1.00 0.76 212241 

sp37 0.93 0.75 0.75 0.40 0.59 0.57 1.00 0.85 132383 

sp38 0.81 0.52 0.52 0.95 0.27 0.50 0.90 0.64 111054 

sp39 0.98 0.68 0.66 0.64 0.76 0.66 1.00 0.94 100337 

sp40 0.72 0.69 0.69 0.14 0.12 0.38 0.96 0.45 347581 

          

mean 0.90 0.71 0.71 0.48 0.53 0.46 0.95 0.80 161589 

median 0.91 0.72 0.72 0.42 0.47 0.49 0.96 0.80 130608 
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