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Abstract 

Background  Treatment switching commonly occurs in clinical trials of novel interventions, 

particularly in the advanced or metastatic cancer setting, which causes important problems for  health 

technology assessment.  It is unclear which methods to adjust for switching are most appropriate in 

realistic scenarios.   

Objectives  We aimed to assess statistical approaches for adjusting survival estimates in the 

presence of treatment switching in order to determine which methods are most appropriate in a range 

of realistic scenarios.   

Methods  We conducted a simulation study to assess the bias, mean squared error and coverage 

associated with alternative switching adjustment methods across a wide range of realistic scenarios.   

Results  Simple methods such as censoring or excluding patients that switch always resulted in high 

levels of bias.  More complex randomisation-based methods (e.g. Rank Preserving Structural Failure 

Time Models (RPSFTM)) were unbiased only when the treatment effect was not time-dependent.  

Observational-based methods (e.g. inverse probability of censoring weights (IPCW)) coped better 

with time-dependent treatment effects but are heavily data reliant, are sensitive to model 

misspecification and often produced high levels of bias in our simulations, particularly when the 

proportion of patients that switched treatments was very high (approximately 90%).  We introduce a 

novel �two stage� method, whereby a specific disease-related time-point is used to define a secondary 

baseline after which switching is permitted, allowing treatment effects to be estimated separately for 

patients that switch and patients randomised to the experimental group.  We find that this method can 

perform well provided the treatment switching mechanism is amenable.   

Conclusions  Randomisation-based methods can accurately adjust for treatment switching when the 

treatment effect received by patients that switch is the same as that received by patients randomised 

to the experimental group.  When this is not the case observational-based methods or simple two-

stage methods should be considered, although the IPCW is prone to substantial bias when the 

proportion of patients that switch is greater than approximately 90%.  Simple methods such as 

censoring or excluding patients that switch should not be used. 
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1. Introduction 

It is commonplace for new drugs to be assessed formally by Health Technology Assessment (HTA) 

agencies for their effectiveness and value for money before approval is given for their reimbursement.  

This involves an economic evaluation and for interventions that impact upon survival a life-time 

horizon is typically modelled.[1,2,3,4]  Typically, the evidence to support the effectiveness of the drug 

comes from randomised controlled trials (RCT).  However, treatment switching � where patients 

allocated to the control group of an RCT are permitted to cross over onto the experimental treatment 

at some point during follow-up � is common in trials of oncology treatments, and causes problems for 

HTAs.[5,6]  RCTs allow a comparison of effects between the novel drug and a comparator, used in 

separate arms of the trial.  When treatment switching occurs the separation of the treatment arms is 

lost.  If control group patients switch and benefit from the experimental treatment, an intention to treat 

(ITT) analysis (a comparison of treatment groups as randomised) will underestimate the �true� survival 

benefit associated with the new treatment � that is, the benefit that would have been observed had 

treatment switching not been allowed.  Switching the other way, i.e. from active to no treatment does 

not cause a problem, since in this case the ITT represents what is likely to happen in practice. 

Treatment switching may occur for a number of reasons, both ethical and practical.  Ethically, when 

there are no other non-palliative treatments available it may be deemed inappropriate to deny control 

group patients the new treatment if interim analyses indicate a positive treatment effect.  Practically, 

clinical trials of cancer treatments are often powered to investigate differences in progression free 

survival (PFS) as a primary endpoint, rather than overall survival (OS), because drug regulatory 

agencies such as the United States Food and Drug Administration (FDA) and the European 

Medicines Agency (EMA) accept that this represents an acceptable primary endpoint for drug 

approval.[7,8]  Hence, there is less motivation for pharmaceutical companies to ensure that 

randomised groups are maintained beyond disease progression.   

Simple methods for adjusting for treatment switching, such as excluding or censoring patients who 

switch, will lead to substantial bias when switching is associated with prognosis.  More complex 

switching adjustment methods have been described in the literature and previous research has shown 

that some of these, such as the Rank Preserving Structural Failure Time Model (RPSFTM),[9] perform 

very well when their key methodological assumptions are satisfied.[5]  However, a full comparison of 
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all relevant methods across a range of realistic scenarios � including scenarios where key 

methodological assumptions are not satisfied � has not previously been undertaken.  The aim of this 

paper is to evaluate the performance (in terms of bias, coverage and mean squared error) of 

alternative switching adjustment methods in a range of realistic scenarios, related to their ability to 

adjust for treatment switching in order to estimate the �true� mean survival time in control groups 

affected by treatment switching.  We introduce a novel �two-stage� method for adjusting for treatment 

switching, and run a broad range of novel scenarios when testing the various methods. 

Section 2 provides a brief overview of simple and more complex switching adjustment methods.  

Section 3 describes the simulation study undertaken to assess the performance of the alternative 

methods.  Section 4 presents key results of the simulation study.  Section 5 discusses the results and 

their implications, while Section 6 considers the limitations of our study and suggests future research 

priorities. 

2. Switching adjustment methods 

The different switching adjustment methods considered in this paper can be grouped into simple 

methods (those which are currently widely used),[10] and more complex methods.  Further, the more 

complex methods can be classified as �observational-based� methods and �randomisation-based� 

methods.  Here, relevant methods are briefly described.  More details on the complex switching 

adjustment methods are provided in Appendix A.   

2.1 Simple methods 

2.1.1  Intention to treat 

An ITT analysis does not attempt to adjust for treatment switching, but represents the standard 

analysis undertaken on an RCT.  Groups are compared as randomised, and thus the randomisation-

balance of the trial is respected.  The ITT analysis represents a valid comparison of randomised 

groups, but in the presence of treatment switching this may not be what is required for an HTA.[11]   

2.1.2  Per protocol � excluding and censoring switchers 
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Where treatment received in an RCT differs from what was planned, a common approach to 

analysing the resulting data is to conduct a per protocol (PP) analysis.  In the case of treatment 

switching, data from patients that switch would either be excluded entirely from the analysis, or would 

be censored at the point of the switch.  Such analyses are prone to selection bias because the 

randomisation balance between groups may be broken, particularly if switching is associated with 

prognostic patient characteristics.[12,13]  

2.1.3  Treatment as a time-dependent covariate 

Under this approach data are analysed according to treatment received, using a Cox proportional 

hazards model in which a binary time-dependent covariate indicates time-periods in which treatment 

was received.[14]  Again, this approach may break the randomisation balance and is therefore prone 

to selection bias.[15]  

2.2  Complex methods  

2.2.1  Observational-based complex methods 

2.2.1.1 Structural Nested Models 

Structural nested failure time models (SNMs) are causal models which estimate the effect of a time-

dependent treatment on a survival time outcome in the presence of time-dependent confounding.  

They were developed for use on observational datasets.[16]  However, these models can also be 

used to address treatment switching in an RCT.  Counterfactual survival times � that is, the survival 

times that would have been observed if no treatment had been given � are fundamental to SNM 

methodology.  An accelerated failure time (AFT) model structure is used, and it is assumed that 

exposure to treatment accelerates the time to event (such as death) by a factor exp(-ψ).  It is 

assumed that exposure to treatment is independent of counterfactual survival times, conditional on a 

�no unmeasured confounders� assumption.  This requires that all variables that contribute to the 

process that determines whether a patient switches treatment are measured.[17].  A SNM is used to 

estimate counterfactual survival times for a range of possible treatment effects and g-estimation is 

used to determine a value ψ0 for which treatment exposure at each time-point is independent of 

counterfactual survival. 



7 

 

Th� key limitation of the SNM method is the �no unmeasured confounders� assumption.  This 

assumption cannot be tested using the observed data.[18,19]  In an RCT context, this assumption 

becomes more problematic than in the observational setting that the method was developed for, 

because RCT datasets are typically much smaller.  When fewer data are available SNMs may 

become less stable and confidence intervals may become wide.  For an SNM to be applied, a 

substantial amount of data need to be collected in the clinical trial, and also it must be possible to 

define for each patient when they became �at risk� of treatment crossover so that the SNM is only 

applied to the relevant �observational� dataset.   

2.2.1.2  Inverse Probability of Censoring Weights 

The inverse probability of censoring weights (IPCW) method represents a proportional hazards 

approach to adjusting estimates of a treatment effect in the presence of informative censoring.  In the 

context of treatment switching, patients are artificially censored at the time of switch, and remaining 

observations are weighted based upon covariate values in an attempt to remove selection bias.  The 

method is reliant on the �no unmeasured confounders� assumption � if there are data on all time-

dependent prognostic factors for mortality that independently predict informative censoring 

(switching), then the dependence between the censoring and failure can be corrected for by replacing 

the Kaplan-Meier estimator, log-rank test, and Cox partial likelihood estimator of the hazard ratio by 

their IPCW versions.[20]    

The IPCW method has a number of limitations in common with the SNM approach.  In particular, the 

untestable �no unmeasured confounders� assumption is critical, and therefore data requirements may 

restrict the practicality of the method.  Also, as for the SNM method, models must be correctly 

specified.[20]  In addition, the IPCW approach fails if there are any covariates which ensure (that is, 

the probability equals 1) that treatment switching will or will not occur.[19,21,22]   

2.2.2.  Randomisation-based complex methods 

2.2.2.1 Rank Preserving Structural Failure Time Model 

The RPSFTM method represents a SNM approach designed specifically for an RCT context.[9]  Like 

the SNM approach, the RPSFTM uses a counterfactual framework to estimate the causal effect of the 
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tre�tme�t in question.  However rather than modelling the treatment process using treatment and 

prognostic covariate history to identify the causal treatment effect, the RPSFTM identifies the 

treatment effect using only the randomisation of the trial, observed survival and observed treatment 

history.  It is assumed that if two patients have the same observed event time and neither have 

received treatment, those two patients would also have the same event time if they both received 

treatment.  This assumption is linked to the associated assumptions that the treatment effect is equal 

for all patients no matter when the treatment is received (the �common treatment effect� assumption), 

and that the randomisation of the trial means that there are no differences between the treatment 

groups, apart from treatment allocated.[9]  

The RPSFTMs primary limitations involve the �common treatment effect� assumption and the 

randomisation assumption (that randomised groups are well balanced at baseline).  The latter should 

be reasonable in the context of an RCT, but when sample sizes are particularly small differences in 

baseline characteristics between randomised groups could occur.  The �common treatment effect� 

assumption is more problematic.  If patients who switch on to the experimental treatment part way 

through the trial receive a different treatment effect (relative to the time for which the treatment is 

taken) compared to patients randomised to the experimental group, the RPSFTM estimate of the 

treatment effect received by patients in the experimental group will be biased.  Given that treatment 

switching is often only permitted after disease progression � at which time the capacity for a patient to 

benefit may be different compared to pre-progression � the �common treatment effect� assumption 

may not be clinically plausible.    

2.2.2.2 Iterative Parameter Estimation algorithm 

Branson and Whitehead (2002) extended the RPSFTM method using parametric methods, 

developing a novel iterative parameter estimation (IPE) procedure.[23]  The same type of accelerated 

failure time model is used, but a parametric failure time model is fitted to the original, unadjusted ITT 

data to obtain an initial estimate of the treatment effect.  The failure times of switching patients are 

then re-estimated using this, and this iterative procedure continues until the new estimate is very 

close to the previous estimate (the authors suggest within 10
-5

 of the previous estimate), at which 

point the process is said to have converged.[23] 
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��	 IPE procedure makes similar assumptions to the RPSFTM method � for example the 

randomisation assumption is made, as is the �common treatment effect� assumption.  An additional 

assumption is that survival times follow a parametric distribution, and thus the authors state that it is 

important to identify suitable parametric models using tools such as log-cumulative hazard plots.   

2.3 Two-stage estimation � A novel method 

We tested a method in our simulation study that we have not seen used before in the literature, but 

that appears to provide a good fit to the treatment switching mechanism often observed in oncology 

RCTs.  Usually switching is only permitted after disease progression, but is likely to happen soon after 

this time-point.  In this case, disease progression can be used as a secondary baseline for patients in 

the control group and data on these patients can be treated as an observational dataset.  Fitting a 

Weibull model (or any other accelerated failure time model) to this data including covariates 

measured at the secondary baseline (including a covariate indicating treatment switch) would be 

expected to produce a reasonable estimate of the treatment effect received by patients who switched, 

provided the model fits the data, there are �no unmeasured confounders� at the point of the secondary 

baseline and provided switching occurs soon after the secondary baseline.  The resulting acceleration 

factor associated with switching could then be used to �shrink� survival times in switching patients to 

derive a counterfactual survival dataset upon which standard survival analysis could be undertaken.  

This �two-stage Weibull� approach implicitly acknowledges that the RCT is appropriately randomised 

up until the point of disease progression, but after that time-point the trial essentially becomes an 

observational study.   

2.4 Methods summary 

It is clear that the �simple� switching adjustment methods described in Section 2.1 are highly prone to 

bias.  The complex methods described in Section 2.2 may improve upon these, but they too are 

associated with important limitations.  While SNM, IPCW, RPSFTM and IPE methods will be unbiased 

in scenarios in which their methodological assumptions hold, their assumptions are limiting and may 

not be plausible in an RCT context.  For instance, observational-based methods are reliant upon the 

�no unmeasured confounders� assumption and require sufficient data availability to allow the 

treatment and survival processes to be accurately modelled.  Randomisation-based methods are less 
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d
�
-�l�
n�� but depend upon the �common treatment effect� assumption, which may not be clinically 

plausible.  The �two-stage Weibull� approach described in Section 2.3 offers a simple novel approach 

to adjust for the type of treatment switching often seen in oncology trials.  It relies upon the �no 

unmeasured confounders� assumption, but only at the point of disease progression.  It is limited in 

that it can only be applied in certain circumstances (such that there is an appropriate secondary 

baseline), but in practice this may often be the case.  The method is further limited by the fact that 

unless all switching occurs immediately at the secondary baseline time-point it will be prone to time-

dependent confounding � however this may often be the case (or may be close to being the case) 

and so the resultant bias may not be great.   

In order to inform the practical use of these methods, we will compare the relative bias associated 

with them in realistic scenarios � particularly in situations in which key methodological assumptions do 

not hold.  

3. Simulation study design 

We simulated independent datasets in which the true survival differences between treatment options 

were known.  We then applied each of the switching adjustment methods and compared their bias, 

mean squared error and coverage.  We designed our study such that the data simulated reflected 

data typically observed in clinical trials in the advanced/metastatic cancer disease area, based upon 

input from pharmaceutical companies and our own knowledge.  The simulation study was conducted 

using Stata, version 11.0.[24]   

3.1 Underlying survival times 

We used a joint longitudinal and survival model to simultaneously generate a time-dependent 

covariate (referred to as �antigen�) and survival times.[25]  We incorporated a time-dependent 

covariate that influenced both survival and the probability of treatment switching and was influenced 

by treatment received.  Within the data-generating joint model, the longitudinal model for the antigen 

value for the i
th
 patient at time t was:   

antigen (t) =  β  + β log(t) + β log(t) trt + β badprog          (1) 
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w����, 

β  ~N(β ,σ  )  

β   is the random intercept, β  the slope against log(time) for a patient in the control group, β + β  the 

slope for a patient in the experimental treatment group (all assuming the same �badprog� status).  β  

is the change in the intercept for a patient with a poor prognosis (referred to as �badprog�) compared 

to a patient with a good prognosis, trti is a binary covariate that equals 1 when the patient is in the 

experimental group and 0 otherwise, and badprogi is a binary covariate that equals 1 when a patient 

has poor prognosis at baseline, and 0 otherwise.  Antigen follows a linear relationship with log(t) to 

avoid numerical integration when simulation survival times. 

Based on methods described in detail by Bender et al,[26] the antigen level was incorporated into the 

survival simulating process based upon the Weibull model hazard function:  

h(t) =  λγt   exp(Xβ)  (2) 

where, 

Xβ = δ ∗ trt + (η ∗ log(t)) ∗ trt + δ badprog + α antigen(t)        (3) 

and δ  is the baseline log hazard ratio, η is the rate at which the treatment effect changes with 

log(time), δ  is the impact of poor prognosis, and α is the coefficient of the antigen level.  Given this, 

the survivor function was used to simulate survival times for the control group and the experimental 

group.  For the experimental group the survivor function is: 

S(t) =  exp     
   (     )  exp  δ + δ ∗ badprog + α β  + β ∗ badprog

i
   t   (     )           (4) 

and for the control group: 

S(t) =  exp     
   (  ) exp  δ ∗ badprog + α β  + β ∗ badprog

i
   t   (  )          (5) 
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���o��� this model, treatment and baseline prognosis were allowed to affect the antigen level over 

time.  Treatment group, baseline prognosis and antigen level all also impact upon survival 

probabilities over time, and antigen level and time influence the treatment effect over time.  We 

believe that the model allows the kind of association between variables that would be expected in 

reality.   

Values for the survival model parameters were selected in order to ensure that the simulated data 

suitably represented the type of dataset that the study was designed to replicate.  To ensure this, a 

variety of parameter values were tested.  In the �base case� (Scenario 1) simulation the parameter 

values for the Weibull survival model and the longitudinal antigen model were: 

β = 20 , σ  = 1 , β = 15 , β = −4 , β = 5, δ = −0.7, δ = 0.5, α = 0.02, λ = 0.0005, γ = 0.9 ,  

η = 15    

An example Kaplan-Meier curve produced by the simulation model (in the absence of treatment 

switching) using these parameter values is presented in Figure 1.  Note that trtrand=0 represents the 

control group, and trtrand=1 represents the treatment group.    

Figure 1:  Overall Survival Kaplan-Meier from one simulated dataset in Scenario 1:  No switching 
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���s� Kaplan-Meier curves provide a close match to Kaplan-Meier curves for OS presented in two 

recent NICE technology appraisals of treatments for metastatic cancer in which treatment switching 

was an issue (see Figure B1 and Figure B2 in Appendix B).[27,28] 

3.2  Treatment effect in the experimental group 

The treatment effect received by experimental group patients was related to antigen level and time.  

Collett (2003) showed the Acceleration Factor φ (AF) relates the survivor function in the experimental 

SE and control SC group by:[29] 

S = S         (6) 

Given the survivor functions presented in equations (4) and (5) the AF over time can be estimated as: 

φ = exp       (     )   (  )      (           )  
(     )       (7) 

Values for model parameters were selected to produce a reasonable treatment effect over time.  The 

overall treatment effect was assumed to reduce over time as disease steadily progresses.  To achieve 

this, suitable values for α and η were chosen.  It was necessary to include parameter η because 

otherwise a treatment that reduced the progression of the antigen level would have a treatment effect 

that increased over time, which we believed to be unrealistic.   

3.3 Treatment effect in switchers 

The treatment effect applied to patients who switched from the control group to the experimental 

treatment was not calculated using the time-dependent AF equation, since this equation estimates the 

treatment effect at a certain time-point assuming the patient had been receiving the treatment since 

baseline.  Instead, the baseline treatment effect was applied to switchers, but was multiplied by a 

factor (ω) such that the effect received was lower than the average effect received by experimental 

group patients.  The magnitude of ω was varied to test scenarios in which the treatment effect 

received by switchers was different to the average effect received by experimental group patients to a 

greater and lesser extent.  Values of ω were chosen to test scenarios in which the treatment effect 
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��c�iv�� by patients who switched was 0%, 15% and 25% lower than the average effect received by 

patients originally randomised to the experimental group.  This allowed us to test scenarios in which 

the �common treatment effect� assumption did not hold to varying degrees. 

3.4  The switching mechanism 

In the base case scenario the probability of treatment switching was allowed to depend upon the 

antigen value at the time of disease progression (split into three categories � referred to as �antigen 

group at progression�) and the time of progression itself (also split into three categories � referred to 

as �time to progression group�).  Switching was only allowed from the control group on to the 

experimental treatment and was not allowed prior to disease progression, to reflect the treatment 

switching typically seen in metastatic cancer trials.  In addition, switching was only allowed to occur at 

one of the three consultations immediately following disease progression (including the consultation at 

which progression was first observed), and the probability of switching declined in each of these 

consultations.  Consultations were assumed to occur every 21 days (also in line with metastatic 

cancer trials) and hence the earliest that switching could occur was 21 days after randomisation, and 

the latest that switching could occur was 42 days after the first consultation at which disease 

progression was observed.  This reflects that in a clinical trial setting if a patient has not switched onto 

the experimental treatment soon after experiencing disease progression, they are very unlikely to 

switch.   

The probability of switching was calculated for each control group patient using a logistic function.  In 

the base case the probability of switching increased if the antigen value was low at the time of 

disease progression, and if time-to-progression was high.  Details on the probability of switching in the 

different progression and antigen groups at the three consultations following disease progression are 

presented in Appendix C, Table C1.  

3.5  Scenarios investigated 

The simulated data generating mechanism had several variables for which values had to be 

assumed.  These are listed in Appendix D, Table D1.  The variables altered within the simulations 

related to: 
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• Treatment effect decrement received by switchers: 0% (zero time-dependency); 15%; 25% 

• Switch proportion: moderate (approximately 50-60% of control group); high (approximately 

90-95% of control group) 

• Treatment effect: moderate (average HR approximately 0.75); high (average HR 

approximately 0.50) 

• Disease severity: moderate (mean survival in control group approximately 200-220 days); 

high (mean survival in control group approximately 340-375 days) 

This resulted in 24 scenarios.  In addition, we tested the impact of alternative switching mechanisms.  

All 24 of the base scenarios were tested again in simulations in which the treatment switching 

mechanism was based only upon �antigen group at progression�.  In Scenarios 25-48 it was assumed 

that treatment switching was more likely if the antigen value was low at progression (hence patients 

who progressed quickly and were therefore more likely to have poor prognosis were more likely to 

switch).  In Scenarios 49-72, Scenarios 25-48 were repeated, but under the assumption that switching 

was more likely if the antigen value was high at progression (hence patients who progressed slowly 

and were therefore more likely to have good prognosis were more likely to switch).   

In total 72 scenarios were run.  In each scenario 500 patients were simulated, to reflect study sizes 

generally found in oncology clinical trials and 1000 simulations were run for each scenario.  

3.6  Performance measures 

The time-dependency of the simulated treatment effect meant that it was not possible to produce a 

single �true� HR or AF that the results of the switching adjustment methods could be compared to.  

Instead, the survivor functions given in equations 8 and 9 were integrated in order that the true mean 

survival time in the control group could be calculated, and restricted mean survival at 1095 days (the 

administrative censoring time in the simulated dataset) was used as the �truth� upon which 

performance measures were based.  Hence methods were assessed based upon how well they could 

estimate counterfactual survival times in the control group, in the presence of treatment switching 

from the control group to the experimental treatment.  The restricted mean was convenient to use as it 

avoided potential additional biases associated with having to extrapolate survival times and placed 

the focus of the simulation study on switching adjustment methods, rather than extrapolation 
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�ethods.  The methods used to obtain estimates of mean survival at 1095 days for each of the 

switching adjustment methods are described in Appendix E.   

We used bias, mean squared error (MSE) and coverage to assess the performance of the methods, 

as recommended by Burton et al.[30]  Absolute bias was measured by the difference between the 

true restricted mean and the restricted mean estimated by the crossover methods, and relative bias 

was estimated to represent the absolute bias as a percentage of the true mean survival time.  Where 

methods did not converge the bias and coverage performance measures were calculated based upon 

simulations in which convergence did occur.   

3.7  Methods included 

The methods tested within the simulation study were those described in Section 2.  For the RPSFTM 

method we used a log-rank test within the g-estimation procedure, as this has proven most reliable in 

previous studies.[5]  For the IPE algorithm we tested alternative methods using exponential and 

Weibull models within the estimation procedure, in order to assess whether the performance of the 

method is sensitive to this.  For the IPCW method we used stabilised weights.  For both the IPCW 

and SNM methods we included two versions � one in which all covariates were included in the 

relevant models, and one in which key covariates were excluded � in order to test their sensitivity to 

the �no unmeasured confounders� assumption. 

For the two-stage Weibull method we fitted a Weibull model to control group patients using disease 

progression as the secondary baseline time-point.  We included covariates for switching, baseline 

prognosis group, baseline antigen group, time-to-disease progression group and antigen at disease 

progression group.  Given that our simulations ensured that switching occurred soon after disease 

progression, and thus the potential impact of time-dependent confounding between disease 

progression and switch was low, we anticipated that this method would perform well. 

The recensoring involved in the RPSFTM method caused some problems with estimating mean 

survival at 1095 days, and therefore a degree of extrapolation was required.  We tested two 

approaches to deal with this � an �extrapolation� approach and a �survivor function� approach, which 

are described in more detail in Appendix E.  Briefly, the �extrapolation� approach involved fitting a 
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W� !"## parametric model to the counterfactual control group dataset in order to estimate mean 

survival at 1095 days.  The �survivor function� approach involved fitting a Weibull model to the 

experimental group survival data and then applying the inverse of the RPSFTM acceleration factor to 

derive a survivor function for the counterfactual control group, allowing mean survival at 1095 days to 

be calculated. 

4. Results 

The performance of each method differed importantly depending upon the scenario investigated.  Due 

to the large number of methods and scenarios assessed we present only key findings.  In Section 4.1 

we report key bias results, before focussing on the coverage and MSE of specific methods in Sections 

4.2 and 4.3, respectively.  A summary table describing the characteristics of each scenario is 

presented in Appendix F.  We refer to figures illustrating our results that are presented in Appendices 

G, H and I.    

4.1 Bias 

4.1.1 Simple methods 

The relative bias associated with simple adjustment methods (censoring, exclusion, treatment as a 

time-dependent covariate, ITT) is shown in Figures G1, G2 and G3 in Appendix G and was high 

across all scenarios.  The simple censoring, exclusion and treatment as a time-dependent covariate 

approaches led to higher bias than a standard ITT analysis across 100%, 91.3% and 93.1% of 

scenarios respectively.  It is important to note that in 12 scenarios the ITT analysis produced very low 

levels of bias (less than 0.33%).  This occurred in scenarios where the treatment effect decrement 

applied to switching patients was large (approximately 25%) and the true treatment effect received by 

patients randomised to the experimental group was relatively small (HR of approximately 0.75).  In 

these circumstances patients who switched received very little benefit from switching. 

4.1.2 Inverse Probability of Censoring Weights 

As shown in Figure G4 in Appendix G the IPCW approach outperformed the ITT analysis in 60% of 

scenarios (see Table 1).  The approach was marginally more successful when antigen covariates 
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$%&% included in the model, but the difference was not substantial.  In scenarios where the IPCW 

method worked relatively well it generally led to underestimates of survival in the control group (over-

estimates of the treatment effect) (relative bias was generally around 5-10%).  In scenarios where the 

switching proportion was very high the method produced much higher relative bias (up to 30-50%) 

and generally led to substantial underestimates of the treatment effect.  This was particularly evident 

in Scenarios 37 to 48, in which the switching proportion was very high (approximately 95% of patients 

who survived more than 21 days).   

Table 1:  Proportion of scenarios with lower bias than ITT analysis 

Method All scenarios �Zero TDC� 
scenarios 

�TDC� scenarios �Additional TDC� 
scenarios 

IPCW 59.7% 83.3% 54.2% 41.7% 

RPSFTM 
extrapolation 

54.2% 100.0% 50.0% 12.5% 

RPSFTM survivor 
function 

54.2% 100.0% 50.0% 12.5% 

IPE Weibull 
extrapolation 

54.2% 100.0% 50.0% 12.5% 

IPE Weibull 
survivor function 

54.2% 100.0% 50.0% 12.5% 

IPE exponential 
extrapolation 

55.6% 100.0% 50.0% 16.7% 

IPE exponential 
survivor function 

54.2% 100.0% 50.0% 12.5% 

SNM 37.5% 50.0% 33.3% 29.2% 

Two-stage 
Weibull 

81.9% 100.0% 95.8% 50.0% 

The IPCW method did not seem to be affected by the complexity of the switching mechanism � 

similar bias was observed when switching depended only upon antigen level (Scenarios 25-72) 

compared to when switching depended on both antigen level and time to progression (Scenarios 1-

24).   

The bias associated with the IPCW method was highly related to the switching proportion.  Very high 

levels of switching caused the method to produce more bias.  The relationship between the mean 

percentage bias associated with the IPCW method and the mean proportion of the at-risk population 

that switched is illustrated in Figure 3.  It is clear that once the switching proportion increased to 

approximately 90% and beyond the method became susceptible to very high levels of relative bias 

(up to 30-50%).   
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'() bias of the IPCW method was not affected by the additional treatment effect decrement applied in 

Scenarios 9-12, 21-24, 33-36, 45-48, 57-60, 69-72.  This is logical because switching patients are 

censored at the time of switch, and thus the treatment effect received by these patients is 

unimportant.   

The IPCW method generally produced less bias when the treatment effect was relatively small.  In 

scenarios in which the method worked reasonably well, bias was lower when the treatment effect was 

lower (bias was lower in Scenarios 1, 4, 5, 8, 9, 25, 28, 29, 32, 33, 49, 52, 56, 57, 64, 65, 68 and 71 

than in Scenarios 2, 3, 6, 7, 10, 26, 27, 30, 31, 34, 50, 51, 55, 58, 63, 66, 67 and 72 respectively).   

Figure 3:  Mean relative bias of the IPCW method compared to crossover proportion 

 

4.1.3 Rank Preserving Structural Failure Time Model and Iterative Parameter Estimation 

Illustrations of relative bias for these methods are presented in Figures G5 and G6 in Appendix G.  In 

the scenarios with no time-dependent treatment effect (�zero TDC� scenarios) the �common treatment 

effect� assumption held.  All variations of the RPSFTM and IPE methods produced less bias than the 

ITT analysis in these scenarios (see Table 1).  This was not reliant on the switching proportion, the 

size of the treatment effect, or the prognosis of switching patients.  Differences between the 

alternative versions of the RPSFTM and IPE methods were minor.  Table 2 presents the relative bias 

associated with each variation of the RPSFTM and IPE methods across the zero TDC scenarios. 
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Method Extrapolation Survivor Function 

Relative bias (%) Relative bias (%) 

RPSFTM 0.531 0.551 

IPE Weib 0.547 0.573 

IPE Exp 1.177 0.594 
Note:  For the �extrapolation� and �survivor function� approaches the bias was sometimes positive and sometimes negative and 
thus relative bias is presented.  �Zero TDC scenarios� are scenarios 3, 4, 7, 8, 15, 16, 19, 20, 27, 28, 31, 32, 39, 40, 43, 44, 51, 
52, 55, 56, 63, 64, 67, 68 (see Table F1 in Appendix F)   

Table 2 demonstrates that the �extrapolation� and �survivor function� approaches led to very similar 

levels of bias, with the �extrapolation� approach producing marginally less bias.  The IPE exponential 

�survivor function� approach led to much less bias than the IPE exponential �extrapolation� approach.  

This was expected, because under the �survivor function� approach the exponential model was used 

within the IPE estimation procedure, but the resulting acceleration factor was then applied to a 

Weibull survival model fitted to the experimental group.  If the acceleration factor had been applied to 

an exponential survival model fitted to the experimental group the results would probably have been 

much worse, as observed for the �extrapolation� approach.  The IPE exponential methods were 

outperformed by the equivalent RPSFTM and IPE Weibull methods as expected (owing to the use of 

a Weibull distribution in the data-generating mechanism), but this was only marginal.  This 

demonstrates that using the exponential model within the IPE estimation procedure did not 

significantly reduce the success of the method, even though the underlying data did not resemble an 

exponential distribution.  However, where extrapolation was undertaken it was important to select the 

most appropriate parametric model. 

In scenarios where the treatment effect was time-dependent (�TDC� scenarios) the RPSFTM and IPE 

methods produced substantially more bias.  In these scenarios the �common treatment effect� 

assumption did not hold.  The impact of this is illustrated in Figure G10 in Appendix G.  All scenarios 

except 3-4, 7-8, 15-16, 19-20, 27-28, 31-32, 39-40, 43-44, 51-52, 55-56, 63-64, and  67-68 included a 

time-dependent treatment effect, and the bias associated with the RPSFTM and IPE methods was 

much higher in these scenarios.  The results also show, as expected, that when a larger treatment 

effect decrement was applied to switching patients the RPSFTM and IPE methods produced even 

more bias (bias was increased in Scenarios 9-12, 21-24, 33-36, 45-48, 57-60 and 69-72 compared to 

the corresponding Scenarios 1-2, 5-6, 13-14, 17-18, 25-26, 29-30, 37-38, 41-42, 49-50, 53-54, 61-62 

and 65-66 respectively) (see Figures G10 and G11 in Appendix G). 
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3: the scenarios in which switching patients received a 15% treatment effect decrement, the RPSFTM 

and IPE methods led to lower bias than the ITT analysis in 50% of scenarios (see Table 1).  The 

scenarios where these approaches did not improve upon the ITT analysis were those in which the 

treatment effect was relatively low (equivalent to an average HR of approximately 0.75).  In the 

scenarios in which switching patients received a 25% treatment effect decrement (�additional TDC� 

scenarios), the RPSFTM and IPE methods led to lower bias than the ITT analysis in only 12.5% of 

scenarios (see Table 1).  

In the TDC scenarios the RPSFTM and IPE methods always led to negative bias � that is, they over-

adjusted for the treatment switching effect.  This is likely to be due to the recensoring involved in the 

treatment effect estimation procedure.  Recensoring involves basing the treatment effect estimation 

upon shorter-term data, and where the experimental group treatment effect decreases over time this 

may lead to an over-estimate of the true treatment effect.  This appears to have been the case across 

all scenarios.   

4.1.4 Structural Nested Models 

The SNM method performed better than the ITT analysis in 38% of scenarios (31% when there was a 

time-dependent treatment effect and 50% when there was not) (see Table 1), and performed 

particularly poorly when the switching proportion was very high (see Figure G7 in Appendix G).  The 

method worked very similarly whether or not the bad prognosis covariate was included in the model.  

In several scenarios the method failed to converge in a high proportion of simulations.   This occurred 

particularly when the disease severity was high and this was exacerbated when combined with a high 

switching proportion and a low treatment effect (in such scenarios convergence ranged between 10% 

and 28%). 

The fact that the SNM method seems reliant on disease severity may be due to the stgest Stata 

command.[17]  The command has a �round� option which allows the treatment effect to be estimated 

allowing counterfactual survival times to be rounded to the nearest unit specified by �round�.  In the 

simulations, a value of �1� was used, which is reasonable given that a day time-scale was used.  

However, often the method failed because estimates of the treatment effect did not allow all 
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;ounterfactual survival times to be within one day of the value required in order for the method to 

converge.   

4.1.5 Two-stage Weibull 

The two-stage Weibull approach consistently performed well and produced less bias than the ITT 

analysis in 82% of scenarios (see Table 1).  Levels of bias only increased significantly in scenarios 

where switching proportions were very high (see Figure G8 in Appendix G).  The scenarios in which 

the two-stage Weibull method produced higher bias than the ITT analysis were those in which the 

treatment benefit received by switching patients was very low.  In general, the two-stage Weibull 

approach led to positive bias when the treatment effect was large, and when poor prognosis patients 

were more likely to switch.  The method was prone to negative bias when good prognosis patients 

were more likely to switch. 

4.1.6 Bias summary 

When there was no time-dependent covariate that causes a reduction in the treatment effect over 

time � meaning that the �common treatment effect� assumption holds � the RPSFTM and IPE 

approaches produced least bias (see Figure G9 in Appendix G).  The results were much more 

variable when the treatment effect is time-dependent.  When the treatment effect received by 

switching patients was approximately 15% less than that received by patients in the experimental 

group, the RPSFTM/IPE and IPCW approaches produced similar levels of bias, provided less than 

90% of at-risk control group patients switched (see Figure G10 in Appendix G).  The SNM method 

also produced similar levels of bias in these circumstances (providing disease severity is low), but 

conclusions on this cannot be drawn due to the large proportion of times that this method did not 

converge.   

When the treatment effect received by switching patients was approximately 25% less than that 

received by patients in the experimental group the IPCW and SNM methods produced less bias than 

all RPSFTM/IPE variants, provided less than 90% of at-risk control group patients switched (see 

Figure G11 in Appendix G).  However, in these circumstances the ITT analysis often produced least 
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<=a> when the treatment effect was relatively small.  The simple two-stage Weibull approach produced 

least bias in several of the TDC scenarios.   

4.2  Coverage 

Graphs illustrating the coverage of the complex switching adjustment methods are presented in 

Appendix H.  The coverage associated with the RPSFTM �survivor function� approach was very good 

in the �zero TDC� scenarios, at slightly over 95%.  We did not calculate coverage for the RPSFTM 

�extrapolation� approach in our study because this would require bootstrapping, which would be 

computationally very expensive in a simulation study of this size.  The coverage of the IPE Weibull 

�survivor function� approach was less good, often between 80% and 90%.  This was expected as the 

confidence intervals around the final iteration of the IPE algorithm were used to generate restricted 

mean confidence intervals.  These represent an underestimate of the true confidence interval.[23]  

Morden et al (2011) showed that if a bootstrapping approach to estimate confidence intervals for the 

treatment effect is taken, coverage is satisfactory with the IPE method (in zero TDC scenarios).[5]   

The coverage of the IPCW method was also good, although slightly lower than the RPSFTM �survivor 

function� method, which is likely to be due to its decreased accuracy (increased relative bias).  Its 

coverage was also substantially worse in the scenarios in which the method produced relatively high 

bias.   

The coverage associated with the two-stage Weibull method was poor, often being around 50% to 

60%.  This is despite the low bias associated with the method and is because the method involved 

shrinking the survival times of switching patients to obtain an adjusted dataset before restricted mean 

survival was estimated.  The higher and lower confidence intervals of the treatment effect estimated in 

switching patients were used to obtain higher and lower confidence intervals for restricted mean 

survival.  However, this only takes into account the uncertainty in the treatment effect itself � it does 

not take into account the uncertainty in the underlying survival distribution.  This is also true for the 

SNM approach which was also applied using a two-stage approach (see Appendices A and E).  In 

reality, if a two-stage approach is to be taken, uncertainty around mean survival estimates would need 

to be taken into account using bootstrapping. 
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?@ the �TDC� scenarios the coverage of the RPSFTM and IPE �survivor function� approaches reduced 

from approximately 95-100% to approximately 90-95%, reflecting the bias associated with these 

methods in these scenarios.  The coverage of the IPCW method was marginally higher than the 

RPSFTM method in scenarios in which the two methods produced similar levels of bias.  In the TDC 

scenarios in which the IPCW method produced high levels of bias (those in which the switching 

proportion was very high) the coverage of the IPCW method again decreased substantially. 

4.3 Mean Squared Error 

Graphs illustrating the MSE of the complex switching adjustment methods are presented in Appendix 

I.  Generally a lower MSE value represents a more accurate measure, but it is important to bear in 

mind bias and coverage results while considering MSE values, as a low MSE may be misleading if 

bias is relatively high or coverage is relatively low.   

In the �zero TDC� scenarios the RPSFTM and IPE methods produced relatively low MSE.  Generally 

the two-stage Weibull method produced the lowest MSE, but this should be interpreted with care 

because the method is associated with low coverage.  The IPCW method produced a lower MSE than 

the SNM method across all scenarios which confirms its better performance in these scenarios, 

especially considering it generally provided lower bias and improved coverage. 

As would be expected given the results already presented, in the �TDC� scenarios the MSE 

associated with the RPSFTM and IPE methods was higher than in the �zero TDC� scenarios, 

particularly in the �additional TDC� scenarios.  In a selection of the �additional TDC� scenarios the 

IPCW method (and occasionally the SNM method) produced lower MSE than the RPSFTM and IPE 

methods.  This is a similar pattern to that observed in the bias results and demonstrates that relative 

bias is the key distinguishing factor in the MSE results.  This suggests that the standard errors of the 

mean restricted mean survival estimates associated with the IPCW, RPSFTM and IPE methods were 

similar (at least in the relatively low switching scenarios).   

5. Discussion 

Our simulation study demonstrates that randomisation-based methods for adjusting for treatment 

switching, such as the RPSFTM and IPE algorithm, produce lower bias than all other methods and 



25 

 

pABDEFG good coverage in a wide range of scenarios, provided the relative treatment effect received by 

switching patients is equal to that received by experimental group patients (that is, the �common 

treatment effect� assumption holds).  This confirms the findings of previous research.[5]  However, 

when the treatment effect is strongly time-dependent, and the �common treatment effect� assumption 

does not hold, these methods produce high levels of bias and in some circumstances may not be 

preferable to an ITT analysis. 

In the presence of time-dependent treatment effects, treatment switching adjustment methods are 

limited and are all prone to important bias.  Observational-based methods such as the IPCW and 

SNM � which do not require the �common treatment effect� assumption � require large amounts of 

data and are particularly sensitive to bias when the switching proportion is very high.  Our simulations 

suggest that the relatively small size of RCT datasets may cause these methods to work sub-

optimally, even when the �no unmeasured confounders� assumption holds.  This is unsurprising given 

the reliance of these methods on observational modelling.  In our simulations, in which the sample 

size was 500, a 90% switching proportion in control group patients who became at risk of switching 

(those who lived longer than 21 days) led to approximately 20 control group patients not switching.  

The IPCW method uses these patients as a pseudo population upon which to base adjusted control 

group survival estimates, and such low numbers are clearly problematic.  This confirms the findings of 

other researchers � Howe et al found that IPCW was prone to bias in small samples, if selection bias 

was very strong, and if there were unmeasured confounders.[31] 

We found that observational-based methods worked similarly even when a prognostic covariate was 

excluded from their models.  In retrospect, this was not very surprising.  The baseline antigen group 

covariate is directly related to the baseline prognosis group covariate (see equation (1)), and the 

�antigen group at disease progression� covariate is essentially a time-dependent measure of 

prognosis which is likely to be highly correlated with the �time to progression group� covariate.  

Hence, excluding antigen-related covariates from the observational models may be expected to have 

a relatively minor impact providing baseline prognosis and �time to progression group� covariates are 

included, or vice-versa.  Importantly, the IPCW method outperformed the naïve censoring analysis � 

which the IPCW would reduce to if all important covariates were unmeasured � across all scenarios. 
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HJ expected, naïve methods (such as simple censoring and exclusion approaches) produced high 

levels of bias consistently across all scenarios and thus should be avoided.  When the �common 

treatment effect� assumption is expected to hold, the RPSFTM and IPE algorithm represent the 

optimal switching adjustment methods.  However when a time-dependent treatment effect is 

suspected identifying an optimal method is much more difficult.  If the treatment switching mechanism 

is similar to that simulated in our simulation study (that is, switching can only occur after disease 

progression and must happen very soon after disease progression) and data on key prognostic 

variables are collected upon disease progression, a simple two-stage Weibull method may represent 

an appropriate adjustment method and is worthy of consideration.  Our findings associated with this 

method should be interpreted with a degree of caution, because our simulated switching mechanism 

guaranteed that switching only occurred after disease progression, and happened soon after 

progression � fitting in with the requirements of the two-stage method.  However, this mechanism 

represents what is observed in reality and so should not devalue the potential usefulness of the 

method.  It may also be observed that we used a Weibull model to generate initial survival times, thus 

suggesting the two-stage Weibull method would be likely to perform well.  However, because we used 

a joint longitudinal and survival model the resulting survival distributions did not follow a Weibull 

distribution.    

In reality, there is not one method that is likely to be optimal across all scenarios, and the problem of 

identifying an appropriate method should be tackled on a case-by-case basis.  The �no unmeasured 

confounders� assumption of the IPCW and SNM methods is untestable, and assessment of the 

�common treatment effect� assumption relied upon by the RPSFTM and IPE algorithm is likely to be 

prone to bias.  However, analyses can be undertaken and information can be gathered to shed light 

on the plausibility of these assumptions.  To consider the �no unmeasured confounders� assumption, 

previous studies may be reviewed in order to determine whether any important covariates were 

identified that were excluded from the study affected by treatment switching.  Clinical expert opinion 

could also be sought in order to determine whether any indicators of switching were not collected in 

the study.  An important consideration is that patient preference for switching is not routinely collected 

in clinical trials, yet this may influence the switching decision.  This may cast doubt on the use of 

observational methods for adjusting for treatment switching in RCTs and also has important 
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KLMNKOPQKRVX for clinical trialists: if switching is to be allowed, suitable data should be collected within 

the trial to allow for the application of adjustment methods. 

Any data-based assessment of the �common treatment effect� assumption is prone to bias due to 

time-dependent confounding.  If there is a disease progression related time-point after which 

switching becomes possible the treatment effect in switching patients could be estimated by 

considering this period as an observational dataset � using either an IPCW or SNM approach.  This 

could then be compared to the estimated treatment effect in the experimental group, adjusted for 

switching.  However, as our simulations show, these methods are prone to bias and so using them to 

assess the �common treatment effect� assumption is problematic.  They may, however, provide some 

information on whether the treatment effect experienced in the different groups were broadly similar.  

Alternatively, if patients at different stages of disease were randomised into the trial in question, the 

effects on these groups could be compared.  However, this comparison will be confounded by 

switching which may impact upon the groups differently.  It is therefore important that the clinical and 

biological plausibility of a common treatment effect is ascertained through eliciting clinical opinion and 

by considering the mechanism of action of the novel therapy.      

Various authors have attempted to apply multi-parameter versions of the RPSFTM, in order to allow a 

relaxation of the �common treatment effect� assumption.[18,32,33]  However, relying solely on the 

randomisation assumption to allow two different treatment effects to be estimated for different groups 

has proven unsuccessful, with meaningful point estimates difficult to determine.  Hence this 

represents an outstanding problem with randomisation-based methods. 

6. Limitations 

We attempted to include all the most important and most relevant scenarios given results of the 

Morden et al (2011) study,[5] realistic cancer trial characteristics and the characteristics of the 

methods that were being assessed.  However, there remain potentially interesting scenarios that were 

not included.  In particular, the proportion of patients that switched was an extremely important factor 

in the results.  A range of relatively high switching proportion scenarios were considered, under the 

assumption that the adjustment methods would struggle with these most.  However, given the high 

levels of bias associated with the assessed methods in the scenarios that incorporate a time-
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dependent treatment effect it would be interesting to identify whether levels of bias fall with lower 

switching levels.  This is particularly important for the IPCW and SNM approaches, which were 

particularly sensitive to the switching proportion.   

In addition, we showed that the IPCW approach often produced lower bias than RPSFTM or IPE 

methods when there was a time-dependent treatment effect (thus, when the �common treatment 

effect� assumption did not hold).  However, only two levels of treatment effect decrements applied to 

switching patients were investigated (15% and 25%).  It would be interesting to consider a larger 

range of treatment effect decrements to gain a better understanding of what level of treatment 

decrement is required for the IPCW method to outperform the RPSFTM/IPE methods. 

Also, in all the scenarios tested the assumed sample size was 500 patients.  This approximately 

reflects the common size of metastatic oncology trials, and matches the assumption made by Morden 

et al (2011).[5]  However, given the data requirements of methods such as IPCW and SNMs, this 

could be an important factor.  In fact, if very large proportions of patients switched, but the trial was 

extremely large, there may still be a substantial number of patients upon which to base the �pseudo� 

population and so bias might be avoided.   

A technical limitation of our study surrounds the use of the stgest Stata program to implement the 

SNM method.[17]  The method often failed to converge and this appeared to be due to the �round� 

option included in the program.  This might be argued to be a limitation associated with the Stata 

program rather than the SNM method itself.   

A general limitation of simulation studies is that the results are likely to always be linked in some way 

to the chosen data generating process.  Attempts were made to limit this by testing different 

distributions for parametric switching adjustment methods.  Given that a Weibull model was used to 

generate the underlying survival times, the data generating mechanism may have favoured Weibull-

based approaches such as the IPE algorithm and the two-stage Weibull method.  However, the 

results showed that IPE method performed similarly well in estimating the treatment effect when it 

was applied using an exponential model.  Also, due to the inclusion of a time-dependent covariate in 

the data generating model, the resulting survival times no longer followed a true Weibull distribution.  

Despite this, it may be of value to conduct similar studies using different data generating models.   
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YZ may also be of value to re-run the simulations using different methods to estimate the treatment 

effect received by switching patients.  This was not linked to time, instead the baseline treatment 

effect was multiplied by a factor to ensure that these patients received a plausible effect.  An 

alternative would be to link this to time and other covariates using formula (7).  However this would 

not be expected to alter the performance of the key complex adjustment methods.  The 

randomisation-based methods do not attempt to model the treatment effect process and so the 

important factor that determines their bias is the extent to which the average treatment effect differs 

between switching and experimental group patients � not how this treatment effect difference is 

estimated.  The IPCW approach censors switching patients and so the treatment effect received (and 

how it is estimated) by these patients does not influence the bias with which the method estimates the 

treatment effect received in the experimental group.     

Finally, we attempted to generate the survival data as realistically as possible, and in such a way that 

did not satisfy the requirements of any of the adjustment methods.  In itself this could be regarded as 

a limitation, as data were not generated in such a way that satisfies the requirements of methods such 

as SNMs or the IPCW.  Hence these methods could not be expected to produce unbiased results.  

However, the aim of the simulation study was to demonstrate the performance of these methods in 

realistic situations � and it is highly likely that in the real world data will not be generated in a way that 

satisfies the requirements of these models. 

7. Conclusions 

We conclude that the characteristics of trials and novel therapies should be considered on a case-by-

case basis when an analyst is attempting to identify appropriate methods for adjusting for treatment 

switching in clinical trials but that there are some circumstances in which we should expect certain 

methods to perform badly.  In particular, if the proportion of control group patients that switch is very 

high (approximately 90% in trials with a sample size of approximately 500) observational-based 

methods such as IPCW and SNM are unlikely to perform well.  Randomisation-based methods are 

less reliant upon the switching proportion, but themselves will perform poorly if the treatment effect 

received by patients who switch is likely to be substantially different (approximately 25% different) to 

that received by patients originally randomised to the experimental group.  Simple two-stage methods 

may represent useful analyses in situations in which other methods are prone to substantial bias. 
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Appendix A: Complex switching adjustment methods 

Structural Nested Models 

Counterfactual survival times for a range of different values of ψ can be estimated  using a SNM such 

as that presented by Robins (1998):[16] 

U = ∫ exp[ψA (t)]dt        (A1)  

where U is the counterfactual survival time for each patient, which is a known function of observed 

survival time (T), observed treatment (A, where A is a binary time-dependent variable equal to 1 or 0 

over time), and the unknown treatment effect parameter ψ.  A G-estimation procedure is then used to 

search for the value ψ0 for which treatment exposure at each time point is independent of 

counterfactual survival.  The model used for the g-test, as specified by Robins (1998), is a time-

dependent Cox proportional hazards model for the hazard of treatment change:[16] 

λ (t) exp[α W(t)]     (A2)  

where W(t) is a known vector valued function of treatment history and covariate history up until time t, 

α is an unknown parameter vector, and λ (t) is an unspecified baseline hazard function.  To conduct 

the g-test the term θQ(t,ψ) is added to  α W(t) in the model, where Q(t,ψ) is a function of treatment 

and covariate history up until time t and the estimated counterfactual survival time for a given value of 

ψ.  The value of ψ that results in a Cox partial likelihood score test (g-test) statistic of zero for the 

hypothesis θ = 0 in this model provides a consistent and asymptotically normal estimator of ψ , given 

the �no unobserved confounders� assumptions holds, the Cox model of the hazard of treatment 

change is correct, and the SNM is correct.  The confidence interval for ψ  is given by the values of ψ 

that result in the g-test not being rejected at the 0.05 level.[16]   

Censoring presents a problem for SNMs because it means that counterfactual survival times can only 

be estimated for a subset of patients (those that were not censored).  However, researchers have 

shown how both uninformative and informative censoring can be dealt with within an SNM, either by 

replacing counterfactual survival times in the g-estimation procedure with a function of counterfactual 
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{|}~�~�� time and censoring time which is observed for all patients, or using inverse probability of 

censoring weights.[16,34]   

Because SNMs were designed for estimating causal treatment effects in observational studies they 

do not make use of the randomisation element of an RCT.  The method could not be applied simply to 

an RCT dataset, because it would be inappropriate to attempt to model the treatment process (that is, 

the treatment received by patients over time) when patients are randomised to treatment groups � 

patients randomised to the control group would not receive the intervention (until switching was 

allowed) irrespective of their covariates, and similarly patients in the intervention group would remain 

in that group (though they may discontinue treatment) irrespective of their covariates.   

However, this does not mean that the SNM method cannot be useful in an RCT context.  The control 

group after the point at which treatment switching becomes possible could be treated as an 

observational dataset.  The SNM method could then be applied to this dataset to estimate the 

treatment effect specific to control group (switching) patients.  Given the resulting treatment effect 

estimate (in terms of an acceleration factor � working on the time scale) the survival times of control 

group switching patients could be adjusted to estimate counterfactual survival times had switching not 

occurred.  This is similar to the approach taken by Robins and Greenland (1994) and Yamaguchi and 

Ohashi (2004).[18,19]   

Inverse Probability of Censoring Weights 

Robins and Finkelstein (2000) recommend using �stabilised� inverse probability of censoring weights, 

as these are shown to be more efficient.[20]  Unstabilised weights are simply the inverse of the 

conditional probability of having remained uncensored until time t conditional on baseline and time-

dependent covariates, whereas stabilised weights are the conditional probability of having remained 

uncensored until time t given baseline covariates, divided by the conditional probability of having 

remained uncensored until time t given baseline and time-dependent covariates.  The stabilised 

weight will be equal to 1 for all t if the history of the included prognostic factors for failure do not 

impact upon the hazard of censoring at t � thus there would be no informative censoring and 

treatment switching would be random.[20]   
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��������� the stabilised weights applied to each individual for time interval (t), as specified by Hernan 

et al (2001) are:[21]  

W (t) = ∏   [ ( )  |  (   )  ,  (   ), ,   ]
  [ ( )  |  (   )  ,  (   ),  ( ),   ]

 

       (A3) 

Here C(k) is an indicator function demonstrating whether or not informative censoring (switching) had 

occurred at the end of interval k, and C (k− 1) denotes censoring history up to the end of the previous 

interval (k-1).  A (k− 1) denotes an individual�s treatment history up until the end of the previous 

interval (k-1), and V is an array of an individual�s baseline covariates.  L (k) denotes the history of an 

individual�s time-dependent covariates measured at or prior to the beginning of interval k.  Hence the 

numerator of (A3) represents the probability of an individual remaining uncensored (not switched) at 

the end of interval k given that that individual was uncensored at the end of the previous interval (k-1), 

conditional on baseline characteristics and past treatment history.  The denominator represents that 

same probability conditional on baseline characteristics, time-dependent characteristics and past 

treatment history.  When the cause of informative censoring is treatment switching, past treatment 

history is removed from the model because as soon as switching occurs the individual is censored. 

The IPCW adjusted Cox hazard ratio (HR) can be estimated by fitting a time-dependent Cox model to 

a dataset in which switching patients are artificially censored.  The model includes baseline covariates 

and uses the time-varying stabilised weights for each patient and each time interval.  Robust variance 

estimators or bootstrapping should be used to estimate confidence intervals.[21,22] 

Rank Preserving Structural Failure Time Model 

An accelerated failure time counterfactual survival model similar to that presented in equation (A1) is 

used.  Counterfactual survival time is a product of observed time spent on treatment and observed 

time spent off treatment, where time spent on treatment is multiplied by the factor exp(ψ).  The value 

of the treatment effect (ψ0) is estimated as the value of ψ for which counterfactual survival is 

independent of randomised groups.  A log-rank or Wilcoxon test can be used for the RPSFTM g-test 

in a non-parametric setting, testing the hypothesis that the baseline survival curves are identical in the 

two treatment groups, or a Wald test could be used for parametric models.[35]  The point estimate of 
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ψ is that for which the test (z) statistic equals zero.  Because the RPSFTM is a randomisation-based 

efficacy estimator the p-value from the ITT analysis is maintained.[32]    

White et al (1999) demonstrate that censoring is problematic for the RPSFTM.[32]  A positive or 

negative treatment effect may increase or decrease the probability that the survival time of an 

individual is censored, and, where treatment switching occurs, treatment received is likely to be 

associated with prognosis.  In turn, this means that the censoring of counterfactual survival times may 

depend on prognostic factors and therefore be informative.[32]  Bias associated with this can be 

avoided by recensoring counterfactual survival times at the earliest possible censoring time given the 

treatment effect ψ.[32]  Thus for each patient in treatment groups at risk of switching the recensored 

censoring time is the minimum of the observed administrative censoring time (Ci) and the product 

exp(ψ)Ci.  If the a patient experienced an event, but the recensoring time is less than the event time, 

that patient has their survival time recensored and their event is no longer observed. 

Iterative Parameter Estimation algorithm 

This method uses the same type of accelerated failure time model as the RPSFTM, but a parametric 

failure time model is fitted to the original, unadjusted ITT data to obtain an initial estimate of ψ.  The 

observed failure times of switching patients are then re-estimated using exp(ψ) and the counterfactual 

survival time model presented in equation (A1), and the treatment groups are then compared again 

using a parametric failure time model.  This will give an updated estimate of ψ, and the process of re-

estimating the observed survival times of switching patients is repeated.  This iterative process is 

continued until the new estimate for exp(ψ) is very close to the previous estimate (the authors suggest 

within 10
-5

 of the previous estimate but offer no particular rationale for this), at which point the process 

is said to have converged.[ref]  Bootstrapping is recommended to obtain standard errors and 

confidence intervals for the treatment effect.[23]     
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Appendix B 

��gure B1:  Overall Survival Kaplan-Meier - lapatinib+capecitabine for metastatic breast cancer 

  

Note:  This is Figure 2 in GSK�s submission to NICE, August 2009.[27]   

Figure B2:  Overall Survival Kaplan-Meier - cetuximab for metastatic squamous cell carcinoma of the 
head and neck 

 

Note:  This is Figure B2 from: Merck Serono�s submission to NICE, 2009.[28]  
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Appendix C 

�he probability of switching in the different progression and antigen groups at the three consultations 

following disease progression for the base case scenario are presented in Table C1.  Higher group 

numbers represent higher values for that group (that is, �time to progression group� 0 are the control 

group patients that had time-to-progression times in the lowest 33.3% of the control group).  Note 

however that these groups only refer to patients who became �at-risk� of switching � that is, those 

control group patients that survived for longer than 21 days.  Hence the lowest 33% represent the 

lowest third of the at-risk group, not the control group as a whole. 

Table C1:  Probability of treatment crossover by prognostic groups and consultation 

Consultation 1 Antigen group at progression 

0 1 2 

Time to progression group 0 0.30 0.20 0.10 

1 0.51 0.41 0.30 

2 0.88 0.75 0.60 

Consultation 2 Antigen group at progression 

0 1 2 

Time to progression group 0 0.23 0.15 0.07 

1 0.42 0.32 0.23 

2 0.84 0.68 0.51 

Consultation 3 Antigen group at progression 

0 1 2 

Time to progression group 0 0.14 0.09 0.04 

1 0.29 0.22 0.15 

2 0.75 0.55 0.38 

When switching is incorporated into Scenario 1 using the switching probabilities presented in Table 

C1, 156 (62%) control group patients switch treatments.  The resulting Kaplan-Meier curve is as 

shown in Figure C1.  As desired, the control group Kaplan-Meier curve moves towards the 

experimental group Kaplan-Meier curve (as can be seen by comparing Figure 1 with Figure C1).  The 

ITT HR in this instance increases to 0.743 from 0.719, demonstrating the effect of the switching.     
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��gure C1:  Overall Survival Kaplan-Meier from simulated dataset Scenario 1:  With switching 
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Appendix D 

���ues for each variable in Scenario 1 are quoted, as are alternative values for different scenarios.   

Table D1:  Simulated scenarios � Parameter values and alternatives tested 

Variable Value (Scenario 1) Alternative Values 

Sample size 500 - 

Number of prognosis 
groups (prog) 

2 - 

Probability of good 
prognosis 

0.5 - 

Probability of poor 
prognosis 

0.5 - 

Maximum follow-up time  3 years (1095 days) - 

Baseline effect of being in 
the bad prognosis group 

Log hazard ratio = 0.5 - 

Survival time distribution  Weibull parameters when time-
dependent effect included: 
Shape parameter 0.9 (mortality 
decreasing over time) 
Scale parameter 0.0005   
 
Weibull parameters when time-
dependent effect not included: 
Shape parameter 0.9 (mortality 
decreasing over time) 
Scale parameter 0.004   

Alter scale parameter to 0.001 
to represent a more severe 
disease (and hence less 
censoring)  in scenarios with 
time-dependent effect 
 
 
Alter scale parameter to 0.007 
to represent a more severe 
disease (and hence less 
censoring)  in scenarios 
without time-dependent effect 

Progression free survival Overall survival time multiplied 
by a value from a beta 
distribution with shape 
parameters (5,5) � this implies 
the assumption that PFS is 
approximately half of OS.  This 
is not an important assumption � 
PFS is only included because I 
model a situation where 
switching cannot occur before 
disease progression 

- 

Baseline treatment effect 
(note this is not the true 
treatment effect as this 
does not take into 
account the effect of the 
treatment that occurs 
through the time-
dependent confounder, 
antigen level, or the time-
dependent part of the 
treatment effect, η ) 

Baseline log hazard ratio in 
scenarios that include an 
additional time-dependent effect  
= -0.7 
 
Log hazard ratio in scenarios 
that do not include an additional 
time-dependent effect  = -0.3  

Alter log hazard ratio to -1.1 to 
represent a larger treatment 
effect in scenarios with time-
dependent effect 
 
Alter log hazard ratio to -0.7 to 
represent a larger treatment 
effect in scenarios without 
time-dependent effect 

Antigen intercept Calculated using a normal 
distribution with mean of 20 and 
standard deviation of 1   

- 

Antigen value 
progression over time 

As demonstrated by formula 
[11].  β = ,4  to represent that 
the antigen value increases 

- 
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���e slowly in the experimental 
group, and β = 5 so that bad 
prognosis patients start with 
higher levels of the antigen 

Impact of antigen value 
on overall survival 

As demonstrated by formulas 
[12-21].  Increased antigen 
value increases the risk of 
death.  The strength of this 
relationship depends on the 
variable α, which equals -0.02 in 
Scenario 1 

Remove impact of the antigen 
value by setting α=0 

Impact of antigen value 
on treatment effect 

As demonstrated by formulas 
[22-28].  Because treatment 
reduces the progression of the 
antigen value and increased 
antigen values increase the risk 
of death, the treatment has an 
additional effect through the 
antigen.  The strength of this 
relationship depends on the 
variable α, which equals -0.02 in 
Scenario 1 

Remove impact of antigen 
value by setting α=0 
 
Model larger time-dependent 
effect by applying additional 
decrement multiplier to 
switching patients 

Time-dependent portion 
of treatment effect, η  

η =0.15 to generate a reduction 
in the treatment effect over time, 
in scenarios where a time-
dependent treatment effect is 
assumed 

Remove impact of η by setting 
η =0 in scenarios where the 
treatment effect is not time-
dependent 

Assumed frequency of 
consultations 

One every 3 weeks (21 days) - 

Probability of switching 
treatment over time  

As shown in Table 6.1.  This 
results in a switching proportion 
of approximately 63% in 
Scenario 1 

Test a high switching scenario 
where all probabilities are 
increased � to an extent where 
approximately 90% of patients 
that survive longer than 21 
days switching 

Prognosis of switching 
patients 

As shown in Table 6.1.  This 
makes switching more likely in 
good prognosis patients, via a 
mechanism that takes into 
account both time to progression 
and antigen value at progression 

Make switching more likely in 
poor prognosis patients. 
 
Test scenarios where 
switching is based on a 
simpler mechanism (only 
based on the antigen value) 

Treatment effect in 
switching patients 

Equal to baseline treatment 
effect multiplied by ω.  Set ω 
such that treatment effect 
received by switching patients is 
85% of the average effect 
received by experimental group 
patients in base scenarios. 

Alter ω such that treatment 
effect received by switching 
patients equals 75% - 78% of 
the average effect received by 
experimental group patients. 
 
In scenarios where the 
treatment effect is not time-
dependent, set ω to 1 � such 
that the treatment effect 
received by switching patients 
is the baseline effect received 
by the experimental group. 

 

Based on the variables and alternative values presented in Table D1, 72 scenarios were run.   
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Appendix E:  Applying the methods 

Here we describe precisely how each switching adjustment method was applied and how restricted 

mean survival was estimated. 

• Intention to treat 

The restricted mean associated with an ITT analysis was calculated by applying Stata�s �stci, rmean� 

command which computes the mean survival time restricted to the longest follow-up time (that is, 

1095 days) for the specified patient group.  For the ITT analysis this was applied to the control group 

data confounded by treatment crossover.   

• Per protocol � exclude switchers 

The restricted mean associated with a per-protocol analysis where switching patients were excluded 

was calculated by excluding all switching patients and using Stata�s stci command. 

• Per protocol � censor switchers 

The restricted mean associated with a per-protocol analysis where switching patients were censored 

was calculated by censoring all switching patients at the time at which they switched, and using 

Stata�s stci command on this adjusted dataset. 

• Treatment as a time-dependent covariate 

Treatment was included as a time-dependent covariate within a Cox model including covariates.  This 

method was expected to be biased, because including covariates adjusts for factors through which 

the treatment has an effect.  However excluding covariates would also be expected to lead to bias, 

because the prognosis of switching patients would not be accounted for.  The restricted mean was 

estimated using a �survivor function� approach.  A Weibull model was fitted to the experimental group 

survival data and the associated survivor function and hazard function were derived.  The 

experimental group hazard function was multiplied by the inverse of the HR to obtain the control 

group hazard function, and the control group survivor function was then derived up to 1095 days.  
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Confidence intervals (CIs) for the mean survival estimate were calculated by applying the 95% CIs of 

the estimated treatment effect in the �survivor function� process. 

• Structural Nested Models - Observational SNM with g-estimation 

The observational SNM included in the simulation study was applied using the stgest command in 

Stata, in line with the example given by Sterne and Tilling (2002).[17]  Generally, the SNM method is 

applied to observational datasets and in the context of an RCT applying the method is more complex.  

The SNM was applied to the control group after disease progression had occurred, to estimate the 

treatment effect in switching patients compared to control group patients that did not switch.  The 

resulting AF was used to �shrink� survival times in switching patients in order to arrive at a 

counterfactual dataset adjusted for switching.   

The restricted mean associated with the adjusted dataset was estimated using Stata�s stci command, 

and CIs for the restricted mean estimate were calculated by applying the 95% CIs of the estimated 

treatment effect in the �shrinkage� process.  This is likely to represent an underestimate of the true 

confidence interval as it does not take into account the uncertainty in the underlying survival 

distribution. 

In order to test the sensitivity of the observational SNM method to not including all prognostic 

confounders, two versions of the method were included.  In the first version, all covariates (baseline 

prognosis group, time-to-disease progression group, antigen at baseline group, antigen at 

progression group, and antigen over time group) were included, and in the second version the 

baseline prognostic group covariate was excluded. 

• Inverse Probability of Censoring Weights 

IPCW was applied in line with the example given by Fewell et al (2004),[36] although unlike Fewell et 

al�s example the IPCW method rather than a full MSM was applied.  In addition, weights were only 

applied to patients in the control group, as the context is an RCT rather than an observational study.   

To apply the IPCW method using stabilised weights first the simulated data were split into time 

intervals and time-dependent covariate values were recorded for each of these.  Data were excluded 
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��� switching patients beyond the point of switch, and OS was censored for these patients.  IPCWs 

were then estimated for each patient and for each time interval.  The numerator of each stabilised 

weight was the cumulative probability of remaining uncensored (that is, not switching) from the 

beginning of follow-up to the end of the interval given only baseline covariates and the number of 

consultations since randomisation.  This was estimated for all control group patients for all time 

periods.  The denominator of the stabilised weight was the cumulative probability of remaining 

uncensored (that is, not switching) to the end of the interval given baseline and time-dependent 

covariates, and the number of consultations since randomisation.  These weights were only different 

from 1 for time periods during which patients were at risk of switching � that is after disease 

progression had been observed, and before 3 consultations after disease progression had taken 

place.  The probabilities of remaining uncensored (that is, not switched) were obtained by fitting 

pooled logistic models with informative censoring due to treatment switching as the dependent 

variable.  A Cox proportional hazards model that incorporated baseline (but not time-dependent) 

covariates was then run, weighted by the stabilised weights, in order to estimate an adjusted IPCW 

HR. 

To test the sensitivity of the IPCW method to the �no unmeasured confounders� assumption two 

versions of the method were applied.  The first included all baseline and time-dependent covariates:  

o Baseline prognosis group 

o Baseline antigen group (antigen level at baseline split into 3 groups) 

o Time-to-disease progression group 

o Antigen at disease progression group 

o Antigen group (which splits patients into 6 groups based upon their antigen level as this changes over 

time) 

o An interaction term of time-to-disease progression group multiplied by antigen at time of progression 

group. 

The second version excluded all antigen-related covariates. 

The IPCW approach allows a weighted Kaplan-Meier (WKM) curve to be obtained, which would 

provide the optimal restricted mean measure for the method.  However, Fewell et al�s Stata 
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�ethodology does not provide this curve,[36] and there are problems with calculating this in the 

context of a simulation study.  For the WKM to be estimated the sum of the weights for all patients at 

risk, and all patients who experienced the event, for each time point, must be calculated.  In the 

simulation study it was possible that control group patients with the longest follow-up times may 

switch and be censored at an earlier date and therefore a new administrative censoring time (that is, 

the time to which the restricted mean is calculated) would need to be generated for each simulation in 

order to avoid biased overestimates of mean survival being produced.  Therefore, generating the 

WKM accurately in a simulation study would be very computationally-intensive and therefore a 

�survivor function� approach � as described for the �Treatment as a time-dependent covariate� 

method � using the IPCW HR was taken to estimate restricted mean survival for the control group at 

1095 days.  This should represent a close approximation of the IPCW WKM.  CIs for the mean 

survival estimate were calculated by applying the 95% CIs of the IPCW HR in the �survivor function� 

process. 

• RPSFTM with log-rank test 

The RPSFTM included in the simulation study was applied using the strbee Stata program developed 

by White et al (2002).[37]  The RPSFTM method provides an estimate of the treatment effect adjusted 

for treatment switching in the form of an acceleration factor.  It also provides counterfactual survival 

times � i.e. survival times that would have been observed if nobody had received treatment.  Given 

this, we used two approaches to calculate the control group restricted mean: 

• �Extrapolation� approach.  Under this approach the recensored counterfactual survival times 

produced by the strbee command were extrapolated out to 1095 days and the area under the 

extrapolated survival curve (that is, the restricted mean) was estimated.  A Weibull model was 

used to extrapolate.  The extrapolated portion was relatively small as mean survival was 

restricted to 1095 days, but a poor extrapolation could still impact upon the bias associated 

with this approach. 

• �Survivor function� approach.  This approach is similar to the �survivor function� approach 

previously described for the �Treatment as a time-dependent covariate� method, adapted for 

use with an acceleration factor.  A Weibull model was fitted to the experimental group data 
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and the time associated with each survivor function probability was divided by the RPSFTM 

AF in order to obtain the survival times associated with the survival probabilities for the control 

group.  Mean survival was estimated up to 1095 days by calculating the area under the 

survival curve.  Confidence intervals (CIs) for the mean survival estimate were calculated by 

applying the 95% CIs of the estimated treatment effect in the �survivor function� process. 

 

• IPE algorithm 

The IPE algorithm approach was also applied using the strbee Stata program.[37]  The method was 

applied using full recensoring, and included versions with and without covariates.  It was also applied 

using both a Weibull distribution and an exponential distribution in order to examine the sensitivity of 

the method to the parametric form chosen in the treatment effect estimation process. 

In addition to an AF adjusted for treatment switching, the IPE method provides the parameter values 

of the final parametric model used to estimate the adjusted treatment effect.  These were used to 

estimate the restricted mean survival at 1095 days associated with the final model.  This is similar to 

the �extrapolation� approach described above for the RPSFTM method.  The �survivor function� 

approach was also applied in order to obtain alternative restricted mean estimates.  Importantly when 

the IPE method was applied using an exponential model substantial differences between the 

�extrapolation� approach and the �survivor function� approach were expected.  Under the 

�extrapolation� approach the extrapolation was undertaken using the final exponential model 

estimated by the IPE approach, whereas under the �survivor function� approach the treatment effect 

obtained using the exponential version of the IPE method was applied to the experimental group 

survival times estimated using a Weibull model.   

As for the other adjustment methods, CIs for the restricted mean estimate were calculated by applying 

the 95% CIs of the estimated treatment effect in the restricted mean estimation process.  As noted by 

Morden et al (2011) this was likely to provide relatively poor coverage as the confidence intervals 

associated with the treatment effect from the final IPE iteration are underestimates.[5]   

• Other methods:  Two-stage Weibull 
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���� method involved first estimating the switching treatment effect in the control group for the period 

following disease progression.  A Weibull model was used to estimate this treatment effect, including 

the following covariates:   

o Baseline prognosis group 

o Baseline antigen group  

o Time-to-disease progression group 

o Antigen at disease progression group 

These are the �baseline� covariates in the secondary dataset that only covers the post-progression 

period for the control group.  The resulting treatment effect was then used to shrink survival times in 

switching patients using the following equation: 

counterfactual survival time =  crossover time +  1
AF ∗ (observed survival − crossover time)  

The restricted mean survival of the adjusted dataset produced was then calculated using Stata�s stci 

command, and confidence intervals were calculated using the confidence intervals of the treatment 

effect.   
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Appendix F:  Overview of simulation scenarios 

�able F1 provides information on each of the scenarios simulated.  The true restricted mean 

unconfounded by treatment switching is presented, along with the average treatment effect in terms of 

a hazard ratio (calculated using a Cox model) and an acceleration factor (calculated using a Weibull 

model).  Where there is a time-dependent treatment effect this reflects only an approximation of the 

true treatment effect as proportional hazards/constant acceleration factor assumptions do not hold.  In 

terms of a hazard ratio, the average treatment effect varied between 0.50 and 0.75. 

Table F1 shows that the switching proportion varied between 52% and 94% of all control group 

patients.  Scenarios 13-24, 37-48 and 61-72 were designed to result in higher levels of switching, 

although these levels are probabilistic and are reliant on other characteristics.  This led the level of 

switching to vary between otherwise equivalent scenarios with switching proportions highest in 

Scenarios 25-48, followed by Scenarios 49-72 and 1-24.  Table F1 also presents the switching 

proportion as a percentage of the control group patients that became �at-risk� of switching.  Control 

group patients could only switch if they were alive at their first �consultation� at 21 days.  The 

proportion of patients that died before this point and never became at-risk depended upon disease 

severity.  The proportion of switching patients as a percentage of patients that became at-risk ranged 

from 61% to 96%.   

Table F1 shows that Scenarios 1-24 incorporated a complex switching probability mechanism in 

which better prognosis patients were generally more likely to switch.  Scenarios 25-48 and 49-72 

incorporated a simpler switching probability mechanism based only upon antigen level at the time of 

disease progression.  In Scenarios 25-48 patients with a relatively poor prognosis were more likely to 

switch.  The opposite was true in Scenarios 49-72.   

Table F1 shows that in Scenarios 1, 2, 5, 6, 13, 14, 17 and 18 the treatment effect received by 

experimental group patients was dependent upon the antigen level and time and in these scenarios 

switching patients received a reduced treatment effect.  In Scenarios 9, 10, 11, 12, 21, 22, 23 and 24 

the treatment effect received by experimental group patients was time-dependent and related to the 

antigen level, and an additional decrement (compared to scenarios 1, 2, 5, 6, 13, 14, 17 and 18) was 

applied to the effect received by switching patients (in Table F1 these are labelled as �Yes+� in the 



50 

 

�� ¡¢£dependent treatment effect� column).  In scenarios 3, 4, 7, 8, 15, 16, 19 and 20 the treatment 

effect was not time-dependent or related to the antigen � in these scenarios the �common treatment 

effect� assumption held.  This pattern across scenarios was repeated in scenarios 25-48 and 49-72 

(i.e. scenarios 25 and 49 are equivalent to scenario 1, except with altered switching mechanisms, and 

so on).  Further details on the effect size decrement applied to switching patients in each scenario are 

included (�Treatment effect in switching patients (AF)�), as well as on the effect size as a proportion of 

that received by the experimental group.  This varied between 75% and 100%.      
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¤able F1:  Overview of simulated scenarios 

Scenario 

Truth 
Average treatment 
effects 

Mean 
switching 
% of 
total 

Mean 
switching 
% of at 
risk 

Mean 
censoring 
proportion 
(%) 

Disease 
severity 

Prognosis of 
switching 
patients 

Time-
dependent 
treatment 
effect 

Treatment 
effect in 
switching 
patients 
(AF) 

% of exp 
group 
treatment 
effect 

Restricted 
mean 
(Control 
group) 

Restricted 
mean 
(Exp 
group) HR AF 

1 372.06 462.27 0.75 1.28 63.37% 65.33% 7.19% Low 
Complex - 
good Yes  1.09 85% 

2 372.06 579.28 0.52 1.75 61.54% 63.44% 13.42% Low 
Complex - 
good Yes  1.48 85% 

3 344.47 568.12 0.51 2.15 56.26% 61.07% 19.97% Low 
Complex - 
good No 2.15 100% 

4 344.47 437.88 0.75 1.39 58.46% 63.45% 11.65% Low 
Complex - 
good No 1.39 100% 

5 216.96 285.64 0.73 1.32 60.25% 64.04% 0.84% High 
Complex - 
good Yes  1.12 85% 

6 216.96 381.51 0.50 1.80 58.17% 61.82% 2.74% High 
Complex - 
good Yes  1.53 85% 

7 201.45 387.21 0.51 2.17 52.48% 60.56% 7.02% High 
Complex - 
good No 2.17 100% 

8 201.45 271.95 0.75 1.40 54.09% 62.41% 2.80% High 
Complex - 
good No 1.40 100% 

9 372.06 462.27 0.75 1.28 63.74% 65.71% 6.86% Low 
Complex - 
good Yes + 1.00 78% 

10 372.06 579.21 0.52 1.75 61.45% 63.36% 12.86% Low 
Complex - 
good Yes + 1.31 75% 

11 216.96 285.64 0.73 1.32 60.52% 64.32% 0.76% High 
Complex - 
good Yes + 1.00 76% 

12 216.96 381.51 0.50 1.80 58.02% 61.66% 2.58% High 
Complex - 
good Yes + 1.36 75% 

13 372.06 462.27 0.75 1.28 88.37% 91.10% 7.25% Low 
Complex - 
good Yes  1.09 85% 

14 372.06 579.21 0.52 1.75 87.96% 90.68% 13.80% Low 
Complex - 
good Yes  1.48 85% 

15 344.47 568.12 0.51 2.15 80.99% 87.90% 20.60% Low 
Complex - 
good No 2.15 100% 

16 344.47 437.88 0.75 1.39 81.29% 88.23% 11.80% Low 
Complex - 
good No 1.39 100% 

17 216.96 285.64 0.73 1.32 83.30% 88.53% 0.83% High 
Complex - 
good Yes  1.12 85% 
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¥8 216.96 381.51 0.50 1.80 82.66% 87.85% 2.81% High 
Complex - 
good Yes  1.53 85% 

19 201.45 387.21 0.51 2.17 74.83% 86.34% 7.24% High 
Complex - 
good No 2.17 100% 

20 201.45 387.21 0.75 1.40 75.20% 86.77% 2.84% High 
Complex - 
good No 1.40 100% 

21 372.06 462.27 0.75 1.28 88.39% 91.12% 6.87% Low 
Complex - 
good Yes + 1.00 78% 

22 372.06 579.21 0.52 1.75 88.02% 90.75% 13.09% Low 
Complex - 
good Yes + 1.31 75% 

23 216.96 285.64 0.73 1.32 83.30% 88.53% 0.74% High 
Complex - 
good Yes + 1.00 76% 

24 216.96 381.51 0.50 1.80 82.77% 87.97% 2.65% High 
Complex - 
good Yes + 1.36 75% 

25 372.06 462.27 0.75 1.28 69.65% 71.80% 7.02% Low Simple - poor Yes  1.09 85% 

26 372.06 579.21 0.52 1.75 71.62% 73.84% 13.10% Low Simple - poor Yes  1.48 85% 

27 344.47 568.12 0.51 2.15 65.86% 71.48% 19.08% Low Simple - poor No 2.15 100% 

28 344.47 437.88 0.75 1.39 64.03% 69.50% 11.15% Low Simple - poor No 1.39 100% 

29 216.96 285.64 0.73 1.32 64.89% 68.96% 0.81% High Simple - poor Yes  1.12 85% 

30 216.96 381.51 0.50 1.80 66.71% 70.90% 2.60% High Simple - poor Yes  1.53 85% 

31 201.45 387.21 0.51 2.17 59.78% 68.98% 6.47% High Simple - poor No 2.17 100% 

32 201.45 387.21 0.75 1.40 57.88% 66.79% 2.61% High Simple - poor No 1.40 100% 

33 372.06 462.27 0.75 1.28 69.16% 71.30% 6.89% Low Simple - poor Yes + 1.00 78% 

34 372.06 579.21 0.52 1.75 71.64% 73.86% 12.52% Low Simple - poor Yes + 1.31 75% 

35 216.96 285.64 0.73 1.32 65.02% 69.10% 0.75% High Simple - poor Yes + 1.00 76% 

36 216.96 381.51 0.50 1.80 66.95% 71.15% 2.52% High Simple - poor Yes + 1.36 75% 

37 372.06 462.27 0.75 1.28 93.31% 96.20% 7.23% Low Simple - poor Yes  1.09 85% 

38 372.06 579.21 0.52 1.75 93.41% 96.30% 13.78% Low Simple - poor Yes  1.48 85% 

39 344.47 568.12 0.51 2.15 87.06% 94.50% 20.65% Low Simple - poor No 2.15 100% 

40 344.47 437.88 0.75 1.39 86.83% 94.25% 11.72% Low Simple - poor No 1.39 100% 

41 216.96 285.64 0.73 1.32 89.12% 94.71% 0.84% High Simple - poor Yes  1.12 85% 

42 216.96 381.51 0.50 1.80 89.54% 95.16% 2.80% High Simple - poor Yes  1.53 85% 

43 201.45 387.21 0.51 2.17 81.17% 93.65% 7.17% High Simple - poor No 2.17 100% 

44 201.45 387.21 0.75 1.40 80.77% 93.20% 2.81% High Simple - poor No 1.40 100% 

45 372.06 462.27 0.75 1.28 93.31% 96.20% 6.86% Low Simple - poor Yes + 1.00 78% 
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¦6 372.06 579.21 0.52 1.75 93.51% 96.40% 12.96% Low Simple - poor Yes + 1.31 75% 

47 216.96 285.64 0.73 1.32 88.87% 94.44% 0.75% High Simple - poor Yes + 1.00 76% 

48 216.96 381.51 0.50 1.80 89.49% 95.11% 2.62% High Simple - poor Yes + 1.36 75% 

49 372.06 462.27 0.75 1.28 66.26% 68.31% 7.15% Low Simple -good Yes  1.09 85% 

50 372.06 579.21 0.52 1.75 64.57% 66.57% 13.45% Low Simple -good Yes  1.48 85% 

51 344.47 568.12 0.51 2.15 59.10% 64.15% 19.99% Low Simple -good No 2.15 100% 

52 344.47 437.88 0.75 1.39 60.78% 65.97% 11.46% Low Simple -good No 1.39 100% 

53 216.96 285.64 0.73 1.32 61.53% 65.39% 0.82% High Simple -good Yes  1.12 85% 

54 216.96 381.51 0.50 1.80 60.01% 63.78% 2.76% High Simple -good Yes  1.53 85% 

55 201.45 387.21 0.51 2.17 53.90% 62.19% 6.96% High Simple -good No 2.17 100% 

56 201.45 387.21 0.75 1.40 55.26% 63.76% 2.77% High Simple -good No 1.40 100% 

57 372.06 462.27 0.75 1.28 66.15% 68.20% 6.91% Low Simple -good Yes + 1.00 78% 

58 372.06 579.21 0.52 1.75 64.45% 66.45% 12.86% Low Simple -good Yes + 1.31 75% 

59 216.96 285.64 0.73 1.32 61.95% 65.84% 0.78% High Simple -good Yes + 1.00 76% 

60 216.96 381.51 0.50 1.80 60.00% 63.76% 2.58% High Simple -good Yes + 1.36 75% 

61 372.06 462.27 0.75 1.28 91.44% 94.27% 7.26% Low Simple -good Yes  1.09 85% 

62 372.06 579.21 0.52 1.75 90.87% 93.68% 13.88% Low Simple -good Yes  1.48 85% 

63 344.47 568.12 0.51 2.15 84.11% 91.30% 20.81% Low Simple -good No 2.15 100% 

64 344.47 437.88 0.75 1.39 84.13% 91.31% 11.77% Low Simple -good No 1.39 100% 

65 216.96 285.64 0.73 1.32 86.39% 91.81% 0.85% High Simple -good Yes  1.12 85% 

66 216.96 381.51 0.50 1.80 86.25% 91.67% 2.79% High Simple -good Yes  1.53 85% 

67 201.45 387.21 0.51 2.17 77.63% 89.57% 7.30% High Simple -good No 2.17 100% 

68 201.45 387.21 0.75 1.40 77.78% 89.75% 2.81% High Simple -good No 1.40 100% 

69 372.06 462.27 0.75 1.28 91.42% 94.25% 6.87% Low Simple -good Yes + 1.00 78% 

70 372.06 579.21 0.52 1.75 91.40% 94.23% 12.98% Low Simple -good Yes + 1.31 75% 

71 216.96 285.64 0.73 1.32 86.59% 92.03% 0.75% High Simple -good Yes + 1.00 76% 

72 216.96 381.51 0.50 1.80 86.27% 91.69% 2.59% High Simple -good Yes + 1.36 75% 
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Appendix G:  Relative bias graphs 

Graphs showing bias across scenarios are presented throughout this Appendix � care should be taken when comparing these because the y-axes use different scales.   

Figure G1:  Mean bias (%) across scenarios � ITT analysis 

 

Figure G2:  Mean bias (%) across scenarios � Exclusion and censoring approaches 

 

Figure G3:  Mean bias (%) across scenarios � TDCM 
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ÙÚgure G4:  Mean bias (%) across scenarios � IPCW 

 

Figure G5:  Mean bias (%) across scenarios � RPSFTM and IPE Weibull �survivor function� approaches  

 

Figure G6:  Mean bias (%) across scenarios � RPSFTM and IPE Weibull �extrapolation� approaches  
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ûügure G7:  Mean bias (%) across scenarios � SNM with g-estimation 

Figure G8:  Mean bias (%) across scenarios � Two-stage Weibull 

Figure G9:  Bias across zero TDC scenarios � selected methods 
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Figure G10:  Bias across TDC scenarios � selected methods 

 

Figure G11:  Bias across additional TDC scenarios � selected methods 
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Appendix H:  Coverage 

Figure H1:  Coverage across zero TDC scenarios � selected methods 

Figure H2:  Coverage across TDC scenarios � selected methods 

Figure H3: Coverage across additional TDC scenarios � selected methods 
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Appendix I: MSE  

Note some graphs in this section have been truncated in order to remain useful.  Truncated bars are signified by an arrow at their peak. 

Figure I1:  MSE across zero TDC scenarios � selected methods 

 
Figure I2:  MSE across TDC scenarios � selected methods 

 
Figure I3: MSE across additional TDC scenarios � selected methods 
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