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Sonic crystals have been investigated in recent years both as a potential form of noise barrier, and as a form

of sonic art aimed at enhancing perception of the surrounding acoustic environment. The broader aim of this

research is concerned with the auralization of these structures, which has, as yet, rarely been attempted. In a

previous publication, prediction of the acoustic wave propagation through 2-D arrays of solid, cylindrical scatterers

embedded in air was performed in 2-D Finite Difference Time Domain (FDTD) simulations. In this paper, the

model has been extended into the third dimension and the results are compared with those obtained in the previous

experiment. In both the 2-D and 3-D simulations the location of the fundamental band gap corresponds with

the predicted location - predictions being based on simple theoretical considerations relating the frequency of the

transmission gaps to the array configuration.

1 Introduction

In 1995 the artist Eusebio Sempere created a sculpture

composed of a three-dimensional array of polished stainless-

steel tubes with a rotating base. As well as being visually

arresting, it was also observed that the sculpture behaved

as a sonic filter that blocked transmission of particular fre-

quencies. A listener on one side heard a tonal modification

of those sound sources located on the other side, the visual

equivalent of coloured glass prisms [1]. The sculpture cap-

tured the interest of several scientists who anticipated the ap-

plication of such structures in environmental noise control.

Meseguer et al. posited that, in addition to blocking sound,

the structures might even be used to transform unpleasant en-

vironmental noise into something far more soothing [2]. The

use of sonic crystals as a form of noise barrier has been the

subject of investigation in recent years, notably in the work

of Sanchez-Perez et al. [3].

Sonic crystals have also attracted interest from other artists

as well as scientists. In 2009 Sound consultancy Liminal

designed a structure intended to ‘recycle’ the sounds of the

city, turning unwanted environmental noise into sound with

a more ‘musical’ quality. Their work, entitled ‘The Organ of

Corti’ is a portable device to be placed near to a source of

white noise, such as a motorway or river wharf. Depending

on the nature of the sound source and the position of the lis-

tener, it was posited that interesting filtering effects would be

audible [4]. Based on comments posted on internet forums

such as wired.co.uk [5], it would seem that whilst the concept

was generally well-received, the success of the structure as a

sound augmenting device was perhaps limited. It is possible

that more complex structures could produce a more remark-

able effect. It is thought here that the use of auralization as a

design tool might aid the development of such structures.

As yet there has been little attempt to auralise sonic crys-

tals during the planning process. It is our belief that this

could help in several ways. Firstly, it would allow the de-

signer to fine-tune the design from a listener’s perspective;

secondly, it would allow the designer to experiment more

freely with designs of a higher complexity; and thirdly, it

may help to optimise the design for a particular space - per-

haps one known to suffer from the adverse effects of environ-

mental noise. It is hoped that sufficiently ‘true-to-life’ aural-

izations may assist in securing the future of sonic crystals as

interesting and acoustically beneficial ornaments in noisy en-

vironments. The wider aim is therefore to develop a robust

method for simulating the impulse response (IR) at observa-

tion points located on the opposing side of a sonic crystal

barrier to a broadband noise source. auralizations may then

be performed through convolution of environmental sound

recordings with the synthetic IRs and, in conjunction with

appropriate visualisation, a fairly realistic representation of

a sound environment would then be subjected to perceptual

evaluation.

2 Background

When sound waves propagate within a crystalline struc-

ture, they are scattered through interaction with atoms or el-

ements in the material. At certain frequencies and angles

of incidence, either or both of the following scenarios may

ensue: intense peaks of reflected radiation over a narrow

range of frequencies; a pattern of standing waves signifying

a band gap in the frequency spectrum of the transmitted sig-

nal. Considering the analogous phenomenon of electromag-

netic waves, these effects may be observed in real crystals

and explains the vivid colouration and iridescent appearance

of some gemstones. W. L. Bragg explained the phenomena

by considering the crystal as a set of discrete parallel planes

separated by a constant parameter d (figs. 1 and 2). ‘Bragg

peaks’ as the peaks came to be known, are said to be the re-

sult of constructive interference between reflections off the

various planes, whilst band gaps are the result of deconstruc-

tive interference between the overlapping waves. Interfer-

ence is constructive when the phase shift is a multiple of 2π

and destructive at odd multiples of π; a condition which can

be expressed by Bragg’s law,

2d sin θ = nλ (1)

where n is an integer determining the reflection order, λ

is the wavelength and θ is the scattering angle. With the sub-

stitution of the distance d for the lattice constant denoted a,

the centre frequency of the band gap is thus given by,

fc =
c

2a
(2)

where c is the speed of sound in air. In theory a band

gap will occur at multiples of the fundamental affected fre-

quency, hence it is common to refer to multiple band gaps

as a periodic band gap (PBG). The width of the band gap is

determined by the filling fraction - i.e. the fraction of the

structure occupied by the cylinders [6]. For a square lattice

arrangement, the filling fraction, F, is given by,

F =
πø2

4a2
(3)

where ø is the diameter of the cylinders and a is the lattice

constant. Experiments performed in [6] and [7] suggest that

a filling fraction of around 0.3-0.4 is optimum for a wider

band gap.

In crystallography the dimensionality of the structure re-

lates to the number of directions in which the structure has

periodicity. For example, in the case of a basic cubic lattice,



Figure 1: In the 2-D square lattice, waves are scattered from
lattice planes, also known as Bragg planes, separated by the
interplanar distance d. The first lattice plane lies between
the primitive element and its nearest neighbours, the 2nd

lies between its second-nearest set of neighbours, and so on.

Figure 2: The first and second Bragg planes of a 3-D square
lattice.

in 1-D the periodicity is in one direction only with the in-

clusions forming layers. In 2-D, the inclusions have infinite

height but with periodicity in both the x and y directions. In

3-D, the structure is periodic in all 3 axial directions (fig. 3).

In the cubic case, the limit is 3 dimensions, although higher

dimensions are possible for different types of lattice.

Figure 3: 1-D, 2-D and 3-D Periodic structures.

3 Method

The simulations presented here are of a 2-D sonic crystal

with cylindrical steel rod-like inclusions. The layout of the

simulation domain in 3-D and 2-D are depicted in figs. 4 and

5 respectively. Using (1) and taking the lattice constant to be

0.11m, it is thought the fundamental band gaps for the first

and second Bragg planes are likely to occur around 1.6kHz

and 1.1kHz, with secondary gaps occurring at multiples of

these frequencies. According to (3), a cylinder radius of

3.5cm achieves a filling fraction of 0.32 which is within the

optimum range. In reality, the existence of the PBG and its

bandwidth are dependent upon more than the geometry of the

array of inclusions. The material characteristics of the struc-

ture, specifically the contrast between its density and elastic

properties, are also aspects for consideration. In previous 2-

D simulations, it was found that varying the elastic properties

of the media did not have a substantial effect on the results

of the simulations; hence, for greater efficiency, it has been

assumed here that the surfaces of the inclusions are perfectly

reflective and the velocity of sound may therefore remain a

constant. Our method is therefore only applicable to struc-

tures composed of highly reflective materials as including

their absorptive properties would require the reintroduction

of the velocity component in the simulations.

Figure 4: Layout of the 3-D simulation domain showing the
portion of the structure to be simulated. Padding is applied

at either end to eliminate reflections.

Figure 5: Layout of the 2-D simulation domain. Padding is
applied at either end to eliminate reflections.

3.1 3-D Simulations

Due to the translational symmetry of the structure in two

dimensions, it is not necessary to discretise and perform a

simulation of the entire structure. To economise on speed of

calculation and memory usage, only a thin segment of the 3-

D structure is simulated (fig. 4), and at each of the 4 sides of

the segment and their respective edges, a periodic boundary

condition (PBC) is applied.

Translational symmetry describes the invariance of a sys-

tem of equations under any translation. In crystallographic

terms, the system equates to the primitive or unit cell of the

crystal lattice - a structure comprised of identical parts ar-

ranged in a repeating pattern. A translation therefore repre-

sents a spatial ‘shift’ from a point in the unit cell, in a given

direction and by a certain distance, a, referred to as the lat-

tice constant, such that one arrives at the exact same point in

a neighbouring cell.



T (x) = T (x + a) (4)

It also implies that in each of the two dimensions hav-

ing translational symmetry, the object is of infinite propor-

tions. This precludes diffraction of sound around the top and

sides of the barrier - an effect which is more pronounced at

lower frequencies where wavelengths are long in relation to

the barrier dimensions. Also excluded from the model are

the effects of local resonance. At certain frequencies, the

natural resonances of a real solid structure may be excited,

causing the object to vibrate at an audible frequency. Should

this happen, the structure has effectively become an acoustic

source in its own right. Once again, this is an effect more

often observed at lower frequencies. The main implication

of all this is that the modelled impulse response is likely to

lack the low frequency components that would be conspic-

uous in a real-world scenario as a result of diffraction and

local resonance.

Using the 3-D standard leapfrog (SLF) compact explicit

scheme described in [8], the implementation of the PBC is

very simple. As we have seen, the requisite pressure compo-

nents for performing the update equation are obtained from

the neighbouring nodes. For nodes that lie on the boundary

or an edge, the values of neighbouring nodes that would fall

outside the simulation domain are simply replaced with those

of their ‘mirror images’ (see fig. 6). For boundary nodes,

only one pressure component needs substituting, whilst for

edges and corner nodes, two and three pressure components

are substituted respectively.

Figure 6: The 3-D rectilinear mesh. Pressure nodes where a
PBC has been implemented derive their values from

neighbouring nodes and ‘mirror image’ nodes.

The values of nodes at either end of the slice are held at

zero; hence the ends behave as perfectly reflective bound-

aries. As one only wishes to capture the direct signal, it is

therefore necessary to add sufficient space to the rear of the

source and receiver so as to exclude the unwanted reflections

from the impulse response. The simulation is performed for

two different mesh resolutions, where the values of dx were

given to be 5mm and 2.5mm. These equate to sampling rates

of 118.67kHz and 237.34kHz respectively. It was found that

values of dx above 5mm did not yield sufficient structural

detail, while values below 2.5mm caused deterioration in the

low frequency response due to shortening the duration of the

IR in time.

A Gaussian source is implemented across a vertical cross-

section of the mesh, stimulating a planar source. The planar

nature of the source is significant as it implies that, given

the periodicity of the crystal in 2 dimensions, the 2-D and

3-D simulations should yield identical results. Any slight

differences would be a consequence of rounding error and

some slight discrepancies in the sampling rate and window

length. The purpose of doing the comparison is therefore

to check that the 3-D model is in accordance with the 2-D

model - vital if we are to progress onto modelling triply pe-

riodic structures as intended. There are, however, additional

reasons why one might opt for a planar or line source in a

situation such as this. Whereas a point source would yield

a more general transform function of the structure, a planar

source is more closely analagous to a near-field broadband

noise source such as a road or a river, and as such, is more

relevent to the intended application. Finally - and somewhat

crucially - is the fact that the use of a point source here would

prohibit the application of the PBC.

3.2 2-D Simulations

Previous simulations presented in [9] were performed us-

ing a point source and FDTD formulation in which velocity

and pressure components were both modelled. In this paper,

to enable a closer comparison between the 2-D and 3-D im-

pulse responses, the 2-D SLF compact explicit scheme[10]

has been used with a line source. The main benefit of this

type of source is that it allows us to record IRs from any

position on the rear face of the structure, whereas the point

source prohibited measurements taken from anywhere other

than a central point. As in the 3-D simulations, a PBC has

also been applied to the left and right sides of the simulation

domain. The perfect symmetry of the unit cell ensures that

the results are identical for any number of columns. Once

again, the simulations are performed twice for values of dx

equal to 5mm and 2.5mm, both before and after the insertion

of the sonic crystal, although this time the values of dx equate

to sampling rates of 96.89kHz and 193.79kHz respectively.

The difference can be explained by the fact that the tempo-

ral resolution of the mesh is limited by the Courant condition

[11], which dictates

dt ≤
dx
√

d · c
(5)

where dt is the time step, dx the cell size, c the speed of

sound and d the number of dimensions.

3.3 Results

In figs. 7 - 10, the visualisations have been truncated to

show only the region of interest. The source is travelling

from left to right. It would appear that the majority of the in-

cident wave energy is reflected back toward the source, and

a lesser amount is transmitted through the barrier to be de-

tected at the receiver. To aid visualisation, the simulation do-

main has been duplicated to give the impression of an array

6 columns wide.

4 Conclusion

In this paper, FDTD simulations were performed in both

3-D and 2-D rectilinar meshes to predict the presence of a



PBG when acoustic waves propagate through an array of

cylindrical scatterers 6 rows deep. The objective behind the

experiment was to obtain suitable IRs for performing aural-

izations of sonic crystals, and to compare the results of the

2-D and 3-D simulations.

Results from both sets of simulations show some corre-

spondence between the predicted locations of the band-gaps

and their actual locations. The fundamental band-gaps are

of most interest, as it is presumed the method of predic-

tion becomes less valid at subsequent band-gaps due to the

complexity of the wave interaction and the discrete nature

of the model - for example, errors associated with the re-

stricted resolution of the inclusions are cumulative with fre-

quency. Moreover, the basis of our predictions was rudimen-

tary, and in future work we intend to adopt a theoretical ap-

proach used in electromagnetics known as the Plane Wave

Expansion (PWE) method [12].

As anticipated, the results of the 3-D simulations using

the planar source are very similar to those of the 2-D simula-

tions. This is an important result as it confirms that our 3-D

model is reliable enough to start investigating more complex

triply periodic structures. This will be the main focus of fu-

ture work, as it is believed that the pronounced filtering ef-

fects observed in the 2-D sonic crystals may be even more

extreme in the 3-D case. Furthermore, from a purely aes-

thetic viewpoint, it is believed that 3-D sonic crystals may be

less limited in their power to both captivate and stimulate the

imagination of an observer.
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Figure 7: 2-D simulation at t = 7ms.

Figure 8: Horizontal slice through 3-D simulation at t = 7ms.

Figure 9: 2-D simulation at t = 7ms.

Figure 10: Horizontal slice through 3-D simulation at t = 7ms.

Figure 11: Fast Fourier Transform of the 2-D IR before and after the barrier is inserted compared. dx = 5mm, Fs = 96.9kHz,
duration = 115ms.



Figure 12: Fast Fourier Transform of the 3-D IR before and after the barrier is inserted. dx = 5mm, Fs = 118.7kHz, duration =
98ms.

Figure 13: Fast Fourier Transform of the 2-D IR before and after the barrier is inserted compared. dx = 2.5mm, Fs = 193.8kHz,
duration = 115ms.

Figure 14: Fast Fourier Transform of the 3-D IR before and after the barrier is inserted. dx = 2.5mm, Fs = 237.3kHz, duration
= 98ms.


