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Abstract—This paper describes research into the automation of 

the identification of harlequin and other ladybird species using 

color images. The automation process involves image processing 

and the use of an artificial neural network as a classifier. The 

ultimate aim is to reduce the number of color images to be 

examined by an expert by pre-sorting the images into correct, 

questionable and incorrect species. The ladybirds are 3-

dimensional and the images have variable resolution. CIELAB 

has been useful as the color space in this research, as it provides 

good separation of chroma components from luminance on a 

color plane. Two major sets of features have been extracted from 

ladybird images: color and geometrical measurements. The 

system combination consisted of J48 decision trees which were 

used to filter out unnecessary features, and multilayer perceptron 

which was used for classification. Trials using ladybird images 

showed 92% class match for the species Harmonia axyridis f. 

spectabilis against Exochomus 4-pustulatus. The identification 

results are rotation and translation invariant. The methods allow 

quantitative data on both intra-species and inter-species variation 

for biodiversity studies. 

Keywords-color images; CIELAB; decision tree; multilayer 

perceptron; automated species identification 

I.  INTRODUCTION  

Ladybirds are small and colorful insects which are 
commonly found in backyards and gardens. Ladybirds are 
beetles (Order: Coleoptera, family: Coccinellidae), and called 
ladybugs in the USA. Many species of ladybirds exist, in the 
UK alone there are over 46 species of ladybirds. Unfortunately, 
among these beetles are invasive species which present a threat 
to the ecological balance of ladybirds. One such species is the 
Harlequin ladybird (Harmonia axyridis), which is known to 
have invaded the UK since 2004 [1].  

This alien species was introduced in Europe as a biological 
control agent [2], [3], [4], [5], [6]. In the USA it has been 
introduced since early 20th century [7]. It is a voracious 
ladybird species that feeds on aphids. Whenever aphids are 
scarce the Harlequin may attack the larvae of ladybird species. 
Harlequins over-winter in large groups to hibernate within 
sheds, attics and parts of buildings where the locations are dry 
and protected. When they are disturbed, they emit a foul 
secretion to deter predators, causing domestic and health issues 
like stained fabrics and skin irritations. The beetle has now 
spread to most parts of England and requires considerable 

attention due to its impact on ecological and biological balance 
through resource competition and intra guild predation [8]. To 
make things worse, there has been a general decline in the 
taxonomic workforce which in effect has been part of the 
taxonomic impediment to biodiversity studies [9], [10]. This 
taxonomic impediment will become serious unless solutions 
are explored to rectify it, and taxonomists need to work 
together with specialists in pattern recognition for getting more 
accurate and rapid results [11], [12]. Apart from constraints on 
human resources, the number of specimens will need to be very 
large in order to perform routine species identifications [13]. 
Partly in response to this, ladybird surveys were setup and 
launched in the UK. The Harlequin Survey and the UK 
Ladybird Survey are examples of web-based recording systems 
for the general public to send in their sightings and photographs 
[14a]. These color images will enable the physical details of the 
ladybird forewings (called ‘elytra’) and details of the thorax to 
be visually examined.  

The use of automated identification of ladybirds may have 
enormous potential and has not been previously explored. In 
spite of the advantages, automating the identification process is 
not a trivial task. During a routine identification task an expert 
will manually obtain details from ladybird’s elytra (and other 
features) for species identification. Dichotomous keys used are 
based on morphological criteria, such as color, shape and size. 
These are too small to examine and laborious considering some 
ladybird species have variety of color forms and spot patterns. 
Both intra-species and inter-species variations can be large, 
making species identification a difficult skill to master. There 
are many forms of H. axyridis; however, only three different 
forms are studied in this paper as shown in Fig. 1.  

 

 

 

 

 

 

 

 

   
 

Fig. 1. Three different forms of Harmonia axyridis under study, from left 

to right: (a) form succinea (black spots & red-orange elytra) (b) form 

conspicua (pair of bull’s eye spots & black elytra) and (c) form  
spectabilis (red-orange spots & black elytra) 
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Table I describes an identification guide for harlequin 
ladybirds in the UK [15].  

 

 

 

 

 

 

 

 

One of the objectives of this research is to get specific 
features that would make harlequin ladybirds identifiable 
through automation. These features are simplified through the 
use of decision trees. Once image processing and classification 
have been performed, species identification can then be 
enhanced using ‘local’ information such as species distribution, 
biogeography, etc.  

The rest of the paper is organized in four sections; a 
literature review on similar work in insect identification is 
discussed next, section III describes the image processing 
techniques and artificial neural networks (ANNs) and presents 
results. The paper then concludes with recommendations for 
future work. 

II. BACKGROUND 

Most of the research to date in automated identification has 
concentrated on the use of image processing and artificial 
neural networks. An image analysis system was developed for 
use on the diagnosis of the teliospores of Tilletia indica (Karnal 
bunt) [16]. The image-processing automatically locates spores 
on a given image and calculates morphological characters. 
Neural networks have long been established to perform rapid 
reliable identification on suitable data sets [17]. Image-based 
automated identification systems such as DAISY (digital 
automated identification system) and ABIS (automated bee 
identification system) [18] blend human expertise in taxonomy 
and computing power to improve insect identification. They 
use image processing, statistical analysis and/or intelligent 
systems. ABIS focuses on identifying bee using linear 
discriminant analysis.  DAISY is a holistic system and uses a 
plastic self-organizing map (PSOM) as the classifier and 
attempts to identify every possible species [19]. Dai and 
Chesmore have used semi-automatic wing venation 
descriptions using multilayer perceptron (MLP) and learning 
vector quantization (LVQ) for the identification of flying 
insects (Diptera and Hymenoptera). The system achieved 
90.9% accuracy for hoverflies and 95.6% for bumblebees using 
LVQ, while getting only 60% for hoverflies and 30% for 
bumblebees using multilayer perceptron (MLP) [20]. While 
these systems have been successful, there exists plenty of room 
for further improvement. 

The system described here is the first known system for 
identifying ladybirds. It has been developed and modified from 
the concept of a generic automated taxon identification system 

proposed by Chesmore [21]. The system obtains geometric and 
color data from macro images of ladybirds. The features are 
then used by an artificial neural network acting as a classifier. 
The outputs are three categories: whether a ladybird is a 
harlequin, non-harlequin, or unknown. For the latter case, 
human expertise will be required to do manual sorting, bearing 
in mind that it is not the system intention to replace human 
expertise as it sorts the input images into categories. It is meant 
for utilizing the computing power available to simplify 
identification, hence reducing fatigue and many errors imposed 
by human abilities when compared to machines.  It also 
substantially reduces the number of images the expert has to 
identify.  

III. METHODOLOGY 

Fig. 2 shows the block diagram of the system. 

 

 

 

 

 

 

 

 

Raw images were provided by the Centre for Ecology & 
Hydrology (CEH), Wallingford, England, which have been 
supplied by members of the public via a web site. The color 
images are fed into a pre-processing stage. At present 
backgrounds are subtracted manually and the size adjusted to 
640x480 pixels. Next, the image is average filtered and then 
de-correlation stretched, when necessary. Thresholding 
produces a binary image. Specific markings on the insect body 
such as spots should appear significantly distinct from noise 
through correct selection of the threshold since the spots are 
usually significantly larger. Then, morphological operations 
such as dilation and opening are performed to produce a 
cleaner binary image. All the image processing steps 
previously mentioned are used to obtain the binary version of 
the original color image, so that proper measurement of 
geometrical features can be performed. The primary 
geometrical features are area, perimeter, major axis length and 
minor axis length of the insect. The derived geometrical 
features are area ratio and aspect ratio. Two sets of geometrical 
measurements were taken per sample ladybird; one for elytra 
and another for spots, if there is any. 

Another vital feature in use is color. Color is selected due to 
its ability to naturally represent the natural characteristics of the 
ladybird, apart from the number of spots. For instance, H. 
axyridis f. succinea is fairly easy to identify due to its orange 
elytra color and 19 black spots. In contrast, H. axyridis f. 
spectabilis can be identified through the number of spots, spot 
color and elytra color. However, it could still be confused with 
a pine ladybird (Exochomus 4-pustulatus), as their colors are 

 
 
Fig. 2. Block diagram of automated ladybird identification system 

(ALIS)

215



similar. In this case, physical measurements are employed to 
confirm the identity. 

The color space to represent pixel colors of both the spots 
and the elytra is CIELAB (or CIEL*a*b*). CIELAB is an 
approximate uniform color scale to represent visual difference 
in the form of color plane [22]. CIELAB is known for its 
ability to represent color separately from luminance [23]. It is 
also able to represent the chroma values in the form of color 
plane, therefore permitting visualization of the ‘clusters’ of 
colors. This is evident from a GretagMacbeth color chart 
converted into CIELAB color plane [24]. CIELAB is used 
since the majority of images are ladybirds photographed in 
natural scenes, not in the laboratory. These ladybird 
photographs were taken out door in various illumination 
settings, which is indeed a variable that is very difficult to 
control. The spot color and the elytra color values are taken per 
pixel and averaged over a ‘pixel capture box’. A fixed size box 
was not used due to the limitations on the actual image 
resolution. This has been based on tests using ladybird images 
of low resolution, where some level of magnification made 
border pixels indistinct and blurred, hence affecting the actual 
CIELAB values after averaging. Fig. 3 shows CIELAB color 
planes for some ladybird species. Both x and y axes are 
normalized values of a* and b*.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The normalization was based on the following formulae: 

Normalized L* = (L*/100)               (1) 

Normalized a* = (a*+120 / 240)     (2) 

Normalized b* = (b*+120 / 240)     (3) 

 
Fig. 3(a) depicts the ‘clusters’ of normalized chroma values 

for some UK species, and Fig. 3(b) shows the distribution of 
chroma values for Harlequin ladybirds (form succinea, form 
conspicua and form spectabilis). The graph tells that a reduced 
feature space in terms of chroma values have been obtained 
from the original three-dimensional RGB image. From a design 
perspective, this information is vital as future baseline 
reference as it would be useful when utilized as part of the 
knowledge base of an expert system.  

Training data was obtained after successive operations of 
image pre-processing and feature extraction on all ladybird 
images, as summarized in Table II.  

 

 

 

 

 

 

 

 

 

A total of 12 normalized features have been selected, as 
listed in Table III. Both chroma channels (a* and b*) were used 
in addition to the hue angle. 

 

 

 

 

 

 

 

 

The images were tested for compliance to scale and rotation 
invariance. The features were normalized to [-1,1]. It is worth 
mentioning that no image scaling has been implemented, hence 
the size of the insects is not known before image processing. 
This is an advantage since users supplied images generally 
have no scale. All the spots’ physical features were normalized 
against their corresponding values for the insect’s body.  

To provide an unbiased estimate of classification accuracy, 
the data was randomly sampled and stratified 10-fold cross 
validation was used. From the 12 features, further feature 
reductions were applied in order to minimize complexity. The 

 
(a) 

 
(b) 

Fig 3. CIELAB color plane for ladybirds under study: (a) UK species (b) 

Invasive species (Harlequin forms) 
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more features will mean more hyper planes constructed in the 
feature space; hence this may make identification difficult. For 
this application there could be instances where only a small 
number of samples has been gathered, thus potentially causing                                                                                                        
difficulty for the following stages. There are many choices of 
statistical method to deal with reducing dimensionality; the 
most popular ones are principal component analysis (PCA), 
singular value decomposition (SVD), independent component 
analysis (ICA), Fisher’s linear discriminant analysis (LDA) and 
kernel PCA. In light of the low number of samples, pruned 
decision tree has been used for deriving a reduced number of 
features, using J48 developed under WEKA 3.6.4 environment 
[25]. J48 is an open source Java implementation of the C4.5 
algorithm in WEKA. C4.5 was derived from ID. Both are Ross 
Quinlan’s algorithms for generating classification models, 
better known as decision trees [26]. The system is also tested 
using PCA as feature reducer to stand as a comparison of 
fitness to the problem. This is highlighted in the next section. 

The design involved two phases. The first phase is the 
selection of features when subjecting H. axyridis f. spectabilis 
against known negative samples (local species) using all 12 
features; apply J48 to generate pruned decision tree and saving 
the resultant features. The first phase covered the following 
species:  Adalia 2-punctata (2-spot), Coccinella 5-punctata (5-
spot), Coccinella 7-punctata (7-spot) and E. 4-pustulatus (pine 
ladybird). The first phase involved all four species been 
identified pairwise, for instance, training set A contains 
samples from H. axyridis f. spectabilis against E. 4-pustulatus, 
etc. This makes the binary identification possible, if not easier 
to manage. Some examples of the local ladybird images are 
shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Learning rate for MLP was 0.3, the neurons used sigmoid 
activation function, and momentum was 0.2. The ‘resultant’ 
features were then supplied to the MLP utilizing back 
propagation algorithm (BP) for classification. As the system 
involves binary (2-class) pattern classification at a time, a One-
against-one (OAO) model was implemented [27]. Only one 
hidden layer was used, as increasing the number of hidden 

layers is not economically feasible in terms of computation 
time and generalization ability of the network [28]. The number 
of hidden neurons has been varied to find the optimal learning 
curve, and it has been found by experiment. Consider K 
features and c output classes. The number of neurons at the 
hidden layer will equal M = cK neurons [29]. The number of 
neurons for the output layer was varied depending on the 
number of target classes. 

The second phase is the test when using the reduced 
features for testing against sample data taken from known 
positive samples (same species but different forms). The results 
from BP are then analyzed to determine the success rate of 
classification. One of the objectives of the research is to 
determine how much intra-species misclassification would 
occur and what features contribute to the misclassification 
errors. Confusion matrix and ROC curves can be used for this 
purpose, whereby the accuracy is obtained by the following 
formulae [30]: 

Accuracy = 1 – error = (Tp+Tn) / (Tp+Fp+Tn+Fn)       (4) 

 

where 

Tp = true positive rate 

Tn = true negative rate 

Fp = false positive rate 

Fn = false negative rate 

 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The 12 features have been narrowed down to lower number 
of features, most of the time to single feature only.  This has 
been achieved through J48 decision tree involving H. axyridis 
f. spectabilis (first phase), as shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The pruned tree shows which features and the minimum 
number of features required to separate the two classes. In this 
example the test was to identify between E. 4-pustulatus (pine 
ladybird) and H. axyridis f. spectabilis. It also shows the 
threshold values for decision at each node, which makes 
statistical inference possible without delving into the 

  
                  (a)                              (b) 

  
                   (c)                                    (d) 

 

Fig. 4. Images of (a) A. 2-punctata (2-spot) (b) C. 5-punctata (5-spot) (c) 
C. 7-punctata (7-spot) (d) E.  4-pustulatus (Pine) 

 
Fig. 5. Example of J48 pruned decision tree 
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mathematical rigor. At the terminal nodes, for instance, the 
lower right box contains the label E4 for E. 4-pustulatus as a 
class, and numbers in brackets indicate the correct 
classifications and the apparent misclassifications. For the tests 
conducted in the first phase, the corresponding feature selection 
against other ‘negative’ species is shown in Table IV. 

Results from Table IV show that H. axyridis f. spectabilis 
and E. 4-pustulatus can be identified with reduced features by 
applying the J48 algorithm. The system is able to discriminate 
the two species based on the geometric features better than 
using color features. However, the identification of other 
species (A. 2-punctata, C. 5-punctata and C. 7-punctata) 
against H. axyridis f. spectabilis relies more on color features. 
This sensible choice by the pruned tree can be verified with the 
actual physical comparison of the ladybirds. Training of the 
MLP using BP algorithm utilized random weight initializations 
per run, and training outcome is provided in Table V.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table VI shows the confusion matrix, where only 80% 
cross-validation accuracy was obtained for H. axyridis f. 
spectabilis and none for E. 4-pustulatus. The resultant features 
obtained from J48 decision tree were applied to a MLP and BP 
algorithm was used. For identifying H. axyridis f. spectabilis 
against E. 4-pustulatus three geometrical features were used 
(max axis, area ratio and area). The number of hidden neurons 
was set to 6. 

 

 

 

 

 

 

 

Results for the J48 operation are shown in the form of 
confusion matrix, as in Table VII. 

 

 

 

 

 

 

 

 

The true positive rates were 0.9 and 0.925 for H. axyridis f. 
spectabilis and E. 4-pustulatus respectively. The result in Table 
VII indicated that it is possible to identify the two species with 
selectively distinct geometrical features. It also shows that the 
system is able to perform without the effect of rotation and 
scaling, despite the similarities between species.  Fig. 6 shows 
the significance of the J48 implementation, by having a 
decision tree reducing the number of features and feeding only 
selected features into BP algorithm. Cross-validation accuracy 
increases to 92%, instead of 80% when using BP alone. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Cross-validation identification accuracies for H. axyridis f. 
spectabilis against E.4-pustulatus using BP, J48 and a combination of the 

two 
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Results for the identification of H. axyridis f. spectabilis 
against other local species are plotted in Figure 7. It shows that 
significant improvement to BP cross-validation accuracy can 
be achieved for identifying some ladybird species using J48 
pruned tree as feature pre-processor. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 shows considerable improvement obtained in the 
identification of H. axyridis f. spectabilis against A. 2-punctata, 
C. 5-punctata, and C. 7-punctata. On average, using BP alone 
did not give satisfactory identification accuracy against the 
three species even though a 98% cross-validation accuracy was 
obtained for the identification of H. axyridis f. spectabilis 
against C. 7-punctata. For the other species, applying J48 
pruned decision tree has improved the cross-validation 
identification accuracy by 18% difference. In contrast, there 
was not much change for H. axyridis f. spectabilis against C. 7-
punctata when using J48 alone and the combination with BP, 
as evident from the group of bars recorded on the far right. 

In the second phase, reduced features were used for testing 
against sample data taken from known positive samples with 
similar color characteristics in order to check for intra-species 
variations.  H. axyridis f. spectabilis was paired with H. 
axyridis f. conspicua and H. axyridis f. succinea, trained using 
the same MLP network using BP algorithm and tested. They 
were also tested using J48 alone, and results compiled. The 
same set was also tested using a combination of J48 and BP 
algorithms. Results are shown in Fig. 8.  

By using J48 the finalized feature obtained was ‘elytra 
color a*’. There was not much improvement when subjecting 
the identification of H. axyridis f. spectabilis with H. axyridis f. 
conspicua. It could be due to the color similarity of the elytra. 
This is evident from close inspection of both the elytra color 
and its corresponding CIELAB color value. Both species have 
dark elytra. The difference in color is quite undetectable to 
human eye, and to a taxonomist a series of typical 
investigations may include visual referencing to reference 
collections. An image processing system, however, can 
quantify the measurements through feature vector operation, 
and through an intelligent system like a trained artificial neural 
network, should be able to provide a solution. A contrasting 
result is obtained for the identification of H. axyridis f. 
spectabilis against H. axyridis f. succinea, where significant 
improvement is noticeable up to 97.5% accuracy. Referring to 

the ladybird images in Fig. 1, their elytra obviously differ in 
color and patterns (spots). This confirms the initial idea that 
contrasting (or similar) elytra colors or spot colors pose 
significant contribution to the identification rate of H. axyridis. 

 

 

 

 

 

 

 

 

 

 

 

 

A further test was conducted where each of H. axyridis f. 
spectabilis, H. axyridis f. conspicua and H. axyridis f. succinea 
was paired with E.4-pustulatus to make up a new database for 
training. They were trained using the same MLP network using 
BP algorithm and tested. Then, the same set was re-trained with 
principal component analysis (PCA) applied to the 12 features 
with 95% variance. Fig. 9 shows the cross-validation 
accuracies. In effect the features have been minimized through 
PCA, but information seems preserved. PCA has effectively 
reduced dimensionality by removing data redundancies 
(correlations) and extracting only the most significant features. 

 

 

 

 

 

 

 

 

 

 

 

 

Even though applying PCA seems promising, Fig. 10 
shows the identification result when comparing the cross-
validation accuracy for the identification of H. axyridis f. 
spectabilis against H. axyridis f. conspicua and H. axyridis f. 
succinea due to applying J48 and PCA as feature pre-
processors. An interesting observation is that both techniques 
have similar effects on the respective species. The group of 

Fig. 7. Cross-validation accuracies for H. axyridis f. spectabilis against 

other species 

 
Fig. 8. Intra-species cross-validation accuracies for identification of H. 
axyridis form spectabilis against H. axyridis form conspicua and H. 

axyridis form succinea 

Fig. 9. Comparison of cross-validation accuracies for H axyridis    
against E.4-pustulatus between results of typical BP algorithm using 12 

features and BP using PCA as feature-reducer 
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bars on the left indicates percentage correct identification of H. 
axyridis f. spectabilis against H. axyridis f. conspicua, which 
shows only 68.75% accuracy for PCA. This is a slight 
reduction of about 4% from J48, while same accuracies for 
both techniques were observed at 97.50% for the identification 
of H. axyridis f. spectabilis against H. axyridis f. succinea. This 
means using PCA may not be productive for the H. axyridis’ 
intra-species identification, which leaves room for realizing 
J48’s strength. PCA is a common statistical technique to reduce 
the dimensionality of input patterns. PCA has already been 
used by many researchers in pattern recognition and other 
research areas. The test result shows that J48 pruned decision 
tree is also a potential candidate as a feature extractor prior to 
ANN operations.  

 

 

 

 

 

 

 

 

 

 

 

 

This paper has demonstrated the usefulness of using a J48 
pruned decision tree in tandem with multilayer perceptron 
neural network employing back propagation algorithm as a 
classifier in ladybird identification.  The pruned decision tree 
indicates decision path for identification, and this is useful 
when coding a binary classification path in an expert system. 
MLP is clever due to the learning it acquires during training 
process. A caveat of using MLP in this domain is the network 
will need retraining every time new taxa are to be identified. It 
can be very time consuming, considering the vast amount of 
taxon and samples to work with. A workaround to this is the 
integration of an expert system into the loop, since it would 
acquire user inputs such as number of spots, geographical 
location etc. that the system could not acquire due to visual 
limitations. For instance, the expert system is in a better 
position in identifying a 2-spot ladybird among 5-spot 
ladybirds or 7-spot ladybirds by querying users whether they 
can provide the number of spots to the system. This is because 
the number of spots will sometimes be harder to determine 
from the many angles of a 3-dimensional ladybird using an 
image capturing device. In a way the expert system should 
provide considerable reasoning to the user, which is lacking in 
a typical ANN classifier. A possible scheme is to use J48 in the 
feature extractor, saving the number of features required to 
process by the next stage by pruning the features. Once the 
extracted features are obtained, they can be fed into MLP ANN 
for training the classifier. The expert system may interact with 

the user for extra inputs to improve identification accuracy. 
Another possible solution is to use other pattern recognition 
techniques, like support vector machine (SVM), radial basis 
function (RBF) network, learning vector quantization (LVQ), 
etc. This is reserved for future work. 

V.  CONCLUSION 

 
A hybrid feature extractor for the automation of ladybird 

identification system is proposed. It is based on the application 
of J48 pruned decision tree, and MLP neural network using BP 
algorithm. The pruned tree is a useful reference when creating 
an expert system because it provides a simplified, but vital 
decision path. The system has correctly identified A. 2-
punctata, C. 5-punctata, C. 7-punctata when color features are 
used. The system has also identified H. axyridis f. spectabilis 
from E. 4-pustulatus to 92% accuracy when geometrical 
features are presented to the MLP neural network, which is 
significant considering their physical similarities. The use of 
CIELAB as color space has reduced various illumination 
effects, and has improved character measurements. Future 
work will investigate the automated identification of intra 
species (H. axyridis) and other UK ladybird species using 
expert system, SVM, RBF and LVQ. 
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