
This is a repository copy of Information Set Monte Carlo Tree Search.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/75048/

Version: Submitted Version

Article:

Cowling, Peter I. orcid.org/0000-0003-1310-6683, Powley, Edward J. and Whitehouse,
Daniel (2012) Information Set Monte Carlo Tree Search. Computational Intelligence and AI
in Games, IEEE Transactions on. 6203567. pp. 120-143. ISSN 1943-068X

https://doi.org/10.1109/TCIAIG.2012.2200894

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

120 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

Information Set Monte Carlo Tree Search
Peter I. Cowling, Member, IEEE, Edward J. Powley, Member, IEEE, and Daniel Whitehouse, Student Member, IEEE

Abstract—Monte Carlo tree search (MCTS) is an AI technique

that has been successfully applied to many deterministic games

of perfect information. This paper investigates the application

of MCTS methods to games with hidden information and uncer-

tainty. In particular, three new information set MCTS (ISMCTS)

algorithms are presented which handle different sources of hidden

information and uncertainty in games. Instead of searching min-

imax trees of game states, the ISMCTS algorithms search trees of

information sets, more directly analyzing the true structure of the

game. These algorithms are tested in three domains with different

characteristics, and it is demonstrated that our new algorithms

outperform existing approaches to handling hidden information

and uncertainty in games.

Index Terms—Artificial intelligence (AI), game tree search,

hidden information, Monte Carlo methods, Monte Carlo tree

search (MCTS), uncertainty.

I. INTRODUCTION

M ONTE CARLO TREE SEARCH (MCTS) methods

have gained popularity in recent years due to success

in domains such as Computer Go [1]. In particular, the upper

confidence bound for trees (UCT) algorithm [2] forms the

basis of successful MCTS applications across a wide variety

of domains. Many of the domains in which MCTS has proved

successful, including Go, were considered challenging for

the application of traditional AI techniques (such as minimax

search with – pruning), particularly due to the difficulty of

forecasting the winner from a nonterminal game state. MCTS

has several strengths. It requires little domain knowledge,

although including domain knowledge can be beneficial [1].

It is an anytime algorithm, able to produce good results with

as much or as little computational time as is available. It also

lends itself to parallel execution.

This paper investigates the application of MCTS to games of

imperfect information. In particular, we consider games which

have as elements three different types of imperfect information.

� Information sets are collections of states, which appear in

a game when one player has knowledge about the state

that another player does not. For example, in a card game

each player hides his own cards from his opponents. In

this example, the information set contains all states which

correspond to all possible permutations of opponent cards.

Manuscript received November 09, 2011; revised February 10, 2012; ac-
cepted May 15, 2012. Date of publication May 22, 2012; date of current version
June 12, 2012. This work was supported by the U.K. Engineering and Physical
Sciences Research Council (EPSRC) under Grant EP/H049061/1.
The authors are with the Artificial Intelligence Research Centre, School of

Computing, Informatics andMedia, University of Bradford, Bradford BD7 1DP,
U.K. and also with the Department of Computer Science, University of York,
York YO10 5GH, U.K. (e-mail: peter.cowling@york.ac.uk; e.powley@brad-
ford.ac.uk; d.whitehouse1@student.bradford.ac.uk).

Digital Object Identifier 10.1109/TCIAIG.2012.2200894

A player knows which information set they are in, but not

which state within that information set.

� Partially observable moves appear in gameswhere a player

performs an action but some detail of the action is hidden

from an opponent.

� Simultaneous moves arise when multiple players reveal de-

cisions simultaneously without knowing what decision the

other players have made. The effect of the decisions is

resolved simultaneously. The well-known game of Rock-

Paper-Scissors is an example of this.

Hidden information poses many challenges from an AI point

of view. In many games, the number of states within an infor-

mation set can be large: for example, there are 52 8 10

possible orderings of a standard deck of cards, each of which

may have a corresponding state in the initial information set of

a card game. If states are represented in a game tree, this leads

to a combinatorial explosion in branching factor. Furthermore,

players may be able to infer information about an opponent’s

hidden information from the actions they make, and in turn may

be able to mislead (bluff) their opponents into making incorrect

inferences. This leads to an increased complexity in decision

making and opponent modeling compared to games of perfect

information.

The majority of existing work on MCTS in particular, and

game AI in general, focuses on games of perfect information.

However, there are several existing methods of applying MCTS

to games with hidden information. One popular approach is

determinization (of hidden information) which has been suc-

cessful in games such as Bridge [3] and Klondike Solitaire [4].

The determinization technique makes decisions by sampling

states from an information set and analyzing the corresponding

games of perfect information. However, determinization has

several known weaknesses. One weakness is that the compu-

tational budget must be shared between the sampled perfect

information games. The trees for these games will often have

many nodes in common, but the determinization approach does

not exploit this and the effort of searching those nodes is dupli-

cated. Another weakness is known as strategy fusion [5]: since

different states in the same information set correspond to dis-

tinct tree nodes, the search effectively makes the erroneous as-

sumption that different decisions can be made from these states.

These are not the only weaknesses with determinization, but

they are the main ones addressed in this paper.

We introduce a family of algorithms, information set Monte

Carlo tree search (ISMCTS), that overcome some of the weak-

nesses of the determinization approach. Instead of searching

the minimax tree produced by a determinization, we construct

a tree where the nodes represent information sets rather than

states. This offers the advantage that statistics about moves are

collected together in one tree, thus using the computational

budget more efficiently, whereas determinization constructs

1943-068X/$31.00 © 2012 IEEE

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 121

several trees and does not share any information between them.

Furthermore, this approach offers an improved model of the

decision-making process compared to determinization, since

the search is able to exploit moves that are good in many states

in the information set and the effects of strategy fusion can be

lessened or eliminated entirely.

The benefit of ISMCTS is investigated in three domains.

� Lord of the Rings: The Confrontation [6] is a board game

with elements similar to Stratego [7] and has several fea-

tures which make it even more challenging from an AI

perspective. It has hidden information, partially observable

moves, and simultaneous moves, all of which make the de-

cision making process highly complex. The game also has

an asymmetry between the two players since they have dif-

ferent win conditions and different resources available to

them, which necessitates different tactics and strategies.

� , , -games [8] are a generalization of games such as

Noughts and Crosses and Renju where players try to place

pieces in a row on an grid. We will investigate

the phantom 4, 4, 4-game where players cannot see each

other’s pieces. This leads to a game with hidden informa-

tion and partially observable moves.

� We extend our previous work [9], [10] on the popular Chi-

nese card game Dou Di Zhu [11], a game with hidden in-

formation.

The relative performance of ISMCTS versus determinized

UCT varies across these three domains. In Lord of the Rings:

The Confrontation a deep search is required for strong play,

and so ISMCTS has the advantage due to its more efficient

use of the computational budget. In the Phantom (4, 4, 4)

game the effects of strategy fusion are particularly detrimental,

so again ISMCTS outperforms determinization. However, in

Dou Di Zhu, neither of these effects has a particularly large

impact on playing strength and the information set tree has

an orders-of-magnitude larger branching factor than a de-

terminization tree, so the two algorithms are on a par. One

advantage of the ISMCTS approach over determinized UCT is

that it finds better quality strategies, which are less susceptible

to the effects of strategy fusion and more accurately model the

decision making process of the players.

In games such as Poker, computation of accurate prior be-

lief distributions through inference and opponent modeling is

one of the keys to strong play [12]. However, in many games,

accurate belief distributions are less important as it is possible

to find strategies that are robust to most or all possibilities for

the hidden information. We have observed this previously for a

simplified version ofDouDi Zhu [10], where a perfect opponent

model leads to only a small increase in performance over uni-

form belief distributions. This suggests that situations in which

useful hidden information can be inferred from our opponent’s

actions are rare. Our intuition is that the other games studied in

this paper are also of this type: when we as humans play the

games, situations where we infer hidden information based on

opponent actions are much rarer than situations where we aim

for robustness in the face of uncertainty. Thus, we do not con-

sider belief distributions in this paper and instead assume uni-

form distributions over the states in information sets.

In many games of imperfect information, all pure policies are

dominated and thus a strong player must find a mixed policy.

Rock-Paper-Scissors and Poker are two examples where this

is clearly the case, where mixing strategies is important to

achieving a strong level of play. The algorithms described in

this paper are not designed explicitly to seek mixed policies

but they often do so anyway, in the sense of choosing different

actions when presented with the same state. This arises from the

random nature of Monte Carlo simulation: the MCTS algorithm

is not deterministic. Shafiei et al. [13] demonstrate that the

UCT algorithm finds a mixed policy for Rock-Paper-Scissors,

and our preliminary investigations suggest that ISMCTS finds

mixed policies for the small, solved game of Kuhn Poker [14].

However, MCTS often fails to find optimal (Nash) policies

for games of imperfect information. Ponsen et al. [15] suggest

that algorithms such as Monte Carlo counterfactual regret

(MCCFR) [16] are a better fit for approximating Nash equi-

libria in games whose trees contain millions of nodes, whereas

the strength of an MCTS approach lies in finding a strong

suboptimal policy but finding it in reasonable computation time

for complex games with combinatorially large trees.

The paper is structured as follows. Section II defines the

notation used to describe a game and formally defines the three

different types of imperfect information. Section III presents

relevant background material, including an introduction to

MCTS (Section III-A), a review of existing approaches for

games of imperfect information (Section III-B), and remarks on

handling simultaneous moves and chance nodes in tree search

(Section III-C). Section IV describes in detail the algorithms

presented in this paper, including the novel ISMCTS algorithms.

Section V describes Lord of the Rings: The Confrontation and

presents experimental results. Section VI discusses results for

the Phantom (4, 4, 4) game. Section VII describes the game

Dou Di Zhu and discusses some of the challenges this domain

presents. Section IX ties together the results from the three

preceding sections and offers concluding remarks. Finally,

ideas for future work are presented in Section X.

II. DEFINITIONS AND NOTATION

This section introduces the terminology and associated nota-

tion that we use throughout this paper. The notation is our own,

but more detail on the concepts can be found in a standard text-

book on game theory, e.g., [17].

A game is defined on a directed graph . The nodes in

are called states of the game; the leaf nodes are called ter-

minal states, and the other nodes nonterminal states. A game

has a positive number of players, numbered . There

is also an environment player numbered 0. Each state has as-

sociated with it a number , the player about

to act. Each terminal state has associated with it a vector

, the reward vector.

The game is played as follows. At time the game be-

gins in the initial state . At time , if state is

nonterminal, player chooses an edge and

the game transitions through that edge to state . This con-

tinues until a time when is terminal. At this point,

each player receives a reward equal to the relevant entry in the

vector , and the game ends.

122 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

Players typically do not choose edges directly, but choose ac-

tions. Actions are equivalence classes of edges, with the restric-

tion that two edges starting from the same node cannot be in

the same action. We also require that all edges in an action have

the same player about to act in their start nodes. Actions cap-

ture the notion that different edges from different states can be

in some sense equivalent: for example, an action may consist of

all edges leading from a state where player 1 holds an ace (and

some other cards) to the state where player 1 has just played the

ace; such an action would be labeled “player 1 plays an ace.”

The set of actions from a state is denoted ; this is simply

the set of action classes restricted to edges outgoing from .

The transition function maps a (state, action) pair to

a resulting state , by choosing an edge . Note

that the domain of does not include all (state, action) pairs, as

not all actions are available in each state.

A policy for player maps each state with to a

probability distribution over . This distribution specifies

how likely the player is to choose each action from that state.

One way of stating the fundamental problem of game AI (and

indeed of game theory) is as finding the policy that leads to the

highest expected reward, given that all other players are trying

to do the same. The exception here is the environment player,

whose policy is fixed as part of the game definition and specifies

the probabilities of outcomes for chance events.

This paper studies games of imperfect information. In these

games, each player partitions the state set into information

sets. Note that, in general, each player’s partitioning is different.

See Fig. 3 for example. The players do not observe the actual

state of the game, but rather the information set containing the

actual state. Essentially, the states in a player’s information set

are indistinguishable from that player’s point of view. In par-

ticular, this means that the player’s choices of actions must be

predicated on information sets, not on states.

This paper also studies games with partially observable

moves. Here each player further partitions the actions into

moves. We require that the partitions for a player’s own actions

are singletons, i.e., that players can fully observe their own

moves. When a player plays an action, the other players do not

observe that action directly but observe the move to which the

action belongs. The set of moves from player ’s point of view

from a state is denoted , and is the set of move classes

restricted to edges outgoing from . In the case where ,

we have .

We make the restriction that two edges leading from states

in a player information set, and contained within the same

move from player ’s point of view, must lead to states in the

same player information set. In other words, all available in-

formation about the game can be gathered by observing moves,

without the need to directly observe information sets. This also

allows a transition function on (information set, move) pairs to

be well defined. This property can be achieved if necessary by

addition of environment states, in which the environment player

has exactly one action available; this action may depend upon

(and thus provide an observation of) the actual state, but dif-

ferent states in the same information set from the point of view

of some other player may have different actions available. This

is exemplified in Section V-A4.

In summary, we have the following definitions.

Definition 1: A game of imperfect information is a 9-tuple

(1)

where is a finite nonempty directed graph, with the set

of states and the set of state transitions; is the initial

state; is the number of players; is the

utility function, where is the set of leaf nodes (terminal

states); is the player about to act in each

state; , where for all with

we have , is the environment policy;

is an equivalence relation on , whose classes are player

’s information sets; is an equivalence relation on , whose

classes are moves as observed by player . Classes consisting of

edges with are also known as player ’s actions.

Definition 2: Consider a game , a state , and a player . The

set of legal moves from from player ’s point of view is

(2)

The set of legal actions from is

(3)

i.e., the set of legal moves from the point of view of the player

about to act.

Definition 3: Consider a game . Let

, the set of all pairs of states

and their legal actions. The transition function for is the

function such that implies .

In other words, means that the single edge in

that starts from ends at . (There is exactly one edge in

starting from , so this is well defined.)

The transition function is extended to a function from (infor-

mation set, move) pairs to information sets, where all observa-

tions are from the point of view of the same player, in the natural

way.

III. BACKGROUND

A. Monte Carlo Tree Search

MCTS is a class of game tree search algorithms that make use

of simulated games to evaluate nonterminal states. Simulated

games select random actions until a terminal state is reached

and the reward is averaged over multiple simulations to esti-

mate the strength of each action. MCTS algorithms have gained

in popularity in recent years due to their success in the field of

Computer Go [1]. In particular, the UCT algorithm [2] proposed

in 2006 has led to the recent upsurge of interest in MCTS algo-

rithms.

MCTS algorithms build a subtree of the entire decision tree

where usually one new node is added after every simulation.

Each node stores estimates of the rewards obtained by selecting

each action and an improved estimate is available after every

simulation step. Each decision in the tree is treated as a multi-

armed bandit problem where the arms are actions, and the re-

wards are the results of performing a Monte Carlo simulation

after selecting that action. MCTS is an anytime algorithm, re-

quiring little domain knowledge.

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 123

B. AI for Games of Imperfect Information

This section briefly surveys research on AI for games with

stochasticity and/or imperfect information.

1) Determinization: One approach to designingAI for games

with stochasticity and/or imperfect information is determiniza-

tion, also known as perfect information Monte Carlo (PIMC)

[18]. For an instance of a stochastic game with imperfect infor-

mation, a determinization is an instance of the equivalent deter-

ministic game of perfect information, in which the current state

is chosen from the AI agent’s current information set, and the

outcomes of all future chance events are fixed and known. For

example, a determinization of a card game is an instance of the

game where all players’ cards, and the shuffled deck, are visible

to all players. We then create several determinizations from the

current game state, analyze each one using AI techniques for

deterministic games of perfect information, and combine these

decisions to yield a decision for the original game. The term de-

terminization refers to the process of converting a game of im-

perfect information to an instance of a game of perfect informa-

tion. The AI technique of analyzing multiple determinizations

to make a decision is often called Monte Carlo sampling (of

determinizations). We refer to Monte Carlo sampling of deter-

minizations simply as determinization to avoid confusion with

the Monte Carlo sampling of game simulations used by MCTS

algorithms.

Ginsberg’s Intelligent Bridge Player (GIB) system [3] applies

determinization to create an AI player for the card game Bridge

which plays at the level of human experts. GIB begins by sam-

pling a set of card deals consistent with the current state of

the game. For each of these deals and for each available

action , the perfect information (“double dummy”) game is

searched to find the score resulting from playing action

in determinization . The search uses a highly optimized ex-

haustive search of the double dummy Bridge game tree. Finally,

GIB chooses the action for which the sum is

maximal.

Bjarnason et al. [4] present a variant of UCT for stochastic

games, called sparse UCT, and apply it to the single-player card

game of Klondike Solitaire. Bjarnason et al. [4] also study an

ensemble version of sparse UCT, in which several search trees

are constructed independently and their results (the expected re-

wards of actions at the root) are averaged. They find that en-

semble variants of UCT often produce better results in less time

than their single-tree counterparts. A special case of ensemble

sparse UCT, which Bjarnason et al. call HOP-UCT, is equiv-

alent to a straightforward application of determinization (more

specifically, hindsight optimization [19]) with UCT as determin-

istic solver, in which the determinization is constructed lazily as

UCT encounters each chance event.

Bjarnason et al. [4] treat Klondike Solitaire as a stochastic

game of perfect information: rather than being fixed from the

start of the game, the values of face down cards are determined

as chance events at the moment they are revealed. This works

for single-player games where the hidden information does not

influence the game until it is revealed, but generally does not

work for multiplayer games where the hidden information influ-

ences the other players’ available and chosen actions from the

beginning of the game. Hence, the specific methods of sparse

UCT and lazy determinization are not immediately applicable

to multiplayer games, but the general ideas may be transfer-

able. Bjarnason et al. [4] show that sparse UCT is able to win

around 35% of Klondike Solitaire games, which more than dou-

bles the estimated win rate for human players. Determiniza-

tion is also the state-of-the-art approach for card games such as

Bridge [3] and Skat [20], [21]. Determinized MCTS also shows

promise in games such as Phantom Go [22] and Phantom Chess

(Kriegspiel) [23], among others.

Despite these successes, determinization is not without its

critics. Russell and Norvig [24] describe it (somewhat dismis-

sively) as “averaging over clairvoyance.” They point out that

determinization will never choose to make an information gath-

ering play (i.e., a play that causes an opponent to reveal some

hidden information) nor will it make an information hiding play

(i.e., a play that avoids revealing some of the agent’s hidden

information to an opponent). Ginsberg [3] adds weight to this

claim by making the same observations about GIB specifically.

Russell and Norvig’s criticisms of determinization are valid

but equally valid are the experimental successes of determiniza-

tion. Frank and Basin [5] identify two key problems with deter-

minization.

� Strategy fusion: An AI agent can obviously not make dif-

ferent decisions from different states in the same informa-

tion set (since, by definition, the agent cannot distinguish

such states); however, different decisions can be made in

different determinizations.

� Nonlocality: Some determinizations may be vanishingly

unlikely (rendering their solutions irrelevant to the overall

decision process) due to the other players’ abilities to direct

play away from the corresponding states.

Building on the work of Frank and Basin, Long et al. [18]

identify three parameters of game trees and show that the effec-

tiveness of determinization is related to a game’s position in this

parameter space. The parameters measure the ability of a player

to influence the outcome of a game in its late stages (leaf cor-

relation), the bias in the game toward a particular player (bias)

and the rate at which hidden information is revealed (disam-

biguation). Long et al. [18] demonstrate how these parameters

can be used to predict whether determinization is an appropriate

method for a given game.

The effects of strategy fusion can manifest in different ways.

First, strategy fusion may arise since a deterministic solver may

make different decisions in each of the states within an informa-

tion set. In this situation, the issue is that the agent assumes a dif-

ferent decision can be made depending on the state and this in-

formation is not known. The SO-ISMCTS algorithm described

in Section IV-E addresses this issue by searching a single tree

of information sets. Second, strategy fusion may arise from par-

tially observable moves. When an opponent makes a partially

observable move, a deterministic solver will assume that the

move can be observed and that it can make a different deci-

sion depending on the actual move made by the opponent. The

MO-ISMCTS algorithm described in Section IV-G addresses

this by searching a tree for each player, which builds a tree based

on information sets which cannot be distinguished by a player

after observing a move made by an opponent.

124 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

2) Other Approaches: One alternative approach to tree

search for stochastic games is expectimax search [24]. This is

a modification of the well-known minimax algorithm to game

trees containing chance nodes. The value of a chance node is

the expected value of a randomly chosen child (i.e., the sum of

the values of its children weighted by the probabilities of the

corresponding chance outcomes).

Stochastic games of imperfect information have been well

studied in the field of game theory [17]. Thus, a popular ap-

proach to AI for such games is to compute (or approximate) a

Nash equilibrium strategy; examples of this approach include

Gala [25] and counterfactual regret [26]. The definition of Nash

equilibrium requires only that the strategy be optimal against

other optimal (Nash) strategies, so Nash strategies often fail to

fully exploit suboptimal opponents. Also for many domains the

number of states is far too large to compute or even approximate

a Nash equilibrium.

3) Belief Distributions: In games of imperfect information,

it is often possible to infer hidden information by observing the

moves of the other players, according to somemodel of the other

players’ decision processes. One way of capturing this notion is

via belief distributions, probability distributions over states in

the current information set where the probabilities are inferred

from the history of observed moves. This type of inference has

frequently been applied to the game of Poker [12], [27], but also

to other games such as Scrabble [28] and the card game Skat

[20], [21]. We do not consider belief distributions in this paper.

C. Handling Uncertainty in Tree Search

1) Simultaneous Moves: Simultaneous moves are a special

case of imperfect information, in which each player indepen-

dently chooses an action and these actions are applied at the

same time.

Simultaneous moves can be modeled by having players

choose their actions sequentially, while hiding their choices

from the other players, until finally an environment action

reveals the chosen actions and resolves their effects. With this

in mind, any algorithm that can handle imperfect information

in general can handle simultaneous moves in particular. How-

ever, some of our algorithms (particularly those not designed

to handle partially observable moves) perform poorly using

this model. Under a simple determinization approach, the

first player is overly pessimistic (assuming the opponent can

observe the chosen move and select the best response to it)

while the second player is overly optimistic (assuming the

first player’s move is fixed at the point of the second player’s

decision, and thus determinizing it randomly).

For this reason, we add a mechanism to the algorithms

studied in this paper specifically to handle simultaneous moves.

The UCT algorithm has been applied to the simultaneous move

game Rock-Paper-Scissors by Shafiei et al. [13], using an

approach where each player’s choice of action is treated as

a separate independent multiarmed bandit problem. In other

words, instead of selecting player 1’s move, descending the

corresponding tree branch, and selecting player 2’s move from

the resulting child node, both moves are selected independently

from the same node and the tree branch corresponding to the

resulting pair of moves is descended. Shafiei et al. [13] show

that this approach finds mixed policies, though not necessarily

Nash policies.

Teytaud and Flory [29] suggest a modification of this ap-

proach, in which the UCB bandit algorithm is replaced by the

EXP3 algorithm [30] at nodes with simultaneous moves only

(i.e., UCB is still used elsewhere in the tree). The justification

for using EXP3 rather than UCB is that the optimal policy at a si-

multaneous move node is often mixed; UCB is designed to con-

verge to a pure policy, whereas EXP3 explicitly seeks a mixed

policy. Teytaud and Flory [29] further strengthen this justifica-

tion by comparing the playing strength of UCB versus EXP3

for the card game Urban Rivals, showing that EXP3 performs

better and requires less tuning. In this paper, our algorithms use

the EXP3 approach to handle simultaneous moves.

In EXP3, the probability of selecting an arm is

(4)

where is the sum of rewards from previously selecting arm

, each divided by the probability of selecting on that trial, and

and are constant parameters. This equation is of a different

form to that given by Auer et al. [30], but is equivalent and more

numerically stable.

Naturally the performance of EXP3 depends on the choice of

coefficients. After [30, Corollary 4.2], we take

(5)

and

(6)

where is the number of arms, is the total number of

trials, and is the base of the natural logarithm.

2) Chance Nodes: Handling of chance events is not a pri-

mary focus of this paper. However, chance nodes do occur under

certain circumstances in one of our test domains (Section V-A),

so they cannot be ignored completely. Note that our chance

nodes have a small number of possible outcomes (at most four

but rarely more than two), all with equal probability. Techni-

cally, another test domain (Section VII-A) includes a chance

event with combinatorially many outcomes corresponding to

shuffling and dealing a deck of cards at the beginning of the

game, but since this occurs before any player has made a deci-

sion it never occurs as a chance node in our search tree.

Consider a chance node with branches. To ensure that each

branch is explored approximately equally, the first visits select

all outcomes in a random permutation, the second visits select

all outcomes in another random permutation, and so on. This

is almost trivial to implement in UCT: since we already use

UCB with random tie-breaking for action selection, it suffices

to treat the environment player as a decision-making agent who

has perfect information and receives a reward of zero for all

terminal states. The UCB exploration term then ensures that the

branches are visited in the manner described above.

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 125

IV. DESCRIPTION OF ALGORITHMS

This section describes the algorithms studied in this paper.

Section IV-B introduces the subset-armed bandit problem, a

variant of the multiarmed bandit problem that is used in several

of the algorithms. Sections IV-C and IV-D describe how MCTS

(and specifically UCT) can be adapted to games of imperfect in-

formation, by “cheating” (gaining access to the hidden informa-

tion) and by determinization respectively. Section IV-E–IV-G

introduce the ISMCTS family of algorithms, novel variants of

MCTS for searching trees in which nodes correspond to infor-

mation sets rather than states. These algorithms also make use

of the techniques described in Section III-C for handling chance

nodes and simultaneous moves.

A. Choice of UCB1 Exploration Constant

UCT [2] uses the UCB1 algorithm [31] for action selection.

UCB1 calculates the score of a node as

(7)

where is the average reward of the simulations passing

through the node , is the number of times the parent of has

been visited by the algorithm, and is the number of times

the node was selected from its parent.

When using UCB1 an important issue is the choice of

coefficient for the exploration term in the UCB1 formula.

The choice of this parameter can affect playing strength and

the optimal value can depend on both the domain and the

MCTS algorithm used. We conducted an experiment where

determinized UCT, SO-ISMCTS, and MO-ISMCTS players

with exploration constant played

repeatedly against determinized UCT with exploration con-

stant 0.7 for each of the three games studied. It was observed

that none of the algorithms are particularly sensitive to the

coefficient value for these games, although performance does

decrease outside the range . The value of 0.7 was thus

used for all algorithms in all experiments in this paper.

B. Subset-Armed Bandits

In the following algorithms, we sometimes have the situation

where the set of actions available at a particular node in the tree

varies between visits to that node. If the observer of an infor-

mation set is not the player about to act, then different states in

the same information set can have different sets of legal actions:

for example, the actions available to an opponent may depend

on the cards in the opponent’s hand, which vary for different

states in the player’s information set. Consequently, a node for

an information set has a branch for every action that is legal in

some state, but which branches are valid depends on which state

is currently under consideration.

In other words, we have a multiarmed bandit where only a

subset, and generally a different subset, of the arms is avail-

able on each trial. We call this a subset-armed bandit. Since

this problem arises from considering legal action sets for dif-

ferent states in an information set, it is not enough to say that

each arm is available with some probability: the availability of

two different arms in the same trial is often correlated. We can,

Fig. 1. A game tree for a simple single-player game. Nodes represent game
states. Nodes shaped denote player 1 decision states, environment states,
and terminal states labeled with reward values for player 1. Nonterminal
nodes in corresponding positions in the and subtrees are in the same player
1 information set; this is shown by a dashed line for the root nodes. Adapted
from [18, Fig. 1].

Fig. 2. An information set search tree for the game shown in Fig. 1. Here nodes
shaped denote information sets where player 1 is both the observer and the
player about to act.

however, say that the subsets available on different trials are in-

dependent.

We apply a simple modification to UCB1 and other standard

bandit algorithms to handle subset-armed bandits. We replace

in (7) with the number of trials in which the parent was vis-

ited and node was available. Without this modification, rare

actions (i.e., actions available in few states in the information

set) are over-explored: whenever they are available for selec-

tion their ratio of visits to parent visits is very small, resulting

in a disproportionately large UCB value. If every state in the in-

formation set has a rare action, this results in the search doing

almost no exploitation and almost all exploration.

One drawback of this approach is that it does not allow an

action to have a different value depending on which subset of

actions it belongs to (instead the value is the average across

all visited subsets). An alternative approach was considered in

which the statistics used in (7) are calculated independently

for each subset. This allows the choice of action to depend on

the set of actions available, but requires many visits to each

subset to gather accurate statistics, making it impractical when

the number of subsets is large. An in-depth analysis of the math-

ematics of subset-armed bandits is a subject for future work.

C. Cheating UCT

As a benchmark we consider UCT agents that are allowed to

“cheat” and observe the actual state of the game. (Throughout

126 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

Fig. 3. A game tree for a simple two-player game. Nodes shaped denote player 1 decision states, player 2 decision states, environment states, and
terminal states labeled with reward values for player 1 (the game is zero-sum, so player 2’s rewards are the negation of those for player 1). Player 1’s information
set relation is shown by dashed lines for selected nodes. The partitioning of the remaining nodes is determined by their positions in subtrees: if two nodes occupy
the same position in two subtrees, and the roots of those subtrees are in the same information set as each other, then the two nodes are in the same information set
as each other. The remaining nodes are partitioned in the obvious way. Player 2 has perfect information, i.e., her information sets are singletons.

the rest of this paper, the word cheat refers specifically to ob-

serving information that is supposed to be hidden or uncertain,

rather than any other violation of the game rules.) Cheating in

this way is not a valid approach to AI for games of imperfect

information, but it provides a useful benchmark for other algo-

rithms since it is an approach which is expected to work very

well compared to approaches that do not cheat.

For fair comparison with our other algorithms, we consider

two cheating UCT agents: one using plain UCT with a single

search tree, and one using ensemble UCT [32] with several in-

dependent search trees whose root statistics are combined at the

end of the search. As we will see, these are cheating versions of

information set MCTS and determinized UCT respectively.

D. Determinized UCT

Our simplest noncheating agent uses a determinization ap-

proach, as described in Section III-B1. It samples a number of

(not necessarily different) states from the current information

set uniformly at random, constructs independently a UCT tree

rooted at each of these states, and chooses a move for which the

number of visits from the root, summed across all trees, is max-

imal.

E. Single-Observer Information Set MCTS (SO-ISMCTS)

To overcome the problems associated with the determiniza-

tion approach, we propose searching a single tree whose nodes

correspond to information sets rather than states. In single-ob-

server information set MCTS (SO-ISMCTS), nodes in the tree

correspond to information sets from the root player’s point of

view, and edges correspond to actions (i.e., moves from the

point of view of the player who plays them). The correspon-

dence between nodes and information sets is not one–one: par-

tially observable opponent moves that are indistinguishable to

the root player have separate edges in the tree, and thus the re-

sulting information set has several nodes in the tree. We address

this in subsequent sections.

Fig. 1 shows a game tree for a simple single-player game of

imperfect information. The root information set contains two

states: and . The player first selects one of two actions: or

. Selecting yields an immediate reward of and ends

the game. If the player instead selects , he must then select

an action or . If the game began in state , then and

lead to rewards of and , respectively (this information

being revealed by means of environment action or); if

the game began in state , then the rewards are interchanged.

If states and are equally likely, action has an expec-

timax value of 0: upon choosing , both and have an ex-

pectimax value of 0. Thus, the optimal action from the root is .

However, a determinizing player searches trees corresponding

to each state and individually and assigns a minimax

value of in each (by assuming that the correct choice of

or can always be made), thus believing to be optimal. This

is an example of strategy fusion (Section III-B1).

Fig. 2 shows the tree searched by SO-ISMCTS for this game.

In this case, each node is in one–one correspondence with an in-

formation set. After a sufficiently large number of iterations the

algorithm assigns each environment node an expected value of

0 and thus assigns the same value to action , thus overcoming

strategy fusion and correctly identifying as the optimal move.

Fig. 3 shows a game tree for a more complex, two-player

game. The game starts in one of three states: , , or . These

states are distinguishable to player 2 but not to player 1. Player

1 first selects an action or . If he chooses , player 2

then selects an action , , or . However, only two of these

actions are available, and which two depends on the initial state.

Player 1 then selects or , and both players receive rewards

as shown. Note that if player 2 chooses or , then the rewards

do not depend on the initial state, but if player 2 chooses , then

the rewards do depend on the initial state.

Fig. 4(a) shows the tree searched by SO-ISMCTS for this

game. For an information set where the observer is not

the player about to act, i.e., , the set of avail-

able actions can differ for different states . The set

of legal actions may depend on information to which another

player does not have access. When searching trees of informa-

tion sets, this creates a problem at opponent nodes. There must

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 127

Fig. 4. An information set search tree for the game shown in Fig. 3. (a) The entire tree. (b) The restriction of the tree to determinization .

Fig. 5. Information set search trees for the game shown in Fig. 3 with partially observable moves, where player 2 cannot distinguish from or from
and player 1 cannot distinguish between , and : (a) the tree searched by SO-ISMCTS; (a) and (b) the pair of trees searched by MO-ISMCTS, where (a) is
from player 1’s point of view and (b) from player 2’s point of view.

be a branch for every action that can possibly be available from

that information set; this is illustrated in Fig. 4(a), where the op-

ponent decision node has branches for all three actions , ,

even though only two of those three actions are available in each

state , , in the corresponding player 1

information set. However, the exploitation and exploration of

actions must be balanced with how likely those actions are to

be available. For example, we wish to avoid overexploiting an

action that is a certain win for the opponent but is only avail-

able with probability 1/100 (i.e., in only one of 100 states in the

information set).

To address this, at the beginning of each iteration, we choose

a determinization, and restrict that iteration to those regions

of the information set tree that are consistent with that deter-

minization. Thus, the branches at opponent nodes are available

for selection precisely as often as a determinization is chosen

in which the corresponding action is available. In other words,

the probability of an action being available for selection on a

given iteration is precisely the probability of sampling a deter-

minization in which that action is available. The set of actions

available at an opponent node can differ between visits to that

node, and thus action selection is a subset-armed bandit problem

(Section IV-B). Fig. 4(b) demonstrates such a restriction of the

search tree shown in Fig. 4(a).

High-level pseudocode for the SO-ISMCTS algorithm is pre-

sented in Algorithm 1. More detailed pseudocode is given in

part A of the Appendix. In this and other pseudocode in this

paper, it is assumed that player 1 is conducting the search. The

pseudocode does not specify which bandit algorithm is used

during selection. The experiments in this paper all use UCB

modified for subset-armed bandits as described in Section IV-B,

or EXP3 as described in Section III-C-I at nodes with simulta-

neous moves (which only occur in LOTR:C, Section V).

Algorithm 1: High-level pseudocode for the SO-ISMCTS

algorithm. More detailed pseudocode is given in part A of

the Appendix. For the variant of this algorithm with partially

observable moves (SO-ISMCTS+POM) simply replace the

word “action” below with “move (from player 1’s viewpoint),”

and see the more detailed pseudocode in part B of the

Appendix.

1: function SO-ISMCTS

128 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

2: create a single-node tree with root corresponding to the

root information set (from player 1’s viewpoint)

3: for iterations do

4: choose a determinization at random from , and

use only nodes/actions compatible with this iteration

5:

6: //Selection

7: repeat

8: descend the tree (restricted to nodes/actions

compatible with) using the chosen bandit algorithm

9: until a node is reached such that some action from

leads to a player 1 information set which is not

currently in the tree or until is terminal

10:

11: //Expansion

12: if is nonterminal then

13: choose at random an action from node that is

compatible with and does not exist in the tree

14: add a child node to corresponding to the player

1 information set reached using action and set

it as the new current node

15:

16: //Simulation

17: run a simulation from to the end of the game using

determinization

18:

19: //Backpropagation

20: for each node visited during this iteration do

21: update ’s visit count and total simulation reward

22: for each sibling of that was available for

selection when was selected, including itself do

23: update ’s availability count

24:

25: return an action from the root node such that the

number of visits to the corresponding child node is

maximal

The idea of constructing trees of information sets and sam-

pling determinizations to restrict the region to be searched is

similar to the partially observable UCT (PO-UCT) approach of

Silver and Veness [33], although PO-UCT operates on the do-

main of partially observable Markov decision problems (i.e.,

single-player games of imperfect information) rather than ad-

versarial games. Schäfer [21] also applied an information set

tree approach for the game Skat using the UCB1 algorithm for

selection. The information sets are from the point of view of the

player about to play, rather than from the point of view of one

player as in SO-ISMCTS.

Consider the example tree in Fig. 4(b). Note that the restricted

tree is never explicitly constructed, but the tree policy is re-

stricted as it descends the tree by means of the determinization

. In turn, is updated as the tree is descended by applying the

selected actions. Otherwise, selection works as in plain UCT.

Suppose that we used determinization and the sequence of

actions selected is , , , . Let us identify each of the

visited nodes with its incoming action (i.e., the label of the in-

coming edge). At nodes , , , and the root, the visit

count and total reward is updated as usual. For these

nodes and for all siblings that were also available for selection,

i.e., including nodes and but not nodes and , the

availability count is incremented by 1. The availability

count replaces the parent node’s visit count in the UCB formula

in order to adapt UCB to the subset-armed bandit problem, as

discussed in Section IV-B.

F. Single-Observer Information Set MCTS With Partially

Observable Moves (SO-ISMCTS + POM)

SO-ISMCTS does not completely avoid the problem of

strategy fusion, as it treats all opponent moves as fully observ-

able. Suppose that the game in Fig. 3 is modified to include

partially observable moves, so that player 2 cannot distinguish

from nor from and player 1 cannot distinguish

between , and . Here the search assumes that different

actions can be taken in response to opponent actions and ,

for instance, whereas in fact these actions are indistinguishable

and lead to the same player 1 information set.

In SO-ISMCTS, edges correspond to actions, i.e., moves

from the point of view of the player who plays them. In

single-observer information set MCTS with partially observ-

able moves (SO-ISMCTS + POM), edges correspond to moves

from the point of view of the root player. Thus, actions that are

indistinguishable from the root player’s point of view share a

single edge in the tree. Fig. 5(a) shows the SO-ISMCTS + POM

search tree for the game in Fig. 3. The branches from player

1’s decision nodes are unchanged; however, player 2’s decision

node now has a single branch corresponding to the single move

from player 1’s point of view, rather than one branch for each

action.

As in SO-ISMCTS, each iteration is guided by a determiniza-

tion. This raises the problem of how to update the determiniza-

tion according to a selected partially observable opponent

move. For a determinization and amove , the set of com-

patible actions is . If is a singleton, then we

simply apply its single element to to obtain the determiniza-

tion for the next level in the tree. If , then we choose an

action from uniformly at random, since the tree does not store

any data with which to make a more informed choice.

High level pseudocode for the algorithm is as given in Al-

gorithm 1 for SO-ISMCTS, except that “action” must be re-

placed by “move (from player 1’s viewpoint).” Part B of the

Appendix has more detailed pseudocode which specifies how

the determinization should be maintained as we descend the tree

for SO-ISMCTS-POM.

Consider the example in Fig. 5(a). SO-ISMCTS + POM func-

tions in much the same way as SO-ISMCTS (recall the example

at the end of Section IV-E), except that branch is selected

in place of . When updating the determinization while de-

scending the tree, an action must be applied corresponding to

the selection of . In this case, one of , , or is applied

depending on which are legal actions in the current determiniza-

tion. For each determinization, there are two possibilities, so one

is chosen uniformly at random.

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 129

G. Multiple-Observer Information Set MCTS (MO-ISMCTS)

SO-ISMCTS + POM solves the strategy fusion problem of

SO-ISMCTS, at the expense of significantly weakening the op-

ponent model: in particular, it is assumed that the opponent

chooses randomly between actions that are indistinguishable to

the root player. In the extreme case, when SO-ISMCTS + POM

is applied to a phantom game (as in Section VI) all opponent

actions are indistinguishable and so the opponent model is es-

sentially random.

To address this, we proposemultiple-observer information set

MCTS (MO-ISMCTS). This algorithmmaintains a separate tree

for each player, whose nodes correspond to that player’s infor-

mation sets and whose edges correspond to moves from that

player’s point of view. Each iteration of the algorithm descends

all of the trees simultaneously. Each selection step uses statistics

in the tree belonging to the player about to act in the current de-

terminization to select an action. Each tree is then descended by

following the branch corresponding to the move obtained when

the corresponding player observes the selected action, adding

new branches if necessary.

The information set trees can be seen as “projections” of the

underlying game tree. Each iteration induces a path through the

game tree, which projects onto a path through each information

set tree. Fig. 5 depicts these trees for the simple game of Fig. 3:

Fig. 5(a) corresponds to information sets and moves from player

1’s point of view, and Fig. 5(b) from player 2’s point of view.

The MO-ISMCTS approach is similar to the MMCTS al-

gorithm proposed by Auger [34]. However, there are several

differences between MO-ISMCTS and MMCTS, the most im-

portant being that MO-ISMCTS uses determinizations to guide

and restrict each search iteration whereas MMCTS does not.

Also, whereas Auger [34] describes use ofMMCTS in an offline

manner (running the algorithm for a very large number of sim-

ulations and querying the resulting tree for decisions during

play), MO-ISMCTS is designed for the more conventional on-

line mode of play.

Pseudocode for MO-ISMCTS is given in Algorithm 2 and

part C of the Appendix.

Algorithm 2: High-level pseudocode for the MO-ISMCTS

algorithm. More detailed pseudocode is given in part C of the

Appendix.

1: function MO-ISMCTS

2: for each player , create a single-node tree

with root (representing from player ’s

viewpoint)

3: for iterations do

4: choose a determinization at random from , and

use only nodes/actions compatible with this iteration

5:

6: //Selection

7: repeat

8: descend all trees in parallel using a bandit algorithm

on player ’s tree whenever player is about to move

9: until nodes are reached in trees

respectively, player is about to move at node

, and some action from leads to a player

information set which is not currently in the player

tree or until is terminal

10:

11: //Expansion

12: if is nonterminal then

13: choose at random an action from node that is

compatible with and does not exist in the player

tree

14: for each player do

15: if there is no node in player ’s tree corresponding

to action at node , then add such a node

16:

17: //Simulation

18: run a simulation from to the end of the game using

determinization , (starting with action if is

nonterminal)

19:

20: //Backpropagation

21: for each node visited during this iteration, for all

players do

22: update ’s visit count and total simulation reward

23: for each sibling of that was available for

selection when was selected, including itself

do

24: update ’s availability count

25:

26: return an action from such that the number

of visits to the corresponding child of is maximal

Consider the example in Fig. 5. We begin by randomly gen-

erating a determinization. We then select an action from the

root of Fig. 5(a) (i.e., player 1’s tree), say . We descend the

trees by following the branch for the move corresponding to ,

namely for player 1’s tree and for player 2’s tree. The de-

terminization is updated by applying action . We now have

so Fig. 5(b) (player 2’s tree) is used for selection, and

an action legal in is selected, say . The trees are descended

through and , respectively, and is updated by applying

. The selection process continues in this way. Backpropaga-

tion works similarly to SO-ISMCTS (as in the example at the

end of Section IV-E), but updates all visited nodes (and their

available siblings) in each player’s tree.

V. EXPERIMENTAL RESULTS FOR LORD OF THE RINGS:

THE CONFRONTATION

A. The Game

Lord of the Rings: The Confrontation (LOTR:C) [6] is a two-

player strategy game themed on J. R. R. Tolkien’s The Lord

of the Rings novels. The gameplay has common features with

Stratego [7], where identities (but not locations) of a player’s

pieces are hidden from the opponent. Furthermore, the iden-

tity of a piece specifies certain unique characteristics. LOTR:C

is an interesting game from an AI point of view since it fea-

tures hidden information, chance events, partially observable

130 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

moves and simultaneous moves. It is also asymmetric since both

players have different win conditions and thus require different

tactics and strategies.

1) Game Structure: The game is played on a 4 4 grid, with

the players’ home squares at opposite corners. Most squares can

be occupied by more than one piece simultaneously, subject to

restrictions. The players are designated Light and Dark, with

Dark playing first. Each player has nine character pieces, which

they place on the board at the start of the game subject to cer-

tain constraints. Each character has an associated strength value

between 0 and 9, and a special ability that changes the rules of

the game in certain situations. Light’s characters are different

from Dark’s. Generally characters move one space at a time to-

ward the opponent’s home square, although some characters and

some squares on the board allow for different moves.

The identities of a player’s characters are hidden from the op-

ponent until revealed in combat. This leads to a source of hidden

information, where the information set specifies the number of

opponent pieces in each square and the states in the informa-

tion set specify the identity of all the pieces. When an opponent

moves one of their pieces, this move is partially observable since

a player knows a piece moved (and this leads to a new infor-

mation set) but only the opponent knows which piece moved.

Knowledge about the locations of opposing characters can de-

crease as well as increase. For example, if a character whose

identity is known enters a square with an unknown character and

then later exits the square, the identities of both the exiting char-

acter and the remaining character are unknown. Since players

must move pieces forward (aside from a few special rules), the

LOTR:C game tree has very few cycles and random games are

almost always fairly short.

2) Objectives: LOTR:C has multiple win conditions, which

differ for each player. For the Light player there are three ways

to win:

� moving the character Frodo into Dark’s home square;

� killing all Dark characters;

� the Dark player being unable to move any characters.

For the Dark player there are also three ways to win:

� killing the character Frodo;

� moving any four characters into Light’s home square;

� the Light player being unable to move any characters.

3) Combat: When a character moves into a square that con-

tains opponent characters, combat is initiated. The moving char-

acter becomes the attacker and a randomly chosen opponent

character in the square is the defender, then both players si-

multaneously choose one of the combat cards from their hand.

This leads to simultaneous moves being a feature of the game.

Each player begins with nine cards (which are removed once

played) and each character has a strength value, as do some of

the cards. In combat, the player whose combined character and

card strength is greatest wins the combat. Some characters and

some cards feature text that can alter the outcome of the combat,

by either offering a player extra choices or altering the rules of

combat. Typically the outcome of combat is that one or both

characters are defeated and removed from play.

4) Implementation: Character movement in LOTR:C is par-

tially observable. We define actions such that they identify the

character and the source and destination squares (e.g., “move

Frodo from Cardolan to Eregion”). The move observed by the

opponent does not identify the character (e.g., “move a character

from Cardolan to Eregion”).

Some care is needed to ensure the structure of the game

tree, particularly around combat, conforms to that described

in Section II. An environment player is used to model actions

taken by the game. Specifically, the environment player is

responsible for deciding the outcome of chance events and

for revealing information to players. In our implementation, a

typical instance of combat consists of the following sequence

of actions:

1) the attacking player moves a piece into a square occupied

by an opponent piece;

2) the environment player reveals the identities of the attacker

and defender pieces, choosing a defender at random if nec-

essary (which leads to a source of chance events);

3) one player chooses a card;

4) the other player chooses a card (steps 3 and 4 occur simul-

taneously);

5) the environment player reveals the chosen cards and re-

solves the combat.

A skilled human player of LOTR:C remembers the information

revealed about the identities of characters. Our implementation

has perfect recall for all players: information about which char-

acters can possibly occupy which squares based on previously

revealed information is encoded in the game state. In particular,

our algorithms always sample determinizations that are consis-

tent with this information.

5) Initial Setup: Before each game, players can place their

characters on the board in any configuration subject to certain

constraints. The choice of initial setup has important strategic

consequences, however tree search is not well suited to solving

this problem: each player has a choice between

possible initial setups for their pieces, and both players choose

simultaneously. We do not tackle this problem in this paper;

instead, we conduct all of our experiments on a single, hand-

designed initial setup intended to be typical of those that a pair of

human players might choose. This reuse of the same initial setup

also has the effect of reducing the variance in our experimental

results. No information persists between trials, so there is no

danger of the algorithms adapting themselves to this particular

setup.

B. Balancing Determinizations and Iterations

in Determinized UCT

This experiment studies the effect on the playing strength of

determinized UCT of varying the number of determinizations

while keeping the total number of iterations fixed. We present a

similar experiment for Dou Di Zhu in [9], and find that as long

as the number of determinizations and the number of iterations

per determinization are sufficiently large, this tradeoff has little

effect on playing strength, although we will see in Section VII

that Dou Di Zhu is unusual in that revealing hidden information

has little effect, which may contribute to this result.

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 131

Fig. 6. Results of the determinization balancing experiment for LOTR:C. (a)
The win rate for a Light player using determinized UCTwith determinizations
and iterations per determinization, against a Dark opponent with 40
determinizations and 10 000/40 250 iterations per determinization. (b) The
same with Light and Dark exchanged (in particular, win rates are for the Dark
player). Error bars show 95% confidence intervals.

Results of this experiment for LOTR:C are shown in Fig. 6.1

For brevity, let us write to refer to a determinized UCT

player with determinizations and iterations per determiniza-

tion. Contrary to our results for Dou Di Zhu, here the playing

strength appears to worsen as the number of determinizations

increases. For instance, a Light 1 10 000 player significantly

outperforms a 40 250 player by 22.9%. This is a consequence

of the increased number of iterations per determinization,

rather than the reduced number of determinizations: against

a 40 250 player a 40 10 000 player achieves win rates of

73.2% for Light and 83.0% for Dark, which exceed signifi-

cantly the corresponding win rates for 1 10 000. Naturally, the

40 10 000 player also takes approximately 40 times longer

to make each decision than a player using a total of 10 000

iterations. Our justification for choosing 10 000 iterations as the

standard benchmark is that, with an efficient implementation

on modern hardware, we expect 10 000 iterations to equate to

roughly one second of computation, which is an acceptable

delay for play against a human.

For the 1 10 000 player, the average depth of the tree con-

structed from the initial game state is 8.6, and the average depth

of a node is 4.0. For 40 250, the average tree depth is 4.1 and

the average node depth is 2.4. Given that a single instance of

combat in LOTR:C can account for five or more levels in the

tree, searching to a depth of 4.1 is simply insufficient to make

an informed decision.

The effect of worsening playing strength as the number of

determinizations is increased is more pronounced for the Light

1The confidence intervals shown in this and other figures are
Clopper–Pearson intervals [35], considering each game as a Bernoulli trial.

Fig. 7. Heat map showing the results of the LOTR:C playing strength experi-
ment. A white square would indicate a 100% win rate for the specified Light
player algorithm against the specified Dark player algorithm, while a black
square would indicate a 100% win rate for Dark against Light. Shades of gray
interpolate between these two extremes.

player. One possible reason for this is that Light’s primary win

condition (moving Frodo into Mordor) requires more long-term

planning and thus deeper search than Dark’s primary win con-

dition (kill Frodo).

C. Playing Strength

In this experiment, the following algorithms play in a

round-robin tournament: cheating UCT, cheating ensemble

UCT, determinized UCT, SO-ISMCTS, SO-ISMCTS + POM,

and MO-ISMCTS. Each algorithm runs for 10 000 iterations

per decision. Determinized UCT uses ten determinizations with

1000 iterations for the Dark player, and applies all 10 000 iter-

ations to a single determinization for the Light. These values

were chosen based on the results in Section V-B. Cheating

ensemble UCT uses ten trees with 1000 iterations each for both

Light and Dark; devoting all iterations to a single tree would

be equivalent to cheating single-tree UCT. The results of this

experiment are shown in Figs. 7 and 8.

Cheating single-tree UCT consistently outperforms the other

algorithms by a large margin. For the Dark player, cheating

ensemble UCT outperforms ISMCTS. However, for the Light

player, cheating ensemble UCT and ISMCTS are on a par. This

is slightly surprising, and would seem to suggest that the ben-

efit of cheating is balanced by the increased depth to which

ISMCTS is able to explore the tree (due to devoting all of its it-

erations to a single tree). That this only holds true for one of the

players may shed some light on the differences in approaches re-

quired for strong Light and Dark play in LOTR:C: as discussed

in Section V-B, to Dark the locations of Light’s characters are

the most important factor, but to Light it is equally important to

be able to plan further ahead.

For the Dark player, determinized UCT is outperformed by

the other algorithms by a large margin. In particular, deter-

minized UCT is outperformed by all three ISMCTS variants.

The success of ISMCTS here is probably due to the reduction

in the effects of strategy fusion caused by using a tree of

information sets, as well as the additional tree depth that arises

132 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

Fig. 8. Results of the playing strength experiment for LOTR:C. In the “Light” graph, each algorithm indicated on the -axis plays an equal number of games as
the Light player against each algorithm as the Dark player, and the proportion of wins averaged over all Dark algorithms is plotted. The “Dark” graph is similar,
with Light and Dark players interchanged. The “Light Dark” graph averages these results for each algorithm regardless of player identity. In all cases, error bars
show 95% confidence intervals.

by collecting all simulations in a single tree. For the Light

player determinized UCT is also worse than ISMCTS, but less

dramatically so: the difference between determinized UCT and

MO-ISMCTS is around 4.4%, which is significant with 95%

confidence. Since the Light player devotes all its computational

resources to a single determinization the tree depth argument

does not hold, but evidently there is still some benefit to the

ISMCTS approach over determinized UCT, most likely the

reduced impact of strategy fusion.

There is no significant difference in playing strength be-

tween the variants of ISMCTS. SO-ISMCTS + POM seems

to perform slightly worse than the other variants of ISMCTS,

but this difference is not statistically significant. That there

is no significant difference between the algorithms seems to

imply that the strategy fusion effects of assuming that opponent

moves are fully observable in SO-ISMCTS, and the assumption

that the opponent values indistinguishable actions equally in

SO-ISMCTS + POM, are not as harmful as intuition may

suggest.

As noted above, each trial in this experiment starts from the

same hand-designed initial setup. We repeated the experiment

with each game beginning from a different randomly gener-

ated initial setup. This biases the game slightly toward the Dark

player, since a random initial setup is more likely to disadvan-

tage the Light player (e.g., by placing Frodo in a vulnerable

starting position). We carried out the same number of trials (750

for each combination of players) in order to achieve similar con-

fidence intervals. Similar results to those above were observed,

which support the same conclusions.

D. Playing Strength Versus Human Opponents

The previous section assesses the relative playing strengths

of several algorithms for LOTR:C, but gives no indication of

their absolute strength. We are not aware of any existing AI,

commercial or otherwise, for this game. To test the playing

strength of MO-ISMCTS, we played several games between

an MO-ISMCTS agent and a range of human opponents. The

human opponents can be characterized as experienced game

players with two having expert ability at LOTR:C and five

having intermediate ability.

For this experiment, playing all games with the same ini-

tial setup would not be a fair test: our AI agents cannot learn

the opponent’s initial setup between games, but a human player

certainly can. We use random initial setups, with constraints to

avoid generating particularly bad placements: certain characters

(Frodo, Sam, and the Balrog) are always placed in their player’s

home cell. Since this information is known to the human player,

it is also made available to the AI agent by appropriate construc-

tion of the initial information set.

When humans play LOTR:C, the game is partly a test of

memory: one must remember the identities of revealed enemy

characters. Since this is trivial for the AI agent, our graphical

interface makes this information available to the human player.

This ensures that the human and AI players are compared solely

on the strength of their decisions, and not on the inherent advan-

tage of a computer player in a test of memory.

We played 32 games with a human player as Dark and the

MO-ISMCTS player as Light, and 32 games with a human

as Light and MO-ISMCTS as Dark. MO-ISMCTS achieved

14 wins as Light and 16 as Dark. MO-ISMCTS was evenly

matched with intermediate to expert human players, so we may

conclude that MO-ISMCTS achieved strong play in an absolute

sense.

Our human LOTR:C players observed anecdotally that

MO-ISMCTS plays highly plausible moves, and is particularly

adept at engineering favorable endgame scenarios. Its weakest

aspect is card play during combat: for example, it has a ten-

dency to waste its more powerful cards in situations where less

powerful cards would suffice. Presumably this occurs when the

agent does not search deeply enough to see the value of holding

onto a more powerful card until later in the game.

VI. EXPERIMENTAL RESULTS FOR THE PHANTOM (4, 4, 4) GAME

A. The Game

An , , -game [8], [36] is a two-player game played on

an grid. Players take alternating turns to mark a square.

The winner is the first player to mark squares in a horizontal,

vertical, or diagonal row. For example, the well-known game of

Noughts and Crosses (or Tic-Tac-Toe) is the 3, 3, 3-game, and

Go-Moku [37] is the 19, 19, 5-game.

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 133

Fig. 9. Heat map showing the results of the Phantom (4, 4, 4) game playing
strength experiment. A white square would indicate a 100% win rate for the
specified player 1 algorithm against the specified player 2 algorithm, while a
black square would indicate a 100% win rate for player 2 against player 1.
Shades of gray interpolate between these two extremes.

A Phantom , , -game is an , , -game in which nei-

ther player can see the positions of the opponent’s marks. If a

player tries to mark a square that is already occupied by his op-

ponent, he is told that this is an invalid action and is allowed

to choose again. There is no penalty associated with playing an

invalid move. Indeed, playing invalid moves is the only mecha-

nism by which the Phantom , , -game player can gain infor-

mation about his opponent’s previous plays, so doing so is never

detrimental and often beneficial. In terms of the game tree, each

player action is followed by an environment action specifying

whether the move is valid or invalid.

We are not aware of any previous study of Phantom , ,

-games in general, although phantom Tic-Tac-Toe (i.e., the

phantom 3, 3, 3-game) has been studied by Auger [34] and by

Teytaud and Teytaud [38], and other phantom games have been

studied in the context of MCTS [22], [23].

In this paper, we study the Phantom (4, 4, 4) game (which

has enough states that our algorithms do not exhaustively search

the full perfect information tree). The perfect information 4, 4,

4-game is known to be a draw [8]. However this analysis does

not carry over to the phantom version of the game: intuitively,

even a perfect (but noncheating) player cannot block a line that

he cannot see. We are not aware of a theoretical analysis of

the Phantom (4, 4, 4) game; our intuition based on empirical

evidence is that the game has no forced result, and while player

1 has a strategy that can lead to a fast win (create four in a row

as quickly as possible, hoping that player 2 does not discover or

block the line) the game is somewhat balanced overall.

B. Playing Strength

In this experiment, the six algorithms listed in Section V-C

again play a round-robin tournament. Each algorithm uses a

total of 10 000 iterations, with cheating ensemble UCT and de-

terminized UCT using 40 trees with 250 iterations per tree.

Results of this experiment are shown in Figs. 9 and 10. From

the “Players ” graph in Fig. 10(c) the algorithms can be or-

dered from best to worst as follows, with statistical significance

at 95% confidence in each case:

1) cheating ensemble UCT;

2) cheating UCT;

3) MO-ISMCTS;

4) determinized UCT;

5) SO-ISMCTS;

6) SO-ISMCTS + POM.

Unsurprisingly, the cheating players perform best. The de-

terminization approach appears to be strong for this game, al-

though not as strong as MO-ISMCTS.

There is some asymmetry between the two players in

terms of the relative strengths of the algorithms. For player 1,

SO-ISMCTS andMO-ISMCTS are on a par while SO-ISMCTS

+ POM underperforms. For player 2, SO-ISMCTS is outper-

formed by SO-ISMCTS + POM which is in turn outperformed

by MO-ISMCTS. The three algorithms differ mainly in the

assumptions they make about future play. SO-ISMCTS as-

sumes that all actions are fully observable, which is both

optimistic (I can respond optimally to my opponent’s actions)

and pessimistic (my opponent can respond optimally to my

actions). SO-ISMCTS hence suffers from strategy fusion, since

it is assumed the agent can act differently depending on infor-

mation it cannot observe. In a phantom game, SO-ISMCTS

+ POM optimistically assumes that the opponent plays ran-

domly. MO-ISMCTS’s opponent model is more realistic: each

opponent action has its own statistics in the opponent tree and

so the decision process is properly modeled, but whichever

action is selected leads to the same node in the player’s own

tree thus preventing the player from tailoring its response to

the selected action. This addresses the strategy fusion problem

which affects SO-ISMCTS.

Since player 1 has the advantage of moving first, it seems

likely that these optimistic and pessimistic assumptions will

have varying degrees of benefit and detriment to the two players.

For example, a pessimistic player 2 algorithmmay conclude (in-

correctly) that the game is a loss, and so make poor decisions

from that point. In short, we argue that solving the problem of

strategy fusion (see Section III-B-I) is the key to strong play

in the Phantom (4, 4, 4) game. Of the three ISMCTS variants,

MO-ISMCTS is the most successful in overcoming strategy fu-

sion. Indeed, the two SO-ISMCTS variants suffer more from the

effects of strategy fusion than does determinized UCT.

One weakness of a cheating player is that it is overly pes-

simistic regarding the strength of its opponent. In particular,

it assumes the opponent also cheats. In the Phantom (4, 4, 4)

game, it often arises that the current state is a draw in the per-

fect information game but the noncheating player has insuffi-

cient information reliably to force the draw. In other words,

there are states where a noncheating opponent is likely to choose

an action that a cheating player would consider a mistake. If

the cheating player could direct the game toward these states it

would often win, but it sees no incentive to aim for these states in

preference to any other state that leads to a draw. A noncheating

player rarely suffers from this problem, as it generally lacks the

information to identify the state as a draw in the first place. It

should be noted that this never causes a cheating player to lose a

game, only to draw a game that it could conceivably have won.

134 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

Fig. 10. Results of the playing strength experiment for the Phantom (4, 4, 4) game. In the “Player 1” graph, each algorithm indicated on the -axis plays an equal
number of games as player 1 against each algorithm as player 2, and the proportion of wins averaged over all player 2 algorithms is plotted. The “Player 2” graph
is similar, with players 1 and 2 interchanged. The “Players ” graph averages these results for each algorithm regardless of player identity. In all cases, error
bars show 95% confidence intervals.

TABLE I
DOU DI ZHU MOVE CATEGORIES

For this experiment the cheating algorithms played a total of

37 880 games, and did not lose a single game.

The above is a possible explanation for why cheating en-

semble UCT outperforms cheating single-tree UCT. The former

searches less deeply, and so its estimates for the game-theoretic

values of states are less accurate. When the values of states are

influenced more by random simulations than by the tree policy,

there is a natural tendency to overestimate the value of states

in which the opponent has more opportunities to make a mis-

take. In [10], we make similar observations on the propensity

of noncheating players to make mistakes, and the benefit to

a cheating minimax player of a tie-breaking mechanism that

favors states from which the opponent has more suboptimal

moves available.

VII. EXPERIMENTAL RESULTS FOR DOU DI ZHU

A. The Game

1) Background: Dou Di Zhu is a three-player gambling card

game that originated in China, which falls into the class of ladder

games. The name Dou Di Zhu translates into English as “Fight

The Landlord” and is a reference to the class struggle during the

Cultural Revolution in China where peasants were authorized

to violate the human rights of their Landlords. In the original

version of the game, studied in this paper, two players compete

together against a third player, the Landlord. There are other

versions of the game involving four and five players but these

are less popular.

The game was only played in a few regions of China until

quite recently, when versions of the game on the Internet have

led to an increase in the popularity of the game throughout the

whole country. Today Dou Di Zhu is played by millions of

people online, although almost exclusively in China, with one

website reporting 1 450 000 players per hour. In addition, there

have been several majorDou Di Zhu tournaments including one

in 2008 which attracted 200 000 players.

Dou Di Zhu is interesting from an AI perspective as it neces-

sitates both competition (between the Landlord and the other

two players) and cooperation (between the two non-Landlord

players).

2) Rules: Dou Di Zhu uses a standard 52 card deck with the

addition of a black joker and a red joker. We give a brief de-

scription of the rules here; a complete description can be found

in [11]. Suit is irrelevant but the cards are ranked in ascending

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 135

order . A bidding phase, which is not

considered here, designates one of the players as the Landlord.

The Landlord receives 20 cards dealt from a shuffled deck, while

the other players receive 17 each. The goal of the game is to be

the first to get rid of all cards in hand. If the Landlord wins, the

other two players must each pay the stake to the Landlord. How-

ever, if either of the other two players wins, the Landlord pays

the stake to both opponents. This means the two non-Landlord

players must cooperate to beat the Landlord. The non-Landlord

players do not see each other’s cards, so the game cannot be re-

duced to a two-player game with perfect recall.

Card play takes place in a number of rounds until a player

has no cards left. The Landlord begins the game by making a

leading play, which can be any group of cards from their hand

provided this group is a member of one of the legal move cate-

gories (see Table I). The next player can play a group of cards

from their hand provided this group is in the same category and

has a higher rank than the group played by the previous player,

or may pass. A player who holds no compatible group has no

choice but to pass. This continues until two players pass, at

which point the next player may start a new round by making a

new leading play of any category.

One exception to the rule that successive plays are of the same

type is that a Bomb or a Nuke may be played at any point. Only

a Bomb of higher rank or a Nuke can follow a Bomb, and no

move can follow a Nuke. Some categories allow extra kicker

cards to be played with the group which have no effect on the

rank of the move being played. If a move with kickers is played,

the next player must play a move in the same category with the

same number of kickers.

Making a leading play is a good position to be in, allowing a

player to choose a move type where he holds multiple groups,

or holds a high-ranking group that opponents are unlikely to be

able to follow. The two non-Landlord players also need to work

together since they either both win or both lose.

3) Implementation: We do not consider the bidding phase,

instead assigning an arbitrary player as the Landlord. This al-

lows us to compare the strength of algorithms based on card

play alone. Also determinization is carried out in the natural

way, with all hidden cards from the point of view of a partic-

ular player being randomly reassigned amongst opponents.

The branching factor for leading plays is typically around 40,

and for nonleading plays is much smaller. However, in situa-

tions where moves with kickers are available each combina-

tion of move and kicker must be considered as a separate move,

leading to a combinatorial explosion in the branching factor for

leading plays. It should be noted that this is a problem specific

to Dou Di Zhu caused by the game mechanic of being able to

attach kicker cards to a play. To ameliorate this, we use an ap-

proach similar to the move grouping approach of Childs et al.

[39]: the player first chooses the base move and then the kicker,

as two separate consecutive decision nodes in the tree.

B. Comparison of ISMCTS and Determinized UCT

Experiments for Dou Dhi Zhu we conducted previously [10]

indicated that there was no significant difference in playing

strength between ISMCTS and determinized UCT for Dou

Di Zhu, when averaged across all deals. These comparisons

were made across 1000 preselected deals (details in [9]) with

ISMCTS, determinized UCT and cheating UCT as the Landlord

against determinized UCT players.

It should be noted that the structure of the trees searched by

determinized UCT and cheating UCT are the same on average

(this is discussed further in Section VII-C). The most significant

differences between the two are the access to hidden informa-

tion and the consistency due to each UCT tree in the cheating

player’s ensemble corresponding to the same perfect informa-

tion game. In deals where the cheating UCT player performed

better than determinized UCT, and hence where hidden infor-

mation and consistency in decision making had some impact, it

was observed that ISMCTS performed better than determinized

UCT. Since ISMCTS has no access to hidden information, this

would suggest that the single tree approach is providing some

of the same benefit the cheating ensemble player gains through

consistency of the UCT trees searched. Indeed our previous re-

sults [10] suggest that hidden information is not often important

in Dou Di Zhu and it is a highly unusual feature of this game,

that knowledge of information often has little impact on players

that use determinization.

Since the cards dealt is a significant deciding factor in the out-

come of a game of Dou Di Zhu, the observed results may have

been influenced by the small sample size of 1000 deals. This

experiment was repeated with a larger sample of 5000 new ran-

domly chosen deals, where each of the three algorithms played

each deal 75 times. Note that all three variants of ISMCTS are

equivalent for a game with fully observable moves. For this

reason, only SO-ISMCTS was tested for Dou Di Zhu, and we

refer to it simply as ISMCTS for the remainder of this section.

The overall win rate for determinized UCT was 43.6%, for

ISMCTS it was 42.3%, and for cheating UCT it was 56.5%. The

win rates are approximately the same as those we previously

obtained [10]. This is unsurprising: the 1000 deals we origi-

nally selected [9] were chosen to be a good indicator of typical

playing strength. Each deal was then put into one of three cate-

gories according to the difference in win rate between cheating

UCT and determinized UCT. If cheating UCT outperformed de-

terminized UCT (with 95% significance) the deal was put into

the category . If determinized UCT outperformed cheating

UCT (also with 95% significance) the deal was put into the cat-

egory . All other deals were put into the category . There

are 1421 deals in category , 3562 in category , and the

remaining 17 in category .

The win rates of ISMCTS and determinized UCT for the cate-

gories and are shown in Fig. 11. Since being in category

is such a rare event, we do not give results for this category.

In the deals in which cheating UCT is significantly better than

determinized UCT (category), the win rate of ISMCTS is

significantly better than that of determinized UCT. These deals

are arguably those where knowing hidden information has an

impact on the game and also deals where determinization may

suffer from strategy fusion issues. In deals where there is no

significant difference between cheating and determinization, we

observe that determinization is better than ISMCTS. This is also

a similar result to that obtained in [10]. It is arguable that hidden

information has little impact on these deals, for example, that

136 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

Fig. 11. Playing strength of ISMCTS and determinized UCT for Dou Di Zhu.
The playing strength is shown for deals in which cheating UCT is better than
determinized UCT (category) or where the two algorithms perform approx-
imately equally (category).

one of the players has such a strong hand that a win is assured

irrespective of what other players hold.

Despite the fact that overall the strength of ISMCTS and de-

terminized UCT is approximately the same, there can be a great

difference in the behavior of the two depending on which cards

are dealt. In the 1421 deals where a cheating UCT player out-

performs determinized UCT, so does ISMCTS on average. This

suggests that ISMCTS may be benefiting from a lack of strategy

fusion issues along with the cheating player in these deals. It is

an unusual feature of Dou Di Zhu among hidden information

games that having access to hidden information only provides a

strong advantage in a minority of deals, and has little effect in

the rest.

In 3562 deals there is no significant difference between

cheating UCT and determinized UCT. In these deals, ISMCTS

has a slightly lower win rate than determinized UCT. In these

deals some factors other than hidden information and strategy

fusion may be causing a detrimental effect on the performance

of ISMCTS, but not on determinized UCT. The most significant

difference between the two algorithms is the structure of the

trees searched. The tree searched by ISMCTS offers several ad-

vantages over the determinization approach in general, but may

be disadvantageous in certain deals. We investigate whether

this difference is caused by branching factor in Section VIII.

C. Influence of Branching Factor on Playing Strength

The fact that there are some deals in which determinization

outperforms cheating and many in which there is no difference

between the two algorithms is a surprising feature of Dou Di

Zhu, since intuitively the cheating player should have a strong

advantage. One possible explanation for this is that branching

factor has a large influence on the playing strength of these al-

gorithms. In Dou Di Zhu, certain hands may have a large total

number of moves available when making a leading play since

there are many possible ways of choosing kicker cards to attach

to a main group. Another feature of the game is that every move

a player makes in the game is in the set of moves that player

could make as a leading play from their starting hand. This set

therefore forms an upper bound on the number of moves avail-

able in each state for a particular deal and if this set is large,

there is likely to be many more nodes in the tree than if this set

is small.

In the case that determinizations produce hands with com-

pletely different sets of moves, ISMCTS is at a disadvantage

compared to determinized UCT. This is because ISMCTS will

spend a lot of time adding new nodes near the root of the tree

(since many determinizations will have unique moves that are

not common to other determinizations) and consequently the

statistics in the search tree will mostly be derived from random

playouts near the root. On the other hand, determinizing players

will be able to perform a deeper search for each determiniza-

tion, since a large number of possible opponent moves will be

ignored.

The following measurements were made for each of the 5000

deals tested in Section VII-B:

� the total number of moves the non-Landlord players would

be able to make as a leading play from their starting hand

(using the actual cards these players hold for this particular

deal);

� the average of the above for 200 random determinizations

of the deal (where the cards held by the non-Landlord

players are randomized);

� the average number of unique leading plays for non-Land-

lord players that are discovered in 40, 250, and 1000 deter-

minizations, i.e., after generating a certain number of deter-

minizations how many possible unique leading plays have

been seen for the non-Landlord players.

These measurements, averaged across all 5000 deals, are pre-

sented in Table II. It should be noted that these measurements

are a function of the deal; the first measurement is exact for

each deal, while the second depends on the sampled deter-

minizations. These measurements were made only for the

non-Landlord players since the playing strength experiments

in Section VII-B were conducted from the point of view of

the Landlord player. This means the algorithms tested always

had the same number of branches at nodes where the Land-

lord makes a move, since the Landlord can see his cards in

hand. The first measurement is an indicator for the number

of branches that may be expected at opponent nodes for the

cheating UCT player as the Landlord. Similarly, the second

measurement indicates the number of branches for opponent

nodes with determinized UCT as the Landlord. Both of these

measurements are upper bounds, since if an opponent has

played any cards at all then the number of leading plays will be

smaller. The third, fourth, and fifth measurements indicate how

many expansions ISMCTS will be making at opponent nodes

after a certain number of visits, since a new determinization

is used on each iteration. Again this measurement is an upper

bound since only one move is actually added per iteration and

if there were moves unique to a determinization which were

never seen again, only one of them would be added to the tree.

As seen in Table II, from 1000 determinizations on average

1500 unique leading plays are seen and yet there are only

approximately 88 unique leading plays for a particular deter-

minization of a deal. What is apparent from these measurements

is that there are a lot of moves available within the information

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 137

TABLE II
AVERAGES OF DIFFERENT MEASUREMENTS OF LEADING PLAYS FOR THE OPPONENTS IN DOU DI ZHU ACROSS 5000 DEALS

Fig. 12. Playing strengths of a commercial AI, determinized UCT, and
ISMCTS for Dou Di Zhu. Error bars show 95% confidence intervals.

set and only a small number of them are available within each

state in the information set. After just 40 determinizations,

ISMCTS will on average have seen nearly ten times as many

unique moves as there are per determinization. This means

that at nodes in the information set tree where an opponent

makes a leading play, node expansion will happen for many

more simulations than if the moves were derived from one

single determinization. At other nodes in the tree where the

opponent must play a certain move type, any move that either

player could play will appear as branches at nodes for both

opponents. This suggests that nodes in the tree corresponding

to an opponent making a leading play act as a bottleneck for

ISMCTS; the algorithm very rarely explores beyond these

nodes with only 10 000 simulations. With 250 simulations per

determinization, it is likely that determinized UCT reaches a

similar depth in the tree, which would explain why the overall

performance of the two algorithms is broadly similar.

Another observation that can be made from these results is

that the average number of leading moves for the actual state

of the game and for each determinization is approximately the

same. This is unsurprising since both measurements are derived

from states constructed by randomly dealing unseen cards. This

implies that cheating UCT and determinized UCT are searching

trees of approximately the same size on average. Results from

[10] suggest that the extra knowledge gained by cheating does

not always provide a strong advantage.

We speculate that ISMCTS will strongly outperform deter-

minized UCT if the former is equipped with some mechanism

to handle the large number of moves accumulated near the root

of the tree. Quite often the precise cards chosen as kickers are

not of particular strategic importance; indeed attaching a card

as a kicker is often a way of getting rid of a “useless” card

that would be difficult to play otherwise. Dou Di Zhu also has

many features which are unusual (and arguably pathological)

for games of hidden information. As shown in Sections V and

VI, the performance of ISMCTS is better in domains which lack

this pathology.

D. Playing Strength Against a Commercial AI

To assess the absolute strength of determinized UCT and

ISMCTS for Dou Di Zhu, we test them against a strong AI

agent developed commercially by AI Factory Ltd.2 This agent

uses flat Monte Carlo evaluation coupled with hand-designed

heuristics.

For implementation reasons the methodology of this experi-

ment differs from that of other experiments in this section. For

each game, the identity of the Landlord player is decided by a

bidding phase. Since we concentrate on card play in this paper,

all agents use the AI Factory agent’s AI for bidding. We test

three algorithms: the AI Factory agent, determinized UCT with

40 determinizations and 250 iterations per determinization, and

ISMCTS with 10 000 iterations. Each plays 1000 games against

two copies of the AI Factory agent. When all three agents are

identical the expected number of wins for each is 500.

Results of this experiment are shown in Fig. 12. We see that

both determinized UCT and ISMCTS significantly outperform

the AI Factory agent. For reasons of computational efficiency,

the AI Factory agent uses only a small number of Monte Carlo

simulations. A further experiment was conducted to show that

if we give the AI Factory player 100 times as many iterations

as in the commercial version, the playing strength of all three

agents is not significantly different. Thus, we can conclude in

absolute terms that both determinized UCT and ISMCTS pro-

duce plausible, and indeed strong, play for Dou Di Zhu.

VIII. COMPUTATION TIME

It has been demonstrated that SO-ISMCTS andMO-ISMCTS

offer advantages over determinized UCT, however both of these

algorithms are more complex and computationally expensive.

Experiments so far have performed a fixed number of itera-

tions without consideration of the algorithm used. It could be

that a simpler algorithm could perform more iterations in the

same amount of time as a more complex algorithm and achieve

a better result. This sort of comparison is dependent on the effi-

ciency of the implementation of each algorithm and may be dif-

ficult to test in practice. Instead, it has been observed that MCTS

algorithms can reach a point where additional simulations lead

to increasingly diminishing returns in terms of playing strength.

If two MCTS-based algorithms reach this point (independent

2www.aifactory.co.uk.

138 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

Fig. 13. Average number of simulations performed in 1 s by determinizedUCT,
SO-ISMCTS, andMO-ISMCTS on a desktop PC runningWindows 7 with 6 GB
of RAM and a 2.53-GHz Intel Xeon E5630 processor.

of the efficiency of implementations) and are using the same

amount of time to make decisions, then their relative strengths

should not changemuch asmore time is used. In this section, it is

demonstrated that with enough time per decision, the results ob-

tained lead to the same conclusions as in previous experiments.

First, an experiment was conducted where determinized

UCT, SO-ISMCTS, and MO-ISMCTS made the first decision

for games of Dou Di Zhu, LOTR:C, and the Phantom (4, 4,

4) game. Each algorithm used 10 000 simulations (with 40

trees and 250 iterations per tree for determinized UCT) and the

average time to make a decision was recorded from 25 trials

for each game. This was performed on a desktop PC running

Windows 7 with 6 GB of RAM and a 2.53-GHz Intel Xeon

E5630 processor. These results were used to calculate the

number of iterations each algorithm could perform in 1 s for

each game. The results are presented in Fig. 13.

It is clear from Fig. 13 that SO-ISMCTS and MO-ISMCTS

are two to four times slower than determinized UCT and also

that the game being played has an impact on the amount of time

it takes to perform an MCTS iteration. In order to compare al-

gorithms based on the amount of decision time, it was important

to remove factors which affect the execution time of the exper-

iments: our experiments run on a cluster of heterogeneous ma-

chines, all of which have other processes running at the same

time. The algorithms were tested with a fixed number of iter-

ations corresponding to a certain amount of decision time, as-

suming the rate of iterations per second for each algorithm/game

in Fig. 13. Approaches that build larger trees have increasing

overheads per iteration, for example, due to MCTS selection

being applied to more nodes in the tree. Assuming the rate of it-

erations per second from Fig. 13 is reasonable, since after a few

hundred iterations the overheads increase slowly.

For the Phantom (4, 4, 4) game, the three algorithms already

take less than a second to execute 10 000MCTS iterations due to

the simplicity of the game logic. However, for Dou Di Zhu and

LOTR:C, it is clear that in 1 s of decision time SO-ISMCTS and

MO-ISMCTS execute around a third the number of iterations

that determinized UCT does. From Fig. 13, it is clear that the

MO-ISMCTS implementation has some additional overheads,

Fig. 14. Playing strength of determinized UCT and MO-ISMCTS for different
amounts of decision time playing LOTR:C.

since it performed fewer iterations per second for Dou Di Zhu

than SO-ISMCTS, although the two algorithms are equivalent

for Dou Di Zhu, since it has no partially observable moves. The

performance of these algorithms when decision time is a factor

was investigated for all three games.

For Dou Di Zhu, determinized UCT was compared to

SO-ISMCTS with 0.25–8 s of decision time. In each case,

the algorithms played as the Landlord, with the non-Landlord

players using determinized UCT with 40 determinizations and

250 iterations per determinization (as in Section VII). Playing

strength was measured across the 1000 deals chosen previously

[9]. Thenumber of trees and iterations for determinizedUCTwas

chosen for each total number of iterations to preserve the ratio of

trees to iterations as 40/250. The relative playing strength of each

algorithm was not significantly different to the results obtained

in Section VII-B for any amount of decision time (although

SO-ISMCTS appeared slightly weaker with less than 1 s of

decision time). This supports the conclusion from Section VII-C

that after reaching a certain depth, SO-ISMCTS spends many

simulations expanding opponent decision nodes near the root of

the tree and does not improve in playing strength.

For LOTR:C, MO-ISMCTS was compared to determinized

UCT for 1–30 s of decision time where determinized UCT used

one tree when playing as the Light player and a ratio of trees

to iterations of 10/1000 when playing as the Dark player (these

values were optimized in Section V). The two algorithms played

each other as both the Dark player and the Light player 500

times. The results are presented in Fig. 14. It is clear that for

1 s of decision time, MO-ISMCTS is slightly inferior to deter-

minized UCT, but when at least 3 s of decision time is used

MO-ISMCTS is significantly stronger than determinized UCT.

The results in Fig. 14 indicate that with a sufficient amount of

decision time MO-ISMCTS offers a clear advantage over deter-

minized UCT, which increases with increasing CPU time.

For the Phantom (4, 4, 4) game, determinized UCT,

SO-ISMCTS, and MO-ISMCTS were compared for 0.25–5 s

of decision time per move. For each pair of algorithms, 500

games were played with each algorithm playing as player 1

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 139

Fig. 15. Playing strength of determinized UCT and SO/MO-ISMCTS for dif-
ferent amounts of decision time playing the Phantom (4, 4, 4) game. For each
pair of algorithms versus , win rates are presented for algorithm where
algorithm makes the first move. Error bars show 95% confidence intervals
for MO-ISMCTS versus determinized UCT for 2 s per decision, and are rep-
resentative of the size of error bars for the other series.

and as player 2. The results are presented in Fig. 15. When the

CPU time used is less than 1.5 s per move the results are not

significantly different to those for 10 000 iterations presented

in Section VI, with MO-ISMCTS slightly stronger than de-

terminized UCT and clearly stronger than SO-ISMCTS. We

also see the clear advantage of going first over going second.

Above 1.5 s per move, the MO-ISMCTS algorithm continues to

outperform SO-ISMCTS, in terms of results of games between

these algorithms and performance against determinized UCT.

However, both of these algorithms become relatively weaker

than determinized UCT with increasing CPU time.

When using determinized UCT, implicitly we assume

perfect information for both players. The SO-ISMCTS and

MO-ISMCTS players do not assume knowledge of hidden

information. However, SO-ISMCTS does make the pes-

simistic assumption that the opponent has perfect information.

MO-ISMCTS improves on this, supposing that the oppo-

nent knows the root state but not the moves made by the

MO-ISMCTS player. Two properties of the Phantom (4, 4, 4)

game are important here: the game is a loss if the opponent

observes the game state at a crucial moment, even if he does

not cheat subsequently; and the game is simple enough that

MO-ISMCTS with more than 1.5 s can search a significant

proportion of the entire game tree. The pessimism of the as-

sumption that the opponent knows some or all of the hidden

information often leads SO-ISMCTS and MO-ISMCTS to

conclude, incorrectly, that the game is a loss, and thus play

randomly since all lines of play have the same reward value.

Determinized UCT has the more balanced, although highly in-

accurate, view that both players can see all hidden information.

Dou Di Zhu and LOTR:C are more complex than Phantom (4,

4, 4) so that it is not practical to search a substantial fraction of

the whole tree within a reasonable time. Furthermore, both Dou

Di Zhu and LOTR:C remain difficult to win even when hidden

information is known. Hence, we do not see the reduction in

playing strength for SO-ISMCTS and MO-ISMCTS with in-

creasing CPU time. We conjecture that if the determinization

approach of MO-ISMCTS was modified to also take the op-

ponent’s uncertainty into account, this effect would no longer

occur in the Phantom (4, 4, 4) game. This is an interesting pos-

sible direction for future research.

IX. CONCLUSION

In this paper, we studied several variants of MCTS for games

of imperfect information. Determinization is a popular approach

to such games, but one with several shortcomings. Frank and

Basin [5] identified two such shortcomings: strategy fusion (as-

suming the ability to make different decisions from different

future states in the same information set) and nonlocality (ig-

noring the ability of other players to direct play towards some

states in an information set and away from others). For MCTS,

a third shortcoming is that the computational budget must be

shared between searching several independent trees rather than

devoting all iterations to exploring deeply a single tree.

To solve the problem of nonlocality requires techniques such

as opponent modeling and calculation of belief distributions,

which are beyond the scope of this paper. The solution we

propose to the other two problems is the information set MCTS

family of algorithms. These do not abandon determinization

entirely, but use multiple determinizations to construct a single

search tree (MO-ISMCTS searches multiple trees, but each

tree is associated with a player rather than a determinization).

Searching a single tree allows the entire computational budget

to be devoted to searching it deeply. The sharing of infor-

mation between determinizations also addresses the problem

of strategy fusion: the algorithm cannot wrongly assume the

ability to distinguish two future states if those states share a

node in the tree. The SO-ISMCTS algorithm addresses the

issue of wrongly assuming the player can distinguish between

two states in an information set. The MO-ISMCTS algorithm

additionally addresses the issue of wrongly assuming the player

can distinguish between different partially observable moves

made by an opponent.

We have considered three experimental domains: a complex

board game (Lord of the Rings: The Confrontation), a simple

phantom game [the Phantom (4, 4, 4) game], and a card game

(Dou Di Zhu). In Lord of the Rings: The Confrontation, we

have shown that ISMCTS significantly outperforms deter-

minized UCT. We conjecture that one of the key benefits of

ISMCTS over determinized UCT in LOTR:C is that the former

is able to search more deeply in the game tree given the same

computational budget. It seems to be a feature of LOTR:C for

the Light player, and also for the Dark player to a lesser extent,

that the ability to search the game tree more deeply and thus

plan further ahead is more important than careful consideration

of the hidden information. It is important to note that this

increased search depth is not due to a lower branching factor,

indeed the ISMCTS tree has a higher branching factor than

the determinized UCT trees. Instead it is because the entire

computational budget is devoted to a single tree in ISMCTS, as

opposed to being shared between trees in determinized UCT.

140 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

There is no significant difference in playing strength between

the three variants of ISMCTS for LOTR:C. This seems to

suggest that strategy fusion is not a major factor in this game:

the assumption that the identities of opponent characters are

revealed when they move (i.e., that actions are fully observable)

appears not to be exploited, or if it is exploited then this is not

ultimately detrimental. However, in the Phantom (4, 4, 4) game

MO-ISMCTS significantly outperforms the other ISMCTS

variants. This is unsurprising: in a phantom game, SO-ISMCTS

suffers from strategy fusion, and SO-ISMCTS + POM assumes

random opponent play. The gap between determinized UCT

and MO-ISMCTS is smaller than for LOTR:C, and indeed the

SO-ISMCTS variants fail to outperform determinized UCT.

Compared to LOTR:C and Dou Di Zhu, the Phantom (4, 4, 4)

game tree is relatively small, and the game is more tactical than

strategic, so issues such as search depth do not have such a

dramatic effect on playing strength.

In Dou Di Zhu, the performance of ISMCTS is on a par with

that of determinized UCT. The benefit to ISMCTS of devoting

the entire computational budget to a single tree is negated by the

fact that this tree’s branching factor is often an order of magni-

tude larger than that of a determinized UCT tree. The union of

legal action sets for all states in an information set is much larger

than the action set for a single state in that information set

(8)

which is not the case for LOTR:C or the Phantom (4, 4, 4) game.

Indeed, it is sometimes the case that ISMCTS is encountering

unseen actions from new determinizations on almost every it-

eration of the search, meaning that UCB never has the chance

to exploit any action. With some mechanism for handling the

large branching factor and controlling the expansion of the tree,

we conjecture the playing strength of ISMCTS for Dou Di Zhu

would be greatly increased.

ISMCTS allows a single tree to be searched for games of im-

perfect information. As a result, branching factor permitting,

ISMCTS searches more deeply than determinized UCTwith the

same computational budget. This is true whether the computa-

tional budget is expressed in number of iterations or in CPU

seconds, even taking into account that determinized UCT can

execute more iterations per second. Furthermore, SO-ISMCTS

addresses one source of strategy fusion issues andMO-ISMCTS

additionally addresses another, providing an improved model of

the decision making process compared to existing determiniza-

tionmethods. In domains where deep search is possible and ben-

eficial or strategy fusion is detrimental, ISMCTS shows great

promise. However, in domains such as Dou Di Zhu, where in-

formation sets have large numbers of legal moves and the effect

of strategy fusion is not so clear, ISMCTS offers no immediate

benefit over existing approaches.

Our ultimate goal is to develop ISMCTS into a general pur-

pose algorithm for arbitrary games (and other decision prob-

lems) with stochasticity, imperfect information, and/or incom-

plete information and large state spaces. The next step toward

this goal is to apply ISMCTS to wider classes of games and as-

sess its strengths and weaknesses on those domains. Section X

identifies some other directions for future work.

X. FUTURE WORK

We have empirically demonstrated the strength of the

ISMCTS family of algorithms for several domains. It is clear

that an enhanced version of ISMCTS should yield better

playing strength, especially for domains such as Dou Di Zhu

where there is a need for some mechanism to handle the large

branching factor at opponent nodes. It remains to establish the

theoretical properties of these algorithms and their potential

for converging to game-theoretic solutions. MO-ISMCTS is

arguably the most theoretically defensible of the three ISMCTS

algorithms as it most accurately models the differences in

information available to each player. A subject for future work

is to conduct a full theoretical analysis of MO-ISMCTS, and

investigate the situations under which it converges to an optimal

(Nash equilibrium) policy. The SO-ISMCTS + POM algorithm

currently assumes the opponent chooses indistinguishable

moves at random, which is clearly incorrect as a decision

model for the opponent. There is room for improvement in this

aspect of the algorithm.

We observed in Section IX that ISMCTS suffers less from

the effects of strategy fusion than determinization-based ap-

proaches. The first example in Section IV-E backs this up by

showing that ISMCTS behaves correctly in a simple situation

where strategy fusion occurs. It is possible to measure the pres-

ence of strategy fusion, albeit indirectly, for example, using

the approach of Long et al. [18]. However, identifying situa-

tions in which strategy fusion occurs is difficult when games are

large and nontrivial. Furthermore, strategy fusion is not the only

factor in the performance of ISMCTS; for example, we have ar-

gued that it benefits from deeper search in LOTR:C but suffers

from increased branching factor in Dou Di Zhu. Understanding

situations in which strategy fusion is an important predictor of

the success of ISMCTS, and developing methods to take advan-

tage of this, is a subject for future work.

One limitation of the algorithms presented here is that they

assume the opponents have access to the player’s hidden in-

formation: when the player chooses a determinization to use

during the search, it does not determinize its own cards or the

locations of its own pieces. Essentially the searching player

assumes a cheating opponent, which is a worst case assump-

tion but does mean that the opponent’s lack of information can

never be exploited. Furthermore, the assumption will be partic-

ularly harmful in games where there are no strategies that offer

a chance of winning against a cheating opponent. This problem

was observed in Section VIII when larger amounts of CPU time

were used forMO-ISMCTS playing thePhantom (4, 4, 4) game.

However, the solution is not as simple as merely randomizing

one’s own information during determinization, as this destroys

the player’s ability to plan ahead beyond its current move (the

searching player then assumes that it will forget its own infor-

mation after the current turn). Addressing this issue, and par-

ticularly striking a balance between considering the actual sit-

uation and considering the other situations that the opponent

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 141

thinks are possible, is important in games where information

hiding is a significant part of successful play. It is worth noting

that there are games where one player has imperfect informa-

tion but the other has perfect information; Scotland Yard is one

example [40]. ISMCTS is well suited in such domains when

playing as the player with imperfect information, since its as-

sumption about the opponents’ knowledge of the state of the

game is correct.

None of our algorithms model belief distributions, instead

sampling determinizations uniformly at random. It is well

known in game theory that maintaining an accurate belief

distribution is essential for optimal play in games of imperfect

information, and this is also essential to solving the problem

of nonlocality. In a phantom game, for instance, ISMCTS

algorithms assume that the opponent has played randomly up

to the current point, regardless of how correct or incorrect their

assumptions about subsequent play may be. Integrating belief

distributions into ISMCTS is an important direction for future

work and should address the issue of nonlocality which arises

through determinization.

APPENDIX

PSEUDOCODE FOR THE ISMCTS ALGORITHMS

This Appendix gives complete pseudocode for the ISMCTS

algorithms, to complement the higher level pseudocode given

in Section IV. In order to give a concrete implementation, the

pseudocode given here illustrates UCB for selection, but other

bandit algorithms may be used instead.

A. The SO-ISMCTS Algorithm

The following notation is used in this pseudocode:

� children of node ;

� incoming action at node ;

� visit count for node ;

� availability count for node ;

� total reward for node ;

� , the children of

compatible with determinization ;

� , the

actions from for which does not have children in the

current tree. Note that and are defined only

for and such that is a determinization of (i.e., a state

contained in) the information set to which corresponds.

1: function SO-ISMCTS

2: create a single-node tree with root corresponding to

3: for iterations do

4: choose uniformly at random

5:

6: if then

7:

8:

9:

10: return where

11:

12: function

13: while is nonterminal and do

14: select3

15: ;

16: return

17:

18: function

19: choose from uniformly at random

20: add a child to with

21: ;

22: return

23:

24: function

25: while is nonterminal do

26: choose from uniformly at random

27:

28: return

29:

30: function

31: for each node from to do

32: increment by 1

33:

34: let be the determinization when was visited

35: for each sibling of compatible with , including

itself do

36: increment by 1

B. The SO-ISMCTS + POM Algorithm

This pseudocode uses the notation from part A of the Ap-

pendix, with the following modifications:

� incoming move from player 1’s point of view at

node ;

� , the children of

compatible with determinization ;

� with ,

the moves from for which does not have children.

The following functions differ from the pseudocode given in

part A of the Appendix.

1: function

2: while is nonterminal and do

3: select3

4: choose uniformly at random

5: ;

6: return

7:

8: function

9: choose from uniformly at random

10: add a child to with

11: choose uniformly at random

12: ;

13: return

3While the selection shown here is based on UCB, other bandit algorithms
could be used instead.

142 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 4, NO. 2, JUNE 2012

C. The MO-ISMCTS Algorithm

This pseudocode uses the notation from part A of the Ap-

pendix, with the following modifications:

� a node in player ’s tree;

� incoming move from player ’s point of view at

node .

The following functions differ from the pseudocode given in

part A of the Appendix.

1: function MO-ISMCTS

2: for each player do

3: create a single-node tree with root

4: for iterations do

5: choose uniformly at random

6:

7: if then

8:

9:

10: for each player do

11:

12: return where

13:

14: function

15: while is nonterminal and do

16: select3

17: for each player do

18:

19:

20: return

21:

22: function

23: choose from uniformly at random

24: for each player do

25:

26:

27: return

28:

29: function

30: if with then

31: return such a

32: else

33: create and return such a

ACKNOWLEDGMENT

The authors would like to thank J. Rollason of AI Fac-

tory (www.aifactory.co.uk) for introducing them to Dou Di

Zhu, for several useful and interesting conversations, and for

providing the commercial AI opponent and test framework

used in Section VII-D. They would also like to thank the

volunteers who assisted with the playing strength experiment in

Section V-D. Finally, the authors would like to thank the anony-

mous reviewers for their helpful and insightful comments.

REFERENCES

[1] S. Gelly and D. Silver, “Monte-Carlo tree search and rapid action
value estimation in computer Go,” Artif. Intell., vol. 175, no. 11, pp.
1856–1875, Jul. 2011.

[2] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”
in Proc. Eur. Conf. Mach. Learn., J. Fürnkranz, T. Scheffer, and M.
Spiliopoulou, Eds., Berlin, Germany, 2006, pp. 282–293.

[3] M. L. Ginsberg, “GIB: Imperfect information in a computationally
challenging game,” J. Artif. Intell. Res., vol. 14, pp. 303–358, 2001.

[4] R. Bjarnason, A. Fern, and P. Tadepalli, “Lower bounding Klondike
Solitaire with Monte-Carlo planning,” in Proc. 19th Int. Conf. Autom.
Plan. Sched., Thessaloniki, Greece, 2009, pp. 26–33.

[5] I. Frank and D. Basin, “Search in games with incomplete information:
A case study using Bridge card play,” Artif. Intell., vol. 100, no. 1–2,
pp. 87–123, 1998.

[6] BoardGameGeek, Lord of the Rings: The Confrontation, 2011 [On-
line]. Available: http://boardgamegeek.com/boardgame/3201/lord-of-
the-rings-the-confrontation

[7] BoardGameGeek, Stratego, 2011 [Online]. Available: http://
boardgamegeek.com/boardgame/1917/stratego

[8] J. W. H. M. Uiterwijk and H. J. van den Herik, “The advantage of the
initiative,” Inf. Sci., vol. 122, no. 1, pp. 43–58, Jan. 2000.

[9] E. J. Powley, D. Whitehouse, and P. I. Cowling, “Determinization in
Monte-Carlo tree search for the card game Dou Di Zhu,” in Proc. Artif.
Intell. Simul. Behav., York, U.K., 2011, pp. 17–24.

[10] D. Whitehouse, E. J. Powley, and P. I. Cowling, “Determinization and
information set Monte Carlo tree search for the card game Dou Di
Zhu,” in Proc. IEEE Conf. Comput. Intell. Games, Seoul, Korea, 2011,
pp. 87–94.

[11] J. McLeod, Dou Dizhu, 2010 [Online]. Available: http://www.pagat.
com/climbing/doudizhu.html

[12] J. Rubin and I. Watson, “Computer poker: A review,” Artif. Intell., vol.
175, no. 5–6, pp. 958–987, Apr. 2011.

[13] M. Shafiei, N. R. Sturtevant, and J. Schaeffer, “Comparing UCT versus
CFR in simultaneous games,” in Proc. Int. Joint Conf. Artif. Intell.
Workshop Gen. Game Playing, Pasadena, CA, 2009 [Online]. Avail-
able: http://webdocs.cs.ualberta.ca/~nathanst/papers/uctcfr.pdf

[14] H. Kuhn, “A simplified two-person poker,” in Contributions to the
Theory of Games, H. Kuhn and A. Tucker, Eds. Princeton, NJ:
Princeton Univ. Press, 1950, pp. 97–103.

[15] M. Ponsen, S. de Jong, andM. Lanctot, “Computing approximate Nash
equilibria and robust best-responses using sampling,” J. Artif. Intell.
Res., vol. 42, pp. 575–605, 2011.

[16] M. Lanctot, K. Waugh, M. Zinkevich, and M. Bowling, “Monte
Carlo sampling for regret minimization in extensive games,” in Proc.
Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2009, pp.
1078–1086.

[17] R. B. Myerson, Game Theory: Analysis of Conflict. Cambridge, MA:
Harvard Univ. Press, 1997.

[18] J. R. Long, N. R. Sturtevant, M. Buro, and T. Furtak, “Understanding
the success of perfect information Monte Carlo sampling in game tree
search,” in Proc. Assoc. Adv. Artif. Intell., Atlanta, GA, 2010, pp.
134–140.

[19] E. K. P. Chong, R. L. Givan, and H. S. Chang, “A framework for
simulation-based network control via hindsight optimization,” in Proc.
IEEEConf. Decision Control, Sydney, Australia, 2000, pp. 1433–1438.

[20] M. Buro, J. R. Long, T. Furtak, and N. R. Sturtevant, “Improving state
evaluation, inference, and search in trick-based card games,” in Proc.
21st Int. Joint Conf. Artif. Intell., Pasadena, CA, 2009, pp. 1407–1413.

[21] J. Schäfer, “The UCT algorithm applied to games with imperfect infor-
mation,” Diploma, Otto-Von-Guericke Univ. Magdeburg, Magdeburg,
Germany, 2008.

[22] J. Borsboom, J.-T. Saito, G. M. J.-B. Chaslot, and J. W. H. M. Uiter-
wijk, “A comparison of Monte-Carlo methods for phantom Go,” in
Proc. BeNeLux Conf. Artif. Intell., Utrecht, The Netherlands, 2007, pp.
57–64.

[23] P. Ciancarini and G. P. Favini, “Monte Carlo tree search in Kriegspiel,”
Artif. Intell., vol. 174, no. 11, pp. 670–684, Jul. 2010.

[24] S. J. Russell and P. Norvig, Artificial Intelligence: AModern Approach,
3rd ed. Upper Saddle River, NJ: Prentice-Hall, 2009.

[25] D. Koller and A. Pfeffer, “Representations and solutions for game-the-
oretic problems,” Artif. Intell., vol. 94, no. 1–2, pp. 167–215, 1997.

[26] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione, “Re-
gret minimization in games with incomplete information,” in Proc.
Adv. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2008, pp.
1729–1736.

COWLING et al.: INFORMATION SET MONTE CARLO TREE SEARCH 143

[27] M. Ponsen, G. Gerritsen, and G. M. J.-B. Chaslot, “Integrating oppo-
nent models with Monte-Carlo tree search in poker,” in Proc. Conf.
Assoc. Adv. Artif. Intell.: Inter. Decision Theory Game Theory Work-

shop, Atlanta, GA, 2010, pp. 37–42.
[28] M. Richards and E. Amir, “Opponent modeling in Scrabble,” in

Proc. 20th Int. Joint Conf. Artif. Intell., Hyderabad, India, 2007, pp.
1482–1487.

[29] O. Teytaud and S. Flory, “Upper confidence trees with short term par-
tial information,” inProc. Appl. Evol. Comput., C. Di Chio, S. Cagnoni,
C. Cotta, M. Ebner, A. Ekárt, A. Esparcia-Alcázar, J. J. M. Guervós, F.
Neri, M. Preuss, H. Richter, J. Togelius, and G. N. Yannakakis, Eds.,
Torino, Italy, 2011, pp. 153–162.

[30] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire, “Gambling in
a rigged casino: The adversarial multi-armed bandit problem,” in Proc.
Annu. Symp. Found. Comput. Sci., Milwaukee,WI, 1995, pp. 322–331.

[31] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,”Mach. Learn., vol. 47, no. 2, pp. 235–256,
2002.

[32] A. Fern and P. Lewis, “Ensemble Monte-Carlo planning: An empir-
ical study,” in Proc. 21st Int. Conf. Autom. Plan. Scheduling, Freiburg,
Germany, 2011, pp. 58–65.

[33] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,”
in Proc. Neural Inf. Process. Syst., Vancouver, BC, Canada, 2010, pp.
1–9.

[34] D. Auger, “Multiple tree for partially observable Monte-Carlo tree
search,” in Proc. Evol. Games., Torino, Italy, 2011, pp. 53–62.

[35] C. J. Clopper and E. S. Pearson, “The use of confidence or fiducial
limits illustrated in the case of the binomial,” Biometrika, vol. 26, no.
4, pp. 404–413, 1934.

[36] H. J. van den Herik, J. W. H. M. Uiterwijk, and J. van Rijswijck,
“Games solved: Now and in the future,” Artif. Intell., vol. 134, no. 1–2,
pp. 277–311, Jan. 2002.

[37] L. V. Allis, H. J. van den Herik, and M. P. H. Huntjens, “Go-Moku
solved by new search techniques,” IEEE Comput. Intell. Mag., vol. 12,
no. 1, pp. 7–23, Feb. 1996.

[38] F. Teytaud and O. Teytaud, “Lemmas on partial observation, with
application to phantom games,” in Proc. IEEE Conf. Comput. Intell.
Games, Seoul, Korea, 2011, pp. 243–249.

[39] B. E. Childs, J. H. Brodeur, and L. Kocsis, “Transpositions and move
groups in Monte Carlo tree search,” in Proc. IEEE Symp. Comput. In-
tell. Games, Perth, Australia, 2008, pp. 389–395.

[40] J. A. M. Nijssen and M. H. M. Winands, “Monte-Carlo tree search
for the game of Scotland Yard,” in Proc. IEEE Conf. Comput. Intell.
Games, Seoul, Korea, 2011, pp. 158–165.

Peter I. Cowling (M’05) received the M.A. and
D.Phil. degrees from Corpus Christi College, Uni-
versity of Oxford, Oxford, U.K., in 1989 and 1997,
respectively.
He is a Professor of Computer Science and

Associate Dean (Research and Knowledge Transfer)
at the University of Bradford, Bradford, U.K., where
he leads the Artificial Intelligence Research Centre.
In September 2012, he will take up an Anniversary
Chair at the University of York, York, U.K., joined
between the Department of Computer Science and

the York Management School. His work centers on computerized decision
making in games, scheduling and resource-constrained optimization, where
real-world situations can be modeled as constrained search problems in large
directed graphs. He has a particular interest in general-purpose approaches
such as hyperheuristics (where he is a pioneer) and Monte Carlo tree search
(especially the application to games with stochastic outcomes and incom-
plete information). He has worked with a wide range of industrial partners,
developing commercially successful systems for steel scheduling, mobile
workforce planning, and staff timetabling. He is a director of two research
spinout companies. He has published over 80 scientific papers in high-quality
journals and conferences.
Prof. Cowling is a founding Associate Editor of the IEEE TRANSACTIONS

ON COMPUTATIONAL INTELLIGENCE AND AI FOR GAMES. He has won a range
of academic prizes and “best paper” awards, and given invited talks at a wide
range of universities and conference meetings.

Edward J. Powley (M’10) received the M.Math. de-
gree in mathematics and computer science and the
Ph.D. degree in computer science from the Univer-
sity of York, York, U.K., in 2006 and 2010, respec-
tively.
He is currently a Research Fellow at the University

of Bradford, Bradford, U.K., where he is a member
of the Artificial Intelligence Research Centre in the
School of Computing, Informatics and Media. His
current work involves investigating Monte Carlo tree
search (MCTS) for games with hidden information

and stochastic outcomes. His other research interests include cellular automata,
and game theory for security.
Dr. Powley was awarded the P B Kennedy Prize and the BAE Systems ATC

Prize.

Daniel Whitehouse (S’11) received the M.Math.
degree in mathematics from the University of Man-
chester, Manchester, U.K., in 2010. He is currently
working toward the Ph.D. degree in artificial intelli-
gence in the School of Computing, Informatics and
Media, University of Bradford, Bradford, U.K.
He is a member of the Artificial Intelligence

Research Centre, University of Bradford. His Ph.D.
work is funded as part of the EPSRC project “UCT
for games and Beyond” and is investigating the
application of Monte Carlo Tree Search methods to

games with chance and hidden information.

