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Abstract

Monitoring landscape carbon storage is critical for supporting and validating climate change mitigation policies. These may
be aimed at reducing deforestation and degradation, or increasing terrestrial carbon storage at local, regional and global
levels. However, due to data-deficiencies, default global carbon storage values for given land cover types such as ‘lowland
tropical forest’ are often used, termed ‘Tier 1 type’ analyses by the Intergovernmental Panel on Climate Change (IPCC). Such
estimates may be erroneous when used at regional scales. Furthermore uncertainty assessments are rarely provided leading
to estimates of land cover change carbon fluxes of unknown precision which may undermine efforts to properly evaluate
land cover policies aimed at altering land cover dynamics. Here, we present a repeatable method to estimate carbon
storage values and associated 95% confidence intervals (CI) for all five IPCC carbon pools (aboveground live carbon, litter,
coarse woody debris, belowground live carbon and soil carbon) for data-deficient regions, using a combination of existing
inventory data and systematic literature searches, weighted to ensure the final values are regionally specific. The method
meets the IPCC ‘Tier 2’ reporting standard. We use this method to estimate carbon storage over an area of33.9 million
hectares of eastern Tanzania, reporting values for 30 land cover types. We estimate that this area stored 6.33 (5.92–6.74) Pg
C in the year 2000. Carbon storage estimates for the same study area extracted from five published Africa-wide or global
studies show a mean carbon storage value of ,50% of that reported using our regional values, with four of the five studies
reporting lower carbon storage values. This suggests that carbon storage may have been underestimated for this region of
Africa. Our study demonstrates the importance of obtaining regionally appropriate carbon storage estimates, and shows
how such values can be produced for a relatively low investment.
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Introduction

Land cover change is known to make up a significant

proportion of global greenhouse gas emissions. For example,

anthropogenic destruction of tropical forests is responsible for

between 10% to 28% of global carbon dioxide emissions,

depending upon definitions [1–6]. In response to this, a broad

agreement within the United Nations Framework Convention on

Climate Change (UNFCCC) was reached to implement a scheme

titled ‘Reducing Emissions from Deforestation and Forest Degra-

dation’ (REDD) as a means to encourage the reduction of these

emissions, later expanding the schemes’ scope to include the

sustainable management of forests and the conservation and

enhancement of forest carbon stocks, termed REDD+ [7].

To have to opportunity to receive potential financial incentives

through mitigation schemes such as REDD+, countries must

estimate carbon storage and rates of loss, following guidance

materials [8–10]. However, many developing countries lack the

data to perform some of the recommended carbon accounting

methods [7] and as such often resort to so-called ‘Tier 1’ analyses

using global default carbon storage values for given land cover

types [11,12]. However, carbon stock is known to vary spatially on

PLOS ONE | www.plosone.org 1 September 2012 | Volume 7 | Issue 9 | e44795



local [13] and global scales [14,15]. Thus, regionally appropriate

values, indicating uncertainties (‘Tier 2’), and those derived from

intensive multiple census inventory data (‘Tier 3’) are preferable

[12,16]. This tiered approach has the advantage of enabling

participation of all countries, despite varying data availability

(Table 1).

Currently, sampling effort is largely focussed on aboveground

live carbon pools [15,17]. However, the importance of the

remaining IPCC carbon pools (litter, coarse woody debris,

belowground, and soil carbon – see Table 1) is being increasingly

recognised [18–21]. The size of these carbon pools is often

estimated from ratios relating each pool to aboveground carbon

stock [12,15,22]. Effort should also be made to capture an estimate

of the uncertainty in values, although many studies omit this

crucial step [11,23].

We use the watershed of the Eastern Arc Mountains in

Tanzania (EAM), spanning 33.9 million ha (Figure 1), to derive

regional carbon storage estimates using our method. At present,

six previously published estimates, using a variety of methods, give

a wide range of carbon storage estimates for our study area

(Table 2). The lowest value given is derived from MODIS (1 km2

resolution) and LiDAR data plus limited ground observations,

used to estimate the distribution of aboveground live carbon stored

in Africa in 2000, giving a Tier 1 estimate of 0.34 Pg C for our

study area. This estimate is for aboveground live carbon only,

omitting the other four IPCC carbon pools, and utilises

continental, not country, specific data and allometric equations.

Following a critique of these methods [24], a recent revision has

been published that fully accounts for disturbance, using inventory

data, MODIS imagery and GLAS LiDAR data at a 500 m

resolution to, surprisingly, provide the highest estimate of 2.03 Pg

C for aboveground live carbon within our study area [25].

Two carbon model outputs (HYDE and HYDE-SAGE) were

presented by Hurtt et al. (2006) [26]. The HYDE-SAGE model,

which uses more resolute cropland data than HYDE, produces an

estimate of 0.63 Pg C for the study area (0.41 Pg C for the HYDE

model) [26]. Through the use of the Miami LU ecosystem model,

these estimates account for disturbance. These dynamic models

could be used to provide Tier 3 estimates, however, the models do

not utilise data or equations specific to our study area, instead

using global (Tier 1) values to provide carbon estimates.

Additionally, these models only provide estimates of aboveground

live carbon storage.

The global vegetation map from the Global Land Cover 2000

Project (GLC2000; 100 ha resolution derived from SPOTVEGE-

TATION satellite imagery [27]) is used in combination with

carbon values produced by the IPCC to estimate Tier 1 carbon

stock [11]. This approach accounted for disturbance only where

vegetation categories were identified as disturbed (for example,

burnt forests or cropland mosaics), but does present results for

aboveground live and belowground carbon pools combined,

estimating that 1.61 Pg C is stored within our study area [11].

Coarse woody debris, litter and soil pools are omitted. Saatchi et al

(2011), using MODIS, SRTM and QSCAT to extrapolate

inventory plot and GLAS LiDAR data, produces an estimate of

0.83 Pg C (Table 2) [28]. They provide estimates for both

aboveground live and belowground carbon pools, omitting coarse

woody debris, litter and soil, but accounting for disturbance.

Estimates provided utilise continental data and allometric equa-

tions and so result in Tier 1 estimates. Both the GLC2000 based

values and the Saatchi values are in the middle range of the six

estimates [11,28].

Considering all the studies together, none give estimates for all

five IPCC carbon pools, and while some utilise local remotely-

sensed data, they mostly do not include local data from on-the-

ground. The result is estimates for aboveground live carbon

storage across the EAM ranging from 0.34 Pg C to 2.03 Pg C

(Table 2).

In this paper, we present a method of obtaining improved

regional (Tier 2) estimates of carbon storage for all five IPCC

carbon pools in data-sparse regions. Using a case study in eastern

Tanzania we apply the resultant median values and 95%

confidence intervals (CI) to a recent land cover map to calculate

carbon stock for the year 2000. These figures are then compared

to published estimates of carbon storage produced for the same

study area in the same year. Our results suggest that by adopting

Table 1. Description of the IPCC carbon pools and general tiers to estimate changes in carbon stocks in biomass in a land cover
category, taken from [12].

IPCC term Description

Tier 1 Uses aggregate data and default emission/removal factors

Tier 2 Uses country-specific biomass data and emission/removal factors

Tier 3 Uses detailed data on biomass to estimate changes in carbon stock using dynamic models or allometric equations

Aboveground live carbon All carbon contained in living vegetation, both woody and herbaceous, above the soil including stems, stumps, branches, bark,
seeds, and foliage.

Coarse woody debris carbon All non-living woody carbon not contained in the litter, either standing, lying on the ground, or in the soil. Dead wood includes
wood lying on the surface, dead roots, and stumps, larger than or equal to 10 cm in diameter (or the diameter specified by the
country).

Litter carbon All non-living organic carbon with a size greater than the limit for soil organic matter (suggested 2 mm) and less than the
minimum diameter chosen for dead wood (e.g. 10 cm), in various states of decomposition above or within the mineral or
organic soil. Live fine roots above the mineral or organic soil (of less than the minimum diameter limit chosen for below-ground
biomass) are included in litter where they cannot be distinguished.

Belowground carbon All carbon contained in live roots. Fine roots of less than (suggested) 2 mm diameter are often excluded because these often
cannot be distinguished empirically from soil organic matter or litter.

Soil carbon Includes organic carbon in mineral soils to a specified depth chosen by the country. Live and dead fine roots and dead organic
matter within the soil, that are less than the minimum diameter limit specified (suggested 2 mm), are included with soil organic
matter where they cannot be distinguished.

Land cover specific tier definitions are also available.
doi:10.1371/journal.pone.0044795.t001

Regional, Error-Bounded Carbon Storage Estimates
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the method presented here, countries currently using Tier 1 values

may be able to generate Tier 2 values which can be easily updated

and improved, incorporating inventory data as and when

available, until data are sufficient to progress to a Tier 3 method.

Methods

Study Area
Our study area is the watershed of the EAM in Tanzania,

covering 33.9 million hectares (Figure 1; see [29] for further

details). The EAM themselves (5.2 million ha, as delimited in Platts

et al., 2011 [30]) are nested within the broader study area and are

considered a global priority for biodiversity conservation [31], with

high levels of plant and animal endemism (including at least 96

vertebrate species and 471 vascular plant species) [32–34]. The

watershed is a heterogeneous mix of cropland, savanna, miombo

woodland and forest, and contains the administrative and

commercial capitals of Dodoma and Dar es Salaam, respectively.

The region provides numerous ecosystem services including

carbon storage, water provision and regulation, maintenance of

soil quality, reduction of erosion, regulation of run-off, stabilisation

of local climate, conservation of cultural values (including

traditional medicine), hydroelectricity generation and nutrient

cycling [35–38]. As a United Nations REDD+ pilot country [7], a

better understanding of the current carbon stock and distribution

in Tanzania will likely inform policy choices.

Overview
The method follows seven stages (Figure 2), summarised here

and described in detail below: (1) Obtain a land cover map for the

region to identify land cover categories; (2) Systematically search

for regionally appropriate carbon estimates, including identical

land cover types from nearby regions, for all five IPCC carbon

pools for each land cover category; (3) Match studies to land cover

categories; (4) If data for carbon pools are missing or sparse, then

systematically search for ratios by which they can be calculated

from other carbon pools with adequate data coverage; (5) Weight

by sampling effort (study size); (6) Weight by distance from the

focal region; (7) Produce median and 95% confidence intervals

(CI) using re-sampling techniques.

(1) Land Cover Map
We obtained a land cover map of 1 ha resolution, derived from

a 1997 survey of LANDSAT and SPOT images undertaken for

the Tanzanian government [39], with validation by local experts

to ensure the map was applicable for the year 2000 [29]. This map

recognised 30 land cover classes, termed hereafter ‘original land

cover categories’. Since globally available land cover products (e.g.

GlobCover, MODIS etc) typically describe fewer and/or different

land cover categories, we investigated the effect that an alternative

categorisation would have on the resulting carbon estimates. We

therefore reclassified regional land cover according to four major

categories that all land-cover schemes conform to, termed

hereafter ‘harmonised land cover categories’. These are: forest

Figure 1. The Eastern Arc Mountains of Tanzania and Kenya [30]. The study area is the Eastern Arc watershed in Tanzania [29].
doi:10.1371/journal.pone.0044795.g001

Regional, Error-Bounded Carbon Storage Estimates
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(high carbon density tree-dominated systems, including montane

forest, coastal forest, mangroves and tree plantations), savanna

spectrum (medium carbon density mixed tree and grass systems,

including miombo woodland, savanna, bushland and grassland),

crop (anthropogenic arable systems) and other (largely dominated

by low carbon systems, such as semi-desert and snow) (Figure 3,

Figure S1, Table S1). Any mixed crop system category (grassland

with scattered cropland or bushland and woodland equivalents)

were split equally between crop and savanna-spectrum categories.

(2) Carbon Data Search
Data from the literature were obtained by systematically

entering search terms into Google Scholar, JSTOR and ISI

Web of Knowledge search engines. The search terms combined

both the 34 (original and harmonised) land cover category and

carbon pool names (above ground, coarse woody debris, litter,

root, belowground, soil, biomass, carbon, yield) plus geographical

terms (Eastern Arc Mountains [EAM], Tanzania, East Africa,

Africa). The bibliographies of all the sources we used for carbon

data were checked for additional relevant references and data. To

be included, carbon storage or biomass estimates must be

reported, with studies excluded if the land use type was absent

from our study site (e.g. temperate grasslands). For some

agricultural land covers, yield data were more widely available

and these were converted to standing crop biomass using

published equations [40–42], the exception being sugarcane,

where almost the entire crop is utilised (so annual yield was

assumed to be equal to the aboveground live biomass). In total, 45

published papers fulfilled the search criteria (Table 3, Table S2,

Table S3, References S1).

These published data were supplemented with unpublished

data. Local and international agencies working in the EAM region
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Figure 2. A summary of the seven stagemethod utilised here to
produce regionally appropriate carbon estimates and 95% CI.
doi:10.1371/journal.pone.0044795.g002
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were contacted and written memoranda of understanding were

agreed (outlining the investigations to be undertaken and the data

sharing procedure), enabling a total of 2,462 tree inventory plots to

be sourced. Aboveground live tree biomass ($10 cm diameter)

was estimated using an allometric equation for woodland (‘dry

forest’) and forest (‘moist forest’) which uses estimates of diameter,

wood density (from a global database [43] matched to stems using

standard taxon-based procedures [44]) and tree height (using a

height:diameter relationship from African forests [15]) to deter-

mine dry mass [45]. The carbon content of vegetation varies

relatively little across a wide variety of plant and tissue types

[46,47]. As such, carbon was assumed to be 50% of dry biomass,

consistent with other studies conducted in Africa [15]. Addition-

ally, it was assumed that the carbon values reported in published

and unpublished studies were representative of the appropriate

land cover category regardless of the date of measurement within

the year.

(3) Coupling Land Cover Categories and Carbon Values
Each data point was assigned to the appropriate land cover

category by matching the site description in the carbon data with

the land cover categories present in this study (Table 3, Table S3).

After this process, it was evident that most studies (91.8%)

considered aboveground live carbon storage only. This resulted in

63.3%, 36.7% and 30.0% of land cover categories containing

more than five data points for aboveground live, belowground and

soil carbon pools respectively.

(4) Supplementing Data
Hence, despite a wealth of aboveground live inventory data for

forest land cover categories, there are very few data for many land

cover types in our study area (Table 3, Table S3). Furthermore,

when conducting biomass inventories, it is not possible to sample

every portion of aboveground live carbon. Of the studies reporting

aboveground live carbon storage, most (90.8%) reported only the

measured aboveground live carbon storage (for example, the carbon

stored in trees with a diameter over 10 cm). In order to obtain the

aboveground live carbon value for these studies, it is necessary to

estimate the unmeasured aboveground live component. Thus, we

undertook a second systematic literature search (in the same

manner) to locate the ratios between aboveground live carbon

storage and the other pools (including unmeasured aboveground

live carbon but excluding soil carbon, which does not scale with

aboveground carbon). Measured and unmeasured aboveground

carbon pools were combined additively to give the traditional

IPCC aboveground live carbon pool.

We obtained soil carbon values from the Southern Africa

SOTER database [48,49]. SOTER was chosen because it is freely

available and contains regionally obtained data to a standard

depth of 1 m. Values from the literature were also available [50–

52], but the varying depths of each study made comparisons

difficult. SOTER data were extracted by spatially matching the

soil characteristics with the original and harmonised land cover

categories of our land cover map. This procedure was followed for

all vegetation types except for permanent swamp, because the

SOTER database did not contain any appropriate regional cores

and so a locally derived value of 683 Mg ha21 was used [53].

(5) Sampling Effort Weighting
In order to combine the carbon estimates from individual

studies into a single value for each land cover category, each

carbon value was weighted by the square root of the sum of

Figure 3. The spatial distribution of aboveground live carbon storage and associated pixel errors within the study area, based on
combining the harmonised land cover map with our regionally appropriate carbon values (Table 3). Maps derived from the original
land cover categories are shown in Figure S1.
doi:10.1371/journal.pone.0044795.g003

Regional, Error-Bounded Carbon Storage Estimates
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number of hectares surveyed, ensuring that larger, studies

contribute more to a final best estimate carbon value. Studies

were weighted by sampling effort because confidence in biomass

estimation increases with the number of hectares surveyed [54,55].

If information on the study area was unavailable then we assumed

the study had the same sample size as the median of those studies

from the same land cover type. When fewer than five studies with

sample sizes were available, the study size was assumed to be one

hectare (this assumption was required for the mangrove, savanna,

wetland and ‘other vegetation’ types).

(6) Regional Weighting
Mean carbon storage for each land cover class was further

weighted by the distances of individual carbon estimates from our

study area. We first defined a hierarchy of four non-overlapping

regions: our study area, outside our study area but within East

Africa, elsewhere in Africa, and elsewhere in the world. Second,

we took a square root weighting approach to the four regions. we

took the square root of the weighting given to an area at the higher

level in the hierarchy of regions, i.e. a carbon storage value from

East Africa but from outside our study region was given the square

root of the weighting of a study inside our study region. Then

carbon storage value from outside East Africa, but inside Africa

was given the square root of the weighting given to a value from

inside East Africa, but outside our study region. Finally, a study

from outside Africa was assigned the square root of the weighting

of a study from Africa, but outside East Africa. The weightings are

therefore 256:16:4:2 for plots within the four areas. Thus plots

within our study area were weighted much higher than those

studies from further afield, while not ignoring data from outside

the region, which is helpful as some land cover classes have little or

no regional data. For aboveground live carbon storage values, 24

of the 34 land cover categories had less than five sample values

specific to our study area. This reduced to 16, 13 and 11 land

cover types respectively as data from the other regions were added.

Hence, using all data in this way allowed carbon values and 95%

CI to be obtained for all land cover types. These regional and

previously described study size weightings were combined

multiplicatively.

(7) Derive Carbon Estimates
Derivation of carbon estimates occurred in two stages: (1) the

production of carbon estimates and associated confidence intervals

for each land cover type, and (2) the application of these values to

our land cover map to produce landscape scale estimates of carbon

storage. Firstly, the carbon value inputs into each land cover were

sampled with replacement 10,000 times to produce the median

weighted carbon value and 95% confidence limits (using R 2.12.1

[56]). These were mapped at a one hectare resolution in ArcGIS

v9.3.1 [57] (Figure 3, Figure S1). Secondly, estimates of total

landscape carbon storage were made by allocating each pixel in

the map a randomly selected value within the appropriate pixel

95% CI. This process was performed 10,000 times and the median

landscape carbon storage value and 95% CI were obtained.

Results

Estimate carbon values from our methodology are given in

Table 3 and Table S3. Using our approach, sub-montane forest is

calculated to contain the most aboveground live carbon per unit

area (283 [252–329] Mg ha21), followed by montane forest (228

[190–286] Mg ha21), lowland forest (207 [195–220] Mg ha21),

upper montane forest (202 [73–332] Mg ha21) and forest mosaic

(187 [174–201] Mg ha21) (Table S3). This pattern was consistent
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when all carbon pools were combined, except that permanent

swamp became the most carbon-dense land cover due to its large

pool of soil carbon.

For forest, the aboveground live carbon pool was the largest,

representing 53% of the total carbon stored in this ecosystem. Soil

and belowground carbon pools were also substantial in forest

ecosystems, containing 28% and 13% of total carbon stored

respectively (Table 3). In savanna ecosystems, the soil carbon pool

was most substantial, representing 72% of the total carbon stored.

Crop and ‘other vegetation’ ecosystems store over 96% of their

total carbon within the soil (Table 3).

For the 30 original land cover categories, the aboveground live

carbon pool had a mean percentage error of 44615%. However,

when harmonised categories were used, this rose to 6369% as a

result of the smaller number of broader categories. Some land

cover categories have high levels of uncertainty for total carbon

values (most notably mangroves [6103%], sugar cane [670%]

and upper montane forest [668%]), and some showed lower

uncertainty (permanent swamp [67%], bushland with scattered

cropland [69%] and lowland forest [610%]) (Table 3, Figure S2,

Table S3).

Assigning the carbon values to the land cover map indicates that

1.58 (1.56–1.60) Pg C was stored in the above ground live

vegetation in the year 2000 in the study region using the original

land cover categories (Figure 3; Table 2) and 1.64 (1.52–1.76) Pg

C for the harmonised land cover categories. Woodland and

bushland contributed most to the total stored aboveground live

carbon in the study region. Specifically, open woodland stored the

most aboveground live carbon (0.54 [0.45–0.65] Pg C over 9.6

million ha); followed by bushland (0.32 [0.16–0.55] Pg C over 5.0

million ha) and closed woodland (0.23 [0.15–0.28] Pg C over 1.8

million ha). However, when all carbon pools are considered the

total carbon storage across the Eastern Arc drainage basin is 6.33

(5.92–6.74) Pg C using original land cover categories and 6.38

(6.33–6.43) Pg C for the harmonised land cover categories

(Table 2). Considering the 30 original land cover classes, and all

five carbon pools combined, the land cover were still dominated

by open woodland (1.89 [1.67–2.12] Pg C) and bushland (1.07

[0.75–1.52] Pg C); now followed by grassland (0.79 [0.54–0.84] Pg

C over 5.2 million ha).

Discussion

Climate change mitigation schemes such as REDD+ need

reliable, low-cost and repeatable estimates of carbon storage,

ideally based on existing data. Our results suggest that the easiest

and most commonly used approach of using global carbon storage

values (Tier 1) can potentially result in large errors (generally,

underestimation of carbon stocks by 26–78% in our study area).

This poor performance is aggravated by the fact that uncertainty is

seldom quantified for such values. The method we presented is

cost and time efficient, while compliant with Tier 2 standards.

Using it we estimate theaboveground live carbon storage for the

study area in the year 2000 is 1.58 (1.56–1.60) Pg C for the

original land cover categories, considerably greater than most

previous estimates which have a mean of 0.85 Pg C (Table 2)

[23,26]. Our study is in close agreement with the previous result of

Ruesch and Gibbs (2008) [11]. The recent Baccini et al (2012)

carbon map is the only study to give a higher estimate than ours

(Table 2) [25]. It is perhaps unsurprising that our estimates are

close to those of Baccini et al. (2012), given that Tanzania was one

of the multiple locations used to develop their regression models

[25].

Here, we focussed on producing regionally appropriate carbon

values for land cover types within our study area, whilst the studies

we have compared our results to have attempted to map carbon

over much larger scales. Thus, our estimates are regionally

appropriate and error-bounded, fulfilling Tier 2 approach criteria

(Table 1). Hence, the possible underestimation of some previous

estimates in comparison to this study may indicate that eastern

Tanzania has higher carbon storage than generally thought.

However, when carbon values for land cover categories in this

study are compared to similar land cover types elsewhere, the

values appear to be in broad agreement (Table 3, Table S3)

[11,58,59]. The carbon values used by both Hurtt et al. (2006) and

Baccini et al. (2008) are substantially lower for comparable land

cover categories than those in this study and Ruesch and Gibbs

(2008) [11,23,26], suggesting that the two former approximations

of carbon storage may be systematically underestimated [24].

Given the policy relevance of the carbon content of tropical

vegetation, notably via REDD+, the possibility of such method-

ological errors should be an area of urgent further investigation.

Further differences arise due to the higher resolution of this study

(allowing for the identification of smaller fragments of forest, for

example) which may have led to the substantial differences in the

estimates of carbon storage within the highly heterogeneous

landscape of our study area (Table 2). It should be noted that,

whilst our study contains data from both pristine and disturbed

habitats, there is a bias towards undisturbed habitats. Although the

landscape is known to include significant habitat degradation,

preliminary investigations to produce a ‘Tier 3’ regression model

(i.e. explicitly accounting for disturbance and climatic variation)

the same data give landscape carbon storage estimates higher than

most previous studies. For example, if the lower 95 CI limit for

each land cover category was used, indicating that every location

showed disturbance, we would estimate the study area contained

1.06 Pg and 1.20 Pg of aboveground live carbon, using original

and harmonised land cover categories respectively. These values

are still substantially greater than those from most previous studies

(Table 2). It is important that further work investigates the role of

disturbance, edaphic and climatic variations as all three are known

to affect carbon storage within our study area [30,60]. This will be

particularly important in estimating future carbon storage as east

Africa is predicted to become both warmer and wetter, potentially

increasing the landscape carbon storage [61]. However, this effect

may be negated by the rising human population and associated

demand on natural resources [62], which could lead to increased

degradation and land cover change from high carbon systems to

those with less carbon (for example, from savanna to agriculture

[Table 3]).

Previous studies have only focussed on aboveground live and

belowground live carbon pools [11,23,26,28] and by selecting the

relevant carbon pools we were able to make direct comparisons.

Our study is unique in providing estimates for all five IPCC

carbon pools for eastern Tanzania. Our results show that soil

carbon makes up almost 60% of the total carbon stored, over

double that represented by aboveground live carbon, and so

emphasise the importance of investigating all five IPCC carbon

pools.

Typically, land cover types of lower carbon density are less well

studied. For instance, research within Tanzania has typically

focussed on forests, which hold the most aboveground live biomass

per unit area but, when all carbon pools are considered,

permanent swamp - a poorly known land cover type - holds the

most carbon per hectare. Furthermore, within our study region,

other land cover categories span a greater area than forest. The

systems storing the greatest amount of carbon, within our study

Regional, Error-Bounded Carbon Storage Estimates
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region, are neither those land cover types that have the largest

carbon store per unit area, nor the most extensive, but are those

that are reasonably extensive with relatively high carbon storage

per unit area. This result indicates that, on a landscape scale,

carbon stored in woodland is extremely important. This ecosystem

is currently highly utilised by the local population, resulting in

rapid degradation [63,64].

Overall, while there is high uncertainty in 1 ha pixel-size

estimates, there are narrow confidence intervals around our

landscape estimates. This is typical of studies where estimates of

error are provided (see Saatchi et al. 2011 for an example [28])

and is a result of both the large study area and the small pixel size.

When averaged across a large number of pixels, pixel error is

mostly negated as underestimates in one part of the landscape are

counterbalanced by overestimates in other parts. These estimates,

however, may give a false sense of confidence if sources of error

were directional, for example if sampling was biased towards

undisturbed habitats. Thus, our weighting system has potential to

introduce some bias, particularly the regional weightings which are

somewhat arbitrary as (1) our four regions are not unambiguously

clearly defined units, and (2) our square-root of approximate

distance weightings are a first-order estimate. However, both on a

pixel and a landscape level, unweighted results do not alter our

overall conclusions (Table S4).

Several land cover categories show a disproportionally high

level of error, indicative of both high natural carbon storage

heterogeneity and low levels of sampling (Table 3, Table S3).

Indeed, some land cover types within our study are relatively data-

poor. However, the dominant land cover types within our study

site are better sampled and show smaller errors, thus our

conclusions are likely robust to both natural heterogeneity and

data scarcity in some land cover types (Table 3, Table S3, Figure

S2). The high natural variation observed in some well-sampled

land cover categories illustrate that look-up table methods (Tiers 1

and 2) are oversimplified and hence disturbance and climate

effects on carbon storage should be taken into account where data

allow [16]. Litter, coarse woody debris, and below ground carbon

pools all show similar levels of error to above ground live carbon

because they are all derived from the latter pool using published

ratios. Within this study, soil carbon appears to have a low

uncertainty, despite being known to be extremely heterogeneous

[13,65], because of limited data availability. . Only 54 soil cores

were used to produce the SOTER map for Tanzania [48,49], an

average of less than two per land cover category. Hence, much like

litter, coarse woody debris, and below ground carbon, soil carbon

in Tanzania (as elsewhere) requires much further research to

improve future carbon estimates.

Conclusions

We have presented a method of producing error-bounded,

carbon values that conforms to IPCC Tier 2 reporting require-

ments. By coupling land cover classifications with systematic data

searches it is possible to produce more regionally appropriate

values despite the conditions of sparse local data that exist for most

of the tropics. This method yields estimates for all five IPCC

carbon pools, at low cost, and in manner which can be continually

updated and improved, incorporating new studies and inventory

data as and when they become available. Such regional carbon

storage estimates have the potential to affect regional conservation

and research priorities. Displaying uncertainties associated with

these values transparently enables identification of critical areas of

future research. Additionally, by more explicitly acknowledging

natural variation and data scarcity, the method helps ensure that

the uncertainties and limitations are conveyed to policy makers.

Supporting Information

Figure S1 The spatial distribution of aboveground live carbon

storage and associated pixel errors within the study area, based on

combining the original land cover map with our regionally

appropriate carbon values (Table 3).

(TIF)

Figure S2 The spatial distribution of the size of the cell 95% CI

(expressed as a percentage) for the aboveground live carbon pool,

using both original land cover categories.

(TIF)

Table S1 Original and harmonised land cover categories.

(DOCX)

Table S2 Ratios used in the derivation of understudied

aboveground carbon pools.

(DOCX)

Table S3 The carbon values, confidence limits and percent error

for all five IPCC carbon pools using the original land cover

categories. M - Median carbon storage (Mg ha21); lCI - Lower

95% confidence interval of carbon storage (Mg ha21); uCI -

Upper 95% confidence interval of carbon storage (Mg ha21); % -

Percent error (%); n – Sample size).

(DOCX)

Table S4 The carbon values and confidence limits for the

aboveground live carbon pool using the original and harmonised

land cover categories without any form of weighting. These values

are not significantly different from the weighted values shown in

Table 3 and Table S3 when a paired t-test is performed (p-

value,0.693). The range of landscape values derived from these

(1.22 [0.91–1.61] Pg C and 1.70 [1.46–1.98] Pg C for original and

harmonised land cover categories respectively) overlap those

derived from the weighted values and are also significantly higher

than previous estimates (Table 2). (Area (million ha); M - Median

carbon storage (Mg ha21); lCI - Lower 95% confidence interval of

carbon storage (Mg ha21); uCI - Upper 95% confidence interval

of carbon storage (Mg ha21); n – Sample size).

(DOCX)
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