

This is a repository copy of *Vapour Explosion Chamber*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/74949/

Patent:

Univesity of Leeds (Beheshti, A.C & Beheshti, N) (2006) Vapour Explosion Chamber. WO 2007/034229 (29.03.2007 Gazette 2007/13).

WO 2007/034229 (29.03.2007 Gazette 2007/13)

Reuse

See Attached

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

(11) EP 1 937 333 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:10.03.2010 Bulletin 2010/10

(21) Application number: 06794578.2

(22) Date of filing: 26.09.2006

(51) Int Cl.:

A61M 5/20^(2006.01) A61M 11/04^(2006.01) B05B 9/00^(2006.01) A61M 25/00 (2006.01) A61M 15/00 (2006.01) B05B 7/16 (2006.01)

(86) International application number:

PCT/GB2006/003576

(87) International publication number: WO 2007/034229 (29.03.2007 Gazette 2007/13)

(54) DRUG DELIVERY

ARZNEIABGABE

ADMINISTRATION DE MEDICAMENT

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

(30) Priority: 26.09.2005 US 720716 P

(43) Date of publication of application: **02.07.2008 Bulletin 2008/27**

(73) Proprietor: UNIVERSITY OF LEEDS Leeds, West Yorkshire LS2 9JT (GB)

(72) Inventors:

 MCINTOSH, Andrew Leeds, LS2 9JT (GB) • BEHESHTI, Novid Leeds, LS2 9JT (GB)

(74) Representative: Boakes, Jason Carrington Harrison Goddard Foote 106 Micklegate York YO1 6JX (GB)

(56) References cited:

EP-A- 0 820 780 WO-A-95/14450 DE-U1- 20 310 436 US-A1- 2002 079 377 US-A1- 2003 088 207 US-A1- 2005 045 179

P 1 937 333 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

35

40

BACKGROUND

[0001] The present invention relates to an apparatus for ejecting target mass. In particular, but not exclusively, the present invention provides an apparatus for a fast mass ejection device able to eject liquid and/or liquid vapour quickly and over relatively long distances from an ejection chamber in which a quantity of liquid is stored. The present invention also relates to the many uses of such an ejection system. Still more particularly, but again not exclusively, the present invention relates to an inhaler and/or nebulizer and/or needleless injector which are able to deliver drugs to a user.

1

[0002] There is a need in a number of industries for mass ejection devices. That is to say, devices which will send out a spray of liquid and liquid vapour at a fixed or variable rate and over a desired distance. Preferably there is a need for a spray of liquid and liquid vapour to occur at a fast rate and over a great distance. In such systems the term "throw" is often referred to as a characteristic of a spray. The throw of material is defined as the distance travelled divided by the length of a chamber from which the spray is ejected.

[0003] Various examples of mass ejection devices are known such as fire extinguishers, ink jet printers, air bag igniters, fuel injectors for motor engines and gas turbines, respiratory drug delivery systems, etc. In each of these there are specific problems associated with the device in question, however, for each applied technology there is a continuing desire to be able to eject liquid and liquid vapour quickly and over a large distance.

[0004] By way of example of a problem specific to an application of mass ejection systems, reference is made to a gas turbine reigniter. In the igniter of a gas turbine, the conventional approach to reignite gas in a combustion chamber is to pass a current between two electrodes of a reigniter and create for a short while a mixture of electrically charged radicals. This is illustrated more clearly in Figure 1 in which a conventional reigniter 10 is shown including an outer electrode 11 which is generally cylindrical in shape with an internally located pellet 12. A central electrode 13 is located within the pellet and by passing a current between the two electrodes 11, 13 a mixture of electrically charged radicals (that is when the gas molecules split temporarily into charged components referred to as a plasma). This plasma only lasts for a fraction of a second before recombining and losing its charge. The charge is then used to ignite combustion in a main combustion chamber of the main engine. A problem with such known reigniters is in getting the mixture to be ejected as ejected material via the exit orifice 14 far enough and to remain charged long enough to perform its objective function. The ejected material 15 has been used to ignite the kerosene or other usual gas turbine

[0005] By way of a further example of a problem spe-

cific to an application of mass ejection systems, reference is made to respiratory drug delivery systems. Respiratory drug delivery systems are used to deliver drugs directly to the respiratory system to treat respiratory diseases such as asthma, cystic fibrosis, chronic obstructive pulmonary disease (COPD) and others. Additionally, in recent times it has been realised that the lungs can be used as a portal of entry for systematic drug therapy, for example inhaled insulin has been successfully administered and is likely to become an alternative routine treatment to injecting insulin in the therapy of diabetes.

[0006] There are currently three main types of respiratory drug delivery systems. These are metered dose inhalers, dry powder inhalers and nebulizers. Pressurized metered dose inhalers release a metered volume of pressurised fluid into a patient's airways, on release the fluid evaporates rapidly leaving the drug in dry form suitable for inhalation. Dry powder inhalers contain a dry powder which is dislodged when the patient inhales air through the inhaler, the force of the patient's inhalation then carries the dry powder into the lungs of the patient. Both metered dose inhalers and dry powder inhalers will give out a predetermined amount of drug in one inhalation, the patient will take a certain amount of these doses during a day. A third type of respiratory drug delivery system is the nebulizer which converts medicine stored in liquid form into a gaseous suspension of medicine particles, known as an aerosol or mist. The patient will breathe in this mist and the drug is delivered into the respiratory system. There are two main types of nebulizer, jet nebulisers and ultrasonic nebulizers. Jet nebulizers work by applying pressurised gas through a narrow opening which creates a negative pressure upon a medicine reservoir, drawing particles of the drug solution from its reservoir forming a mist for the patient to inhale. Ultrasonic nebulizers can use a rapidly vibrating piezoelectric crystal which forms a fountain of liquid from which the mist arises. Nebulizers slowly convert the medicine reservoir into a mist over a period of about 15 minutes, during which time the user will be continually inhaling the medicine in mist form. Nebulizers can deliver much stronger doses of medicine than other types of drug delivery methodologies and are therefore often used for patients with severe respiratory problems.

[0007] US 2002/079377, US 2005/045179, EP 0820780 and US 2003/088207 disclose equipment for delivering fluid to a user.

[0008] A major problem with known respiratory drug delivery systems is that of ensuring that the drug is inhaled fully into the respiratory system so that the medicine gets to where it is meant to. Respiratory drug delivery systems need to maximise the throw and dispersion of the drug when ejecting active ingredients. A further problem is that when the medicine is particulated or atomised, the medicine particles may be too large and are then likely to be deposited within the oral cavity. If too small, it is likely the active ingredients will not be deposited and will be exhaled by the patient.

40

45

50

SUMMARY OF THE INVENTION

[0009] It is an aim of the present invention to at least mitigate the above-mentioned problems.

[0010] It is an aim of embodiments of the present invention to provide an apparatus for delivering drugs to a user.

[0011] It is an aim of embodiments of the present invention to provide a nebulizer and/or metered dose inhaler and/or needleless injector.

[0012] It is an aim of embodiments of the present invention to provide an apparatus for ejecting material whereby liquid and liquid vapour are ejected from a chamber, the ejected material having desirable characteristics such as speed of ejection and distance travelled by the ejected material.

[0013] It is an aim of embodiments of the present invention to provide an apparatus for providing a fast mass ejector.

[0014] According to a first aspect of the present invention there is provided apparatus for delivering a medicament to a user, comprising:

a storage chamber arranged to store a quantity of a selected liquid comprising at least one medicament: an ejection chamber arranged to hold a portion of the selected liquid;

an inlet valve arranged to selectively open to allow liquid from said storage chamber into said ejection chamber; and

an exit valve arranged to selectively open to eject medicament from said ejection chamber when a parameter associated with said ejection chamber satisfies a predetermined condition; **characterised in that**

liquid vapour and/or liquid is ejected from the ejection chamber to thereby deliver medicament,

and said exit valve is arranged to open when a temperature of liquid in the ejection chamber is substantially equal to or greater than a saturation temperature associated with the liquid at a pressure equal to a pressure at a location downstream of said exit valve.

[0015] Preferably the apparatus comprises a hand held nebulizer.

[0016] Conveniently the apparatus comprises a desktop nebulizer.

[0017] Advantageously the apparatus comprises a fixed dose inhaler.

[0018] Preferably the apparatus comprises a needleless injector.

[0019] Embodiments of the present invention provide an apparatus able to deliver medicament to a user. The medicament which is in the form of a liquid containing or consisting of one or more medicament components is at least partially vapourised and ejected in the form of vapour and fine liquid particles which can penetrate into a

respiratory system of a user.

[0020] Embodiments of the present invention provide a hand held or desk based nebulizer which can automatically deliver fine droplets and/or vapour of medicament over a predetermined period of time or until a predetermined amount of medicament has been delivered. Alternative embodiments of the present invention provide an inhaler which can be used to deliver fixed dosages to a user upon operation of a user button. Still further embodiments provide a needleless injector.

[0021] Embodiments of the present invention provide an ejection chamber in which liquid and liquid vapour are exploded from an exit orifice. The vapour explosion has the effect that target material is blasted out from the ejection chamber very rapidly and over distances not previously obtainable with known techniques.

BRIEF DESCRIPTION OF THE DRAWINGS

20 [0022] Embodiments of the present invention will now be described hereinafter, by way of example only, with reference to the accompanying drawings in which:

Figure 1 illustrates a prior art gas turbine reigniter;

Figure 2 illustrates apparatus for ejecting material;

Figure 3 illustrates an alternative apparatus for ejecting material;

Figure 4 illustrates a further alternative apparatus for ejecting material;

Figure 5 illustrates a combustion engine;

Figure 6 illustrates a fuel injector;

Figure 7 illustrates a gas turbine;

Figure 8 illustrates a gas turbine reigniter;

Figure 9 illustrates a pilot igniter;

Figure 10 illustrates a propulsion system for a vehicle:

Figure 11 illustrates combustion in a combustion chamber:

Figure 12 illustrates an air inlet;

Figure 13 illustrates a hand held fire extinguisher;

Figure 14 illustrates a sprinkler type fire extinguisher;

Figure 15 illustrates a hose type fire extinguisher;

Figure 16 illustrates how an embodiment of the present invention can be used to deliver medicaments:

Figure 17 illustrates an end of an endoscope;

Figure 18 illustrates how a medicament can be delivered;

Figure 19 illustrates how an embodiment of the present invention can be used as a portable nebulizer; and

Figure 20 illustrates how the chambers of the various described embodiments may be shaped.

DETAILED DESCRIPTION

[0023] In the drawings like reference numerals refer to like parts.

25

35

40

[0024] Figure 2 illustrates an ejection system 20 for ejecting liquid and liquid vapour via a vapour explosion process in accordance with an embodiment of the present invention. An ejection chamber 21 is formed in a generally cylindrical shape from a material such as steel or other rigid material which is able to withstand substantial pressure and temperature changes. It will be understood that embodiments of the present invention are not limited to combustion chambers having this specific shape, nor indeed to combustion chambers formed from steel. At a first end region of the chamber 21, signified by reference numeral 22, an inlet valve 23 is located so as to allow a selected liquid such as water to enter the central region 24 of the chamber via an associated inlet pipe 25. At a further end region 26 of the chamber 21 is located an exit valve 27 which opens to allow material to be ejected from the chamber region 24 through a nozzle region 28.

[0025] A heating element 29 is provided by an electric heater located in the ejection chamber. The electric heater is connected to a power source (not shown) so that when turned on the heater operates to heat up a body of liquid located in the region 24 of the chamber. It will be understood that according to further embodiments of the present invention (some of which are described hereinbelow) other ways of raising the pressure and temperature of liquid in the ejection chamber may be provided. [0026] As shown in Figure 2, the pressure of a liquid in the central region 24 of the chamber may be increased by heating the liquid in it. Prior to this stage the exit valve 27 is closed to prevent outgress of liquid. The inlet valve 23 is opened to allow liquid water to enter the chamber until the chamber is full or contains a predetermined quantity of liquid. The inlet valve is then closed sealing the body of liquid thereby located in the chamber. The heater element then operates to heat the liquid. As a result of this the liquid expands due to thermal expansion raising the pressure of the liquid inside the chamber. Whilst the heating can be done by heating elements, it would of course be possible to have a preheated liquid supply at the inlet to the chamber under high pressure. If this technique is adapted the pressure rise in the chamber is performed by a pump (not shown) which is feeding the liquid supply into the chamber through the inlet valve. By heating the water the pressure in the chamber therefore rises. Also, the temperature rises. The exit valve is controlled so that the valve "blows" so as to open at a predefined/predetermined pressure. The pressure can be monitored by one or more pressure sensors such as pressure transducers located in the chamber or close to the chamber. The water or other liquid in the chamber is thus heated by an electrical element (much like an electric kettle) and then rises to a boiling temperature well above its boiling temperature at atmospheric pressure. The boiling point represents a saturation point and it will be appreciated that this is determined by the relationship between pressure and temperature of the particular liquid used. It is advantageous that the liquid in the ejection

chamber is close to, equal to or above its saturation point at a pressure which is the pressure downstream of the exit valve of the chamber. The temperature raises above the boiling temperature at atmospheric pressure because the water is kept in the chamber by both an inlet valve which closes prior to the water being heated and an exit valve which only allows a release once the system has reached a particular pressure. At this pressure and temperature, which may be referred to as a trigger pressure and trigger temperature respectively, the valve blows in a similar way to a pressure cooker. A vapour explosion then takes place which causes a combination of liquid and liquid vapour (if the liquid is water the liquid vapour would be steam) to exit from the chamber. When the exit valve opens the steam and water mixture is ejected via the opening 28.

[0027] When the exit valve opens initially a first phase to be ejected is a liquid phase in the form of shattered liquid in a spray. This ejection occurs in a matter of microseconds subsequent to the exit valve opening. This extremely rapid ejection of liquid has particular advantages. A few microseconds later a mixture of liquid and liquid vapour is ejected. Some microseconds later a mixture containing slightly less liquid and more vapour is ejected.

[0028] However this initial liquid discharge can be altered or totally removed when higher trigger temperatures for the same ambient pressure are used. On the other hand lowering the trigger temperature can lead to situations where practically only atomised liquid is ejected. In this way the proportion of liquid and vapour can be selected by varying one or more parameters associated with the ejection chamber. Selectively varying one or more parameters such as temperature or pressure can also be used to selectively control drop size in the ejected material.

[0029] As material is ejected from the ejection chamber, the pressure drops. When the pressure has dropped back to an ambient or second predetermined pressure, which may be referred to as the closure pressure, the exit valve is closed and the inlet valve opened again to introduce new liquid material into the chamber. This restarts the cycle. Consequently a repeated cycle of steam/ water mixture or other liquid/liquid vapour is exhausted from the outlet once sufficient pressure is generated by heating up the new supply of liquid water.

[0030] The size of the chamber can vary and may, for example, be less than a centimetre in diameter. For example, the chamber may even be at the nano size to mm diameter. Alternatively, the chamber may be a metre or more in diameter. It will be appreciated that as the size of the chamber increases, the frequency of the blasts will reduce since the time taken to increase the pressure will increase appropriately. It will be understood that as the size of the chamber is increased according to specific uses, larger pumps and/or valves will be required.

[0031] Preferably the inlet valves can be controlled to maximise the proportion of liquid ejected from the cham-

ber. This can be achieved by selecting the diameter of the inlet port to be almost equal, or equal to that of the exit or exhaust port, this should ensure that too much liquid does not get into the chamber.

[0032] Figure 3 illustrates an alternative embodiment of the ejection apparatus which shares many features in common with the embodiments shown in Figure 2. The embodiment of the present invention illustrated in Figure 3 uses a heat exchanger 30 which encloses a side wall portion of the chamber to heat liquid in the chamber. This manner of heating liquid is particularly advantageous when the liquid ejected is not water but is a fuel which is subsequently burned. The generation of this heat at a location downstream of the exit valve can be used to heat the heat exchangers and thus heat the liquid in the chamber.

[0033] To enable faster refilling of liquid in the chamber, a return port and valve can be added to the chamber as shown in Figure 4. The return port and valve 401 allow for some of the liquid and vapour in the chamber 402 to return to the reservoir 403 when the inlet valve 404 is opened for replenishment. The addition of the return port and valve 401 should help enable sufficient fresh liquid to be added to the chamber 402 to compensate for the ejected mass and therefore avoid lack of liquid in the chamber 402 after consecutive ejections. In the case of usage of pipelines (such as with fire fighting sprinklers) as a reservoir the return port 406 connected to the return valve 401 may be connected to a different pipeline at a lower pressure than the supply pipeline 403 and preferably be at ambient pressure.

[0034] In an embodiment of the present invention a chamber can be used having an internal diameter of 25mm and a length of 32mm. Two or more separate heaters could be inserted into the chamber. The first, a helical coil located near the walls of the chamber with length of 28mm, external diameter of 21 mm, internal diameter of 15mm and power of 500W. The second, a cartridge heater located near the centre of the chamber with length of 25mm, diameter of 1cm and power of 200W. With these specifications, repetitive steam/water spray ejections of up to 5Hz is possible. Higher frequencies would lead to a pure liquid un-atomised jet since the cold water fed to the chamber for refill after each blast does not have enough time to be heated by this heat power to above the boiling point. The reservoir can therefore be kept at a higher temperature, for example about 75°C to shorten the heat up in the chamber between ejections, and consequently allowing for an increase in the frequency of ejections.

[0035] Figure 5 illustrates the use of a fuel injector unit 50. A combustion engine 51 is illustrated in an intake stage (shown in Figure 5A) and an exhaust phase (illustrated in Figure 5B). The combustion engine includes a cylindrical combustion chamber 52 closed at a first end by a tight-fitting piston 53 which is arranged to slide within the chamber. The movement of the piston varies the volume in the chamber 52 between the closed end of the

chamber 54 and a combustion surface 55 of the piston. An opposed side of the piston connects to a crank shaft 56 via a piston rod 57. The crank shaft transforms the reciprocating motion of the piston into rotary motion.

[0036] The combustion engine illustrated in Figure 5 is a four stroke internal combustion engine, however, it will be understood that such devices are not restricted to use of fuel injectors with such types of engine. Rather a four stroke internal combustion engine is referred to here by way of example only. On the first downward stroke of the piston, fuel is injected via the fuel ejector 50 into the combustion chamber 52.

[0037] Prior art fuel injectors use electro-mechanical nozzles and a pre-pressurised fuel to produce a finely atomised spray. Fuel is pressurised within a chamber and an electromagnetic coil lifts a needle of its seal so fuel can squeeze through the nozzle's aperture through an intake valve. Control of the timings of the release of this pressurised liquid is controlled by electronics. This has the disadvantage of costly and complex materials which are prone to error and require many working parts. This can be overcome by replacing the known fuel injector systems with an ejection chamber 50 which ejects liquid fuel and liquid fuel vapour into the combustion chamber 52 via a vapour explosion process as noted above. The vaporized fuel and liquid fuel is ignited via an ignition element such as a spark plug 58.

[0038] A fuel injector system is shown In more detail in Figure 6. The fuel injector 50 comprises an ejection chamber 21 defining a space 24 within which liquid fuel can be input via an inlet valve 23. A return port and valve may be incorporated within this system thus enabling for faster refilling of liquid within the chamber. It will be understood that such a return port and valve could be used in any system described herein. A heating element 29 is used to heat a body of liquid located inside the ejection chamber subsequent to its introduction through the inlet valve. An exit valve 27 constrains the liquid within the chamber until a predetermined pressure is reached. This pressure is greater than atmospheric pressure or the pressure experienced by ejected material downstream (that is to say to the left-hand side shown in Figure 6). In this way liquid in the chamber can be heated above the boiling point temperature which will be experienced when the exit valve is opened. When the exit valve is thus opened the pressure will drop thus causing the liquid in the ejection chamber to boil rapidly and in an explosive manner due to its elevated temperature above its natural boiling point. It will be noted that for certain fluids, for example, for kerosene and gasoline, the fluids are themselves multicomponent fuels which include different hydrocarbons. Each of these has a different boiling point. For gasoline, for example, the boiling points range from 117°C (for the most volatile component) to 200°C for the heaviest component and for kerosene the boiling points range from 150°C to 300°C. In order to have optimum performance it is preferable that the temperature should be kept above the higher boiling point to make sure that

40

10

15

20

25

30

35

40

45

all components are going to vaporize. This is, of course, not necessary. For example, where one knows which component has the dominant concentration, then that component's boiling point may be used to fix the temperature ensuring that the rest of the fuel will boil. It will be appreciated that at higher temperatures for the same given pressure the spray will be finer and a proportion of vapour of the ejected material will be greater. It will be appreciated that the temperatures given here are examples of the corresponding boiling (saturation) points at atmospheric pressure. These will be very different at elevated pressures and reference may be made to known databases of thermophysical properties of materials to obtain working pressures. A nozzle 60 provides a narrowing of a neck region 28 and ejected liquid and liquid vapour are ejected through an opening 61 into the combustion chamber 52 of the combustion engine.

[0039] The heat required to bring the fuel to the designated temperature can be partially or totally obtained from the heat produced by the engine. Since the injector can be located within or near the combustion-chamber of the engine which when in operation will be very hot, the vapour explosion chamber can be designed in a way that it absorbs as much heat as is needed from the engine. This heat or thermal energy can be obtained through the chamber walls of the injector, through a heat exchanger going into the chamber, or a combination of the two techniques. Additionally, the inlet fuel pipe can go through, or be adjacent to, the hot parts of the engine body to heat up the fuel nearer to the designated temperature. However, it is preferable to keep this temperature below the saturation temperature of the lightest component of the fuel to avoid unfavourable cavitations in the pipeline.

[0040] An advantage of applying the above-described vapour explosion technology to fuel injection systems is to greatly enhance the throw of the devices and consequently the response of the engines to an increased power output. For an average sized family car, according to known prior art techniques, a normal operating range is 2,000-6,000 rpm with a Formula I car attaining perhaps 17,000 rpm. In accordance with the above system, a time taken for one cycle of a fuel injector which comprises a short ejection phase, followed by a longer refilling and repressurising phase, can be around 5 milliseconds or less. The rate of fuel injection is thus around 12,000 injections per minute. In a common four stroke engine there are typically two revolutions per injection and therefore 24,000 rpm could, in theory, be achieved. In order to avoid disintegration of the engine, some form of limiting constraint may therefore be utilised to slow down the ejection process. The process of ejecting fuel from the chamber of the injector can be controlled by selecting a parameter or multiple parameters of the ejection process, such as the period of time that the exhaust valve is open for, the temperature and pressure of the fuel injection chamber, and the pressure of the combustion chamber of the engine. It will be appreciated that other parameters

may be controlled to provide desired results.

[0041] Further advantages of applying the vapour explosion technology for the purpose of fuel injection include:

- 1. A considerable fraction of the fuel spray volume will be taken by the fuel vapour immediately after emerging from the nozzle. This promotes the ignition and burning rate of fuel and thus provides higher acceleration of the engine.
- 2. The fuel spray can easily have smaller drop sizes in comparison to most conventional atomisers. This enhances ignition and burning velocity which in turn enhance the acceleration of the engine. Smaller droplets also lead to more complete combustion, fewer amounts of pollutants and better fuel economy.
- 3. Use of vapour explosion can greatly enhance the 'throw' of these devices, and consequently the response of the engines to an increased power output.
- 4. Work can be carried out at much lower pressures than conventional atomisers since a high fraction of the volume inside the nozzle is fuel vapour and due to vapours lower density lower pressures can be used to make the fuel move at the same ejection velocities. These lower pressure ejections are practically achieved by making use of the high ratio of thermal energy to mechanical energy in atomising the liquid. This in turn can enhance the engine efficiency since the thermal energy in most cases is readily available from the combustion itself and is usually taken away as a loss by the cooling system and this could have lower energy losses compared to purely mechanical energy usage.
- 5. Very wide angles for the spray can be utilised even with very simple nozzle designs, such as plain orifices. Wide angle spray is very favourable in most combustion systems as it can give better mixing with air and higher burning rates.
- 6. The pressure build-up in the atomiser can be produced either solely by the thermal expansion of the fuel or by a combination of this with the supply pressure of a fuel pump. Thus, even less mechanical energy is needed.
- [0042] Figure 7 illustrates a gas turbine reigniter. Figure 7 illustrates a gas turbine 70 comprising three main sections. These are the compressor 71, combustor 72 and turbine 73. Outside air is drawn into the engine by the action of the compressor. The air is mechanically compressed by the motion of the compressor blades consequently the pressure and temperature of the air increases with the corresponding decrease in volume. The mechanical energy used to compress the air is thus con-

verted into kinetic energy in the form of compressed air. The compressed air is then forced through into the combustion section into which fuel is injected via a fuel injector 74. The fuel injector may be of a conventional type or may be of a type previously described hereinabove. A fuel reigniter 75 is then used to ignite the fuel converting the chemical energy into thermal energy in the form of hot expanding gas. Fuel is repeatedly injected into the combustion section to ensure continuous combustion. Rather than repeated injection, fuel may be constantly injected. Volume of gas and temperature increase while the pressure remains substantival constant through the combustor chamber 66. The hot expanding gas's thermal energy is converted to mechanical energy as the turbine 73 is rotated by virtue of the gas acting on fins 77 of the turbines. Hot exhaust gas then exits out via a front end 78 of the gas turbine. The output turbine is connected to the compressor blade thus helping to power the compression of air.

[0043] As noted above, known reignition devices (for example as shown in Figure 1) include complex plasma arrangements to reignite material in the combustion chambers 76 of gas turbines. It will be appreciated that the combustion chamber may contain many fuel injectors distributed throughout the chamber in an advantageous manner and one or more fuel reigniters may be provided to reignite fuel injected by each of the injectors. Alternatively, it will be understood that the locations of the fuel injectors may be carefully designed so that less than one reigniter is required per injector. Gas turbines have many applications such as jet engines in the aerospace/nautical industries, engines for land vehicles, as well as electrical power generation using land based gas turbines. Some land based gas turbines can use igniter technology to help the turbine run at low Nitrogen Oxide (NOx) conditions, This helps stability of combustion within the turbine.

[0044] Figure 8 illustrates a gas turbine reigniter 80 in more detail. An outer electrode 81 which is substantially cylindrical in shape forms a side wall for an ejection chamber. At a first end region 82 an inlet of liquid fuel enters via an inlet valve 83. Input fuel enters a central chamber region 84. The input fuel flows through a hole in an inner electrode 85. It is worth noting that as with other systems hereindescribed a return port and valve could be incorporated within this system to enable faster refilling of liquid to the chamber. At a further end 86 of the ejection chamber, an exit valve 87 is located which prevents outgress of the input liquid fuel. When the exit valve 87 is opened liquid and liquid vapour are ejected via a nozzle 88. A central semi-conductor pellet separates the outer and inner electrodes. This element 89 is used to create charged particles to heat the liquid fuel in the chamber. As one or more pressure sensors detect the pressure in the chamber reaching a predetermined value, a current is passed through.

[0045] The reignition device is advantageous over conventional reignition devices as a long flame is pro-

duced as a short sharp burst rather than a short flame produced continually, the latter being wasteful and less effective. Furthermore, the very fine drops and the high fuel vapour content in the spray makes it easier to ignite and keep the flame on.

[0046] Figure 9 illustrates an application of the vapour

explosion technology in which a pilot flame igniter is provided. In this sense Figure 9 illustrates a pilot flame ignition ejection system 90. Flame ignition systems are required for many applications such as in boilers or furnaces or domestic appliances, or domestic gas applications. Prior art ignition systems generally consist of an electronic circuit that produces a spark which consequently lights the fuel. The pilot flame igniter 90 includes a fuel chamber for storing a body of liquid introduced through an inlet valve 23. A heating element such as electric heater 29 heats the fluid as above-described which is allowed to exit the exit valve 27 when a predetermined threshold pressure is reached within the chamber. Liquid fuel and liquid fuel vapour is ejected through a nozzle 91 repeatedly as repeated vapour explosion processes take place rapidly. By virtue of the vapour explosion the fuel vapour and liquid fuel is discharged with a large throw, that is to say, over a large distance away from the nozzle 91. This may be ignited initially by an ignition element (not shown) so that a flame 92 is Constantly provided to light further ignitable material. It will be appreciated that the ejection system 90 for the pilot flame provides a repeating ejection process. During an initial stage immediately after opening of the exit valve, ejected material is substantially in the form of a shattered liquid. Subsequent to this, by some tens of microseconds, the ejected material is a mix of liquid and liquid vapour. Still later the ejected material is predominantly vapour. When the exit valve closes so as to allow recharging of the ejection chamber the flame will be unanchored. The dead time caused by the closing of the exit valve is selected so as to be long enough to enable refuelling of the ejection chamber but not so long that the flame burns all fuel and dies. The result will be a pilot igniter having a flame which may perceptively dance up and down but which will not be extinguished. [0047] Figure 10 illustrates an ejection chamber 10 used to propel a vehicle 10. The vehicle 10 is shown as an unmanned aerial vehicle (UAV). Such vehicles are remotely piloted or self-piloted aircrafts that can carry cameras, sensors, communications equipment or other loads. It will be appreciated that ejection chambers can be used to propel other types of vehicle. The UAV includes a vehicle body 10 which includes two wing sections 10 which provide lift for the vehicle. Propulsion is provided by burning liquid fuel and fuel vapour ejected from the ejection chamber system 10 in a combustion chamber 10. There are many types of UAV. Some are the size of a small plane and fly at high altitudes capable of recording and relaying large amounts of information back to a base station. Some vehicles are light enough to be carried by a single human and launched by hand. Micro air vehicles are those vehicles defined as having

40

50

no dimension larger than 15 cms (6 inches). Ejection chambers are also applicable to micro air vehicles or smaller.

[0048] The mass ejection chamber 10 ejects liquid fuel and liquid fuel vapour from a nozzle 10 as described hereinabove. Air is drawn into an air intake 96 and passes down inlet passages 10 where the air mixes with the fuel which is ignited by an ignition element 10, such as a spark igniter. The combustion chamber 10 constrains the combustion process and includes at least one exit orifice 10 through which burnt combustion gases and flame can escape. Propulsion is achieved by the expanding hot exhaust gases. The vapour explosion chamber 10 is of a small size so that the overall dimension of the device may be of the order of 5-10 cms in length.

[0049] Solar panels 1100 are provided to provide an energy source for the heating element and control of the igniter element 10 if required. Alternatively, an onboard light weight battery may provide the power source. As a further alternative, continuous heat exchange from the exhaust gases can provide the energy to heat inlet fuel. [0050] Figure 11 illustrates a cycle in the vapour explosion chamber as shown in Figure 10. In this example the vapour explosion chamber 10 and combustion chamber are 330 microns and 370 microns in diameter and 300 microns and 700 microns in length respectively. A hydrocarbon liquid fuel is vaporized in the vapour explosion chamber and the vapour is ejected from the chamber through a nozzle to the combustion chamber where it mixes with air. The air is introduced through a further inlet as shown more clearly in Figure 12. Via an ignition device, which may be heat or flame from a preceding cycle (as shown) or a separate igniter element such as a spark igniter, the combustion is triggered and within some microseconds a flame is filling the combustion chamber. In these figures the colour/shade contours of temperature are given at different times showing the development of a flame and corresponding temperature changes over time. Since the pressure relief exit valve has to be closed for some milliseconds between each cycle for fuel replenishment in order to keep a stable flame in the combustion chamber, it is preferable to use more than one and most preferably between 3 and 10 vapour explosion devices to eject fuel into the combustion chamber. The vapour explosion devices are positioned in a way that they Inject at an identical or close to identical point in space and in the same direction but having equal or otherwise selected time delays with respect to each other in the beginning of their injection times.

[0051] Figure 13 illustrates an ejection system 1300 for ejecting fire suppressing liquid and fire suppressing liquid vapour via a vapour explosion process. An ejection chamber 1301 is formed in a neck region 1302 of the fire extinguisher 1300. A fluid reservoir 1303 contains a large quantity of liquid fuel suppressant such as water. A handle 1304 is used to activate the fire extinguisher by a user when the existence of a fire is determined. Activation of the handle initiates a control unit 1305 to produce drive

units for controlling opening and closing of an inlet valve 1306 and outlet valve 1307. A return port and valve could also be incorporated within this system to enable faster refilling of liquid to the chamber. Liquid and liquid vapour are ejected from the chamber 1301 in the direction shown by arrow A in Figure 13. Drive signals from the control box 1305 are also used to control a power source 1308 which controls an electric heater in the chamber 1301. The heater can be used to increase the pressure of liquid in the ejection chamber 1301 as described hereinabove. The liquid reservoir 1303 is also pressurised so that liquid is rapidly replenished in the chamber. The pressure can be so great as to increase the pressure of the liquid in the ejection chamber above atmospheric pressure.

[0052] Figure 14 and Figure 15 illustrate a vapour explosion device used for ejecting fire suppressing liquid and fire suppressing vapour. Figure 14 shows a vapour explosion device embodied as a steam sprinkler type fire extinguisher. In practice one or more vapour explosion device based fire suppressing/extinguishing sprinklers are fixed within a building and triggered by a fire detection system. A central fire detection system may be used for all sprinklers in the building or each sprinkler could have an individual sensor to allow fire suppressant to only be released at the location at which the fire is present. The system may be zoned. When a fire is detected and the extinguishing liquid is water, the sprinklers eject steam and a mist of water droplets into the environment in repetitive pulses at a specific predetermined frequency value; this could be between 0.5-5Hz or even higher depending upon the design and specific application. As shown in figure 14, a sprinkler consists of a reservoir 1401, a vapour explosion chamber 1402 in accordance with the chambers outlined previously, and optionally a small pump to apply pressure to the fire suppressing liquid to help the chambers refill quickly enough for the required frequency of blasts. A single reservoir could connect to all or a specific group of sprinklers within the environment in which the sprinkler or sprinklers are located. Furthermore, such a reservoir could be a pressurised water pipe possibly alleviating the need for a pump for each sprinkler.

[0053] Figure 15 shows a system for ejecting fire suppressing liquid. In this system the vapour explosion device is used within a hose type extinguisher. The vapour explosion chamber 1501 is fitted at the tip of a hose pipe 1502. The hose pipe 1502 acts as a pressured reservoir, and provides the fire suppressing liquid to the vapour explosion chamber 1501 which blasts steam out repetitively. Power can be supplied to the vapour explosion device either by a battery attached to the vapour explosion device or a power line connection which may be attached along the hose in parallel.

[0054] In all three examples which are disclosed as a system for ejecting fire suppressing liquid, the fire suppressing liquid may be water or it may be any other suitable liquid for suppressing fire.

[0055] The vapour explosion device can be advanta-

30

40

geous in many ways over conventional water based fire suppressing devices. Firstly, vapour has a much larger surface area than the equivalent amount of water, vapour is therefore able to absorb much more heat and therefore suppress the fire better. Furthermore the vapour may engulf the fire like a mist, restricting oxygen flow to the fire and therefore suppressing the fire further. In contrast water would flow straight over the fire, only restricting oxygen flow for a very short period of time. A further advantage is that suppressing or extinguishing a fire with water vapour produced by the vapour explosion device rather than water requires the use of far less water. Using less water is not just advantageous economically and environmentally but it also means that the process of extinguishing a fire will cause less damage to the environment in which the fire has broken out.

15

[0056] Figure 16 illustrates how the vapour explosion technology can be applied in accordance with an embodiment of the present invention to provide a medical drug delivery apparatus and method or apparatus and method for clearing a blockage in a patient. Figure 16 illustrates an endoscope 1600 which has a flexible and maneuvrable shaft 1601 which may be located in an intestinal track or respiratory system or cardiovascular system portion of a human body. A distal end region 1602 of the flexible shaft 1601 includes a flexible tip 1603. The tip allows an end stop device 1700 (shown more clearly in Figure 17) to be manoeuvred with respect to a patient's body and allows the end of the shaft to be positioned by a surgeon. A proximal end 1604 of the shaft 1601 terminates in an endoscope body portion 1605 which includes an eye piece 1606 and openings 1607 for auxiliary equipment. A further cable 1608 connects the endoscope body 1605 to an input connection 1609 which supplies any required light, air, water or other needed utility to the endoscope. [0057] As shown more clearly in Figure 17, the end of the endoscope 1700 includes a light 1701 for illuminating a region surrounding the end of the endoscope for a surgeon and a camera 1702 for providing visual images of the region of the patient. The signals from the camera 1702 may be provided to the eye piece 1606 or outputting signals via the connection 1609 or via an opening 1607 so that images are displayed on a display, such as an LCD screen.

[0058] The end 1700 of the endoscope 1600 also includes a medicament delivery chamber 1800 as seen more clearly in Figure 18. Power and control signals are supplied to the medicament delivery chamber 1800 via controller 1703. The liquid vapour material ejected from the chamber 1801 may be used according to a number of methodologies. In one of these, the endoscope may be manoeuvred to a location where medicament is to be dispensed at a particular location. Liquid may then be input into the chamber 1801 (or may already be so inserted) by opening inlet valve 1802 and then a heater unit 1803 energised to raise the temperature and pressure of the liquid medicament. The medicament can then be dispensed when the pressure and/or temperature

reaches a predetermined value ejecting vaporised medicament and liquid medicament at a desired location. As with all of the above-described embodiments, the ejection cycle may be repeated many times if desired.

[0059] As an alternative, the liquid and liquid vapour ejected material can be used to clear a blockage in arteries and/or veins or the like: In this sense embodiments of the present invention can be used in the bloodstream at blockages (such as in restricted blood flow disease due to furring of the arteries). In this case a water based or other neutral solution ejected by the above-mentioned techniques may be applied longitudinally along the line of a blocked vein/artery to thereby unblock the blockage. This is in addition to or replaces the present methodology which uses an expanding tube/balloon to clear the offending passage.

[0060] According to the embodiment of the present invention shown in Figure 16, a camera operated by a doctor is attached to a nano vapour explosion device and used to put a drug in exactly the right spot where a malfunction has taken place. Embodiments of the present invention are not restricted to intestinal use but rather could be used also in a respiratory system of the main tracheal tubes and in the blood environment may have applications in the cardiovascular system.

[0061] Although the embodiment of the present invention described with respect to Figures 16 to 18 have been described relating to the use of endoscope-like devices, embodiments of the present invention are not so restricted. Rather, embodiments of the present invention can be used to deliver drugs at the desired locations by introducing a device in the form of a pill-like device which then moves on its own, for example through the bloodstream or the intestinal track and which is tracked by Xray machinery with a dye and a scanning system so that an operator sees on the screen where the device has got to. A wireless signal may be then transmitted to the device in the human body when a doctor determines that the device is at a desired location. The device would then eject drug or merely liquid to either deliver medicament or open a blocked passage at a desired location.

[0062] A further application of the vapour explosion device of the present invention is as part of a respiratory drug delivery system. Respiratory drug delivery systems are used to deliver drugs directly to the respiratory system to treat numerous respiratory diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD). Additionally, in recent times it has been realised that the lungs can be used as a portal of entry for systematic drug therapy, for example, inhaled insulin has been successfully administered and is likely to become an alternative routine treatment to injecting insulin in the therapy of diabetes.

[0063] There are three main types of respiratory drug delivery systems, metered dose inhalers, dry powder inhalers and nebulizers. Pressurised metered dose inhalers release a metered volume or specific value of pressurised fluid into a patient's airways. On release the fluid

20

30

35

40

evaporates rapidly leaving the drug in dry form suitable for inhalation. Dry powder inhalers contain a dry powder which is dislodged when the patient inhales air through the inhaler, the force of the inhalation then carries the dry powder into the patient's lungs. Both metered dose inhalers and dry powder inhalers will give out a predetermined amount of drug in one inhalation, the patient will take a certain amount of these doses during a day. A third type of respiratory drug delivery system is the nebulizer which converts medicine stored in liquid form into a gaseous suspension of medicine particles, such as an aerosol or mist. The patient will breathe in this mist and the drug is delivered into the respiratory system. There are two main types of nebulizer, jet nebulizers and ultrasonic nebulizers. Jet nebulizers work by applying pressurised gas through a narrow opening which creates a negative pressure upon a medicine reservoir, which draws particles of the drug solution from its reservoir forming a mist for the patient to inhale. Ultrasonic nebulizers use a rapidly vibrating piezoelectric crystal which forms a fountain of liquid from which the mist rises. Nebulizers slowly convert the liquid medicine into a mist over a period of about 15 minutes, during which time the user will be continually inhaling the medicine in mist form. Nebulizers deliver much stronger doses of medicine and are therefore usually used for patients with severe respiratory problems.

[0064] According to an embodiment of the present invention a vapour explosion device takes liquid from a reservoir and outputs a vapour mist. The reservoir contains a medicine and thus medicine can be administered in the form of mist suitable for inhalation. The explosion device emits vapour (or mist) in short sharp bursts, the volume of vapour released corresponding to the amount of liquid put into the vapour explosion chamber. Therefore, the device can be used to administer single units of medicine in a vapour form similar to a metered dose inhaler. A further feature of an embodiment of the present invention is that it can continually emit bursts of vapour in very guick succession. Therefore embodiments of the present invention can be used to administer medicine continually for a set period of time like a nebulizer. Furthermore, as the vapour explosion device can perform the function of both these types of respiratory drug delivery, a multifunctional system capable of delivering both single units of medicine vapour and continual bursts of medicine vapour may be provided.

[0065] The vapour explosion device based respiratory drug delivery system of the present invention is advantageous over prior art respiratory drug delivery systems in that it has a very long throw, a wide angle spray and the spray it creates has a very small drop size. The long throw and wide angle spray allows for the medicine to get further into the respiratory system and it is well spread out therefore more likely to be better carried by a patients inhalation. Furthermore, the small drop size provides better absorption of the medicine by the respiratory system. Drop sizes of 1-5 µm are ideal as larger ones often deposit

proximal to the airways, while smaller particles have poor deposition and are largely exhaled.

[0066] Figure 19 illustrates how the vapour explosion device of the present invention could be embodied as a portable nebulizer. The portable nebulizer embodiment of the present invention comprises a vapour explosion chamber, with inlet valve 1902, exhaust valve 1903 and optional return valve 1904. The chamber is heated via a heating element powered by a battery 1905 or other such power source, and supplied with suitable fluid via a medicine reservoir 1906. The portable nebulizer could also be powered by a mains power supply as well as or instead of a battery. The reservoir 1906 can have a fixed amount of liquid within it, a spring 1907 and moving piston 1908 can be used to apply pressure to the reservoir 1906 to enable fast refill of the vapour explosion chamber 1901. Alternatively, medicine can be stored in a pre-pressurised storage device which may be detachable from the nebulizer, allowing for easy replenishment of medicine by replacement of the storage device. The liquid within the reservoir may be pure medicine or medicine suspended within a carrier liquid. A user control interface 1911 allows the user to control the nebulizer, a control circuit 1910 may then process input signals from the user control interface and control the nebulizer responsively.

[0067] The process of vaporising the medicine in accordance with the portable nebulizer of Figure 19 starts by passing medicine from the medicine reservoir 1906 through the inlet valve 1902, filling up the chamber 1901. When a predetermined amount of medicine is within the chamber, all valves will be closed and the heater will heat up the chamber until a trigger temperature and pressure are reached to enable the exhaust valve to open. The exhaust valve then opens and a vapour or mist is emitted along mouthpiece 1909. The distance between the outlet valve 1903 and the end of the mouthpiece is made sufficiently long for the mist to cool before it reaches the end of the mouthpiece and the patient then inhales the drug. This ejection process would then be repeated at a specific frequency, either for a predetermined period of time or until a predetermined amount of medicine has been vaporised. The size of the chamber 1901 or the amount of liquid put into the chamber will correlate to the amount of liquid required to be emitted by each burst of spray.

[0068] Figure 20 shows a desktop nebulizer which comprises three main constituent parts, a nebulizer main body 2001, a vapour explosion device 2002 and a medicine transportation pipe 2003 which connects the first two constituent parts together. The nebulizer main body includes a medicine reservoir 2004 which can contain a heating element 2005 to keep the medicine at a temperature close to but below a temperature required by the vapour explosion device, the heating element is powered by a power source 2006. The reservoir has a reservoir inlet 2007 to allow for refilling of medicine to the reservoir, and a reservoir pump 2008 to pump medicine out of the reservoir. The pump provides pressurised medicine to the medicine transportation pipe 2003 to enable fast re-

40

filling of the vapour explosion device. The vapour explosion device as shown in Figure 20 works in accordance with previous embodiments of the vapour explosion device, with inlet valve 2009, exhaust valve 2010, vapour explosion chamber 2011, heater 2012 and heater power source 2013, with medicine being released in vapour form from a mouthpiece 2014. A return port and valve could be incorporated within the present embodiment to help refill the chamber faster. A user control interface can be mounted on the nebulizer main body 2001 to allow for the user to control the nebulizer. A control circuit 2016 is shown within the nebulizer main body for the purpose of processing input signals from the user control interface 2015 and controlling the nebulizer responsively. A control line 2017 can be placed parallel to the medicine transportation pipe 2003 to connect the control circuit 2016 to the vapour explosion device. It is worth noting that the heater power source 2013 could be a battery or mains power supply supplied via a power line from the nebulizer main body.

[0069] Figure 20 shows the medicine reservoir 2004 as a refillable reservoir. In this embodiment the amount of medicine required by the patient could be placed in the reservoir and then the nebulizer could run until all has been ejected. Alternatively the reservoir could be filled to the maximum and then the nebulizer could emit a predetermined amount of medicine. It should be understood that a refillable reservoir is not necessary according to embodiments of the present invention and a pre-packed container of medicine could alternatively be used. Furthermore, a pressurised container could be used, thus not requiring a pump.

[0070] Figure 21 shows a metered dose inhaler according to an embodiment of the present invention. This embodiment of the present invention shows a vapour explosion chamber 2101 which receives medicine from a medicine reservoir 2102 through an inlet valve 2103. The amount of medicine within the vapour explosion chamber corresponds to the dose required by the user. When a user presses the control button 2104, a control circuit 2105 controls a heating element 2106 along with the inlet valve 2103 and exhaust valve 2107 to emit medicine in vapour form through the mouthpiece 2108 for the user to inhale. The heating element 2106 is powered by a power source 2109 which may be a battery or a connection to a mains power supply. The medicine reservoir 2102 in Figure 21 is shown as a pressurised container for providing pressurised liquid to the inlet valve 2103 to enable fast refilling of the vapour explosion chamber 2101. It is should be understood that refillable medicine reservoirs could alternatively be used, as could unpressurised containers. A return port is not shown in Figure 21 but could also be incorporated.

[0071] It will be appreciated that embodiments of the present invention may also be utilised to provide a needleless injector.

[0072] In all applications of the vapour explosion device used as part of a respiratory drug delivery system

the patient can receive the drug either through a mouth piece which would sit inside the mouth or a face mask which would sit on the face over the mouth and/or nose. The medicine could also be delivered directly into any other part of a patient's respiratory system.

[0073] For all respiratory drug delivery applications the trigger temperature for the chamber 1901 needs to be above the boiling point of the liquid or liquids within the chamber to ensure maximum explosion of liquid from the chamber. The trigger temperature is recommended to be approximately 20-30°C above the boiling point of the liquid within the chamber with the highest boiling point to ensure that a very fine spray best suited to this application is produced. The trigger pressure can be as low as 4-6 bars although the device would work at other pressures. The diameter of the exhaust nozzle may be best suited to this application if within the range of 0.05-0.5mm.

[0074] To maximise the delivery of medicine and minimise the waste of medicine in a vapour explosion device based nebulizer a breath actuated delivery system could be incorporated in which an electronic detection system or mechanical valve system is used to determine when the user is inhaling, and then only emit medicine when the user inhales so that medicine is not wasted during exhalation. Such functionality can be achieved manually but many people find it difficult to coordinate their breathing with the switching of the nebulizer. It is worth noting that, such sensing could also be used in a metered dose system, as people often find it difficult coordinating the ejection of medicine with inhalation.

[0075] It will be appreciated that the heating element by which liquid is raised above its saturation point in the ejection chamber may be chemical in nature. That is to say two components may be provided which, when combined, provide an exothermic reaction generating sufficient quantity of heat so as to 'boil' the liquid. A user would activate the two components just before use and then wait until discharge was ready. This could be identified in a number of ways such as a user display illuminating or making a noise, material being visibly ejected or a predetermined time elapsing.

[0076] Although embodiments of the present invention described with respect to Figures 19 to 21 have been described relating to particular respiratory drug delivery systems, embodiments of the present invention are not so restricted.

[0077] Figure 22 illustrates a liquid and liquid vapour explosion chamber 2200 which may be utilised according to any of the above-described embodiments. It will be understood that embodiments of the present invention are not restricted to use with substantially cylindrical shaped ejection chambers. Rather, unusual shapes or spherical shapes or, as in the case of Figure 22, heart-shaped chambers having an inlet valve 2201, exit valve 2202 and heater element 2203 may be utilised.

[0078] Embodiments of the present invention provide fundamental core technology relating to the use of an ejection chamber which ejects target matter via a vapour

explosion process. By ejecting material via an explosive process the distance traversed by the spray of liquid and liquid vapour is greatly increased relative to known ejection systems. Also ejection occurs very rapidly and with a small chamber in the order of tens of microseconds.

[0079] According to embodiments of the present invention, pressure in a chamber is increased by heating liquid in it. The liquid expands due to thermal expansion and therefore provides a higher pressure. Heating is achieved by electrical heating element or by other means such as via heat exchangers transferring heat from a local heat source into the liquid. All of the embodiments of the present invention described above can be modified so that instead of heating liquid in an ejection chamber, pre-heated liquid is supplied at an inlet to the chamber under high pressure. Pressure would be built up in the chamber by continuing to pump pre-heated liquid into the chamber. This could be achieved via an external pump able to pump at high pressure. At some predetermined pressure value above a pressure into which ejected material is to be ejected, the inlet valve would be closed and an exit valve opened. The instantaneous reduction in pressure would be calculated to instigate a vaporization process of the liquid by virtue of its elevated temperature with respect to its boiling temperature. Liquid and vapour would thus literally explode from the exit valve of the chamber.

[0080] In the case of using water as a working liquid, velocities of up to 20 metres per second from a chamber just under 1 mm in size with a chamber pressure of 1.1 bar and injecting into ambient for example atmospheric pressure (1.0 bar) can be achieved. In the case of a hydrocarbon liquid fuel being used, velocities of up to 100 metres per second can be achieved from a chamber about 2 cms in size and under a pressure of 10 bar injecting into a combustion chamber at 6 bar (in other words a 1 bar pressure difference between the ejection chamber and an adjacent combustion chamber).

[0081] Inlet and exit valves can be electronically controlled based on the pressure in the various vessels which can be easily monitored/measured via one or more sensors such as pressure transducers. When a certain pressure in the vessel is reached, the exit valve will open and when it falls below a second certain value the valve is closed. For the inlet valve this can either be opened and closed when certain higher limit and lower limit pressures are reached in the chamber or could open and close in a reverse fashion with respect to the exit valve. That is to say, when the exit valve is opened the inlet valve would be controlled to close and when the exit valve closes the inlet valve would open.

[0082] Throughout the description and claims of this specification, the words "comprise" and "contain" and variations of the words, for example "comprising" and "comprises", means "including but not limited to", and is not intended to (and does not) exclude other moieties, additives, components, integers or steps.

[0083] Throughout the description and claims of this

specification, the singular encompasses the plural unless the context otherwise requires. In particular, where the indefinite articles is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.

[0084] Features, integers, characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example of the invention are to ben understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith.

Claims

15

20

25

35

40

45

50

55

 Apparatus for delivering a medicament to a user, comprising:

a storage camber (1906, 2004, 2102) arranged to store a quantity of a selected liquid comprising at least one medicament;

an ejection chamber (1801, 1901, 2011, 2101, 2200) arranged to hold a portion of the selected liquid;

an inlet valve (1802, 1902, 2009, 2103, 2201) arranged to selectively open to allow liquid from said storage chamber into said ejection chamber: and

an exit valve (1903, 2010, 2107, 2202) arranged to selectively open to eject medicament from said ejection chamber when a parameter associated with said ejection chamber satisfies a predetermined condition; **characterised in that** liquid vapour and/or liquid is ejected from the ejection chamber to thereby deliver medicament.

and said exit valve is arranged to open when a temperature of liquid in the ejection chamber is substantially equal to or greater than a saturation temperature associated with the liquid at a pressure equal to a pressure at a location downstream of said exit valve.

2. The apparatus as claimed in claim 1, further comprising:

a heater member (1803, 2005, 2106, 2203) disposed in said ejection chamber or proximate to said ejection chamber for raising a temperature of liquid in said ejection chamber.

3. The apparatus as claimed in claim 1, further comprising:

a pump member (2008) disposed in said ejection chamber or proximate to said ejection chamber for raising a pressure of liquid in said ejection chamber.

25

35

4. The apparatus as claimed in any preceding claim, further comprising:

a pressure sensor for determining when an ejection chamber pressure reaches a predetermined threshold value indicating satisfaction of said predetermined condition, said ejection chamber pressure comprising said parameter.

5. The apparatus as claimed in any preceding claim, further comprising:

a passageway connecting said exit valve to a mouthpiece (1909, 2014, 2108) usable by a user to inhale ejected liquid and/or liquid vapour.

6. The apparatus as claimed in claim 5, further comprising:

said passageway and mouthpiece have a combined length selected to deliver medicament to a user at a desired temperature.

7. The apparatus as claimed in any preceding claim, further comprising:

said selected liquid comprises a carrier liquid and at least one medicament component.

8. The apparatus as claimed in any one of claims 1 to 7, further comprising:

said selected liquid comprises at least one liquid medicament component.

9. The apparatus as claimed in any preceding claim wherein said apparatus comprises a hand held nebulizer further comprising:

a nebulizer body portion that is arranged to fit in a user's hand and comprises a mouthpiece (1909) via which a user can inhale ejected liquid and/or liquid vapour.

10. The apparatus as claimed in claim 9, further comprising:

a user button carried by said body portion and usable to initiate delivery of medicament.

11. The apparatus as claimed in claim 9, further comprising:

control circuitry (1910) arranged to control ejection of medicament to a user, subsequent to delivery being initiated, until a predetermined quantity of medicament has been delivered.

12. The apparatus as claimed in any one of claims 9 to 11, further comprising:

said storage chamber comprises a spring loaded piston (1908) to provide a positive pressure to stored liquid.

13. The apparatus as claimed in any one of claims 9 to 11, further comprising:

said storage chamber comprises a pressurised canister to provide a positive pressure to stored liquid.

5 14. The apparatus as claimed in any one of claims 9 to 13, further comprising:

a return valve (1904) arranged to selectively open to allow medicament not ejected from said ejection chamber to return to said storage chamber.

15. The apparatus as claimed in any one of claims 9 to 14, further comprising:

said nebulizer is arranged to automatically repeat ejection of medicament until the occurrence of a predetermined event.

30 16. The apparatus as claimed in any one of claims 1 to 8 wherein said apparatus comprises a desktop nebulizer further comprising:

a nebulizer main body portion (2001) arranged to contain the storage chamber; and a flexible connecting tube (2003) connecting said storage chamber to a further body portion arranged to contain said ejection chamber.

40 **17.** The apparatus as claimed in claim 16, further comprising:

a pump (2008) arranged to pump the selected liquid from said storage chamber to said ejection chamber.

18. The apparatus as claimed in claim 16 or claim 17, further comprising:

a heater (2005) arranged to heat liquid stored In said storage chamber.

19. The apparatus as claimed in any one of claims 16 to 18, further comprising:

a refill port arranged to receive new liquid when liquid in said storage chamber is depleted.

50

20

35

40

45

20. The apparatus as claimed in any one of claims 16 to 19, further comprising:

said main body portion comprises a power source (2006) and control unit (2016) and said connecting tube further comprises a connection for connecting power and/or control signals to said further body portion.

21. The apparatus as claimed in any one of claims 16 to 20, wherein:

said further body portion is arranged to fit a user's hand.

22. The apparatus as claimed in any one of claims 16 to 21, further comprising:

a user button operable to initiate delivery of medicament.

23. The apparatus as claimed in any one of claims 16 to 22, further comprising:

control circuitry arranged to control ejection of medicament to a user, subsequent to delivery being initiated, until a predetermined quantity of medicament is delivered.

24. The apparatus as claimed in any one of claims 16 to 23, wherein:

said nebulizer is arranged to automatically repeat ejection of medicament until the occurrence of a predetermined event.

25. The apparatus as claimed in any one of claims 1 to 8 wherein said apparatus comprises a metered dose inhaler comprising:

an inhaler body portion that is arranged to fit in a user's hand and comprises a mouthpiece (2108) via which a user can inhale ejected liquid and/or liquid vapour.

- **26.** The apparatus as claimed in claim 25 further comprising a user button (2104) operable to initiate delivery of medicament.
- **27.** The apparatus as claimed in claim 25 or claim 26, further comprising:

control circuitry (2105) arranged to control ejection of medicament to a user, subsequent to delivery being initiated, until a predetermined quantity of medicament has been delivered.

28. The apparatus as claimed in any one of claims 25

to 27, wherein:

said storage chamber comprises a pressurised canister to provide a positive pressure to stored liquid.

29. The apparatus as claimed in any one of claims 25 to 28, wherein:

said storage chamber comprises a spring loaded piston to provide a positive pressure to stored liquid.

30. The apparatus as claimed in any one of claims 1 to 4 wherein said apparatus comprises a needleless injector.

Patentansprüche

1. Vorrichtung zum Abgeben eines Medikaments an einen Benutzer, die Folgendes umfasst:

eine Vorratskammer (1906, 2004, 2102), die zum Speichern einer Menge einer gewählten Flüssigkeit, die wenigstens ein Medikament beinhaltet, ausgelegt ist;

eine Ausstoßkammer (1801, 1901, 2011, 2101, 2200), die zum Aufnehmen eines Teils der gewählten Flüssigkeit ausgelegt ist;

ein Einlassventil (1802, 1902, 2009, 2103, 2201), die zum selektiven Öffnen ausgelegt ist, damit Flüssigkeit aus der genannten Vorratskammer in die genannte Ausstoßkammer gelangen kann; und

ein Auslassventil (1903, 2010, 2107, 2202), die zum selektiven Öffnen ausgelegt ist, um das Medikament aus der genannten Ausstoßkammer auszustoßen, wenn ein Parameter in Verbindung mit der genannten Ausstoßkammer eine vorbestimmte Bedingung erfüllt; dadurch gekennzeichnet, dass

Flüssigkeitsdampf und/oder Flüssigkeit aus der Ausstoßkammer ausgestoßen wird, um dadurch das Medikament abzugeben,

und das genannte Auslassventil so ausgelegt ist, dass es sich öffnet, wenn eine Temperatur von Flüssigkeit in der Ausstoßkammer im Wesentlichen gleich oder höher als eine Sättigungsterüperatur in Verbindung mit der Flüssigkeit bei einem Druck ist, der gleich einem Druck an einer Stelle stromabwärts von dem genannten Auslassventil ist.

Vorrichtung nach Anspruch 1, die ferner ein Heizelement (1803, 2005, 2106, 2203) umfasst, das in der genannten Ausstoßkammer oder in der Nähe der genannten Ausstoßkammer angeordnet ist, um eine

10

15

20

25

30

35

40

45

50

55

Temperatur von Flüssigkeit in der genannten Ausstoßkämmer zu erhöhen.

- 3. Vorrichtung nach Anspruch 1, die ferner ein Pumpelement (2008) umfasst, das in der genannten Ausstoßkammer oder in der Nähe der genannten Ausstoßkammer angeordnet ist, um einen Druck von Flüssigkeit in der genannten Ausstoßkammer zu erhöhen.
- 4. Vorrichtung nach einem der vorherigen Ansprüche, die ferner einen Drucksensor umfasst, um zu ermitteln, wann ein Ausstoßkammerdruck einen vorbestimmten Schwellenwert erreicht, der das Erfüllen der genannten vorbestimmten Bedingung anzeigt, wobei der genannte Ausstoßkammerdruck den genannten Parameter beinhaltet.
- 5. Vorrichtung nach einem der vorherigen Ansprüche, die ferner einen Kanal umfasst, der das genannte Auslassventil mit einem Mundstück (1909, 2014, 2108) verbindet, das von einem Benutzer benutzt werden kann, um ausgestoßene(n) Flüssigkeit und/ oder Flüssigkeitsdampf zu inhalieren.
- 6. Vorrichtung nach Anspruch 5, bei der ferner der genannte Kanal und das genannte Mundstück eine kombinierte Länge haben, die so gewählt ist, dass das Medikament bei einer gewünschten Temperatur an einen Benutzer abgegeben wird.
- 7. Vorrichtung nach einem der vorherigen Ansprüche, bei der ferner die genannte gewählte Flüssigkeit eine Trägerflüssigkeit und wenigstens eine Medikamentenkomponente beinhaltet.
- **8.** Vorrichtung nach einem der Ansprüche 1 bis 7, bei der ferner die genannte Flüssigkeit wenigstens eine flüssige Medikamentenkomponente beinhaltet.
- 9. Vorrichtung nach einem der vorherigen Ansprüche, wobei die genannte Vorrichtung einen in der Hand gehaltenen Nebulisator umfasst, der ferner einen Nebulisatorkörperteil umfasst, der so gestaltet ist, dass er in die Hand eines Benutzers passt und ein Mundstück (1909) umfasst, über das ein Benutzer ausgestoßene(n) Flüssigkeit und/oder Flüssigkeitsdampf inhalieren kann.
- 10. Vorrichtung nach Anspruch 9, die ferner eine auf dem genannten K\u00f6rperteil befindlichen Bedientaste umfasst, die benutzt werden kann, um die Abgabe des Medikaments einzuleiten.
- 11. Vorrichtung nach Anspruch 9, die ferner einen Steuerschaltkomplex (1910) zum Steuern des Ausstoßes des Medikaments an einen Benutzer nach dem Einleiten der Abgabe umfasst, bis eine vorbestimmte

Medikamentenmenge abgegeben ist.

- 12. Vorrichtung nach einem der Ansprüche 9 bis 11, bei der ferner die genannte Vorratskammer einen federgespannten Kolben (1908) umfasst, um die gespeicherte Flüssigkeit mit einem Überdruck zu beaufschlagen.
- **13.** Vorrichtung nach einem der Ansprüche 9 bis 11, bei der ferner die genannte Vorratskammer einen Druckbehälter umfasst, um die gespeicherte Flüssigkeit mit einem Überdruck zu beaufschlagen.
- 14. Vorrichtung nach einem der Ansprüche 9 bis 13, die ferner ein Rückführungsventil (1904) umfasst, das so ausgelegt ist, dass es sich selektiv öffnet, damit aus der genannten Ausstoßkammer nicht ausgestoßenes Medikament in die genannte Vorratskammer zurückkehren kann.
- 15. Vorrichtung nach einem der Ansprüche 9 bis 14, bei der ferner der genannte Nebulisator so angeordnet ist, dass er den Ausstoß des Medikaments bis zum Auftreten eines vorbestimmten Ereignisses automatisch wiederholt.
- **16.** Vorrichtung nach einem der Ansprüche 1 bis 8, wobei die genannte Vorrichtung einen Tischnebulisator umfasst, der ferner Folgendes umfasst:
 - einen Nebulisatorhauptkörperteil (2001) zur Aufnahme der Speicherkammer und einen flexiblen Verbindungsschlauch (2003), der die genannte Vorratskammer mit einem weiteren Körperteil zur Aufnahme der genannten Ausstoßkammer verbindet.
- 17. Vorrichtung nach Anspruch 16, die ferner eine Pumpe (2008) zum Pumpen der gewählten Flüssigkeit aus der genannten Vorratskammer in die genannte Ausstoßkammer umfasst.
- **18.** Vorrichtung nach Anspruch 16 oder Anspruch 17, die ferner ein Heizelement (2005) zum Erhitzen von in der genannten Vorratskammer gespeicherter Flüssigkeit umfasst.
- 19. Vorrichtung nach einem der Ansprüche 16 bis 18, die ferner einen Nachfüllanschluss zum Aufnehmen von neuer Flüssigkeit aufweist, wenn Flüssigkeit in der genannten Vorratskammer aufgebraucht ist.
- 20. Vorrichtung nach einem der Ansprüche 16 bis 19, bei der ferner der genannte Hauptkörperteil eine Stromquelle (2006) und eine Steuereinheit (2016) umfasst und der genannte Verbindungsschlauch ferner einen Anschluss zum Verbinden von Strom- und/ oder Steuersignalen mit dem genannten weiteren

10

15

20

35

45

Körperteil umfasst.

- **21.** Vorrichtung nach einem der Ansprüche 16 bis 20, wobei der genannte weitere Körperteil so gestaltet ist, dass er in die Hand eines Benutzers passt.
- **22.** Vorrichtung nach einem der Ansprüche 16 bis 21, die ferner eine Bedientaste aufweist, die betätigt werden kann, um die Abgabe des Medikaments einzuleiten.
- 23. Vorrichtung nach einem der Ansprüche 16 bis 22, die ferner einen Steuerschaltkomplex zum Steuern des Ausstoßes des Medikaments an einen Benutzer nach dem Einleiten der Abgabe umfasst, bis eine vorbestimmte Medikamentenmenge abgegeben ist.
- 24. Vorrichtung nach einem der Ansprüche 16 bis 23, wobei der genannte Nebulisator so ausgelegt ist, dass er den Ausstoß des Medikaments bis zum Auftreten eines vorbestimmten Ereignisses automatisch wiederholt.
- 25. Vorrichtung nach einem der Ansprüche 1 bis 8, wobei die genannte Vorrichtung einen Dosierinhalator umfasst, der einen Inhalatorkörperteil umfasst, der so gestaltet ist, dass er in die Hand eines Benutzers passt und ein Mundstück (2108) umfasst, über das ein Benutzer ausgestoßene(n) Flüssigkeit und/oder Flüssigkeitsdampf inhalieren kann.
- **26.** Vorrichtung nach Anspruch 25, die ferner eine Bedientaste (2104) aufweist, die zum Einleiten der Abgabe des Medikaments betätigt werden kann.
- 27. Vorrichtung nach Anspruch 25 oder nach Anspruch 26, die ferner einen Steuersclialtkomplex (2105) zum Steuern des Ausstoßes des Medikaments an einen Benutzer nach dem Einleiten der Abgabe umfasst, bis eine vorbestimmte Medikamenteninenge abgegeben ist.
- 28. Vorrichtung nach einem der Ansprüche 25 bis 27, wobei die genannte Vorratskammer einen Druckbehälter umfasst, um die gespeicherte Flüssigkeit mit einem Überdruck zu beaufschlagen.
- **29.** Vorrichtung nach einem der Ansprüche 25 bis 28, wobei die genannte Vorratskammer einen federgespannten Kolben umfasst, um die gespeicherte Flüssigkeit mit einem Überdruck zu beaufschlagen.
- 30. Vorrichtung nach einem der Ansprüche 1 bis 4, wobei die genannte Vorrichtung einen nadellosen Injektor umfasst.

Revendications

1. Appareil destiné à administrer un médicament à un utilisateur, comprenant :

une chambre de stockage (1906, 2004, 2102) agencée de manière à stocker une quantité d'un liquide sélectionné comprenant au moins un médicament;

une chambre d'éjection (1801, 1901, 2011, 2101, 2200) agencée pour conserver une portion du liquide sélectionné :

une soupape d'admission (1802, 1902, 2009, 2103, 2201) agencée pour s'ouvrir de façon sélective afin de permettre au liquide de passer de ladite chambre de stockage dans ladite chambre d'éjection; et

une soupape de décharge (1903, 2010, 2107, 2202) agencée pour s'ouvrir de façon sélective afin d'éjecter le médicament hors de ladite chambre d'éjection lorsqu'un paramètre associé à ladite chambre d'éjection satisfait une condition prédéterminée; caractérisé en ce que la vapeur de liquide et/ou le liquide est éjecté hors de la chambre d'éjection afin d'administrer ainsi le médicament,

et ladite soupape de décharge est agencée pour s'ouvrir lorsqu'une température du liquide présent dans la chambre d'éjection est sensiblement égale ou supérieure à une température de saturation associée au liquide à une pression qui est égale à une pression au niveau d'un emplacement situé en aval de ladite soupape de décharge.

2. Appareil selon la revendication 1, comprenant en outre :

un élément réchauffeur (1803, 2005, 2106, 2203) lequel est disposé dans ladite chambre d'éjection ou à proximité de ladite chambre d'éjection, afin d'accroître une température de liquide dans ladite chambre d'éjection.

Appareil selon la revendication 1, comprenant en outre :

un élément pompe (2008) lequel est disposé dans ladite chambre d'éjection ou à proximité de ladite chambre d'éjection, afin d'accroître une pression de liquide dans ladite chambre d'éjection.

4. Appareil selon l'une quelconque des revendications précédentes, comprenant en outre :

un capteur de pression destiné à déterminer le moment auquel une pression de la chambre

16

15

20

30

35

40

45

50

d'éjection atteint une valeur-seuil prédéterminée qui indique que ladite condition prédéterminée est satisfaite, ladite pression de la chambre d'éjection comprenant ledit paramètre.

5. Appareil selon l'une quelconque des revendications précédentes, comprenant en outre :

un passage qui relie ladite soupape de décharge à un embout buccal (1909, 2014, 2108) utilisable par un utilisateur pour lui permettre d'inhaler le liquide et/ou la vapeur de liquide éjecté.

6. Appareil selon la revendication 5, comprenant en outre :

ledit passage et embout buccal qui possèdent une longueur combinée laquelle a été sélectionnée pour administrer un médicament à un utilisateur à une température désirée.

7. Appareil selon l'une quelconque des revendications précédentes, comprenant en outre :

ledit liquide sélectionné qui comporte un liquide vecteur et au moins un composant de médicament.

8. Appareil selon l'une quelconque des revendications 1 à 7, comprenant en outre :

ledit liquide sélectionné qui comporte au moins un composant de médicament liquide.

9. Appareil selon l'une quelconque des revendications précédentes, ledit appareil comportant un nébuliseur manuel comprenant en outre :

> une partie de corps de nébuliseur qui est agencée pour pouvoir tenir dans la main d'un utilisateur, et comporte un embout buccal (1909) à travers lequel un utilisateur peut inhaler le liquide et/ou la vapeur de liquide éjecté.

10. Appareil selon la revendication 9, comprenant en outre :

un bouton pour l'utilisateur, porté par ladite partie de corps, et utilisable pour amorcer l'administration d'un médicament.

11. Appareil selon la revendication 9, comprenant en outre :

des circuits de commande (1910) agencés pour commander l'éjection d'un médicament vers un utilisateur, à la suite de l'amorçage de l'administration, jusqu'à ce qu'une quantité prédétermi-

née de médicament ait été administrée.

12. Appareil selon l'une quelconque des revendications 9 à 11, comprenant en outre :

ladite chambre de stockage qui comporte un piston (1908) chargé par ressort afin de donner une pression positive au liquide stocké.

13. Appareil selon l'une quelconque des revendications 9 à 11, comprenant en outre :

ladite chambre de stockage qui comporte une cartouche pressurisée afin de donner une pression positive au liquide stocké.

14. Appareil selon l'une quelconque des revendications 9 à 13, comprenant en outre :

une soupape de retour (1904) agencée pour s'ouvrir de façon sélective afin de permettre au médicament, non éjecté hors de ladite chambre d'éjection, de revenir vers ladite chambre de stockage.

15. Appareil selon l'une quelconque des revendications 9 à 14, comprenant en outre :

ledit nébuliseur qui est agencé pour répéter automatiquement une éjection de médicament jusqu'à l'occurrence d'un événement prédéterminée.

16. Appareil selon l'une quelconque des revendications 1 à 8, ledit appareil comportant un nébuliseur de bureau comprenant en outre :

une partie de corps principal de nébuliseur (2001) qui est agencée pour contenir la chambre de stockage ; et

un tube de raccordement flexible (2003) qui raccorde ladite chambre de stockage à une partie de corps supplémentaire agencée pour contenir ladite chambre d'éjection.

17. Appareil selon la revendication 16, comprenant en outre :

une pompe (2008) qui est agencée pour pomper le liquide sélectionné à partir de ladite chambre de stockage vers ladite chambre d'éjection.

18. Appareil selon la revendication 16 ou la revendication 17, comprenant en outre :

un réchauffeur (2005) qui est agencé pour chauffer le liquide stocké dans ladite chambre de stockage.

25

35

40

50

19. Appareil selon l'une quelconque des revendications 16 à 18, comprenant en outre :

un orifice de recharge agencé pour recevoir un appoint en liquide lorsque le liquide dans ladite chambre de stockage est épuisé.

20. Appareil selon l'une quelconque des revendications 16 à 19, comprenant en outre :

ladite partie de corps principal qui comporte une source d'énergie (2006) et une unité de commande (2016) et ledit tube de raccordement comporte en outre une connexion destinée à connecter l'alimentation en énergie et/ou les signaux de commande à ladite partie de corps supplémentaire.

21. Appareil selon l'une quelconque des revendications 16 à 20 :

ladite partie de corps supplémentaire étant agencée de façon à pouvoir tenir dans la main d'un utilisateur.

22. Appareil selon l'une quelconque des revendications 16 à 21, comprenant en outre :

un bouton pour l'utilisateur, apte à être actionné afin d'amorcer l'administration d'un médicament.

23. Appareil selon l'une quelconque des revendications 16 à 22, comprenant en outre :

des circuits de commande agencés pour commander l'éjection d'un médicament vers un utilisateur, à la suite de l'amorçage de l'administration, jusqu'à ce qu'une quantité prédéterminée de médicament ait été administrée.

24. Appareil selon l'une quelconque des revendications 16 à 23 :

ledit nébuliseur étant agencé pour répéter automatiquement une éjection de médicament jusqu'à l'occurrence d'un événement prédéterminé.

25. Appareil selon l'une quelconque des revendications 1 à 8, ledit appareil comportant un inhalateur-doseur comprenant :

une partie de corps d'inhalateur qui est agencée pour pouvoir tenir dans la main d'un utilisateur et comporte un embout buccal (2108) à travers lequel un utilisateur peut inhaler le liquide et/ou la vapeur de liquide éjecté. 26. Appareil selon la revendication 25, comprenant en outre un bouton pour l'utilisateur (2104), apte à être actionné afin d'amorcer l'administration d'un médicament.

27. Appareil selon la revendication 25 ou la revendication 26, comprenant en outre :

des circuits de commande (2105) agencés pour commander l'éjection d'un médicament vers un utilisateur, à la suite de l'amorçage de l'administration, jusqu'à ce qu'une quantité prédéterminée de médicament ait été administrée.

15 28. Appareil selon l'une quelconque des revendications 25 à 27 :

> ladite chambre de stockage comprenant une cartouche pressurisée afin de donner une pression positive au liquide stocké.

29. Appareil selon l'une quelconque des revendications 25 à 28 :

ladite chambre de stockage comportant un piston chargé par ressort afin de donner une pression positive au liquide stocké.

 Appareil selon l'une quelconque des revendications
à 4, ledit appareil comprenant un injecteur sans aiguille.

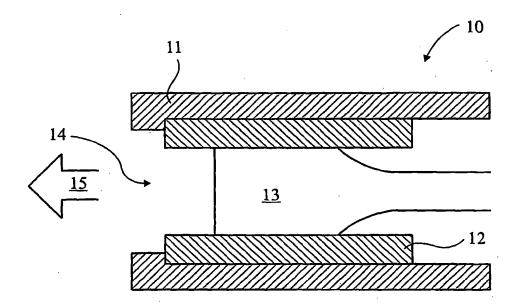


Fig. 1 (PRIOR ART)

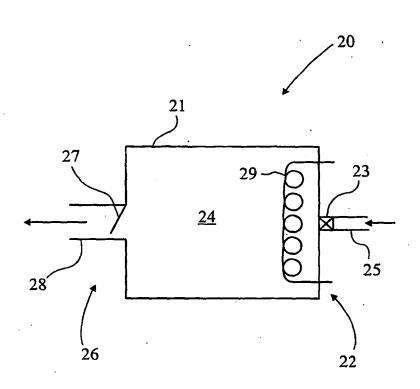


Fig. 2

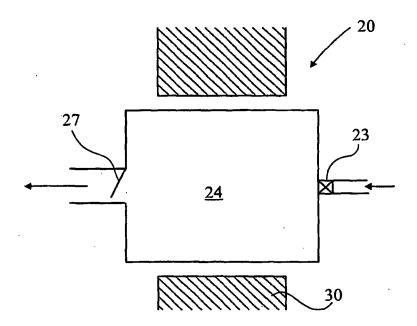


Fig. 3

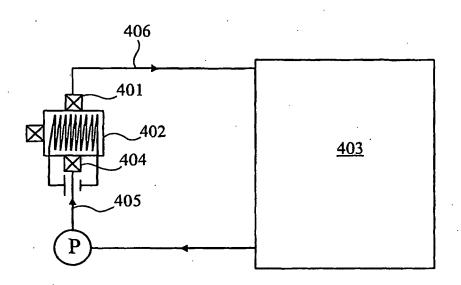
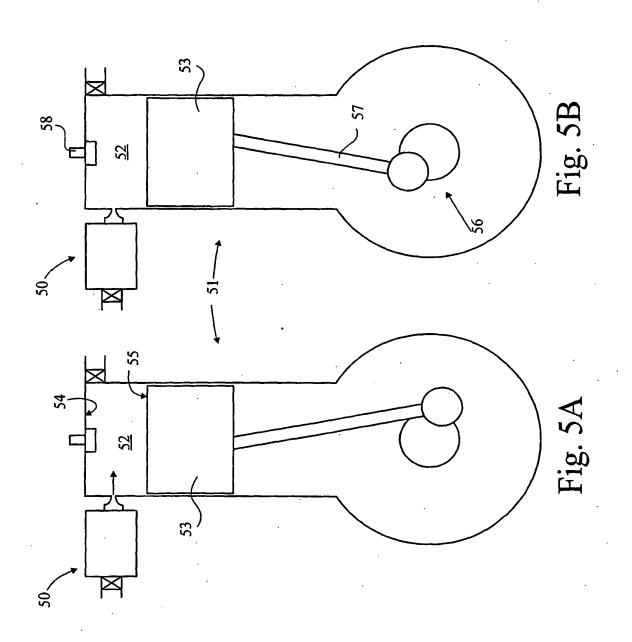
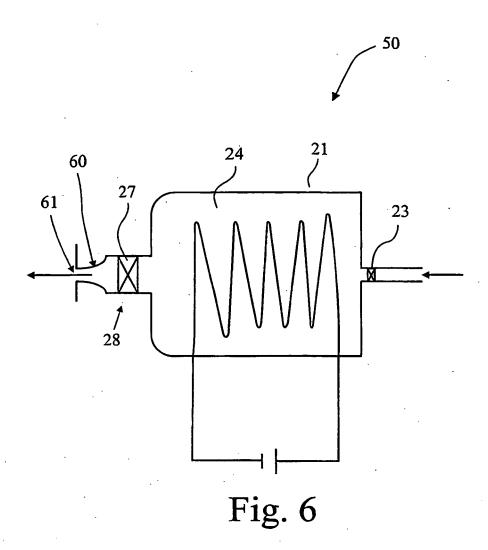
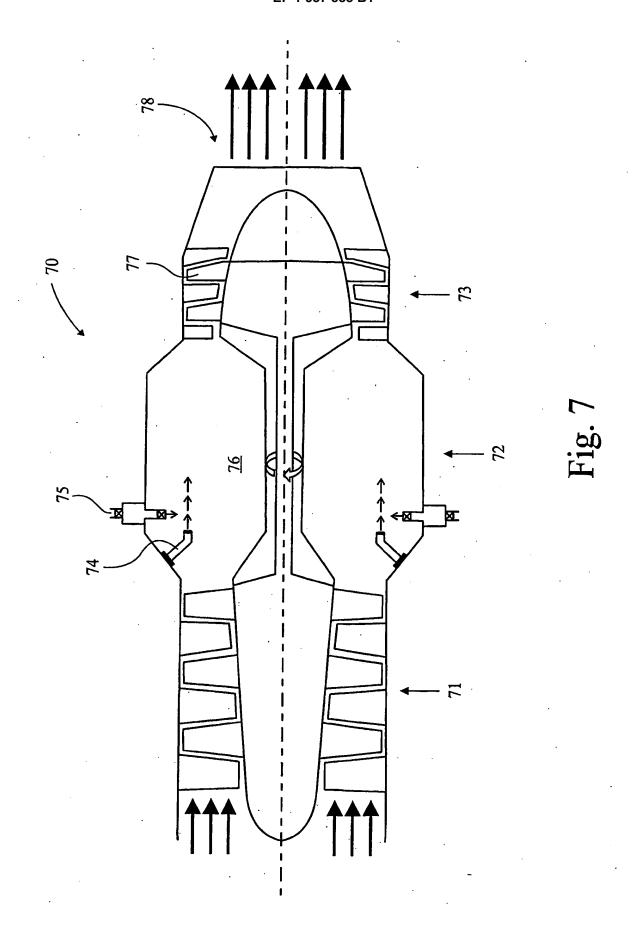





Fig. 4

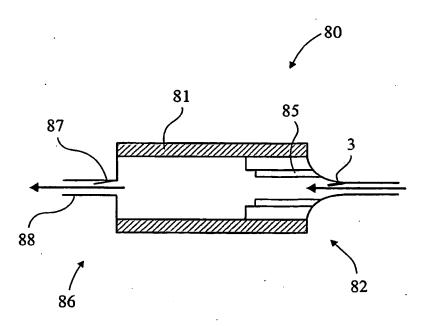


Fig. 8

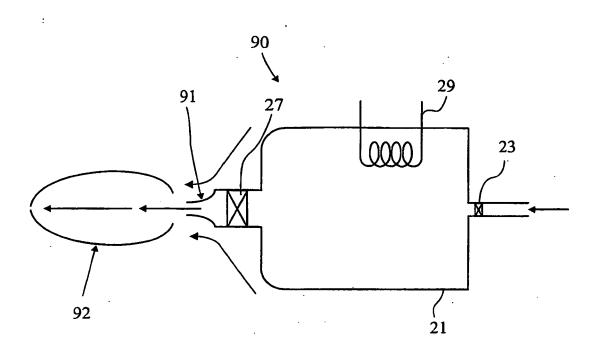


Fig. 9

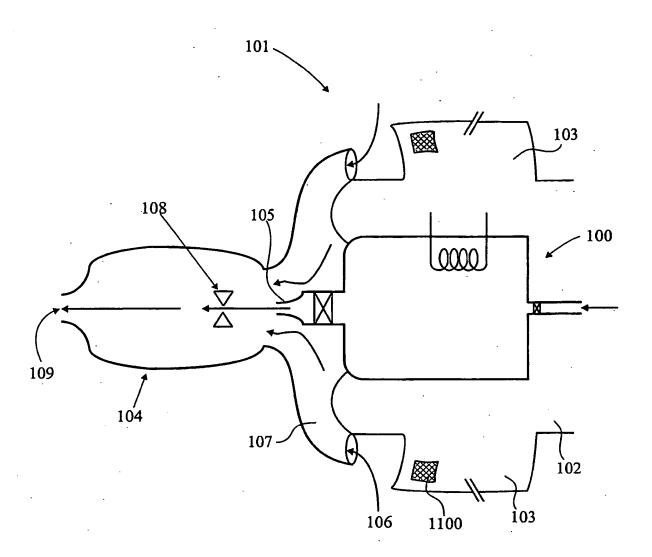


Fig. 10

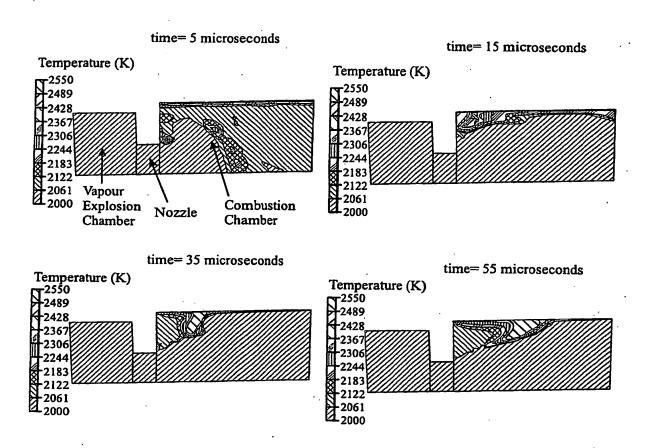


Fig. 11A

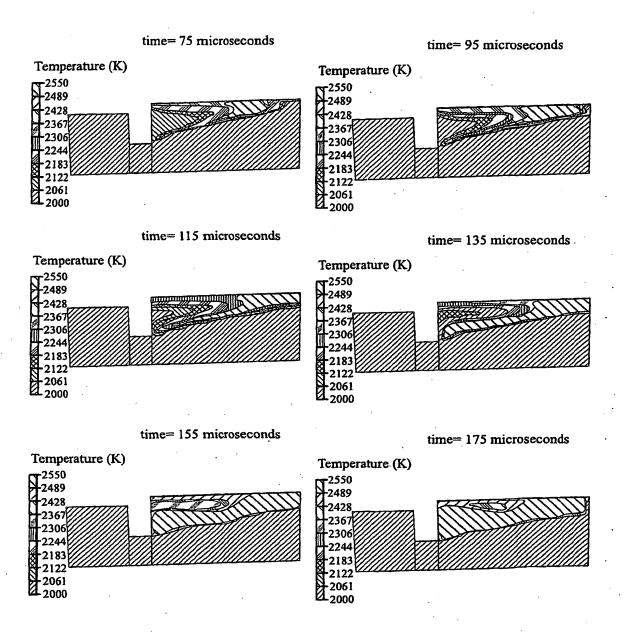
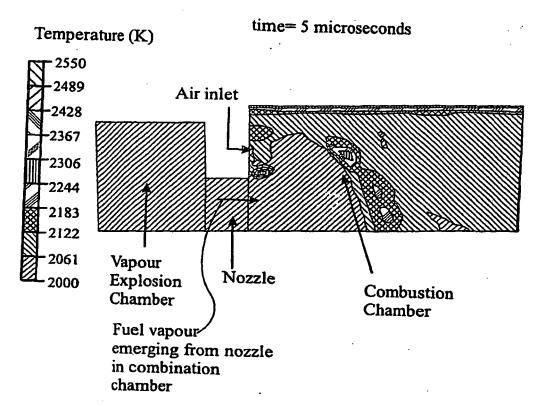
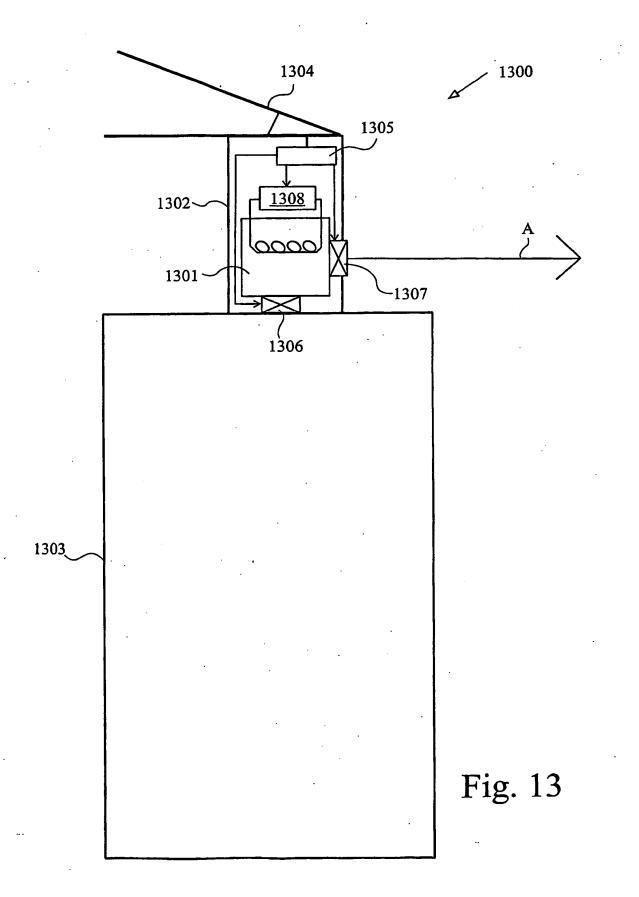
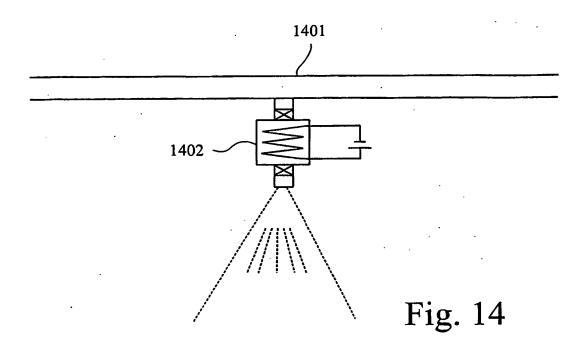
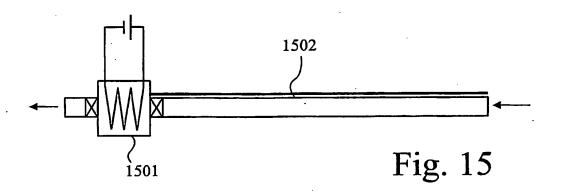
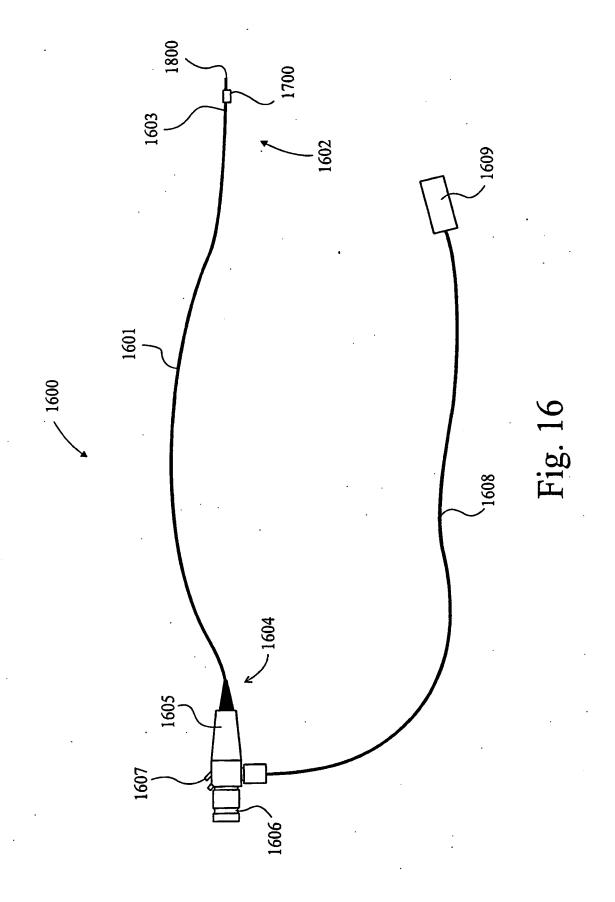
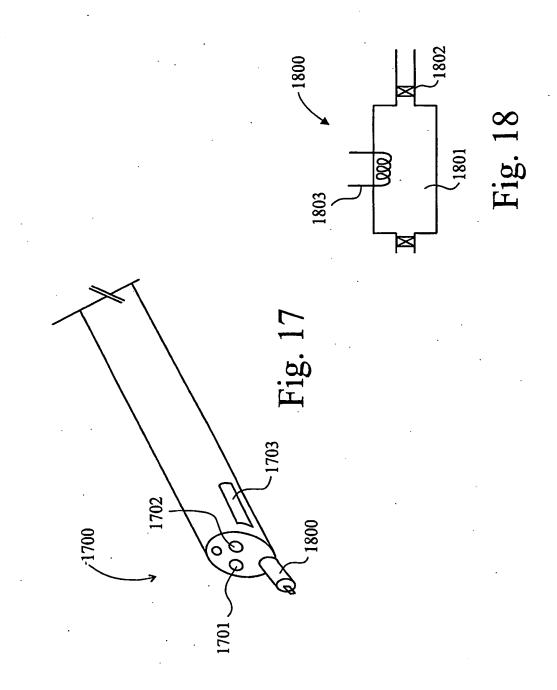


Fig. 11B


Fig. 12

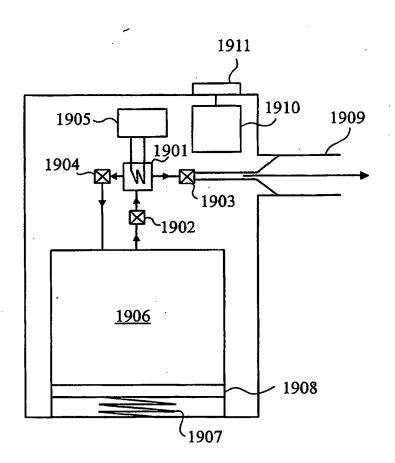


Fig. 19

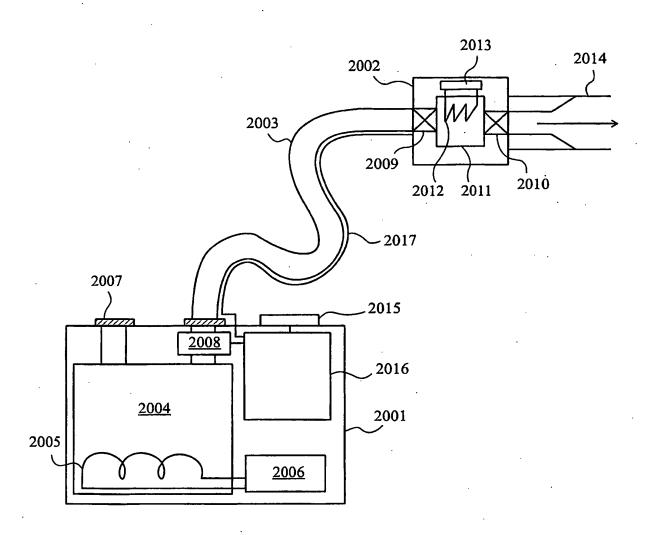


Fig. 20

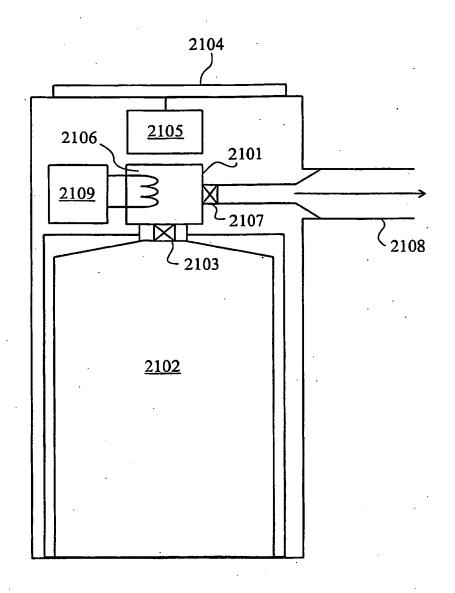


Fig. 21

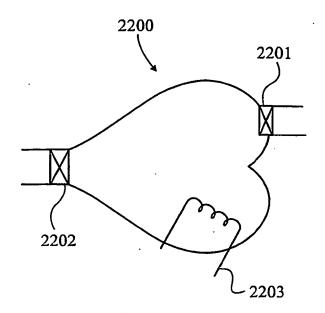


Fig. 22

EP 1 937 333 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 2002079377 A [0007]
- US 2005045179 A [0007]

- EP 0820780 A [0007]
- US 2003088207 A [0007]