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The Deduction Theorem for

Strong Propositional Proof Systems

(Extended Abstract)

Olaf Beyersdorff⋆

Institut für Informatik, Humboldt-Universität zu Berlin, Germany
beyersdo@informatik.hu-berlin.de

Abstract. This paper focuses on the deduction theorem for proposi-
tional logic. We define and investigate different deduction properties and
show that the presence of these deduction properties for strong proof
systems is powerful enough to characterize the existence of optimal and
even polynomially bounded proof systems. We also exhibit a similar,
but apparently weaker condition that implies the existence of complete
disjoint NP-pairs. In particular, this yields a sufficient condition for the
completeness of the canonical pair of Frege systems and provides a gen-
eral framework for the search for complete NP-pairs.

1 Introduction

The classical deduction theorem for propositional logic explains how a proof of a
formula ψ from an extra hypothesis ϕ is transformed to a proof of ϕ→ ψ. While
this property has been analysed in detail and is known to hold for Frege systems
[3, 4], deduction has not been considered for stronger systems such as extensions
of Frege systems, the apparent reason being that neither the extended Frege
system EF nor the substitution Frege system SF satisfy the classical deduction
theorem, as neither the extension nor the substitution rule is sound. We therefore
relax the condition by requiring the extra hypothesis ϕ to be tautological. In this
way we arrive at two weaker versions of the deduction property, for which we ask
whether they are valid for strong proof systems with natural properties. It turns
out that even these weaker versions of deduction are very powerful properties
for strong proof systems as they allow the characterization of the existence of
optimal and even polynomially bounded proof systems.

These characterizations are interesting as they relate to important concepts
from different areas. The problem of the existence of polynomially bounded proof
systems is known to be equivalent to the NP versus coNP question [6], while
the existence of optimal proof systems is a famous and well-studied problem in
proof complexity, posed by Kraj́ıček and Pudlák [16], and with implications for
a number of promise complexity classes (cf. [14, 19]). In particular, Sadowski [19]
obtained different characterizations for the existence of optimal proof systems
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in terms of optimal acceptors and enumerability conditions for easy subsets of
TAUT. Earlier, Kraj́ıček and Pudlák [16] established NE = coNE as a sufficient
condition for the existence of optimal proof systems, while Köbler et al. [14]
showed that optimal proof systems imply complete sets for a number of other
complexity classes like NP ∩ coNP and BPP.

On the other hand, we show that weak deduction combined with suitable
closure properties of the underlying proof system implies the existence of com-
plete disjoint NP-pairs. Although disjoint NP-pairs were already introduced into
complexity theory in the 80’s by Grollmann and Selman [12], it was only during
recent years that disjoint NP-pairs have fully come into the focus of complexity-
theoretic research [17, 8–11, 2, 1]. This interest mainly stems from the applica-
tions of disjoint NP-pairs to such different areas as cryptography [12, 13] and
propositional proof complexity [18, 17, 2].

Similarly as for other promise classes it is not known whether the class of
all disjoint NP-pairs contains pairs that are complete under the appropriate
reductions. This question, posed by Razborov [18], is one of the most prominent
open problems in the field. On the positive side, it is known that the existence
of optimal proof systems suffices to guarantee the existence of complete pairs
[18]. More towards the negative, a body of sophisticated relativization results
underlines the difficulty of the problem. Glaßer et al. [8] provided an oracle
under which complete disjoint NP-pairs do not exist. On the other hand, in [9]
they also constructed an oracle relative to which there exist complete pairs but
optimal proof systems do not exist.

Further information on the problem is provided by a number of different char-
acterizations. Glaßer, Selman, and Sengupta [8] obtained a condition in terms of
uniform enumerations of machines and also proved that the question of the ex-
istence of complete pairs receives the same answer under reductions of different
strength. Additionally, the problem was characterized by provability conditions
in propositional proof systems and shown to be robust under an increase of the
number of components from two to arbitrary constants [1].

In this paper we exhibit several sufficient conditions for the existence of
complete disjoint NP-pairs which involve properties of concrete proof systems
such as Frege systems and their extensions. These results fall under a general
paradigm for the search for complete NP-pairs, that asks for the existence of proof
systems satisfying a weak version of the deduction theorem and moderate closure
conditions. In particular, we provide two conditions that imply the completeness
of the canonical pair of Frege systems and demonstrate that the existence of
complete NP-pairs is tightly connected with the question whether EF is indeed
more powerful than ordinary Frege systems.

The paper is organized as follows. In Sect. 2 we provide some background
information on propositional proof systems and disjoint NP-pairs. In Sect. 3 we
discuss various extensions of Frege systems that we investigate in Sect. 4 with
respect to different versions of the deduction property. Section 5 contains the
results connecting the deduction property for strong systems with the existence
of complete NP-pairs. Finally, in Sect. 6 we conclude with some open problems.

2



Due to space limitations we only sketch proofs or omit them in this extended
abstract. Proofs of the main results are contained in the appendix.

2 Preliminaries

Propositional Proof Systems. Propositional proof systems were defined in
a very general way by Cook and Reckhow [6] as polynomial-time functions P
which have as its range the set of all tautologies. A string π with P (π) = ϕ is
called a P -proof of the tautology ϕ. By P ⊢≤m ϕ we indicate that there is a
P -proof of ϕ of size ≤ m. We write P ⊢∗ ϕn if ϕn is a sequence of tautologies
with polynomial-size P -proofs.

Proof systems are compared according to their strength by simulations in-
troduced in [6] and [16]. A proof system Q simulates a proof system P (denoted
P ≤ Q), if there exists a polynomial p such that P ⊢≤m ϕ implies Q ⊢≤p(m) ϕ for
all formulas ϕ. A proof system is called optimal if it simulates all proof systems.

In the following sections simple closure properties of propositional proof sys-
tems will play an important role. We say that a proof system P is closed under
modus ponens if there exists a constant c such that P ⊢≤m ϕ and P ⊢≤n ϕ→ ψ

imply P ⊢≤m+n+|ψ|+c ψ for all formulas ϕ and ψ. Similarly, we say that P
is closed under substitutions of variables with respect to the polynomial q if
P ⊢≤m ϕ(x̄) implies P ⊢≤q(m) ϕ(ȳ) for all formulas ϕ(x̄) and propositional
variables ȳ that are distinct from x̄. Not specifying the polynomial explicitly, we
say that P is closed under substitutions of variables if there exists a polynomial
q with this property. Likewise, P is closed under substitutions by constants if
there exists a polynomial q such that P ⊢≤m ϕ(x̄, ȳ) implies P ⊢≤q(m) ϕ(ā, ȳ)

for all formulas ϕ(x̄, ȳ) and constants ā ∈ {0, 1}|x̄|.

Disjoint NP-Pairs. A pair (A,B) is called a disjoint NP-pair if A,B ∈ NP

and A ∩ B = ∅. Grollmann and Selman [12] defined the following reduction
between disjoint NP-pairs (A,B) and (C,D): (A,B) ≤p (C,D) if there exists a
polynomial-time computable function f such that f(A) ⊆ C and f(B) ⊆ D.

The connection between disjoint NP-pairs and propositional proof systems
was established by Razborov [18], who associated a canonical disjoint NP-pair
(Ref(P ), SAT∗) with a proof system P , where the first component Ref(P ) =
{(ϕ, 1m) | P ⊢≤m ϕ} contains information about proof lengths in P and the
second component SAT∗ = {(ϕ, 1m) | ¬ϕ ∈ SAT} is a padded version of SAT.
This canonical pair is linked to the automatizablility and the reflection property
of the proof system [17]. More information on the connection between disjoint
NP-pairs and propositional proof systems can be found in [17, 2, 10].

3 Extensions of Frege Systems

A prominent example of a class of proof systems is provided by Frege systems
which are usual textbook proof systems based on axioms and rules. In the context
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of propositional proof complexity these systems were first studied by Cook and
Reckhow [6] and it was proven there that all Frege systems, i.e., systems using
different axiomatizations and rules, are polynomially equivalent.

Augmenting Frege systems by the possibility to abbreviate complex formulas
by propositional variables we arrive at the extended Frege proof system EF . This
extension rule might further reduce the proof size, but it is not known whether
EF is really stronger than ordinary Frege systems. Both Frege and the extended
Frege system are very strong systems for which no non-trivial lower bounds to
the proof size are currently known.

Another way to enhance the power of Frege systems is to allow substitutions
not only for axioms but also for all formulas that have been derived in Frege
proofs. Augmenting Frege systems by this substitution rule leads to the substitu-
tion Frege system SF . The extensions EF and SF were introduced by Cook and
Reckhow [6]. While it was already proven there that EF is simulated by SF , the
converse simulation is considerably more involved and was shown independently
by Dowd [7] and Kraj́ıček and Pudlák [16]. For more detailed information on
Frege systems and its extensions we refer to the monograph [15].

Under the notion of Hilbert-style proof systems we subsume all proof systems
that have as proofs sequences of formulas, and formulas in such a sequence
are derived from earlier formulas in the sequence by the rules available in the
proof system. In particular, Frege systems and its extensions are Hilbert-style
systems. Hilbert-style proof systems P can be enhanced by additional axioms in
two different ways. Namely, we can form a proof system P +Φ augmenting P by
a polynomial-time computable set Φ of tautologies as new axiom schemes. This
means that formulas from Φ as well as substitution instances of these formulas
can be freely introduced as new lines in P +Φ -proofs. In contrast to this we use
the notation P ∪Φ for the proof system that extends P only by formulas from Φ

but not by their substitution instances as new axioms. In our applications the set
Φ will mostly be printable, meaning that Φ can both be decided and generated
in polynomial time.

For EF there are two canonical ways how to define the extensions EF ∪ Φ
and EF + Φ, where these two possibilities differ in the use of the extension
axioms. In the first method we will allow the introduction of extension axioms
p ≡ ϕ only for extension variables p not occurring in Φ, whereas in the second
method we can freely use extension axioms that also involve variables from Φ.
For the first weaker notion we will use the notation EF− ∪ Φ and EF− + Φ, or
only EF− when we augment EF in this manner by different sets of tautologies
Φ, whereas the stronger second way is indicated by the usual notation EF ∪ Φ,
EF +Φ, or simply EF . We will use the same notation (EF + Ψ)− when we use
an extension EF + Ψ as the base system and augment this with further axioms
Φ to systems (EF + Ψ)− ∪ Φ.

In principle, this gives four possible types of extensions of EF , but it is
easily seen that the distinction between EF and EF− becomes irrelevant when
we augment these systems by axiom schemes Φ:
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Proposition 1. Let Φ be a polynomial-time decidable set of tautologies. Then
the proof systems EF + Φ and EF− + Φ are polynomially equivalent.

These extensions of EF are particularly important as every proof system P

is simulated by a proof system of the form EF +Φ where the axioms Φ provide
a propositional description of the reflection principle of P , expressing a strong
form of the consistency of P (cf. [15] for details).

In addition, also the systems EF ∪ Φ and EF + Φ appear to be very close
to each other, as also EF ∪ Φ can use substitution instances of Φ in its proofs.
Namely, if ϕ(p1, . . . , pn) is a formula from Φ and θ1(q̄), . . . , θn(q̄) are propo-
sitional formulas in the variables q̄ that are disjoint from p̄, then we can de-
duce ϕ(θ1, . . . , θn) in EF ∪ Φ as follows: we start with the extension axioms
p1 ≡ θ1(q̄), . . . , pn ≡ θn(q̄) and use these formulas to show the equivalence
ϕ(p1, . . . , pn) ≡ ϕ(θ1, . . . , θn) by induction on the formula ϕ. Using the original
axiom ϕ(p1, . . . , pn) from Φ we arrive with modus ponens at the substitution
instance ϕ(θ1, . . . , θn). We leave it open, whether this idea can be extended to a
full simulation of EF +Φ by EF ∪Φ, but the argument shows that also the sys-
tem EF ∪Φ is quite natural, as it is equivalent to the proof system P = EF +Φ
where formulas from Φ use pairwise distinct variables and each P -proof may
contain at most one substitution instance of each formula from Φ.

For SF the situation becomes even simpler, as there is only one sensible
way to define extensions of SF . Namely, because SF can immediately generate
substitution instances, we have SF ∪Φ ≡p SF +Φ. In total the following picture
of possible extension of Frege systems emerges:

Proof system Extensions by polynomial-time decidable axioms Φ

F F ∪ Φ ≤p F + Φ

EF EF− ∪ Φ ≤p EF ∪ Φ ≤p EF− + Φ ≡p EF + Φ

SF SF ∪ Φ ≡p SF + Φ

In the above table all shown simulation relations are probably strict in each
line (except for EF ∪ Φ ≤p EF + Φ as mentioned above), because the converse
simulations have unlikely consequences, as we will show in the sequel of this
paper, or easily follows from known results. The next table gives an overview of
these consequences, ranging in strength from the existence of complete disjoint
NP-pairs to the existence of optimal proof systems.

Assumption Consequence

F ≡ F− ∪ Φ *) EF is optimal (cf. [15] and the Appendix)

F ∪ Φ ≡ F + Φ *) Complete disjoint NP-pairs exist (Corollary 15)

EF ≡ EF− ∪ Φ *) EF is optimal (cf. [15])

EF− ∪ Φ ≡ EF ∪ Φ *) EF is optimal (Theorem 8)

SF ≡ SF ∪ Φ *) SF is optimal (cf. [15])

*) for all polynomial-time decidable sets of tautologies Φ
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In contrast, we do not seem to have such indication for separating the systems
in the vertical columns of the first table, as even the relation between F and
EF ≡p SF is not settled.

4 Deduction Properties for Frege Systems

The deduction theorem of propositional logic states that in a Frege system F a
formula ψ is provable from a formula ϕ if and only if ϕ → ψ is provable in F .
Because proof complexity is focusing on the length of proofs it is interesting to
analyse how the proof length is changing in the deduction theorem. An F -proof
of ϕ → ψ together with the axiom ϕ immediately yields the formula ψ with
one application of modus ponens. Therefore it is only interesting to ask for the
increase in proof length when constructing a proof of ϕ→ ψ from an F -proof of
ψ with the extra axiom ϕ. This was analysed in detail in [3, 4].

The main application of the deduction property is to simplify proofs of com-
plex formulas. Namely, to prove an implication ϕ → ψ it suffices to construct a
proof of ψ from ϕ. In particular, ϕ can be any formula and is not necessarily a
tautology. It is clear that such a deduction property is doomed to fail for strong
systems like EF or SF that can immediately produce substitution instances from
ϕ. For instance, by one application of the substitution rule we get SF ∪{p} ⊢ q,
whereas p → q is not even a tautology. Similarly, we get EF ∪ {p} ⊢ q by in-
troducing the extension axiom p ≡ q with extension variable p as the first line
of the proof, and then derive q by modus ponens. This example, however, does
not work for EF− as we have used the variable p from the extra assumption as
an extension variable. In fact, such an example cannot be found as the classical
deduction theorem is valid for EF− (Theorem 3).

Aiming in particular at strong proof systems like EF we therefore restrict ϕ
to tautologies and make the following general definition.

Definition 2. A Hilbert-style proof system P allows efficient deduction if there
exists a polynomial p such that for all finite sets Φ of tautologies P ∪ Φ ⊢≤m ψ

implies P ⊢≤p(m+m′) (
∧
ϕ∈Φ ϕ) → ψ where m′ = |

∧
ϕ∈Φ ϕ|.

If this even holds for all finite sets Φ of propositional formulas, then we say
that P has the classical deduction property.

This classical deduction property is known to hold for Frege systems (cf. [4]), but
actually almost the same proof also holds for the presumably stronger system
EF−.

Theorem 3 (Deduction theorem for Frege systems). Let Ψ be a polynomial-
time decidable set of tautologies. Then every Frege system F + Ψ and every ex-
tended Frege system of the form (EF +Ψ)− has the classical deduction property.

A still weaker form of the deduction property is given in the next definition.

Definition 4. A Hilbert-style proof system P allows weak deduction if the fol-
lowing condition holds. For all printable sets Φ ⊆ TAUT there exists a polynomial
p such that for all finite subsets Φ0 ⊆ Φ we can infer from P ∪ Φ0 ⊢≤m ψ that
P ⊢≤p(m+m′) (

∧
ϕ∈Φ0

ϕ) → ψ where m′ = |
∧
ϕ∈Φ0

ϕ|.
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In Definition 2 we allowed a fixed polynomial increase for the proof size in
the transformation of a proof from ψ to the implication (

∧
ϕ∈Φ0

ϕ) → ψ, whereas
in the weak deduction property this polynomial might depend on the choice of
the extra axioms Φ. This weakening of the deduction property allows us to show
the following proposition.

Proposition 5. Optimal Hilbert-style proof systems have the weak deduction
property. Similarly, polynomially bounded Hilbert-style proof systems have the
efficient deduction property.

Proof. (Idea) Let Φ be a printable set of tautologies and let π be a P ∪ Φ-proof
of ψ. If P is optimal (or even polynomially bounded), then we can first devise
polynomial-size P -proofs of the extra assumptions Φ0 in π and thus construct a
P -proof of (

∧
ϕ∈Φ0

ϕ) → ψ. ⊓⊔

The following theorem provides a form of a converse to the last proposition.
This shows that even the weak deduction property is a very strong assumption
for natural proof systems.

Theorem 6. Let P ≥ EF be a Hilbert-style proof system that fulfills the follow-
ing conditions:

1. P is closed under modus ponens and substitutions by constants.
2. For all printable sets of tautologies Φ the proof system P ∪Φ is closed under

substitutions of variables.
3. P has the weak deduction property.

Then P is an optimal proof system.

Proof. To obtain the optimality of a proof system P ≥ EF that is closed under
modus ponens, it suffices to show P ⊢∗ ϕn for all printable sequences of tau-
tologies ϕn (cf. [15] Theorem 14.2.2). Let ϕn(p̄) be a printable sequence in the
variables p̄, and let q̄ be a sequence of propositional variables that is disjoint from
p̄. We consider the proof system P ′ = P ∪ {ϕn(q̄) | n ≥ 0} where the variables p̄
from ϕn(p̄) are substituted by q̄. By assumption P ′ is closed under substitutions
of variables and hence we have P ′ ⊢∗ ϕn(p̄). By the weak deduction property
for P we get P ⊢∗

∧
i∈I ϕi(q̄) → ϕn(p̄) for some finite set I. Using closure un-

der substitutions by constants we derive P ⊢∗

∧
i∈I ϕi(1, . . . , 1) → ϕn(p̄) where

we have substituted all variables q̄ in ϕi(q̄) by constants 1. Because all ϕi are
tautologies, the formulas ϕi(1, . . . , 1) are true formulas without variables and
therefore admit polynomial-size P -proofs, as P ≥ EF . Using modus ponens for
P we arrive at polynomial-size P -proofs of ϕn(p̄), as desired. ⊓⊔

Polynomially bounded proof systems P can be characterized by P ⊢≤p(n) ϕn
for all printable sequences of tautologies ϕn and a fixed polynomial p. In the
definition of the efficient deduction property and the other closure properties we
have also bounded the increase in the proof length by fixed polynomials. Hence
the proof of the previous theorem yields the following result.
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Theorem 7. Let P ≥ EF be a Hilbert-style proof system that fulfills the follow-
ing conditions:

1. P is closed under modus ponens and substitutions by constants.
2. There exists a polynomial p such that for all printable sets of tautologies Φ

the proof system P ∪Φ is closed under substitutions of variables with respect
to p.

3. P has the efficient deduction property.

Then P is a polynomially bounded proof system.

In comparison to Theorem 6 we replaced the hypothesis of weak deduction
for P by the stronger notion of efficient deduction and arrive at the stronger
consequence of the polynomial boundedness of P .

Examining the situation for extensions of EF we obtain the following result.

Theorem 8. Let Ψ be a polynomial-time decidable set of tautologies. Then the
following conditions are equivalent:

1. EF + Ψ has the weak deduction property.
2. EF + Ψ is an optimal proof system.
3. For all polynomial-time decidable sets Φ ⊂ TAUT the systems (EF+Ψ)−∪Φ

and (EF + Ψ) ∪ Φ are equivalent.
4. For all polynomial-time decidable sets Φ ⊂ TAUT the proof system (EF +

Ψ)− ∪ Φ is closed under substitutions of variables.

In particular, the last theorem yields two seemingly unrelated characteriza-
tions for the optimality of EF , namely weak deduction for EF and closure of
EF− ∪ Φ under substitutions of variables for arbitrary tautologies Φ.

Similarly, we obtain the following characterizations for the efficient deduction
property of extensions of EF .

Theorem 9. Let Ψ be a polynomial-time decidable set of tautologies. Then the
following conditions are equivalent:

1. EF + Ψ has the efficient deduction property.
2. EF + Ψ is polynomially bounded.
3. There exists a polynomial p such that for all polynomial-time decidable sets

Φ ⊂ TAUT the proof system (EF + Ψ)− ∪ Φ is closed under substitutions
with respect to p.

While one might have objections on the naturality of the above systems
(EF + Ψ) ∪ Φ, the same results are also valid for substitution Frege systems. In
particular, we obtain from Theorems 6 and 7 the following characterizations.

Theorem 10. Let Ψ be a polynomial-time decidable set of tautologies. Then the
proof system SF + Ψ is optimal if and only if SF + Ψ has the weak deduction
property. Further, the system SF + Ψ is polynomially bounded if and only if
SF + Ψ has the efficient deduction property.
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As we know that every proof system P is simulated by a proof system of
the form EF + Ψ with printable Ψ ⊂ TAUT (for instance we can take Ψ as
translations of the reflection principle of P ), we can deduce the following char-
acterization of the existence of optimal proof systems.

Corollary 11. There exists an optimal proof system if and only if there exists
a polynomial-time decidable set Ψ ⊂ TAUT such that EF + Ψ has the weak
deduction property.

Similarly, we can characterize the existence of polynomially bounded proof
systems by the efficient deduction property.

Corollary 12. There exists a polynomially bounded proof system if and only if
there exists a polynomial-time decidable set Ψ ⊂ TAUT such that EF + Ψ has
the efficient deduction property.

5 Deduction Properties and Complete NP-Pairs

In this section we link the deduction property to the problem of the existence
of complete disjoint NP-pairs. In this analysis properties of proof systems are
transferred to properties of the corresponding canonical pairs of the systems.

Augmenting Hilbert-style proof systems P by additional axioms Φ will usu-
ally enhance the power of the proof system. The following lemma shows, however,
that if P has the weak deduction property, then the canonical pair of P ∪Φ will
not be more difficult than the canonical P -pair. In particular, combined with
Theorem 3 the next lemma shows that the canonical pairs of F and its exten-
sions F ∪ Φ are equivalent for printable sets Φ ⊆ TAUT.

Lemma 13. Let Φ be a printable set of tautologies and let P be a proof system
with the weak deduction property. Then (Ref(P ∪Φ), SAT∗) ≤p (Ref(P ), SAT

∗).

Proof. (Idea) The reduction is performed by the mapping

(ψ, 1m) 7→ ((
∧

ϕ∈Φm

ϕ) → ψ, 1p(m))

where Φm = Φ∩Σ≤m, and p is the polynomial from the weak deduction property
of P . ⊓⊔

In the next theorem we formulate a sufficient condition for the existence
of complete NP-pairs. The hypotheses in this theorem are very similar to the
hypotheses in Theorem 6, which gave a sufficient condition for the existence of
optimal proof systems. The decisive difference between the two theorems is that
in Theorem 6 we needed closure of P under substitutions of variables, whereas
in the following theorem closure under substitutions by constants suffices.

Theorem 14. Let P be a Hilbert-style proof system that simulates the truth-
table system and fulfills the following three conditions:
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1. P is closed under modus ponens.
2. For all printable sets of tautologies Φ the proof system P ∪Φ is closed under

substitutions by constants.
3. P has the weak deduction property.

Then the canonical pair of P is a complete disjoint NP-pair.

Proof. The idea of the proof is to construct suitable propositional representations
of disjoint NP-pairs (A,B). Such representations for A and B can be obtained
similarly as in Cook’s proof of the NP-completeness of SAT [5]. We then form a
proof system P ′ = P ∪ Φ extending P , where Φ are new axioms expressing the
disjointness of (A,B) with respect to the above representations. This allows to
reduce (A,B) to the canonical pair of P ′. As P has weak deduction, we can use
Lemma 13 to reduce the canonical pair of P ′ to the canonical pair of P , and
hence (A,B) is ≤p-reducible to (Ref(P ), SAT∗). ⊓⊔

The decisive hypotheses in Theorem 14 are assumptions 2 and 3. For Frege
systems property 3 of Theorem 14 is fulfilled but property 2 is not clear. For EF
and SF , however, we have property 2, but whether property 3 holds is open.
To find out whether some strong proof system fulfills both conditions 2 and 3
remains as a challenging task.

Instantiating Theorem 14 for Frege systems leads to the following corollary
which asks, in principle, whether the systems F ∪ Φ and F + Φ are equivalent.

Corollary 15. Assume that for all printable sets of tautologies Φ the system
F ∪Φ is closed under substitutions by constants. Then the canonical F -pair is a
complete disjoint NP-pair.

By Theorem 3 and Lemma 13 the same corollary also holds for the proof
system EF−.

Our last result shows that the existence of complete NP-pairs is tightly con-
nected with the question whether F and EF are indeed proof systems of different
strength.

Corollary 16. Assume that for all printable sequences Φ of tautologies the proof
systems F ∪ Φ and EF ∪ Φ are equivalent. Then the canonical pair of the Frege
proof system is complete for the class of all disjoint NP-pairs.

In Table 1 we have summarized the different deduction properties and their
implications for the existence of complete NP-pairs for Frege systems and their
extensions.

6 Conclusion

In this paper we have brought attention to the question whether strong proof
systems such as extensions of Frege systems have some kind deduction property.
On the one hand, we have shown that optimal proof systems can be characterized
by the weak deduction property. On the other hand, weak deduction combined
with a moderate amount of closure properties yields complete disjoint NP-pairs.
It therefore seems to be interesting to investigate the following problem:
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Proof system P Frege/EF− EF/SF

classical deduction yes no
no,

efficient deduction yes
unless P is optimal
no, unless P is

weak deduction yes
polynomially bounded

weakest known condition closure of P ∪ Φ under
for the completeness of substitutions by constants optimality of P
the canonical pair of P for all printable Φ

Table 1. Deduction properties for different types of proof systems

Problem 17. Are there natural strong proof systems besides Frege systems that
satisfy the weak deduction property?

Given the implications above, we expect, however, that neither proving nor
disproving this question will be an easy task.

It would also be interesting to know whether the condition in Corollary 15
also characterizes the completeness of the canonical Frege pair, similarly as in
Corollaries 11 and 12. A more general program is to determine which conse-
quences of the completeness of the canonical pair of some proof system P are to
expect for the system P itself.

Acknowledgements. I am indebted to Emil Jeřábek, Johannes Köbler, and
Pavel Pudlák for helpful suggestions on this work.
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Appendix

The appendix contains all proofs that are omitted or only briefly sketched in the
extended abstract.

Proposition 1. Let Φ be a polynomial-time decidable set of tautologies. Then
the proof systems EF + Φ and EF− + Φ are polynomially equivalent.

Proof. By definition the system EF +Φ simulates the system EF−+Φ. For the
converse simulation let π be an EF +Φ-proof of a formula ϕ. In order to convert
π into an EF− + Φ-proof we only have to check, whether π contains extension
axioms p ≡ θ with extension variables p that occur in the axiom set Φ. If this
is not the case, then π is already an EF− +Φ-proof. Otherwise, we just rename
every occurrence of p in π to a new variable q, which neither appears in π nor
in Φ. Performing this step for every extension atom in π, we already arrive at
an EF− + Φ-proof of ϕ. This is correct, because the proven formula ϕ may not
contain any extension variables, and renaming variables in axioms from Φ in the
proof still results in valid substitution instances of Φ, which we are permitted to
use in EF− + Φ-proofs. ⊓⊔

Next we want to argue for the implications of the following table from Sect. 3.

Assumption Consequence

F ≡ F− ∪ Φ *) EF is optimal

F ∪ Φ ≡ F + Φ *) Complete disjoint NP-pairs exist (Corollary 15)

EF ≡ EF− ∪ Φ *) EF is optimal

EF− ∪ Φ ≡ EF ∪ Φ *) EF is optimal (Theorem 8)

SF ≡ SF ∪ Φ *) SF is optimal

*) for all polynomial-time decidable sets of tautologies Φ

The implication in lines 2 and 4 follow from Corollary 15 and Theorem 8
below. All other implications can be derived from the following result from [15]:

Theorem (Kraj́ıček [15]). Let P ≥ EF be a proof system that is closed under
substitutions and modus ponens. Then P is optimal if and only if P ⊢∗ ϕn for
all printable sequences ϕn of tautologies.

To derive the first line from the above table, assume that F ≡ F− ∪ Φ for
all polynomial-time decidable sets of tautologies Φ. In particular, this means
F ⊢∗ ϕn for all printable sequences ϕn, and hence also EF ⊢∗ ϕn. As EF
has the necessary closure properties, the optimality of EF follows by the above
theorem. Lines 4 and 5 are deduced analogously.
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Theorem 3 (Deduction theorem for Frege systems). Let Ψ be a polynomial-
time decidable set of tautologies. Then every Frege system F + Ψ and every ex-
tension Frege system of the form (EF+Ψ)− has the classical deduction property.

Proof. For every F -rule

Ri =
ψ1 . . . ψr

ψ

we fix an F -proof πi of the tautology

((q → ψ1) ∧ · · · ∧ (q → ψr)) → (q → ψ) .

In particular, for r = 0 this also includes the case that Ri is an axiom scheme.
Let ϕ1, . . . , ϕn be tautologies and let (θ1, . . . , θk) be a proof of ψ of size m in

the system P∪{ϕ1, . . . , ϕn}, where P is F+Ψ or (EF+Ψ)−. Letm′ =
∑n

i=1 |ϕi|.
By induction on j we construct proofs of the implications

(

n∧

i=1

ϕi) → θj .

We distinguish three cases on how the formula θj was derived.
If θj is one of the formulas from {ϕ1, . . . , ϕn} or a substitution instance from

Ψ , then we get (
∧n

i=1 ϕi) → θj in a proof of size O(m′).
If θj was inferred from θj1 , . . . , θjr by the F -rule Ri, then we can get from πi

an F -proof of size O(m′ + |θj |+
∑r

l=1 |θjl |) of the tautology

((

n∧

i=1

ϕi) → θj1) ∧ · · · ∧ ((

n∧

i=1

ϕi) → θjr ) → ((

n∧

i=1

ϕi) → θj).

Combining all the earlier proved implications (
∧n

i=1 ϕi) → θjl , l = 1, . . . , r by
conjunctions and using modus ponens we get the desired implication (

∧n

i=1 ϕi) →
θj in a proof of size O(m+m′).

If in the case of (EF +Ψ)− the formula θj was derived by the extension rule,
i.e.,

θj = (q ≡ θ)

with a new variable q, then we can also use the extension rule to get q ≡ θ and
derive

(

n∨

i=1

¬ϕi) ∨ (q ≡ θ) = (

n∧

i=1

ϕi) → (q ≡ θ) .

in a proof of size O(m′+|θ|). Here it is important that by the definition of (EF+
Ψ)− the extension variable q does not occur in the formulas ϕi, as otherwise we
would not be able to use q as an extension variable in an EF + Ψ -proof of
(
∧n

i=1 ϕi) → θk. ⊓⊔
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Proposition 5. Optimal Hilbert-style proof systems have the weak deduction
property. Similarly, polynomially bounded Hilbert-style proof systems have the
efficient deduction property.

Proof. Let P be an optimal Hilbert-style proof system and let Φ be a printable
set of tautologies. Then P ∪ Φ is a well defined proof system which by the
optimality of P is simulated by P . Hence we have polynomial-size P -proofs of
all formulas from Φ. Given a finite set Φ0 and a P ∪ Φ0-proof π of a formula ψ
we can therefore first derive all formulas from Φ0 in polynomial-size P -proofs
and concatenate this with π. This results in a polynomial-size P -proof of ψ from
which we easily obtain a polynomial-size P -proof of (

∧
ϕ∈Φ0

ϕ) → ψ.
If P is polynomially bounded, then we obtain by the same argument a poly-

nomial bound on the proof size of the formulas (
∧
ϕ∈Φ0

ϕ) → ψ which is inde-
pendent of Φ. ⊓⊔

Theorem 8. Let Ψ be a polynomial-time decidable set of tautologies. Then the
following conditions are equivalent:

1. EF + Ψ has the weak deduction property.
2. EF + Ψ is an optimal proof system.
3. For all polynomial-time decidable sets Φ ⊂ TAUT the systems (EF+Ψ)−∪Φ

and (EF + Ψ) ∪ Φ are equivalent.
4. For all polynomial-time decidable sets Φ ⊂ TAUT the proof system (EF +

Ψ)− ∪ Φ is closed under substitutions of variables.

Proof. We will prove the implications 1 ⇔ 2, 2 ⇒ 3, 3 ⇒ 4, and 4 ⇒ 2.
To prove item 2 from item 1, let us assume that EF + Ψ has the weak

deduction property. By definition, the system EF + Ψ is closed under modus
ponens under substitutions by constants. In order to conclude the optimality of
the proof system by Theorem 6, it remains to verify the closure of (EF +Ψ)∪Φ
under substitutions of variables for arbitrary printable sets Φ of tautologies.
Going back to the proof of Theorem 6, we observe that instead of proving closure
under substitutions of variables, it actually suffices to derive formulas ϕ(q̄) from
Φ in arbitrary variables q̄. For this assume that Φ contains the formula ϕ(p̄), and
we want to derive the formula ϕ(q̄). This can be done as follows: we introduce the
extension axioms p1 ≡ q1, . . . , pk ≡ qk for all variables pi in p̄. By induction on
the formula ϕ we then prove the equivalence ϕ(p̄) ≡ ϕ(q̄) with polynomial-size
EF -proofs and finally use modus ponens to conclude with ϕ(q̄).

The implication 2 ⇒ 1 was proven in Proposition 5.
Clearly, item 2 implies item 3.
Now we prove the implication 3 ⇒ 4. Let us denote the system (EF+Ψ)−∪Φ

by P− and the system (EF +Ψ)∪Φ by P . Assuming the equivalence of P− and
P , it suffices to prove closure under substitutions of variables for the system P ,
as this property is preserved inside the degree of a proof system. Let π be a P -
proof of the formula ϕ(p̄), and let q̄ be a set of variables distinct from p̄. By the
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equivalence of P and P− we have a P−-proof π− of ϕ that is only polynomially
longer than π. From π− we will devise a P -proof of ϕ(q̄) as follows: If there is an
extension axiom q ≡ θ in π− with extension variable q from q̄, then we rename q
in the entire proof π− to a new variable not occurring in π−. This does not affect
axioms from Φ, as P−-proofs may not use variables from Φ as extension atoms.
Let us call this transformed proof π′. Now we construct the proof π of ϕ(q̄): π
starts with the extension axioms p1 ≡ q1, . . . pk ≡ qk, introducing the original
variables p̄ as extension atoms. This is followed by the proof π′. By induction on
the formula ϕ we then prove the equivalence ϕ(p̄) ≡ ϕ(q̄) with polynomial-size
EF -proofs and finally use modus ponens to conclude with ϕ(q̄).

The final implication 4⇒ 2 follows from Theorem 6 as the systems (EF∪Ψ)−

even have the classical deduction property by Theorem 3. ⊓⊔

Lemma 13. Let Φ be a printable set of tautologies and let P be a proof system
with the weak deduction property. Then (Ref(P ∪Φ), SAT∗) ≤p (Ref(P ), SAT

∗).

Proof. Let Φ be printable and let p be the polynomial from the weak deduction
property for P and Φ. Because Φ is printable there exists a polynomial q such
that for each number m the set Φ contains at most q(m) tautologies of length
≤ m. Let Φm = Φ ∩Σ≤m be the set of these tautologies.

Then (Ref(P ∪ Φ), SAT∗) reduces to (Ref(P ), SAT∗) via the function

(ψ, 1m) 7→ ( (
∧

ϕ∈Φm

ϕ) → ψ, 1p(mq(m)+m)) .

To verify the claim assume that (ψ, 1m) ∈ Ref(P ∪ Φ). Let π be a P ∪ Φ-proof
of ψ of length ≤ m. This proof π can use only formulas of length ≤ m from Φ

of which there are only ≤ q(m) many. Hence the tautologies used in the proof π
are contained in

∧
ϕ∈Φm

ϕ. Therefore we know that π is also a proof for ψ in the
proof system P ∪Φm. Using the weak deduction property of P we get a P -proof
of size ≤ p(mq(m) +m) of (

∧
ϕ∈Φm

ϕ) → ψ.
Now assume (ψ, 1m) ∈ SAT∗. Then ¬ψ is satisfiable and therefore

¬((
∧

ϕ∈Φm

ϕ) → ψ) = (
∧

ϕ∈Φm

ϕ) ∧ ¬ψ

is also satisfiable because (
∧
ϕ∈Φm

ϕ) is a tautology. ⊓⊔

Theorem 14. Let P be a Hilbert-style proof system that simulates the truth-
table system and fulfills the following three conditions:

1. P is closed under modus ponens.
2. For all printable sets of tautologies Φ the proof system P ∪Φ is closed under

substitutions by constants.
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3. P has the weak deduction property.

Then the canonical pair of P is a complete disjoint NP-pair.

Proof. Let (A,B) be a disjoint NP-pair. Similarly as in Cook’s proof of the
NP-completeness of SAT [5], we can construct in polynomial time propositional
formulas ψn(x̄, ȳ) such that ψn(ā, ȳ) is satisfiable if and only if ā ∈ A. Similarly,
we build such propositional formulas θn(x̄, z̄) for B. We choose the variables of
ψn(x̄, ȳ) and θn(x̄, z̄) in such a way that the input variables x̄ are the common
variables of ψn and θn, and the auxiliary variables ȳ and z̄ are distinct. We define
the sequence ϕn as

ϕn = ψn(x̄, ȳ) → ¬θn(x̄, z̄) .

Let P ′ denote the system P ∪ {ϕn | n ≥ 0}. We first claim that the reduction
from (A,B) to the canonical pair of P ′ is given by

a 7→ (¬θ|a|(ā, z̄), 1
p(|a|))

for some suitable polynomial p. To see the correctness of the reduction let first
a be an element from A of length n. As ψn represents A there exists a witness b̄
such that ψn(ā, b̄) is a tautological formula. The P ′-proof of ¬θn(ā, z̄) proceeds as
follows. First we use the axiom ψn(x̄, ȳ) → ¬θn(x̄, z̄) and substitute the variables
x̄ and ȳ by ā and b̄, respectively, obtaining

ψn(ā, b̄) → ¬θn(ā, z̄) .

As ψn(ā, b̄) is a true propositional formula without variables we can provide a
polynomial-size P -proof for it. This is possible as by assumption P simulates the
truth-table system. An application of modus ponens gives a P -proof of ¬θn(ā, z̄),
as desired.

Assume now a ∈ B. Then ¬¬θ|a|(ā, z̄) = θ|a|(ā, z̄) is satisfiable and hence

(¬θ|a|(ā, z̄), 1
p(|a|)) ∈ SAT∗.

By Lemma 13 the canonical pair of P ′ reduces to the canonical pair of P ,
hence (A,B) is ≤p-reducible to (Ref(P ), SAT∗). ⊓⊔

Corollary 16. Assume that for all printable sequences Φ of tautologies the proof
systems F ∪ Φ and EF ∪ Φ are equivalent. Then the canonical pair of the Frege
proof system is complete for the class of all disjoint NP-pairs.

Proof. To apply Theorem 14 we need to show that F ∪ Φ is closed under sub-
stitutions by constants for all printable sets of tautologies Φ. By assumption
F ∪ Φ is equivalent to EF ∪ Φ, hence it suffices to show this closure prop-
erty for EF ∪ Φ. Given a formula ϕ(p̄, q̄) and an EF ∪ Φ-proof for it, we con-
struct an EF ∪ Φ-proof of an instance ϕ(p̄, ā) with constants a1, . . . , ak substi-
tuted for the variables q1, . . . , qk as follows: First we use the extension axioms
q1 ≡ a1, . . . , qk ≡ ak, then we repeat the proof of ϕ(p̄, q̄), and finally we show
the equivalence ϕ(p̄, q̄) ≡ ϕ(p̄, ā) by induction on the formula ϕ and using the
formulas qi ≡ ai. This yields the EF ∪ Φ-proof of ϕ(p̄, ā). ⊓⊔
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