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Spatial period�multiplying instabilities of

hexagonal Faraday waves

D�P� Tse �� A�M� Rucklidge �� R�B� Hoyle

Department of Applied Mathematics and Theoretical Physics�

University of Cambridge� Silver Street� Cambridge CB� �EW� UK

and

M� Silber �

Department of Engineering Sciences and Applied Mathematics�

Northwestern University� Evanston� IL ����� USA

Abstract

A recent Faraday wave experiment with two�frequency forcing reports two types of

�superlattice� patterns that display periodic spatial structures having two separate

scales ���� These patterns both arise as secondary states once the primary hexagonal

pattern becomes unstable� In one of these patterns 	so�called �superlattice�two�
 the

original hexagonal symmetry is broken in a subharmonic instability to form a striped

pattern with a spatial scale increased by a factor of �
p
� from the original scale of

the hexagons� In contrast
 the time�averaged pattern is periodic on a hexagonal

lattice with an intermediate spatial scale 	
p
� larger than the original scale
 and

apparently has ��� rotation symmetry� We present a symmetry�based approach to

the analysis of this bifurcation� Taking as our starting point only the observed

instantaneous symmetry of the superlattice�two pattern presented in ��� and the

subharmonic nature of the secondary instability
 we show 	a
 that a pattern with

the same instantaneous symmetries as the superlattice�two pattern can bifurcate

stably from standing hexagons� 	b
 that the pattern has a spatio�temporal symmetry

not reported in ���� and 	c
 that this spatio�temporal symmetry accounts for the

intermediate spatial scale and hexagonal periodicity of the time�averaged pattern


but not for the apparent ��� rotation symmetry� The approach is based on general

techniques that are readily applied to other secondary instabilities of symmetric

patterns
 and does not rely on the primary pattern having small amplitude�
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� Introduction

The classical hydrodynamic problem of parametrically driven surface waves � or Faraday

waves � concerns the spontaneous generation of standing waves at the free surface of a

horizontal layer of �uid when subjected to vertical oscillations whose amplitude exceeds

a critical value� Its usefulness as a tool to study nonlinear pattern�forming dynamics in

non�equilibrium systems is re�ected in the considerable amount of interest shown in the

subject by experimentalists and theoreticians alike� A review of earlier works� mostly

conducted with low�viscosity �uids in small vessels and a single forcing frequency� can

be found in ��	� More recently� Edwards 
 Fauve ��	 have performed experiments in

the small�depth� high�viscosity and large�aspect ratio regime using a forcing function

with two commensurate frequency components that modulates gravity periodically� In

this regime� where it can be shown that the wavenumber of the selected pattern is less

sensitive to the size and shape of the container� and that long�wavelength modes are

heavily damped� observations of spatially periodic patterns �stripes� squares� hexagons
�

circular patterns �targets and spirals
 and quasi�patterns have been reported ����	� A

survey of more recent results has been carried out by M�uller et al� ��	� Over the past two

years� a new class of �superlattice patterns� has been independently observed by Kudrolli

et al� ��	 and Arbell 
 Fineberg ��	 in experiments employing two�frequency forcing

functions� and by Wagner et al� ��	 in experiments using non�Newtonian �uids� These

superlattices are so termed because of their distinctive feature of having spatial structures

on two di�erent length scales when viewed at any instant in time ��	� Steady patterns

that display similar characteristics have also been observed in convection experiments on

�uids with temperature�dependent viscosity ��	 and have been investigated in a model of

long wave convection ��	 and in reaction�di�usion systems near a Turing bifurcation ���	�

Two types of superlattice patterns have been reported in ��	 for di�erent parameter val�
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ues� Both of them� despite their di�erent spatial and spatio�temporal symmetry proper�

ties� are found to be possible transitions from harmonic standing hexagons as the forcing

amplitude is increased� �In this context� harmonic indicates an oscillation with the same

period as that of the external forcing� denoted by T � while subharmonic indicates an

oscillation with twice that period�
 The �rst of these patterns �called �superlattice�one�

by Kudrolli et al� ��	
 is a harmonic response with triangular symmetry on a small scale

and hexagonal lattice periodicity on a larger scale� This pattern has been studied by

Silber 
 Proctor ���	� who showed that it �along with standing hexagons
 can arise in a

bifurcation from the �at� undisturbed state when a hexagonal lattice with spatial peri�

odicity larger than that dictated by the critical wavelength is considered ������	� Silber


 Proctor ���	 also suggested that stability might be transfered from standing hexagons

to superlattice�one through an intermediate branch�

�a
 �b
 �c


Fig� �� �a� Time�averaged image of the superlattice�two pattern displays a well�de�ned hexag�

onal symmetry on two spatial scales	 �b� 
 �c� Instantaneous snapshots of the same pattern

separated by ����th of the external driving period T reveals a time�dependent stripe�like mod�

ulation	 The pattern in �a� is a di�erent realization of the experiment from those in �b� 
 �c�	

Courtesy of Kudrolli et al	 �
�� reproduced with permission	

The second type of superlattice pattern ��superlattice�two� ��	
� in contrast to the �rst�

arises in a period�doubling �or subharmonic
 instability of the standing hexagons� If we

let u�x� t
 measure the deformation of the free �uid surface at time t� it satis�es

u�x� t� �T 
 � u�x� t
� u�x� t� T 
 �� u�x� t
� ��


Further� this pattern exhibits a complicated mixture of spatial symmetry and time�

�



dependent behaviour� When averaged over two periods of the driving function� its image

displays hexagonal symmetry with two well�de�ned spatial scales in the ratio � �
p
�

��gure ��a

� Remarkably� at any instant� a wavy� stripe�like spatial modulation destroys

the average hexagonal symmetry� resulting in a pattern that appears vastly di�erent from

its time�averaged image �see �gures ��b
 and ��c

� Arbell 
 Fineberg �unpublished
 have

also found the superlattice�two pattern for similar experimental parameters�

The superlattice�two pattern presents a number of theoretical challenges that motivate

this paper� the disappearance of the stripes from the time�averaged pattern� the reduced

spatial period in the time�average� and the apparent ��� rotation symmetry of the time�

average� We present a symmetry�based approach to the study of this pattern by taking

the view that it arises as a symmetry�breaking instability from the underlying standing

hexagons in a spatial period�multiplying bifurcation� Our aim is to classify qualitatively

the range of possible bifurcating solutions and to understand how their symmetry prop�

erties can be related to the experimental observations described above� We emphasize

that we are examining instabilities of fully nonlinear states� so our approach di�ers from

weakly nonlinear studies of the primary Faraday instability�

There are three stages in our approach� First� by using the experimentally observed

instantaneous spatial symmetry information of the superlattice�two instability and by

making the assumption that all solutions are periodic in the plane� we can restrict all

patterns to a suitably chosen spatially periodic lattice� This lattice in turn de�nes a

compact symmetry group� which we denote by �s� with the key properties that its

action leaves standing hexagons invariant and that it has a subgroup� which we denote

by  s� that describes the instantaneous spatial symmetry of the bifurcating superlattice

pattern� Due to the compactness and special structure of �s� we can compute explicitly

all its irreducible representations� Second� we observe that since  s is by de�nition the

isotropy subgroup of the bifurcating solution under the action of �s� it must have a non�

trivial �xed�point set� This restriction allows us to identify the one relevant irreducible

representation of �s that describes the spatial symmetry properties of the marginal

eigenfunctions at the superlattice bifurcation point� Finally� by considering the action

of the time�shift symmetry �t � t � t � T on the period�doubling marginal modes� we

obtain the irreducible representation of the full symmetry group �denoted by �
 and

hence the normal form of the bifurcation problem� We can then invoke the equivariant

branching lemma ���	 to show that there are at least six primary branches of solutions

bifurcating from standing hexagons�

With one proviso� the superlattice�two pattern observed by Kudrolli et al� ��	 can be

�



identi�ed as one of these branches� which we show can bifurcate as a stable branch

from standing hexagons� By applying techniques for studying the averaged symmetry of

periodic orbits �cf ���	
� we show that the time�average of this branch of solutions has the

hexagonal lattice periodicity observed in the experiment �as in �gure ��a

� this change

in the spatial length scale on time�averaging is a consequence of the branch of solutions

possessing a spatio�temporal symmetry� This symmetry was not reported in ��	� The

proviso mentioned above is that our time�average pattern does not possess ��� rotation

symmetry � we will return to this discrepancy in the �nal section�

A further stability analysis predicts that other patterns� displaying di�erent spatial and

spatio�temporal symmetry properties� can bifurcate as stable branches of solutions from

standing hexagons in di�erent regions of parameter space� More generally� our analysis

indicates that patterns that display superlattice structures can arise in two�dimensional

spatial period�multiplying bifurcations from an underlying non�trivial solution� and our

approach could also be used to investigate other superlattice patterns of Arbell 


Fineberg ��	 and Wagner et al� ��	� In particular� it may be possible to analyse some

of those experimental results in terms of other irreducible representations of the same

group �s�

The issue of spatial period�multiplying instabilities is an interesting one that has arisen in

a variety of experimental and theoretical contexts� Period�multiplying bifurcations in one

lateral direction have arisen in convection problems ���	� magnetoconvection ���	� Taylor�

Couette experiments ���	 and in numerical solutions of the Kuramoto�Sivashinsky equa�

tions ������	� Much less is known about spatial period�multiplying bifurcations in two

directions� There are now several experimental observations of this phenomenon in the

Faraday wave problem ������	 as well as in convection experiments ��������	 and magne�

toconvection calculations ������	�

In the next section� we introduce some fundamental de�nitions and results from equiv�

ariant bifurcation theory ���	 to help us describe how this problem can be cast into a

theoretical framework� In section �� we fully describe the symmetry group of the bifurca�

tion problem that will give rise to the observed symmetry�breaking behaviour� We also

show that� under suitable phenomenological assumptions� we can identify and hence

explicitly compute the irreducible representation that is relevant to the action of the

symmetry group on the observed bifurcating modes� The normal form of the bifurcation

problem and a stability analysis are presented in section �� Discussions of our approach

and a comparison with the experiments follow in section ��

�



� Group theoretic ideas

In order to study the superlattice�two pattern as a symmetry�breaking instability from

standing hexagons� it is necessary to identify all the symmetries that are initially present�

Due to the apparent absence of side�wall e�ects in the observed patterns� we consider the

mathematical idealisation that all physical �elds are de�ned in a laterally unbounded do�

main� Standing hexagons are then easily seen to be invariant under the action generated

by a re�ection� a ��� rotation� and two linearly independent translations� The group gen�

erated by these symmetry actions is isomorphic to Z�uD�� which is non�compact� �Here

Z denotes the group of integers under addition� and D� is the twelve�element symmetry

group of a regular hexagon�
 Consequently a bifurcation problem that is equivariant un�

der the action of this group can have an in�nite number of modes related by symmetry

becoming marginally stable simultaneously� This di!culty can be resolved if we restrict

possible solutions to doubly�periodic functions de�ned on a suitably chosen lattice� an

assumption justi�ed by the distinct spatial periodicity of the observed patterns� A suit�

able lattice� which can be viewed as a �nite cell with periodic boundary conditions� is

one that captures the spatial periodicity of both the bifurcating modes as well as the

standing hexagons� With respect to such a periodic cell� the symmetries that leave stand�

ing hexagons invariant now form a �nite� and hence compact group that can be studied

via representation theory� Our task therefore� is to make use of the available symmetry

information taken from experimental observations to choose a lattice on which we can

de�ne a suitable spatial symmetry group �s with the properties outlined in section ��

The idea of suitability can be made precise after we have introduced some basic group

theoretic results�

Since we are considering bifurcations from a time�periodic solution� we formulate the

bifurcation problem of the superlattice�two pattern� a period�doubling instability� by ex�

panding about standing hexagons using a stroboscopic map G in the manner described

by Crawford 
 Knobloch ���	 and Silber 
 Proctor ���	� Speci�cally� we are assuming

that standing hexagons� a �xed point of the map G� lose stability to subharmonic waves

with period �T as a bifurcation parameter � is varied past zero� This implies that the

linearised map DG evaluated at the �xed point has a real eigenvalue passing through the

value �� as the bifurcating waves become unstable� With the assumption that all �elds

are de�ned in a periodic cell such that symmetries of the standing hexagons are described

by a compact group �s� the linearised map DG has a �nite number �p
 of marginal eigen�

functions associated with the eigenvalue �� as � crosses zero� We denote the amplitudes

of these p marginal modes at time t � qT� q � Z by zq � �z��qT 
� � � � � zp�qT 
	 � Rp �

�



In addition� the pattern has two neutrally stable modes �eigenvalues equal to �
 asso�

ciated with translations of the standing hexagons �see ������	
� the amplitudes of these

two modes� which correspond to the translation of the pattern in the plane� are de�

noted by dq� Close to the onset of the period�doubling instability� G can be reduced to a
�nite�dimensional map g de�ned on the centre manifold spanned by these amplitudes�

zq�� � g�zq��
� g � Rp � R � R
p � ��


coupled with a map h � Rp�R � R� describing how the perturbation drives translations

of the pattern�

dq�� � dq � h�zq��
� ��


The map g is forced by symmetry to be �s�equivariant�

�g�zq��
 � g��zq��
 for all � � �s� ��


while the map h obeys

N�h �zq��
 � h ��zq��
 for all � � �s� ��


where N� is the �� � matrix that represents how the symmetry � acts on a horizontal

displacement vector ���	� In terms of the marginal modes� standing hexagons correspond

to the trivial state� z � �� When considered as a symmetry�breaking bifurcation from

the underlying standing hexagons� the superlattice pattern corresponds to a non�trivial�

period�two solution to the map g� denoted by z�q� whose instantaneous spatial symmetry

is speci�ed by its isotropy subgroup  s
z�q
�

 s
z�q
�
n
� � �s � �z�q � z�q

o
� �s� ��


In fact� this solution must lie in the �xed�point subspace of  s
z�q
�

Fix� s
z�q

 �

n
z � Rp � �z � z� for all � �  s

z�q

o
� ��


which is a linear subspace of Rp and invariant under g ���	�

Since standing hexagons do not possess spatio�temporal symmetries ���	� �s�equivariance

is su!cient to determine the normal form of the map g in the case of �temporal
 period�

preserving bifurcations� However� for period�doubling bifurcations there is an extra sym�

metry pertaining to the normal form� related to the time�shift action �t � t � t � T

on the bifurcating modes� In this case� the normal form of the map g is ��s � Z�
�
equivariant ������	� Once the full symmetry group of the normal form of g is determined�

�



we can apply the equivariant branching lemma� which� with suitable interpretation�

states that if certain non�degeneracy conditions are satis�ed� there is a unique branch of

bifurcating solutions for each isotropy subgroup of � � �s � Z� with a one�dimensional

�xed�point subspace� So instead of solving for solutions of the nonlinear vector �eld g� we

can simply look for isotropy subgroups of � with this property� To apply the equivariant

branching lemma� we need to know explicitly how symmetry acts on all the marginal

modes� but experimental observations only provide information about the instantaneous

spatial symmetry of one of these modes� We cannot infer directly from the observations

the total number of marginal modes that are related by symmetry at the bifurcation

point� nor the set of matrices that represent the action of the symmetry group � on the

marginal modes and the map g� However� this di!culty can be resolved if we make the

�generic
 assumption that the bifurcation is associated with an irreducible representation

of the group �� and this is where the need to invoke representation theory arises�

In order to introduce the key properties of irreducible representations �irreps
 and de�

scribe how they can be computed for a �nite group �� we recall the following de�ni�

tions ���	�

�i
 A representation of the group � is a homomorphism � that maps � into a set of

invertible n� n matrices M� acting on Rn or C n � in other words

� ��
 �M� � � � �� M� � M�

such that � �����
 � ����
����
 for all ��� �� � �� The integer n is the dimension of

the representation�

�ii
 Two n�dimensional representations M� and N� of � are called equivalent if there is

an invertible n� n matrix Q such that for each � � ��

N� � Q��M�Q� M� � M�� N� � N��

�iii
 A conjugacy class of � is a subset C of � such that ���c� � C� for all c � C and � �
��

�iv
 The character of an element � � � in a representation M� is de�ned to be the trace

of the matrix M� � and we denote this value by 	M� �

�v
 A representation of � on Rn �C n
 is said to be irreducible if it does not leave invariant

any proper subspace of Rn �C n
�

Simplistically we can consider a representation as a set of n � n nonsingular matrices

that speci�es the action of � on the vector space Rn or C n and at the same time preserves

the group structure� It is possible to show that every representation of a �nite group

�



is equivalent to a unitary representation � one in which all matrices are unitary ���	�

A simple result of de�nition �iv
 is that the character of the identity element in a

representation is always equal to the dimension n of that representation� and de�nitions

�i
� �iii
 and �iv
 imply that elements in the same conjugacy class have the same character�

The characters of the irreps of � obey a set of rules inherited from the orthogonality

theorem governing the underlying irreps ���	 and for simple groups such as Z�� Z� and

D�� the character tables can easily be constructed by appealing to those rules� The

orthogonality theorem also implies that the number of irreps of a group is equal to the

number of conjugacy classes� For �nite groups with a semi�direct product structure of

the form � � A u B such that A is a normal �or invariant
 subgroup of � �that is�

���a� � A for every a � A and � � �
� the characters of the irreps of A and B form
the building blocks in determining all the characters and constructing unitary irreps of

the group � via a special algorithm ���	�

In summary� analysis of the superlattice pattern using these group theoretic tools de�

pends on our being able to �nd a spatial lattice or periodic cell on which standing

hexagons and the marginal modes exhibiting the observed symmetries �t� The arrange�

ment of the standing hexagons in the periodic cell then gives us a suitable symmetry

group �s� which has a subgroup  s
z�q
� de�ned in ��
� whose elements are determined from

experimental observations� Once we have calculated all the characters of �s� the restric�

tion provided by the requirement that  s
z�q
be the isotropy subgroup of the observed

pattern enables us to isolate the one irrep that describes the action of �s on all the

marginal modes related to the observed bifurcating mode by symmetry� Indeterminacy

in the choice of irreps can be avoided if we choose a unit cell that captures exactly one

spatial period of the observed pattern� The details of this procedure are the subject of

the next section�

� Finding the symmetry group � and the irrep for the superlattice�two

bifurcation problem

A closer examination of images obtained from the experiment reveals that it is possible

to impose a hexagonal lattice on the observed patterns� whose instantaneous spatial

symmetries are depicted in �gure �� The choice of lattice is not unique as it can be shown

that there are many possible candidates �for example a
p
� � � rectangular lattice
� but

a hexagonal lattice is a natural choice due to the symmetry of the standing hexagons�

�



�a
 �b
 �c


2

e1

e
2

e

e

1

Fig� �� �a� Schematic representation of standing hexagons� where �e� and �e� denote the vectors

of translations de�ned in �
��	 �b� Diagram depicting the instantaneous spatial symmetry

of the superlattice�two pattern �see �gure 
�c��� whose spatial periodicity can be captured

by hexagonal cells mapped to one another by the translations e� and e� as shown in �c�	

The superlattice�two pattern is left unchanged by ��� � �x and ����
�	 The small circles� dotted

lines and shading in �b� and �c� serve to identify equivalent hexagons related by translations�

rotations and re�ections of the pattern	

Let us denote the two generating vectors of the hexagonal lattice L by e�� e� � R� such

that

je�j � je�j � c� ��


where c is a scaling factor ��gure ��c

� Functions in the plane that are doubly�periodic

with respect to L satisfy

u�x� t
 � u�x� l� t
� x � �x� y
 � R� � l � L� ��


where the lattice is de�ned as

L �
n
n�e� � n�e� � �n�� n�
 � Z�

o
�

First let us consider the spatial symmetries of the standing hexagons shown schematically

in �gure ��a
� They are invariant under the action of D� as well as two translations� which

we de�ne as follows�

�� � x� x� "e�� �� � x� x� "e�� ���


��



and let j"e�j � j"e�j � c� be the observed size of the periodic cell in which the basic

standing hexagons �t� Our aim is to pick a value for the scaling factor c in ��
 in terms

of c�� As indicated at the end of section �� a suitable choice of the value c is one that

gives a hexagonal cell whose size captures precisely one spatial period of the bifurcating

modes� as shown schematically in �gure ��c
� In fact� the observed ratio of the two

lengths jeij and j"eij is c
c� � �
p
�� and for this value of c� the symmetry group �s

of the standing hexagons includes non�trivial translations generated by �� and ��� The

structure of the group h��� ��i can be determined if we express each of the translations

in ���
 in terms of e� and e�� We can then look for the lowest powers n�� n�� n�� n� � Z�

such that �n�� � �n�� � �n�� �n�� map the lattice L to itself� and thus determine the order of

the group h��� ��i�

Guided by the experimental observations� we choose "e� � c�
�p

�
�
� �
�

�
� "e� � c� ��� �
 such

that e� � �"e� � �"e� � c���
p
�� �
� e� � �"e� � �"e� � c��

p
�� �
 �see �gure �
� The

translations can now be written as

�� � x� x�
�

�
e� �

�

�
e�� �� � x� x� �

�
e� �

�

�
e�� ���


and we can easily show that they satisfy � �� � � �� � � �� �
�
� � identity� as vectors of the

form x �m�e� �m�e� for any integers m� and m� lie in L and are therefore identi�ed�

Since �� and �� commute we can also see that every element generated by �� and �� can

be written as �n� �� or �
n
� for n � �� � � � � �� In total there are twelve di�erent translations�

forming a group that is isomorphic to Z� � Z�� The order of this group being twelve

corresponds to the fact that each of the large hexagonal cells in �gure ��c
 contains

exactly twelve of the smaller hexagons�

So in terms of the lattice L� the full spatial symmetry of the standing hexagons is given

by the group �s � �Z� � Z�
 u D�� where D� is generated by a re�ection �x and a

��� rotation � and its standard action on R� is given by

�x � �x� y
� ��x� y
� � � �x� y
� �

�

�
x�

p
�y�

p
�x � y

�
� ���


and Z� � Z�� an invariant subgroup of �s� is generated by the two translations

�� � �x� y
�
�
x �

p
�

�
c�� y �

�

�
c�

�
� �� � �x� y
� �x� y � c�
 � ���


The group �s has the semi�direct product structure mentioned in section �� As a result

we can apply the algorithm taken from ���	 to calculate all its characters and irreps� and

we present the characters of its irreps in table ��

��



Conjugacy classes of �s

Irrep

id �x � ��x �� �� ��� �
��x ���

� ����
� �� ���x ���x ��� ����x ���

����x �����
��x �����

�

	�
� 	�
� 	��
 	��
 	�
 	�
 	��
� 	��
 	�
� 	�
 	��
 	��
 	�
� 	�
 	�


M�
�s � � � � � � � � � � � � � � �

M�
�s � �� � �� � � �� � � � �� �� � �� �

M�
�s � � �� �� � �� �� � �� �� �� �� � �� �

M�
�s � �� �� � � �� � � �� � �� �� � �� �

M	
�s � � � � �� �� � �� �� � � � � � �

M�
�s � � �� � �� � � �� � � � � � � �

M

�s � � � � � � � �� � �� �� �� � � ��

M�
�s � �� � � � � � �� � �� � � � �� ��

M�
�s � � � � � � �� � �� �� �� � �� �� �

M��
�s � �� � � � �� �� � � �� � �� �� � �

M��
�s � �� � �� � � � � �� �� � �� �� � �

M��
�s � � � �� � �� � � � �� �� � �� �� �

M��
�s � � � � �� � � � � �� � � � � ��

M��
�s � �� � � � � � � � � �� � �� � ��

M�	
�s � � � � � � � � � � � �� �� �� ��

Table �

Character table of the group of spatial symmetries �s constructed via the algorithm taken

from ����	 A representative element is shown for each conjugacy class� and the number of

elements in the class is given in brackets	 Classes marked by � contain elements �speci�ed at

the top of the table� of the eight�element group �s
z�q

� h ��� � �x� ��� �
� i	

Any elements that have the same character as the identity in a unitary irrep of �s must

also act like the identity ���	� Using this simple idea and the information taken from

experimental observations about the spatial symmetries of the unstable mode� we can

��



single out the irrep of �s that describes the instantaneous symmetry�breaking behaviour�

Careful study of snapshots of the superlattice�two pattern shows that it is invariant under

the action of � �� � �x and � �� �
� �see �gures ��b
 and ��c
� where the pattern is shown at

a slightly tilted angle� and �gure ��b

� The group generated by these elements is by

de�nition the isotropy subgroup of the bifurcating mode under the action of �s �cf ��

�

therefore

 s
z�q
� h � �� � �x� � �� �

� i � �s� ���


We can now go through the list of characters of �s given in table � and determine which

irrep satis�es the criteria of permitting  s
z�q
de�ned in ���
 to be an isotropy subgroup

of the bifurcating solution� First� any irreps that satisfy

	M�s
� 	Mid

for some �s � �s and �s ��  s
z�q

���


must be rejected� because in these cases the isotropy subgroup of z�q must contain spatial

symmetry elements apart from those that are observed� This eliminates representations

����� In representation ��� the class containing � �� is represented by the identity� but this

class also contains � �� and ����� which are not in  
s
z�q
� so eliminating this irrep and leaving

only �� and ��� Then we can use the trace formula ���	 to calculate the dimension of

the �xed�point subspace of  s
z�q
�

dimFix � 
 �
�

j j
X
��


	M�
�

which gives � for representation �� and � for representation ��� Clearly we require

dimFix
�
 s
z�q

�
�� �� since Fix

�
 s
z�q

�
is non�trivial� Thus the six�dimensional irrep M�	

�s

is the only one in which  s
z�q
satis�es the conditions of being an isotropy subgroup of the

observed mode�

In addition to being equivariant under the action of spatial symmetries as speci�ed by

this irrep� the normal form of the period�doubling bifurcation problem has an extra

symmetry corresponding to a translation in time by one period of the external forcing�

�t � t � t � T� ���


This element can be viewed as a spatio�temporal symmetry with a trivial spatial action�

and it acts independently from elements in �s with respect to the standing hexagons� So

the full symmetry group � of the normal form for the superlattice bifurcation problem is

a direct product between �s and the group h�ti� which� as can be seen from ��
 and ���
�

is isomorphic to Z�� hence � � �
s�Z� as we pointed out in section �� We can write each

��



element � � � as

� � ��s� �t
 � �s � �s� �t � h�ti � ���


such that for �� � ��s�� �t�
� �� � ��s�� �t�
� ���� � ��s��s�� �t��t�
� Because of the direct

product structure of � and the period�doubling nature of the bifurcating solution� �t

must act like �� on the amplitudes of the marginal modes� Therefore the irrep of � that

speci�es the action of spatial and spatio�temporal symmetry elements on the marginal

modes and the normal form of g can be constructed from the set of matrices M�s � M�	
�s

as follows�

M� �

������	
M�s if �t � identity

�M�s if �t � �t

for all � � ��s� �t
 � �� This irrep� which we denote by M�� is of the same dimension

as M�	
�s � which implies that we have a six�dimensional centre manifold at the bifurcation

point� So all bifurcating solutions can be written as u�x� t
 � u��x� t
 � 
�x� t
 such that


�x� qT 
 � Aqf��x
 �Bqf��x
 � Cqf��x
 � c�c� � h�o�t�� q � Z ���


where u��x� t
 represents standing hexagons� c�c� denotes complex conjugate� h�o�t� de�

notes the higher�order terms� and Aq� Bq� Cq � C are the small amplitudes of f�� f�

and f�� the three complex marginal eigenfunctions that form a basis for the neutral

eigenspace �excluding the two zero eigenvalues corresponding to translating the under�

lying pattern
� Note that by including the higher�order terms� 
 represents the nonlinear

perturbation from the standing hexagons�

Applying the method described in ���	� we can construct all the � � � matrices M�

that specify the action of � on R� �or C �
 for the irrep M�� Rather than describe this

procedure� we �nd it convenient to specify the group action by choosing a small number

of Fourier modes to represent the marginal eigenfunctions� and working out how the

amplitudes of these modes Aq� Bq and Cq transform under the generating elements of ��

Since representations are de�ned only up to a similarity transformation� the choice of

Fourier modes we make will not matter� as long as we are careful not to introduce any

accidental symmetries �which would become apparent on checking the characters
�

Any function u�x� t
 de�ned on the lattice L can be written as a double Fourier series

��



of the form

u�x� t
 �
X
j��Z

X
j��Z

uj��j��t
 e
��i�j�k��j�k���x� ���


where k� and k� are the generating wavevectors of the dual lattice L� related to e� and

e� by ki � ej � �ij such that ��
 holds� Our choice of the vectors e� and e� requires

k� � k
�p

�
�
���

�

�
� and k� � k��� �
� where k � �

�c�
�

We use the observed instantaneous symmetry of the pattern �see �gure ��c

 to select a

representative function from the full set of Fourier modes� starting with a single Fourier

mode e��i�j�k��j�k���x �and its complex conjugate
 for some choice of integers j� and j��

If the pattern is to be invariant under � �� � j� must be even� so set j� � �m� and� for later

convenience� set j� � m � n� where m and n are integers� With this choice� the Fourier

mode is e��ik�
p
�mx�ny�� The pattern is also invariant under � �� �

�� Now �� replaces the

chosen mode by its complex conjugate� and � �� multiplies the mode by a complex number

with unit modulus� Since � �� is of order two but not equal to the identity� it must act

by multiplying the mode by ��� This forces m � n to be odd �and so for the observed

pattern� the amplitude of the Fourier mode must be pure imaginary
� The translation ��

must act with order � �otherwise the pattern would be invariant under a lesser translation

in that direction
� so �m� n � � mod � or �m� n � � mod �� The second of these is

essentially the complex conjugate of the �rst� so we choose �m � n � � mod �� �m�n


could be ��� �
� ��� �
 or ��� �
� for example� Finally� the re�ection �x generates a new

function e��ik��
p
�mx�ny�� so the superlattice�two pattern can be exempli�ed by a mode

of the form f� � e��ik�
p
�mx�ny� � e��ik��

p
�mx�ny�� Sixty degree rotations of this function

generate f� and f�� so we have�

f� � e��iK��x � e��iK��x� f� � e��iK��x � e��iK��x� f� � e��iK��x � e��iK��x ���


�the true eigenfunctions will be made up of linear combinations of such functions
� where

K� � k�
p
�m�n
� K� � k��p�m�n
�

K� �
k
�

�p
��m� n
� ���m � n


�
� K� �

k
�

�p
���m � n
� ��m� n


�
�

K	 �
k
�

�p
��m� n
� ��m� n


�
� K� �

k
�

�p
���m � n
����m� n


�
�

These wavevectors have the same wavenumber K�m�n
 � k
p
�m� � n�� with m and n

satisfying �m � n � � mod �� With this choice of basis functions� the relevant irrep

of � can be speci�ed by the action of the generating elements of � on the amplitudes

�Aq� Bq� Cq
�

��



�x � �Aq� Bq� Cq
� �Aq� #Cq� #Bq
� ���


� � �Aq� Bq� Cq
� �Bq� Cq� #Aq
� ���


�� � �Aq� Bq� Cq
� �e
i�
� Aq� e

i��
� Bq� e

i�
� Cq
� ���


�� � �Aq� Bq� Cq
� �e
i��
� Aq� e

i�
� Bq� e

� i�
� Cq
� ���


�t � �Aq� Bq� Cq
� ��Aq��Bq��Cq
� ���


We include the subharmonic action of �t here for completeness� The same representation

could be constructed using the method described in ���	�

� Normal form of the bifurcation problem

We now have su!cient information to invoke the equivariant branching lemma ���	

and describe the di�erent patterns that must be formed in the instability that created

the superlattice�two from standing hexagons� Before doing this� we will compute the

normal form for the bifurcation since we need it to work out the stability of the various

patterns� The irrep ������
 we identi�ed in section � implies that the reduced map g

introduced in ��
 is six�dimensional� and we let zq � �Aq� Bq� Cq
� q � Z� Aq� Bq� Cq � C �

As indicated earlier� the action of �t de�ned in ���
 is due to the subharmonic nature

of the bifurcating modes with respect to the overall driving period T given in ��
� If

each iteration in zq corresponds to advancing in time by T � then zq�� � �zq�� � zq�

Consequently� g�zq
 � zq�� � �zq�� � �g�zq��
 � �g��zq
 ���	� So the map g will be

an odd function of the amplitudes Aq� Bq and Cq� as well as being ��equivariant� This

information enables us to write down the form of g including up to �fth order terms�

Aq���� �� � �
Aq � ��jAqj�Aq � ��

�
jBqj� � jCqj�

�
Aq � ��jAqj�Aq

� ��
�
jBqj� � jCqj�

�
Aq � ��jAqj�

�
jBqj� � jCqj�

�
Aq � ��jBqj�jCqj�Aq

� �	B
�
q
#C�
q
#Aq � � #A	

q� ���


Bq���� �� � �
Bq � ��jBqj�Bq � ��

�
jAqj� � jCqj�

�
Bq � ��jBqj�Bq

� ��
�
jAqj� � jCqj�

�
Bq � ��jBqj�

�
jAqj� � jCqj�

�
Bq � ��jAqj�jCqj�Bq

� �	A
�
qC

�
q
#Bq � � #B	

q � ���


Cq���� �� � �
Cq � ��jCqj�Cq � ��

�
jAqj� � jBqj�

�
Cq � ��jCqj�Cq

� ��
�
jAqj� � jBqj�

�
Cq � ��jCqj�

�
jAqj� � jBqj�

�
Cq � ��jAqj�jBqj�Cq

� �	 #A
�
qB

�
q
#Cq � � #C	

q � ���


where all coe!cients are forced by symmetry to be real�

��



Apart from the � terms� the equations above are equivalent to the T�uD��Z��equivariant

amplitude equations �truncated to the same order
 that arise in the context of Boussinesq

convection on a hexagonal lattice ������	� once they are re�interpreted as amplitude

equations rather than a map� The � terms have the e�ect of breaking the full T� �two�

torus
 symmetry group of translations in a periodic domain to the discrete translations

allowed by the underlying pattern� A natural question to ask is why we needed to work

out the details of the representation before writing down these amplitude equations�

The main reason is that we did not know in advance how many linearly independent

marginal eigenfunctions are involved in the instability� Even if we had assumed that

there were six� it has turned out that there are two six�dimensional irreps� only one

of which is involved in the bifurcation� The other six�dimensional irrep is generated by

taking f� � e��ik�
p
�mx�ny� � e��ik��

p
�mx�ny� and �following a similar analysis
 results

in the same amplitude equation� Without realising this� one might conclude incorrectly

that patterns that are odd under �x re�ection might also be found in this instability� All

the other irreps in table � have dimension less than six �that is� there are fewer than six

independent marginal eigenfunctions
� so the order of the relevant normal forms would

be correspondingly less�

We also use ��
 to write down the dynamics of the position dq of the underlying standing

hexagons� truncated to quartic order�

dq�� � dq � � Im


���A
�
q� #C

�
q � B�

q 
� �B�
qC

�
q

�p�A�
q�B

�
q � #Cq

�




��� � ���


where � is a constant�

We can show that there are six isotropy subgroups whose �xed�point subspaces are

one�dimensional� so the equivariant branching lemma tells us that there are at least six

primary bifurcating branches of solutions from standing hexagons� and we summarise

these solutions in table �� Elements accented by a tilde represent spatio�temporal sym�

metries� which� using the notation introduced in ���
� can be written as e� �� � �� �� � �t
� and

similarly for e� �� and e�� The superlattice�two pattern corresponds to branch � of type I�

For the choice of wave integer pair �m�n
 � ��� �
� the instantaneous planforms of

these six solution branches are illustrated schematically in �gure �� We can compare

�gures ��e
 and ��f
 with ��b
 and ��c
 and notice that the appearance of stripes at

regular intervals in the grey�scale plots of solution branch � closely resembles the essential

��



�a
 standing hexagons �b
 branch � �c
 branch �� t � � �d
 branch �� t � T

�e
 branch �� t � � �f
 branch �� t � T �g
 branch �� t � � �h
 branch �� t � T

�i
 branch �� t � � �j
 branch �� t � T �k
 branch �� t � � �l
 branch �� t � T

Fig� �� Instantaneous planforms of the di�erent solution branches summarised in table � and

illustrated here in frames �b���l� as small�amplitude perturbations to standing hexagons	 Solid

squares represent lattice points of L	 �a� Standing hexagons� which have the full � symmetry	

�b� Solution branch � with D� symmetry� referred to in �
�� as �superhexagons�	 The periodic

hexagonal boxes are delineated by light borders surrounding each cell	 �c� 
 �d� Solution branch

� at t � � and T showingD� symmetry as well as the spatio�temporal symmetry e�	 �e� 
 �f� The

superlattice�two pattern corresponds to solution branch � as they share the same instantaneous

spatial symmetries	 This pattern is shown here at t � � and T with spatio�temporal symmetry

e��� evident	 �g� 
 �h� Similar spatio�temporal symmetry is displayed by solution branch 
	

�i���l� Branches � 
 � have very similar symmetry properties� both are invariant under the

action of e��� and instantaneously they di�er only by a shift of the re�ection symmetry �y	

��



representative solution branch isotropy subgroup averaged symmetry

I
�� A � R
 B � C � � h��� � �x� ��� e��� i h��� � ��� � �x� ��i
�� A � iR
 B � C � � h��� � �x� ��� ��� e��� i

II
�� A � B � C � R D� � h�x� �i

D�

�� A � �B � C � iR h�x� e�i

III
�� A � �
 B � C � R h�x� ��� e��� i h��� � �x� ��i
�� A � �
 B � �C � iR h�x� ������ e��� i

Table �

Primary solution branches of the normal form ������� and their isotropy subgroups� grouped

into three types� I�III	 Using the analysis presented in section �	� we can show that the

two branches within each type of solution share the same time�averaged spatial symmetries	

Branch � of type I corresponds to the superlattice�two pattern	

features of the experimentally observed superlattice�two pattern�

None of these primary branches leads to a net drift of the underlying hexagonal pattern�

this can be seen in two ways� �rst� because the rate of drift �from ���
� truncated to

quartic order
 is zero on all six primary branches� second �and more convincing
 since ��

is in the symmetry group of all the time averaged patterns �see below
� In other words�

the patterns are all pinned by the ���� rotation symmetry on average�

��� Stability results

We summarise in table � the branching equations and the Floquet multipliers of the

period �T patterns� for each of the six primary solutions guaranteed to exist by the

equivariant branching lemma� Floquet multipliers greater than one in magnitude indicate

instability� We group the six branches into three types and denote them by I� II and III

as shown in tables � and �� It is evident that branches within each type are degenerate up

to third�order terms� thus necessitating the inclusion of quintic terms� In particular� only

one solution branch within each of types I and II can be stable depending on the signs

of � and �	��� and both branches in type III are always unstable� Only one branch can

bifurcate stably� and all branches must be supercritical for one of them to be stable� One

��



of the requirements for the observed superlattice�two pattern �i�e�� branch � of type I


to be stable is that the quintic coe!cient � � �� If we also assume the non�degeneracy

conditions �� �� �� �� � ��� �� �� �� 	 �� �� �� � �� � and �	 � � �� �� close to the

bifurcation point the relative stability of branches of the three types is illustrated by the

bifurcation diagrams shown in �gure ��
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Fig� �� Bifurcation diagrams for the ��equivariant normal form �������	 The sign of the cubic

coe�cient �� determines whether solution type I bifurcates sub� or supercritically	 If we assume

that the quintic coe�cient � � �� then the superlattice�two pattern �branch � of type I� can oc�

cur as a stable branch in the region of the 	��� ��
 space given by f	��� ��
 � �� � �� �� � ��g	

The experimental results ��	 suggest that the bifurcation may have subcritical branches

as there is a parameter regime in which standing hexagons and the superlattice�two

pattern may coexist� On the other hand� the experimentalists report no hysteresis be�

tween standing hexagons and superlattice�two� while they do report hysteresis between

hexagons and other patterns at other parameter values� so it is not clear whether or not

there is a direct bifurcation from standing hexagons to the superlattice�two pattern in

the experiments� With our parameters� we require �� � �� �� � �� and � � � for the

superlattice�two pattern �branch � of type I
 to bifurcate stably� but the branch could

also be stable in the region �� � �� �� � �� and � � � if there were a saddle�node

bifurcation on branch I�

��



Primary solutions and branching equations Floquet multipliers 	multiplicity


I

�� Aq � R�
 Bq � Cq � �
 �� ���R
�
�
 �� � 	�� � ��
R

�
� 	� times



� � �	� ��R
�
� � 	
� � �
R�

� � � ���R�
�

�� Aq � iR�
 Bq � Cq � �
 �� ���R
�
�
 �� � 	�� � ��
R

�
� 	� times



� � �	� ��R
�
� � 	
� � �
R�

� �� ���R�
�

II

�� Aq � Bq � Cq � R�
 �� � 	�� � ���
R
�
�


� � �	� 	�� � ���
R
�
� � � � 	�� � ��
R

�
� 	� times



� 	
� � �
� � �
� � 
� � 
	 � �
R�
� � � ���R�

� 	� times

 � � �� 	
	 � �
R�
�

�� Aq � �Bq � Cq � iR�
 �� � 	�� � ���
R
�
�


� � �	� 	�� � ���
R
�
� � � � 	�� � ��
R

�
� 	� times



� 	
� � �
� � �
� � 
� � 
	 � �
R�
� �� ���R�
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 �� �� 	
	 � �
R�
�

III

�� Aq � �
 Bq � Cq � R	
 �� � 	�� � ��
R
�
	
 � � � 	�� � ��
R

�
	


� � �	� 	�� � ��
R
�
	 �� � 	�� � ��
R

�
	 	� times



� 	
� � 
� � 
� � �
R�
	 � � ���R�

	 	� times


�� Aq � �
 Bq � �Cq � iR�
 �� � 	�� � ��
R
�
�
 � � � 	�� � ��
R

�
�


� � �	� 	�� � ��
R
�
� �� � 	�� � ��
R

�
� 	� times



� 	
� � 
� � 
� � �
R�
� �� ���R�

� 	� times


Table �

Branching equations and Floquet multipliers for the six primary period�two solutions of the

normal form ������� listed in table �	 Aq� Bq and Cq are complex amplitudes of the marginal

modes de�ned in �
��	 Only leading order terms in Ri are shown� and the multiplicities of the

Floquet multipliers �computed from the second iterate of the map� are indicated	

��� Time�averaged behaviour

We can study the symmetry properties of the time�averaged image of the observed solu�

tion by integrating over a full period of the newly created periodic orbit �cf ���������	
���



Speci�cally� we let u��x� t
 be the standing hexagons solution and 
�x� t
 the nonlinear

perturbation to this solution such that u�x� t
 � u��x� t
�
�x� t
 represents the observed

pattern� We know that u��x� t
 is ��invariant� i�e�� �u��x� t
 � u��x� t
 for all � � �� and
have also found that the spatial and spatio�temporal symmetry of 
�x� t
 is given by

its isotropy subgroup h� �� � �x� � �� �
�� e� �� i �  � � �� Let �s and �t denote respectively

the purely spatial symmetry elements and the spatial part of spatio�temporal symmetry

elements in  � that act on 
�x� t
 as follows�

�s
�x� t
 � 
�x� t
� �t
�x� t
 � 
�x� t� T 
�

The time�averaged value of u�x� t
 can be obtained by integrating over the full period of

the bifurcating solution�

#u�x
�
�

�T

Z �T

�
u��x� t
 � 
�x� t
 dt

� #u��x
 �
�

�T

Z T

�

�x� t
 � 
�x� t� T 
 dt� ���


where we have used the fact that u��x� t
 � u��x� t � T 
� Clearly� #u shares the same

spatial symmetry with 
 because both #u� and the individual entries of the integrand in

���
 are invariant under the action of �s �  � � It is also invariant under �t because the

integrand in ���
 as a whole is invariant under �t�

�t#u�x
� �t#u��x
 �
�

�T

Z T

�
�t
�x� t
 � �t
�x� t� T 
 dt

� #u��x
 �
�

�T

Z T

�

�x� t� T 
 � 
�x� t
 dt

� #u�x
�

This result in fact follows readily from more general results on the symmetries of chaotic

attractors ������	�

In the case of the observed superlattice�two pattern with isotropy subgroup  � � the

spatial component of the spatio�temporal symmetry element� namely � �� � will show up

alongside � �� � �x and � �� �
� in the time�averaged image to generate an augmented spatial

symmetry group  �u � h� �� � � �� � �x� �
�i� This prediction is in agreement with experimental

results ��gure ��a

 and can be understood in the following way� The action of the

translations �� and �� on #u�x
 is of order three since � �� #u�x
 � � �� #u�x
 � #u�x
� whereas

the order of the same action on u�x
 is six� So the averaged pattern will appear to be

periodic on a lattice Lav spanned by basis vectors eav such that jeavj � �
�
jeij � �

�
c� We

��



have shown in section � that c� � c

�
p
�
� it follows that jeavj �

p
�j"eij� Therefore the

ratio of spatial period of the averaged pattern to that of the basic standing hexagons is

� �
p
�� which is consistent with the observation reported by ��	 as shown in �gure ��a
�

Using the same reasoning and information from the isotropy subgroups of the primary

solutions given in table �� we therefore predict both branches in each type of solutions

to have the same time�averaged symmetries�

� Discussion

Starting from the observed instantaneous symmetry of the superlattice�two pattern re�

ported in ��	� we have been able to show �a
 that a pattern with the same instantaneous

spatial symmetry as the superlattice�two pattern can bifurcate stably from standing

hexagons in a spatial period�multiplying instability� �b
 that the pattern has the spatio�

temporal symmetry �not reported in ��	
 of advancing one driving period in time com�

bined with a translation by three units in space ��gure ��e
 and ��f

� and �c
 that this

spatio�temporal symmetry accounts for the intermediate spatial scale and periodicity

on a hexagonal lattice of the time�averaged pattern ��gure ��a

� We should emphasise

that the intermediate spatial periodicity of the time�averaged pattern is not the spatial

periodicity of the larger hexagonal lattice that we have assumed�

Arbell 
 Fineberg �unpublished
 have found the superlattice�two state in their exper�

iments and have con�rmed that it does have the spatio�temporal symmetry that we

predict� Our results also suggest that ��� rotations are not in fact symmetries of the

time�averaged pattern� but should be weakly broken� The breaking of ��� rotational

symmetry� if it is present� is evidently a small e�ect since the hexagons in �gure ��a


do appear to be invariant under ��� rotations ��	 �this has been con�rmed by Gollub�

private communication
� For other parameter values� the symmetry breaking e�ect may

be more pronounced� Fineberg �private communication
 reports that his experimental

time�averaged pattern is not invariant under ��� rotations� Clearly this would be an

interesting issue to investigate in more detail� but the measurements are delicate and

are liable to be prone to systematic errors or imperfections� so con�rming our prediction

could be di!cult�

The spatio�temporal symmetry of superlattice�two arises because the instability of stand�

ing hexagons is subharmonic� Other patterns� with di�erent combinations of spatial and

spatio�temporal symmetries� are possible stable branches in the same bifurcation prob�

��



lem� Not all branches of solutions have spatio�temporal symmetries� and some of the

patterns share the same time�averaged symmetries even though they have di�erent in�

stantaneous planforms� The method we have presented is based entirely on symmetry

arguments and is able to deal with instabilities of a fully nonlinear time�periodic solution�

Spatial period�multiplying instabilities have arisen in a variety of contexts� in both

one ������	 and two lateral directions ���������������	� Most of these situations involved

relatively simple groups� part of the di!culty and interest here has been the size of the

symmetry group� enlarged because of the number of translations broken by the new pat�

tern� Only one of the �� representations is involved in the superlattice�two bifurcation�

other representations may be relevant to other experiments �particularly ����	
 in which

standing hexagons lose stability to patterns that �t into the larger hexagonal cells we

have used here�

As can be seen in section �� a heuristic step in our method involves the choice of a

suitable periodic cell that accommodates the observed patterns and whose size coin�

cides with exactly one spatial period of the bifurcating modes� The arrangement of the

underlying basic state in this cell then de�nes a spatial symmetry group �s of the bifur�

cation problem and the instantaneous symmetries of the superlattice instability form its

isotropy subgroup  s� If a larger hexagonal periodic cell that captures more than one

spatial period of the bifurcating modes had been chosen� the translations �� and �� given

in ���
 that leave standing hexagons invariant would have had higher order� resulting in

a larger spatial symmetry group� In this case there would have been more than one irrep

of �s in which  s satis�ed the conditions of being an isotropy subgroup� By choosing the

smallest possible periodic cell� we have found that such indeterminacy can be avoided�

The method we have described in this paper for analysing certain types of symmetry�

breaking instabilities bifurcating from a non�trivial basic state is based entirely on the

observed spatial symmetries of these patterns� However� information on spatial symme�

tries of the new pattern alone may not be su!cient for our approach to be applicable

in some problems� For example� consider a bifurcation problem de�ned on a spherical

domain� Suppose a basic state with O��
 symmetry loses stability and the observed

bifurcating solutions are axisymmetric� then the isotropy subgroup of the bifurcating

modes is given by O��
� If the eigenfunctions are expanded in spherical harmonics� it

is known that O��
 is a maximal isotropy subgroup of O��
 for all even values of the

spherical harmonic index l ���	 and so an in�nite number of irreps is relevant to the

observed bifurcation� This example illustrates the fact that our method breaks down if

the observed symmetries of the bifurcating modes form an isotropy subgroup for more

��



than one irrep of the symmetry group of the basic state�

We are currently involved in applying a similar method to the study of the �superlattice�

one� pattern reported in ��	 as a bifurcating instability from standing hexagons� Pre�

liminary analysis of the experimental data reveals that a suitable periodic box in this

case will give rise to an arrangement of standing hexagons with a �hidden� re�ection

symmetry ���	� which leads to extra complications in determining the spatial symmetry

group� It is an interesting problem that deserves further investigation�

Unlike some time�periodic solutions �for example� standing rolls
� which can also be

de�ned on a hexagonal lattice� standing hexagons possess only trivial spatio�temporal

symmetries ���	� So our treatment of the superlattice patterns as symmetry�breaking

instabilities from standing hexagons is relatively simple because only instantaneous spa�

tial symmetries are needed to de�ne the isotropy subgroup of these solutions� In general�

our approach can be applied to the study of spatial period�multiplying bifurcations from

solutions with spatio�temporal symmetries and used to investigate some of the possible

symmetry�breaking behaviour� if techniques discussed by Rucklidge 
 Silber ���	 and

Lamb 
 Melbourne ���	 are also included�
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