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Resonance bifurcations of robust heteroclinic networks∗

Vivien Kirk†, Claire Postlethwaite‡ and Alastair M. Rucklidge§

Abstract. Robust heteroclinic cycles are known to change stability in resonance bifurcations, which occur

when an algebraic condition on the eigenvalues of the system is satisfied and which typically result

in the creation or destruction of a long-period periodic orbit. Resonance bifurcations for heteroclinic

networks are potentially more complicated because different subcycles in the network can undergo

resonance at different parameter values, but have, until now, not been systematically studied. In

this article we present the first investigation of resonance bifurcations in heteroclinic networks.

Specifically, we study two heteroclinic networks in R
4 and consider the dynamics that occurs as

various subcycles in each network change stability. The two cases are distinguished by whether or

not one of the equilibria in the network has real or complex contracting eigenvalues. We construct

two-dimensional Poincaré return maps and use these to investigate the dynamics of trajectories

near the network; a complicating feature of the analysis is that at least one equilibrium solution in

each network has a two-dimensional unstable manifold. We use the technique developed in [18] to

keep track of all trajectories within these two-dimensional unstable manifolds. In the case with real

eigenvalues, we show that the asymptotically stable network loses stability first when one of two

distinguished cycles in the network goes through resonance and two or six periodic orbits appear.

In some circumstances, asymptotically stable periodic orbits can bifurcate from the network even

though the subcycle from which they bifurcate is never asymptotically stable. In the complex case,

we show that an infinite number of stable and unstable periodic orbits are created at resonance, and

these may coexist with a chaotic attractor. In both cases, we show that near to the parameter values

where individual cycles go through resonance, the periodic orbits created in the different resonances

do not interact, i.e., the periodic orbits created in the resonance of one cycle are not involved in

the resonance of the other cycle. However, there is a further resonance, for which the eigenvalue

combination is a property of the entire network, after which the periodic orbits which originated

from the individual resonances may interact. We illustrate some of our results with a numerical

example.

Key words. heteroclinic cycle, heteroclinic network, resonance, resonance bifurcation

AMS subject classifications. 37C29, 37C40, 37C80

1. Introduction. Heteroclinic cycles and networks are flow invariant sets that can occur

robustly in dynamical systems with symmetry, and are frequently associated with intermittent

behaviour in such systems. Various definitions of heteroclinic cycles and networks have been

given in the literature; for examples, see [5, 17, 19, 20, 24]. We use the following definitions

from [18]. For a finite-dimensional system of ordinary differential equations (ODEs), we define:

∗This work was supported by the EPSRC grant EP/G052603/1.
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Definition. A heteroclinic cycle is a finite collection of equilibria {ξ1, . . . , ξn} of the ODEs,

together with a set of heteroclinic connections {γ1(t), . . . , γn(t)}, where γj(t) is a solution of

the ODEs such that γj(t) → ξj as t → −∞ and γj(t) → ξj+1 as t → ∞, and where ξn+1 ≡ ξ1.

Definition. Let C1, C2, . . . be a collection of two or more heteroclinic cycles. We say that

N =
⋃

i Ci forms a heteroclinic network if for each pair of equilibria in the network, there is a

sequence of heteroclinic connections joining the equilibria. That is, for any pair of equilibria

ξj, ξk ∈ N , we can find a sequence of heteroclinic connections {γp1
(t), . . . , γpl

(t)} ∈ N and

a sequence of equilibria {ξm1
, . . . , ξml+1

} ∈ N such that ξm1
≡ ξj , ξml+1

≡ ξk and γpi
is a

heteroclinic connection between ξmi
and ξmi+1

.

More generally, the heteroclinic orbits in a heteroclinic cycle may connect flow invariant

sets other than equilibria (e.g., periodic orbits or chaotic saddles) but we will not consider such

possibilities in this article. Our definition of a heteroclinic network does not require that there

be an infinite number of heteroclinic cycles in a network, but in the networks we consider,

(at least) one of the equilibria in the network has a two-dimensional unstable manifold and

associated with this is an infinite number of heteroclinic connections between that equilibrium

and another. We only consider the case that the set of equilibria in the network is finite.

Methods for determining the stability properties of an isolated heteroclinic cycle involving

equilibria or periodic orbits are well-established [11,19,21,22,23,26,27], and their implementa-

tion is generally straightforward, at least in principle, because there is only one route around

the cycle. In the most widely studied examples, all equilibria have one-dimensional unstable

manifolds, and within these manifolds, the next equilibrium point in the cycle is a sink. One

way a heteroclinic cycle can lose stability is in a resonance bifurcation. A resonance bifur-

cation is a global phenomenon, which occurs when an algebraic condition on the eigenvalues

of the equilibria in the cycle is satisfied. Generically, resonance bifurcations are accompanied

by the birth or death of a long-period periodic orbit. If the bifurcation occurs supercriti-

cally, then in the simplest case, the bifurcating periodic orbit is asymptotically stable and

the heteroclinic cycle changes from being asymptotically stable to having a basin of attrac-

tion with measure zero. Resonance bifurcations from asymptotically stable heteroclinic cycles

have been extensively studied; see [12, 22, 26, 27], for cases in which all eigenvalues are real,

and [25] for a case with complex eigenvalues. Much less is known about resonance bifurcations

of non-asymptotically stable cycles.

Stability of robust heteroclinic networks is less well understood. Some results are known

(e.g., [3,6,7,8,9,10,13,16,17,18,20,24]) but these are, in general, partial results and confined

to specific examples. One source of difficulty is that there may be many different routes by

which an orbit can traverse a heteroclinic network, and keeping track of all possibilities in

the stability calculations can be challenging, particularly when one or more of the equilibria
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in the network has a two-dimensional unstable manifold. When this occurs, trajectories may

go straight to an equilibrium point that is a sink within the unstable manifold, or may visit

a saddle equilibrium point before moving on to the sink. A full analysis needs to account

for all possibilities. In [18], we showed that it is possible to do this and so to establish

relatively complete stability results for a specific class of problems in which all cycles in the

network share a common heteroclinic connection, despite there being several equilibria with

two-dimensional unstable manifolds. In this case, we were able to derive conditions that

determine the attractivity properties of the network. These conditions are network analogues

of stability conditions for single heteroclinic cycles, and involve inequalities on combinations

of the eigenvalues of the equilibria. By analogy with resonance bifurcations of heteroclinic

cycles, we call the transition that occurs when one or more of the inequalities is reversed a

resonance of a heteroclinic network.

In [18] it was noted that complicated dynamics could be associated with resonance in

the network studied. Our aim in this article is to complete this analysis, and extend it to a

closely related heteroclinic network (which is the same as that studied in [17], although in that

article, no attempt was made to keep track of all trajectories in the two-dimensional unstable

manifolds). We will then investigate resonance bifurcations in both networks in detail. We

believe this is the first article to analyze network resonance in a systematic way.

Both networks have the basic structure shown schematically in figure 1.1. Specifically, each

network consists of six equilibria, which we call A, B, X, Y , P and Q, and their symmetric

copies, −A, −B, −X, −Y , −P , and −Q, along with a collection of heteroclinic connections

between equilibria. The equilibria A and B are connected by a single (one-dimensional)

heteroclinic connection from A to B. Equilibrium B has a two-dimensional unstable manifold

associated with two different positive real eigenvalues, and there is a continuum of heteroclinic

orbits lying within this manifold and connecting B to X, Y , P , Q, and their symmetric copies:

there is a single connection from B to P and from B to Q, but an uncountable family of

connections from B to X and from B to Y . The equilibria X and Y have one-dimensional

unstable manifolds which are heteroclinic connections to A and −A. P and Q have two-

dimensional unstable manifolds consisting of single heteroclinic connections to X and Y (and

their symmetric copies) and continua of heteroclinic connections to A and −A.

The feature that distinguishes our two networks from one another is whether or not the

Jacobian matrix of the flow evaluated at A has complex eigenvalues. In Case I, there are only

real eigenvalues at A, while in Case II, A has a complex conjugate pair of eigenvalues with

negative real part. Further details about the networks are given in Section 2.

We analyse the networks by deriving local and global maps that approximate the dynamics

near and between the different equilibria in the network. This analysis is complicated by the
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fact that, for reasons explained in detail later, it is not always possible to write these maps

explicitly. However, under certain approximations and assumptions about the dynamics near

the networks, we are able to compose the maps; these approximations and assumptions mildly

restrict the validity of our results. This then gives us information about the dynamics of all

possible trajectories as they traverse the network and return close to where they started. The

derivations of the maps, approximations and compositions are contained in sections 3 and 4.

Using the return maps, we are then, in section 5, able to determine existence criteria

for fixed points of the maps, which correspond to periodic orbits in the original flow. These

periodic orbits appear when resonance conditions for the network are broken. In the case

of an asymptotically stable network losing stability, we find that the first conditions to be

violated are those associated with one or the other of the subcycles within the network, that

is, the conditions on the eigenvalues are the same as for a single cycle. In the network with

real eigenvalues, either two or six periodic orbits appear at this initial resonance (including all

symmetric copies). We also show that an asymptotically stable periodic orbit can bifurcate

from a non-asymptotically stable heteroclinic cycle in this network. In the network with

complex eigenvalues, we find that infinitely many periodic orbits appear at resonance. For both

networks, if we remain in parameter space close to the point where the resonances of individual

subcycles occur (we consider the eigenvalues of the equilibria as parameters), then the periodic

orbits arising from the bifurcations of the subcycles do not interact, i.e., the periodic orbits

created in the resonance of one cycle are not involved in the resonance of the other cycle.

However, we find that there is a further resonance, for which the eigenvalue combination is

a property of the entire network, after which the periodic orbits which originated from the

individual resonances may interact, for instance when orbits arising from different resonances

come together in saddle-node bifurcations.

In addition to bifurcating periodic orbits, we also find that a chaotic attractor may be

created at a resonance bifurcation of the network with complex eigenvalues. This is detailed

in section 5.2.4. Section 5.2.5 contains a numerical example showing both periodic orbits and

a chaotic attractor.

In section 6 we look at resonance bifurcations of an isolated heteroclinic cycle with complex

eigenvalues. When this cycle goes through resonance, infinitely many periodic orbits appear,

in a similar manner to that seen within the network with complex eigenvalues. The analysis of

this cycle allows us to conjecture which features of the dynamics of our Case II network arise

from the existence of complex eigenvalues and which are a result of the network structure.

Section 7 concludes with discussion and avenues for further work.

2. The heteroclinic networks. We consider a system of ordinary differential equations,

ẋ = f(x), where x = (x1, x2, x3, y3) ∈ R
4 and f : R

4 → R
4 is a C

1 vector-valued function. For
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A B

X

Y

P

Figure 1.1. Schematic diagram showing the basic structure of the two heteroclinic networks studied. For

clarity, the equilibrium Q is not shown, but this equilibrium has a similar role to equilibrium P except that

there is a heteroclinic connection from Q to −X instead of Q to X, where −X is a symmetric copy of X. The

remaining (conjugate) parts of the network are obtained under the action of the symmetry groups described in

Section 2. Thin curves represent single (one-dimensional) heteroclinic connections and bold curves represent a

two-dimensional family of connections between the relevant equilibria. The double arrowhead on the connection

from B to X indicates that expansion near B in the direction of this connection is stronger than expansion in

the direction of the connection from B to Y .

both networks we consider, we assume this system has the following equivariance properties:

κi(f(x)) = f(κi(x)), i = 1, 2,

where

κ1 : (x1, x2, x3, y3) → (−x1, x2, x3, y3), (2.1)

κ2 : (x1, x2, x3, y3) → (x1,−x2, x3, y3). (2.2)

In Case I, we further assume that the system is equivariant with respect to the symmetries

κx : (x1, x2, x3, y3) → (x1, x2,−x3, y3), (2.3)

κy : (x1, x2, x3, y3) → (x1, x2, x3,−y3). (2.4)

while in Case II we assume that the system is also equivariant with respect to the symmetry

κ3 : (x1, x2, x3, y3) → (x1, x2,−x3,−y3). (2.5)

Note that the symmetries κ1, κ2, κx and κy are those used in the network in [17] while the

symmetries κ1, κ2 and κ3 are those used in the network in [18]; imposing the assumptions

listed below ensures that Case I is precisely the network from [17] and Case II is the network

from [18].

The equivariance properties of the networks cause the existence of dynamically invariant

subspaces in which robust saddle–sink heteroclinic connections can occur. We make the fol-

lowing further assumptions about the dynamics in these subspaces, as illustrated in figure 2.1.
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A

B

x1

x2

(a)

C

X

Y P
Q

−X

−Y−P
−Q

x3

y3

(b)

B

X

Y
P

x2

x3

y3

(c)

A

X

Y

P

x1

x3

y3

(d)

A

X

Y

P

x1

x3

y3

(e)

Figure 2.1. Dynamics within invariant subspaces of the two networks being considered. For clarity, only

part of the relevant subspaces are shown in panels (a), (c), (d) and (e), with the dynamics in the omitted parts

being obtained by applying the symmetries. (a) The invariant plane x3 = y3 = 0, showing the heteroclinic

connection from A to B. (b) The invariant plane x1 = x2 = 0, showing the invariant circle C and the equilibria

±X, ±Y , ±P and ±Q that lie on C. (c) The subspace x1 = 0 showing part of the two-dimensional unstable

manifold of B and part of the circle C in the (x3, y3) plane. The equilibria ±X and ±Y are shown to lie on

the coordinate axes, with the eigenvectors of the corresponding linearised flow at B aligned with the axes. In

the Case I network, this situation is forced by the symmetries κx and κy. In Case II, ±X and ±Y are chosen,

for convenience, to lie on the axes, but no assumption is made about the alignment of the eigenvectors. (d)

The subspace x2 = 0 for Case I, showing connections from X, Y and P to A. The unstable manifold of Q (not

shown) behaves similarly to the unstable manifold of P . The connection from X to A (resp. Y to A) lies in the

invariant plane x2 = y3 = 0 (resp. x2 = x3 = 0). (e) The subspace x2 = 0 for Case II, showing spiralling of

the unstable manifolds of X, Y and P into A. The unstable manifold of Q (not shown) behaves similarly. In

each subspace, the flow is strongly contracting in the radial direction.

• A1: There exist symmetry-related pairs of equilibria ±A and ±B on the x1 and x2

coordinate axes, respectively. Within the invariant plane x3 = y3 = 0, A is a saddle

and B is a sink and there is a heteroclinic connection from A to B. See figure 2.1(a).

• A2: There exist symmetry-related pairs of equilibria ±X, ±Y , ±P and ±Q in the

invariant plane x1 = x2 = 0. Within this subspace, ±X and ±Y are sinks, while ±P

and ±Q are saddles. The eight equilibria together with the heteroclinic connections

between them make up an invariant curve C, which is topologically a circle. We
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hereafter refer to C as a circle, and we assume that C can be parametrised by the

angle θ3, the polar angle in the (x3, y3)-plane. Note that the intersections of the

stable manifolds of ±P and ±Q with the invariant plane form the boundaries between

the basins of attraction of ±X and ±Y in the invariant plane. Only a small part

of each intersection is shown in figure 2.1(b), to avoid giving a misleading impression

about the dynamics near the origin of the (x3, y3)-plane, but each intersection curve in

fact extends to the origin of the subspace. In Case I, the x3 and y3 axes are invariant

and coincide with orbits of the system, but this is not necessarily so in Case II.

• A3: Within the invariant subspace x1 = 0, there exist two-dimensional manifolds of

saddle–sink connections from B to ±X and ±Y (figure 2.1(c)). There are also one-

dimensional (saddle–saddle or saddle–sink) heteroclinic connections from B to ±P and

±Q and from ±P and ±Q to ±X and ±Y , as shown in figure 2.1(c). The unstable

manifold of B is two-dimensional, and the stable manifolds of ±X and ±Y are each

three-dimensional within the subspace. In Case I, there is a connection from B to X

(resp. from B to Y ) in the subspace x1 = y3 = 0 (resp. the subspace x1 = x3 = 0).

• A4: Within the invariant subspace x2 = 0, there exists a two-dimensional manifold of

saddle–sink connections from C to A. Within this manifold, A is either a stable node

(Case I) or a stable focus (Case II). A similar manifold connects the equilibria on C

to −A. Apart from the heteroclinic connections from ±P and ±Q to ±X and ±Y ,

the unstable manifolds of ±P and ±Q are contained in the stable manifolds of A and

−A. There are no equilibria other than the origin and those mentioned above lying in

the subspace x2 = 0. See figure 2.1(d) and (e).

• A5: Equilibrium B has real eigenvalues corresponding to dynamics in its unstable

manifold, and these eigenvalues are unequal. We do not consider the case where B has

complex eigenvalues.

Assumptions A1–A5 ensure the existence of the two heteroclinic networks considered in

this article. The symmetries κ1 and κ2 ensure that x1 and x2 cannot change sign along a

trajectory, so we consider x1 ≥ 0 and x2 ≥ 0 only. Similarly, in Case I, the symmetries κx

and κy ensure that x3 and y3 cannot change sign along a trajectory, so in this case we can

consider x3 ≥ 0 and y3 ≥ 0 only.

To simplify our analysis, we make several further assumptions. The first part of A7 and

assumptions A8 and A9 are automatically satisfied for Case I, but we extend them to Case II

as well. A6 is a genericity assumption and A8 is not restrictive. Either A7 or A9 can

always be satisfied; we restrict the dynamics by assuming both are true. A10 is a restrictive

assumption.

• A6: At each equilibrium, no two of the eigenvalues of the linearisation are equal.

7



c© xxxx Society for Industrial and Applied Mathematics
Vol. xx, pp. x x–x

• A7: The two expanding eigenvectors at B lie in the x3 and y3 directions. Without

loss of generality we assume that the eigenvalue with eigenvector pointing in the x3

direction is larger than that corresponding to the y3 direction.

• A8: The linearisation around A is in Jordan form.

• A9: The equilibria ±X and ±Y are, respectively, on the x3 and y3 coordinate axes.

• A10: At A (resp. B) the strong stable direction lies along the coordinate axis x1

(resp. x2). At each of ±X, ±Y , ±P and ±Q, the strong stable direction lies in the

(x3, y3) plane and is transverse to C (which is an invariant circle, by A2).

We can therefore summarise the different networks we study as follows.

• In both cases, the overall network is A → B → C → A, where, within C, trajectories

can visit any of ±X, ±Y , ±P and ±Q, although only in certain orders as indicated

in figures 1.1 and 2.1. All cycles in the network contain either three or four equilibria.

• Case I is equivariant under the symmetries κ1, κ2, κx and κy, and the linearisation of

the vector field at each equilibrium has only real eigenvalues.

• Case II is equivariant under the symmetries κ1, κ2 and κ3, and the linearisation at

equilibrium A has a pair of complex conjugate eigenvalues with negative real part.

3. Maps for the dynamics near the heteroclinic networks. We follow the standard pro-

cedure for modelling the dynamics near a heteroclinic network, i.e., we construct return maps

defined on various cross-sections in R
4 and analyze the dynamics of these maps. Cross-sections

transverse to the connection from A to B are of special interest, since all trajectories lying

near one of our networks must pass through such a cross-section and so maps defined on

such a cross-section contain information about the asymptotic stability of the network as a

whole. However, in our investigation of resonance bifurcations, it will be important to con-

sider situations in which the network has more subtle stability properties, in which case we

will be interested in return maps defined on cross-sections transverse to other heteroclinic

connections.

In Section 3.1 we give details of the coordinates, cross-sections, and local maps (valid near

equilibria) we use in construction of the return maps. Apart from the local map near A in

Case I, these are the same as the maps found in [18]. In Section 3.2 we derive global maps

(valid near heteroclinic connections between equilibria); these are the same as the global maps

found in [18] apart from some additional constraints needed for Case I. The local and global

maps we define are consistent with those used in [17], but have a more general form (and use

different notation), since here the maps are designed to capture the behaviour near the whole

heteroclinic network, whereas in [17] the analysis focussed on two distinguished cycles (called

the ξ3-cycle and the ξ4-cycle in [17], corresponding to the heteroclinic cycles through X and

Y in the notation of this article).
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In principle, the local and global maps can be composed in an appropriate order to obtain

return maps modelling the dynamics near our networks. However, because we wish our maps

to keep track of a continuum of heteroclinic cycles in network, it turns out that we are

unable to derive explicit forms for some of the local maps and hence for the return map as a

whole. However, we are able to obtain approximations of the maps for particular ranges of

the coordinates in our maps, and this is sufficient for us to be able to extract results about

resonance.

3.1. Coordinates, cross-sections, and local maps. Near A and B, we define local coor-

dinates that place the equilibrium at the origin. We write xi or yi if the local coordinate is

the same as the corresponding global coordinate, and use ui for the local coordinate other-

wise. We use polar coordinates when it is more convenient: (x3, y3) becomes (r3, θ3), where

x3 = r3 cos θ3 and y3 = r3 sin θ3, and u3 measures the distance within the x3-y3 subspace

from the invariant circle C. Assumptions A7 and A8 guarantee that the coordinate axes are

aligned with the eigenvectors of the relevant linearised system.

Near A, the linearised flow in Case I is given by:

u̇1 = −rAu1, ẋ2 = eAx2, ẋ3 = −cAxx3, ẏ3 = −cAyy3, (3.1)

where rA, eA, cAx and cAy are positive constants. The letters e, c and r in these constants

refer to the expanding, contracting and radial directions, as defined by [21]. In Case II, the

linearised flow near A is given by:

u̇1 = −rAu1, ẋ2 = eAx2, ẋ3 = −cAx3 − ωy3, ẏ3 = ωx3 − cAy3, (3.2)

where rA, eA, cA and ω are positive constants. In polar coordinates, the ẋ3 and ẏ3 equations

give ṙ3 = −cAr3 and θ̇3 = ω.

Cross-sections near A are defined as:

H
in
A ≡ {(u1, x2, r3, θ3)

∣

∣ |u1| < h, 0 ≤ x2 < h, r3 = h, 0 ≤ θ3 < 2π},
H

out
A ≡ {(u1, x2, r3, θ3)

∣

∣ |u1| < h, x2 = h, 0 ≤ r3 < h, 0 ≤ θ3 < 2π}.
(3.3)

Here 0 < h ≪ 1 is a parameter small enough that the cross-sections lie within the region of

approximate linear flow near A (and similarly near B and C, as required below).

In Case I, the flow near A induces a map φA,r : H
in
A → H

out
A , which is obtained to lowest

order by integrating equations (3.1):

φA,r(u1, x2, h, θ3)

=

(

u1

(x2

h

)

rA
eA , h, h

(

cos2 θ3

(x2

h

)2δAx

+ sin2 θ3

(x2

h

)2δAy

)1/2

,

tan−1

(

tan θ3

(x2

h

)δAy−δAx

)

,

)

(3.4)
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where δAx = cAx

eA
and δAy =

cAy

eA
. In Case II, the corresponding local map, obtained to lowest

order by integrating equations (3.2), is

φA,c(u1, x2, h, θ3) =

(

u1

(x2

h

)

rA
eA , h, h

(x2

h

)δA

, θ3 −
ω

eA
log
(x2

h

)

)

, (3.5)

where δA = cA

eA
.

Near B, the linearised flow is:

ẋ1 = −cBx1, u̇2 = −rBu2, ẋ3 = eBxx3, ẏ3 = eByy3, (3.6)

where rB, eBx, eBy, cB are positive constants. From A7, we have eBx > eBy. Cross-sections

near B are defined as:

H
in
B ≡ {(x1, u2, r3, θ3)

∣

∣ x1 = h, |u2| < h, 0 ≤ r3 < h, 0 ≤ θ3 < 2π},
H

out
B ≡ {(x1, u2, r3, θ3)

∣

∣ 0 ≤ x1 < h, |u2| < h, r3 = h, 0 ≤ θ3 < 2π},
(3.7)

and the flow induces a map φB : Hin
B → H

out
B , which is obtained to lowest order by integrating

equations (3.6). The map cannot be written down explicitly, but is computed as follows. First,

the ẋ3 and ẏ3 equations are solved:

x3(t) = r3(0) cos θ3(0) eeBxt, y3(t) = r3(0) sin θ3(0) eeBy t,

where r3(0) and θ3(0) are the initial values of the radial coordinates (i.e., on H
in
B). The

trajectory crosses H
out
B when r3(t) = h, so the transit time TB is found by solving the equation

(

h

r3(0)

)2

= cos2 θ3(0) e2eBxTB + sin2 θ3(0) e2eByTB (3.8)

for TB in terms of r3(0) and θ3(0). This yields the local map φB : Hin
B → H

out
B :

φB(h, u2, r3, θ3) =
(

he−cBTB , u2e
−rBTB , h, tan−1

(

tan θ3e
(eBy−eBx)TB

))

. (3.9)

For later convenience, we define δBx = cB

eBx
and δBy = cB

eBy
.

Near the circle C we would like a local map that captures the dynamics of all orbits that

pass near C. Linearization of the flow near the equilibria on C alone will be insufficient for our

purposes. Instead, we use the technique described in [18] and summarised below to construct

a map. Specifically, we assumed in A2 that C can be parameterised by the angle θ3. The rate

of relaxation onto C is controlled by the θ3-dependent quantity −rC(θ3). The assumption of

strong contraction in the radial (r3) direction (A10) means that the dynamics on C of θ3

can be captured by an equation of the form θ̇3 = g(θ3), where g is a nonlinear function with

g(0) = g(π
2 ) = g(π) = g(3π

2 ) = 0 (this last statement follows from assumption A9 which

10
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stipulates that ±X and ±Y lie on the coordinate axes). There will be further zeroes of g at

the values of θ3 corresponding to ±P and ±Q. These considerations mean we can model the

flow near C by:

ẋ1 = eC(θ3)x1, ẋ2 = −cC(θ3)x2, u̇3 = −rC(θ3)u3, θ̇3 = g(θ3), (3.10)

where rC , eC and cC are positive functions of θ3.

Cross-sections near C are defined as:

H
in
C ≡ {(x1, x2, u3, θ3)

∣

∣ 0 ≤ x1 < h, x2 = h, |u3| < h, 0 ≤ θ3 < 2π},
H

out
C ≡ {(x1, x2, u3, θ3)

∣

∣ x1 = h, 0 ≤ x2 < h, |u3| < h, 0 ≤ θ3 < 2π}.
(3.11)

The local flow near C induces a map φC : H
in
C → H

out
C . We cannot write down the

map explicitly, but it is computed as follows. First, the θ̇3 equation is solved using an initial

condition θ3(0), yielding θ3(t). Then the ẋ1 and ẋ2 equations are solved:

x1(t) = x1(0) exp

(∫ t

0
eC(θ3(t

′)) dt′
)

, x2(t) = h exp

(

−
∫ t

0
cC(θ3(t

′)) dt′
)

.

The trajectory crosses H
out
C when x1(t) = h, so the transit time TC can be found by solving

∫ TC

0
eC(θ3(t

′)) dt′ = − log

(

x1(0)

h

)

(3.12)

for TC in terms of the initial values x1(0) and θ3(0) on H
in
C . Then the local map φC : Hin

C →
H

out
C is given by

φC(x1, h, u3, θ3) =

(

h, h exp

(

−
∫ TC

0
cC(θ3(t

′)) dt′
)

, u3(TC), θ3(TC)

)

, (3.13)

where u3(TC) = u3 exp
(

−
∫ TC

0 rC(θ3(t
′)) dt′

)

. For later convenience, we define δCX and δCY

to be the ratio cC(θ3)
eC(θ3) evaluated at the points X and Y respectively.

As noted above, neither of the maps φB and φC can be written down explicitly. In the case

of φB , this is because we cannot write down an explicit solution of (3.8) for the transit time TB .

In the case of φC , the nonlinear evolution of θ3 on C is not known explicitly. In section 4.1

we make assumptions about the flow near C and are then able to make approximations to the

local maps in order to compute stability and bifurcation properties of the network.

3.2. Global maps. To construct global maps Ψij that approximate the dynamics near

heteroclinic connections of the networks, we linearise the dynamics about the unstable mani-

fold leaving each of A, B and C. In doing so, we allow for the fact that the unstable manifold

11
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of A is one-dimensional, but the unstable manifolds of B and C are two-dimensional. The dif-

ferent equivariance properties of the vector fields for our different networks result in different

constraints on the global maps for Case I and II.

The heteroclinic connection from A to B intersects H
out
A at (u1, x2, x3, y3) = (0, h, 0, 0),

and intersects H
in
B at (x1, u2, x3, y3) = (h, ǫB , 0, 0), for a small constant ǫB. Without loss of

generality, we assume that ǫB 6= 0. Here and below, the ǫ parameters give the value of the

local radial coordinate at the intersection of the heteroclinic connection with the incoming

section. These turn out to play no role at leading order, which is consistent with results about

radial eigenvalues for heteroclinic cycles [21].

Generically, the dynamics near the heteroclinic connection will be (to lowest order, and

in cartesian coordinates) an affine linear transformation. In polar coordinates, this yields, at

leading order:

ΨAB(u1, h, r3, θ3) = (h, ǫB ,DB(θ3)r3, θ̄B(θ3)), (3.14)

where DB(θ3) is an order-one function of θ3 and θ̄B(θ3) is an order-one function of θ3. Invari-

ance of the map under the symmetry κ3 (for Case II) has the same effect on the form of the

map as invariance under κx and κy (Case I), i.e., it ensures that there is no constant term or

linear dependence on u1 in the r3-component. Thus, the form of ΨAB given above is valid for

both the heteroclinic networks we consider. However, in Case I, the invariance of the x3 and

y3 coordinate planes requires some additional constraints on the function θ̄B(θ3). Specifically,

in Case I, θ̄B(0) = 0, θ̄B(π
2 ) = π

2 , θ̄B(π) = π and θ̄B(3π
2 ) = 3π

2 . In both cases, the overall effect

of the map ΨAB is to multiply the small variable r3 by an order-one function of θ3, and to

map the outgoing angle θ3 to an incoming angle θ̄B(θ3).

The two-dimensional unstable manifold of B intersects H
out
B at (x1, u2, r3, θ3) = (0, 0, h, θ3)

for 0 ≤ θ3 < 2π, and intersects H
in
C at (x1, x2, u3, θ3) = (0, h, ǫC (θ3), θ̄C(θ3)), where ǫC is a

small function of θ3 and θ̄C is an order-one function of θ3. To leading order in x1 and u2, we

find:

ΨBC(x1, u2, h, θ3) =
(

DC(θ3)x1, h, ǫC(θ3), θ̄C(θ3)
)

, (3.15)

where DC(θ3) is an order-one function of θ3. As for the map ΨAB, in Case I there are additional

constraints on the function θ̄C due to the invariance of the coordinate axes. Specifically, in

Case I, θ̄C(0) = 0, θ̄C(π
2 ) = π

2 , θ̄C(π) = π and θ̄C(3π
2 ) = 3π

2 . In both cases, we assume without

loss of generality that ǫC(θ3) 6= 0 for any θ3. The function ǫC(θ3) plays a similar role to the

constant ǫB in (3.14), except that it takes on a different value for each heteroclinic connection

and so is a function of θ3. In both cases, the overall effect of (3.15) is to multiply the small

variable x1 by an order-one function of θ3, and to map the outgoing angle θ3 to an incoming

angle θ̄C(θ3).

The unstable manifold of C is two-dimensional; it intersects H
out
C along the curve (x1, x2, u3, θ3) =

12
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(h, 0, 0, θ3), where 0 ≤ θ3 < 2π, and it intersects H
in
A at (u1, x2, r3, θ3) = (ǫA(θ3), 0, h, θ̄A(θ3)),

where ǫA is a small function of θ3 and θ̄A is an order-one function of θ3. For small x2 and u3,

we have:

ΨCA(h, x2, u3, θ3) =
(

ǫA(θ3),DA(θ3)x2, h, θ̄A(θ3)
)

, (3.16)

where DA(θ3) is an order-one function of θ3. In Case I, invariance of the coordinate axes

means that θ̄A(0) = 0, θ̄A(π
2 ) = π

2 , θ̄A(π) = π and θ̄A(3π
2 ) = 3π

2 . In both cases, the overall

effect of ΨCA is to multiply the small variable x2 by an order-one function of θ3, and to map

the outgoing angle θ3 to an incoming angle θ̄A.

4. Preliminary analysis of maps. In order to make further progress, it is necessary to

introduce some approximations and simplifications to the local maps.

In section 4.1, we construct approximations to the local maps near A and B valid close to

the X and Y directions. We also assume a simple form for the dynamics near C; we believe

that this simplification will not qualitatively change our results. Throughout this section,

we set h = 1 without loss of generality; this is equivalent to rescaling the local coordinates

introduced in the previous section.

Once the approximations are made, we are then (in sections 4.2 and 4.4) able to compose

the maps and compute a quantity we call δ(θ3) which gives the rate of contraction or expansion

of trajectories near the network, as a function of the coordinate θ3. This quantity plays a

similar role to the ratio of contracting to expanding eigenvalues used to determine stability

of some heteroclinic cycles. However, because we are working with a network, the ratio is

dependent on the particular route taken around the network. As part of these calculations,

we find it useful to define:

δX = δAxδBxδCX , δY = δAyδByδCY

where in Case II, δAx = δAy = δA.

4.1. Approximate local maps. First we look at the map for the dynamics near A in

Case I, φA : (u1, x2, 1, θ3) → (u1, 1, r3, θ3). In the following, the notation θAin (resp. θAout)

refers to the value of θ3 on H
in
A (resp. H

out
A ), while x2 (resp. r3) represents the value of the

second (resp. third) coordinate on H
in
A (resp. H

out
A ). Then, from (3.4), we have

r3 =
(

cos2 θAin x2δAx

2 + sin2 θAin x
2δAy

2

)1/2
(4.1)

and

tan θAout = tan θAin x
δAy−δAx

2 , (4.2)

where r3 and x2 are both small. When θAin = 0 (resp. π
2 ), we have log r3 = δAx log x2 (resp.

log r3 = δAy log x2).

13
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Expression (4.1) can be rewritten as

r3 =
∣

∣cos θAin

∣

∣ xδAx

2

(

1 + tan2 θAin x
2(δAy−δAx)
2

)1/2

so we have

log r3

log x2
= δAx +

log
∣

∣cos θAin

∣

∣

log x2
+

1

2

log
(

1 + tan2 θAin x
2(δAy−δAx)
2

)

log x2
.

Note that the term inside the logarithm may be large or small. We further approximate this

later as appropriate.

In the case of complex eigenvalues at A, the local map (3.5) gives:

log r3

log x2

= δA, θAout = θAin − ω

eA
log x2. (4.3)

Approximating the local map at B is complicated by the need to solve (3.8) for the transit

time TB . At B, we have by assumption A7 that eBx > eBy , and so δBx < δBy. Let θBin

(resp. θBout) be the value of θ3 on H
in
B (resp. H

out
B ) and denote by r3 (resp. x1) the value of

the third (resp. first) coordinate on H
in
B (resp. H

out
B ). We can then rewrite (3.8) as:

r−2
3 = cos2 θBin e2eBxTB

(

1 + tan2 θBin e2(eBy−eBx)TB

)

,

where r3 is small.

As long as θBin is not too close to π
2 or 3π

2 , the second term in the brackets is small

compared to the first; we drop this term and solve for TB , finding TB = − 1
eBx

log r3| cos θBin|.
The term that was dropped is small (with this value of TB) so long as | cot θBin| ≫ θǫB , where

θǫB ≡ r

δBy
δBx

−1

3 ≪ 1 (δBy > δBx). (4.4)

When | cot θBin| ≪ θǫB (i.e., θBin is close to π
2 or 3π

2 ), we cannot drop the second term but

instead approximately solve (3.8), finding

TB = − 1

eBy
log

(

r3

∣

∣sin θBin

∣

∣

(

1 +
1

2
cot2 θBin

(

r3 sin θBin
)2

“

1−
δBy
δBx

”))

.

From these expressions, we can use (3.9) to find the exit values of x1 and θ3 after φB :

log x1

log r3

∼



























δBx + δBx
log
∣

∣cos θBin
∣

∣

log r3

,
∣

∣cot θBin

∣

∣≫ θǫB ,

δBy + δBy

1

2
cot2 θBin r

2(1−
δBy
δBx

)

3

log r3

,
∣

∣cot θBin

∣

∣≪ θǫB ,

(4.5)
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and

tan θBout

tan θBin

∼















(

r3

∣

∣cos θBin

∣

∣

)1−
δBx
δBy ,

∣

∣cot θBin

∣

∣≫ θǫB ,

r

δBy
δBx

−1

3

(

1 + 1
2 cot2 θBin r

2(1−
δBy
δBx

)

3

(

δBy

δBx
− 1
)

)

,
∣

∣cot θBin

∣

∣≪ θǫB ,
(4.6)

where x1 and r3 are both small.

There are three obstacles to estimating the local map near C: the θ3 dynamics is given by

θ̇3 = g(θ3), where g(θ3) is unknown, and eC(θ3) and cC(θ3) are unknown. In order to make

progress, we take simple forms for g(θ3), eC(θ3) and cC(θ3) that allow us to solve for θ3(t) and

to compute the required integrals. We believe that these simplifications will not qualitatively

change our results.

In the following we let θCin (resp. θCout) be the value of θ3 on H
in
C (resp. H

out
C ) and denote

by x1 (resp. x2) the value of the first (resp. second) coordinate on H
in
C (resp. H

out
C ).

We first assume that eC does not depend on θ3. This allows us to calculate the transit

time from H
in
C to H

out
C :

TC = − 1

eC
log x1.

We then assume that g takes a very simple form, i.e., we choose g(θ3) = −λ
4 sin(4θ3), with

λ > 0. Then X and Y are at θ3 = 0 and π
2 , and P is at θ3 = π

4 . With this form for g we can

solve θ̇3 = g(θ3), and find

tan 2θ3(t) = tan 2θCin e−λt,

taking θ3(0) = θCin. With θ3(TC) = θCout , we find

tan 2θCout = tan 2θCin x
λ

eC

1 , (4.7)

It would be tempting to assume also that cC does not depend on θ3; however, this turns out

to be too restrictive. Instead, we write

cC(θ3) =
cCX + cCY

2
+

cCX − cCY

2
cos 2θ3; (4.8)

this ensures cC(0) = cC(π) = cCX and cC(π
2 ) = cC(3π

2 ) = cCY . With this, the exit value

of x2 is exp
(

−
∫ TC

0 cC(θ3(t
′)) dt′

)

. From above, we know tan 2θ3(t) explicitly, so cos(2θ3) =

±(1 + tan2(2θCin)e−2λt)−1/2, where we take the positive square root if 0 ≤ θCin < π
4 and the

negative square root if π
4 < θCin ≤ π

2 . Note that

∫

1√
1 + K2e−2λt

dt = − 1

2λ
log

(√
1 + K2e−2λt − 1√
1 + K2e−2λt + 1

)
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and so we find

log x2

log x1

=
δCX + δCY

2
± cCX − cCY

4λ log x1
log















(
√

1 + tan2 2θCin x
2λ
eC
1 − 1

)

(

| sec 2θCin | + 1
)

(
√

1 + tan2 2θCin x
2λ
eC
1 + 1

)

(| sec 2θCin | − 1)















where x2 and x1 are both small. As before, the plus sign is taken if 0 ≤ θCin < π
4 and the

minus sign is taken if π
4 < θCin ≤ π

2 .

If we are away from θCin = π
4 , such that tan2 2θCin x

2λ
eC

1 ≪ 1, then we can approximate the

function above as:

log x2

log x1

∼































δCX − cCX−cCY

2λ log x1
log
(

1 − tan2 θCin

)

, 0 ≤ θCin < π
4 ,

1
2(δCX + δCY ), θCin = π

4 ,

δCY + cCX−cCY

2λ log x1
log
(

1 − cot2 θCin

)

, π
4 < θCin ≤ π

2 ,

(4.9)

where x2 and x1 are both small, and the bounds near π
4 are taken to mean that tan 2θCin x

λ
eC

1 ≪
1.

4.2. Composing the maps: Case I. In this subsection we consider the return maps for

Case I. In section 4.2.1 we compose the maps starting on each of H
in
A , H

in
B and H

in
C , and for

each return map, we focus on the θ3 component. We argue that in the parameter regimes

of interest, the return maps give the same dynamics regardless of which section we start on.

Thus in section 4.2.2, where we consider the other component of the return map, we need only

consider the return map starting on H
in
A . Note that away from resonance when the network

as a whole is attracting, this is not the case — in order to fully describe the dynamics of

trajectories near the network, the composition of the maps must be considered starting on all

three Poincaré sections. This observation was made in [17] and more details can be found in

that article. A second example of this behaviour was also seen in [24] for a more complicated

heteroclinic network.

4.2.1. θ3 component. As in the previous section, we denote by θAin (resp. θAout) the

value of θ3 on H
in
A (resp. H

out
A ), and by θ̂Ain the value of θ3 after one application of the return

map from H
in
A to itself; θ̂Ain will typically depend on θAin and x2. The symbols θ̂Bin and

θ̂Cin are defined in an analogous way on the cross-sections H
in
B and H

in
C . Without introducing

ambiguity, we also write x2 for the value of x2 on H
in
A , r3 for the value of r3 on H

in
B and x1

for the value of x1 on H
in
C .
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We wish to compute the derivative of θ̂Ain with respect to θAin at two special values of

θ3, those corresponding to the invariant subspaces containing the heteroclinic cycles through

X and Y , and similarly for derivatives of θ̂Bin and θ̂Cin. We can compute these derivatives

without computing the entire return map, and doing so greatly simplifies the computation

(which we give below) of the return map for general values of θ3. Simple calculations following

from section 4.1 give

dθAout

dθAin
=

{

xδCY −δCX
2 , θAin = 0

xδCX−δCY

2 , θAin = π
2

dθBout

dθBin
=











r
1−

δBx
δBy

3 , θBin = 0

r
1−

δBy
δBx

3 , θBin = π
2

and
dθCout

dθCin
= x

λ
eC
1 , θCin = 0,

π

2
.

Furthermore, at θ3 = 0,

r3 = xδAx

2 , x1 = rδBx

3 , x2 = xδCX

1

and at θ3 = π
2

r3 = x
δAy

2 , x1 = r
δBy

3 , x2 = xδCY

1 .

We can now compute the derivatives of the θ3 components of the full return map at 0

and π
2 ; we use the chain rule and make the assumption that the global parts of the maps only

affect the derivatives by an O(1) amount. We find that we get different results, depending on

the initial cross-section for the return map. This is consistent with the results derived in [17]

using different methods. If we start on H
in
A we have

dθ̂Ain

dθAin
=

{

xνAX

2 , θAin = 0

xνAY
2 , θAin =

π

2
.

Starting on H
in
B and H

in
C we have, respectively,

dθ̂Bin

dθBin
=

{

rνBX

3 , θBin = 0

rνBY
3 , θBin =

π

2

and

dθ̂Cin

dθCin
=

{

xνCX

1 , θCin = 0

xνCY
1 , θCin =

π

2
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where

νAX = δAy − δAx
δBx

δBy
+

λ

eC
δAxδBx,

νAY = δAx − δAy
δBy

δBx
+

λ

eC
δAyδBy,

νBX = −δBx

δBy
+

λ

eC
δBx + δAyδBxδCX + (1 − δX),

νBY = −δBy

δBx
+

λ

eC
δBy + δAxδByδCY + (1 − δY ),

νCX =
λ

eC
+ δAyδCX − δAxδCX

δBx

δBy
,

νCY =
λ

eC
+ δAxδCY − δAyδCY

δBy

δBx
.

Note that the sign of the appropriate νij determines the slope of the θ3 part of the return

map at θ3 = 0 or θ3 = π
2 . This in turn determines the stability properties of the invariant

subspaces at θ3 = 0 or θ3 = π
2 in the full return map.

The following relations hold between the constants defined above:

νAXδCX = νCX +
λ

eC
(δX − 1), νAY δCY = νCY +

λ

eC
(δY − 1),

νBXδAx = νAX +

(

δAy

δAx
− 1

)

(δX − 1), νBY δAy = νAY +

(

δAx

δAy
− 1

)

(δY − 1),

νCXδBx = νBX +

(

1 − δBx

δBy

)

(δX − 1), νCY δBy = νBY +

(

1 − δBy

δBx

)

(δY − 1).

If δX is sufficiently close to 1, then νAX , νBX and νCX all have the same sign; since we are

interested in resonance phenomena for which δX ≈ 1, we will assume this is the case. Similarly,

if δY is sufficiently close to 1, then νAY , νBY and νCY all have the same sign; we will assume in

the following that this is the case. This assumption means that the stabilities of the invariant

subspaces at θ3 = 0 and θ3 = π
2 are independent of the section on which the composition of

the return map starts.

Away from resonance, it is possible that, for example, νAX > 0 and νBX < 0. It is precisely

this type of condition which gives the very delicate stability properties of the subcycles of

the network that is seen in [17]. There, a subcycle may appear to be attracting if nearby

trajectories are observed as they pass through one Poincaré section, but may seem to be

repelling if trajectories are observed at a different Poincaré section. This type of stability

cannot be seen for objects such as periodic orbits or equilibria in flows. In this article, we

only consider the case close enough to resonance when this phenomena does not occur, and

hence need only consider composing the maps starting on H
in
A .
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θAin

θ̂Ain

0

(a) νAX , νAY > 0

θAin

θ̂Ain

0

(b) νAX > 0, νAY < 0

Figure 4.1. Case I: θ3 component of the full return map, starting on H
in
A with a fixed value of x2, for two

choices of signs of the νij .

Consider first the case for which νAX , νAY > 0. Then, for fixed x2, the graph of θ̂Ain as

a function of θAin has flat sections near θAin = 0, π
2 , π, 3π

2 , that is, dθ̂Ain

dθAin
→ 0 as x2 → 0

at these values of θAin. Since almost all trajectories pass close to X, −X, Y or −Y , almost

all trajectories will return to H
in
A with a value of θ3 approximately equal to 0, π

2 , π or 3π
2 .

As a consequence, the sections of the graph of θ̂Ain between the flat sections will be steep.

Figure 4.1(a) shows schematically the shape of the graph of θ̂Ain as a function of θAin for

trajectories with a fixed value of x2.

The width of the small flat section near π
2 can be computed. Points in this part of the

graph correspond to orbits which pass close to Y , and the left boundary is given by the

preimage of π
2 − θǫB under the map ΨAB ◦ φA, where θǫB was defined in (4.4). We define θǫA

to be such that this preimage is π
2 − θǫA.

We can compute θǫA using the approximations of φA given in section 4.1, and assuming

the global map has only an O(1) effect. Since θǫB ≪ 1, we approximate the φA map as

log r3 = δAy log x2,

tan θBin = tan θ3 x
δAy−δAx

2 .

Approximating tan θǫB ∼ 1/θǫB (and similarly for θǫA), we have

θǫA = θǫB(x2)
δAy−δAx

= r

δBy
δBx

−1

3 x
δAy−δAx

2

= x

δBy
δBx

σ

2
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where we define

σ = δAy − δAx
δBx

δBy
.

The right boundary of the flat section near π
2 can be found by symmetry, and so the width

of the flat section near π
2 scales like x

δBy
δBx

σ

2 .

Now we consider other cases of the signs of νAX and νAY . Note that

νAX = σ +
λ

cCx
δX and νAY = −δBy

δBx
σ +

λ

cCy
δY .

Thus, if σ > 0, then νAX > 0, while if σ < 0, then νAY > 0, and so it is not possible to have

both νAX < 0 and νAY < 0. This leaves the cases where νAX and νAY have opposite signs. If

σ > 0, then either νAY > 0, as considered above, or νAY < 0, meaning that there is no small

step near θ3 = π
2 , and the invariant subspace θ3 = π

2 is repelling; a sketch of the θ component

of the return map in this latter case is shown in figure 4.1(b).

If σ < 0, there are again two cases, similar to those described above, but with the roles of

θ = 0 and θ = π
2 reversed. We believe the dynamics for σ < 0 will be analogous to that for

σ > 0 (only with this reversal) and so consider just the case σ > 0 for the remainder of this

article.

It is useful here to summarise the conditions we now have on the eigenvalue ratios in

Case I.

• By assumption A7, we have δBx < δBy. This implies that in a neighbourhood of

δX = δY = 1 we must have δCXδAx > δCY δAy.

• We additionally choose to impose σ > 0, and specifically want this to hold when

δX = δY = 1. Since

σ > 0 ⇒ δAyδBy > δAxδBx

we require δCX > δCY so that σ > 0 in a neighbourhood of δX = δY = 1.

• Together these conditions imply

δCX

δCY
>

δAy

δAx
>

δBx

δBy

Note that
δAy

δAx
could be greater or less than 1.

Fixing δBx and imposing the requirements δBx

δBy
< 1, δCX

δCY
> 1 and σ > 0 still gives us the

freedom to vary both δX and δY above and below 1.

4.2.2. x2 component. We now compose the three local and global maps starting on H
in
A ,

using initial values of θAin and x2 with 0 ≤ θ3 ≤ π
2 and x2 small, and focus on what happens
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to the x2 component of the map. We will eventually end up with an approximate map of the

form

x2 → Dxδ
2

where D and δ are functions depending on θAin and x2. In other words, the amount of

contraction or expansion of the x2 coordinate of an orbit in one circuit of the network will

depend on the initial condition for that orbit; this is a consequence of the network structure

and is different to the case for maps modelling the dynamics near a single heteroclinic cycle.

To capture this effect, in the following we write down the contraction or expansion rate of

each the local maps as a function of the incoming coordinates for that local map, then rewrite

the incoming coordinates as a function of the initial conditions of the orbit on H
in
A . Thus, the

functions we obtain for the contraction rates at B and C will depend on θAin and the value

of x2 on H
in
A .

We use the approximate forms of the local maps derived in section 4.1, making use of

the assumed form of the dynamics at C. We will also assume that the global maps multiply

the small variable by a θ3-dependent order-one constant (as described in section 3.2), so

r3 = DB(θ3)r
Aout

3 etc., and that the θ3 parts of the global maps do nothing, that is, θ̄B(θ3) = θ3,

and so θBin = θAout etc.). This will give a distorted view of the correct picture, but the

distortion will only be slight, since the dynamics is dominated by the local maps.

We focus our discussion on the interval 0 ≤ θAin ≤ π
2 ; this can be extended to 2π by

symmetry. To allow for this, we will include absolute values in expressions such as (for

example) log | cos θAin|.
We divide the interval 0 ≤ θAin ≤ π

2 into two regions, which are the different regions of

validity of the approximate local maps φB and φC . The boundaries of the regions depend on

the value of r3 on H
in
B as given in (4.5). We have θǫB = r

δBy
δBx

−1

3 and the two regions are given

by cot θBin ≫ θǫB and cot θBin ≪ θǫB . As computed in the previous section, the two regions

can also be defined on H
in
A as cot θAin ≫ θǫA and cot θAin ≪ θǫA, where θǫA = x

δBy
δBx

σ

2 .

Region 1. First, consider the region 0 ≤ θAin ≪ π
2 − θǫA, so tan θAin x

δBy
δBx

σ

2 ≪ 1. After φA

and ΨAB we have

tan θBin = tan θAin x
δAy−δAx

2 ,

log r3 = log DB + δA(θAin) log x2,

where

δA(θAin) = δAx +
log
∣

∣cos θAin

∣

∣

log x2
+

1

2

log
(

1 + tan2 θAin x
2(δAy−δAx)
2

)

log x2
.
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Although δA(θAin) depends also on log x2, we omit specifying this dependence in the argument

(and in δB(θAin) and δC(θAin) below) to simplify the writing.

Since we are in region 1, trajectories visit the X part of the second local map. Therefore,

after φB and ΨBC , we have:

tan θCin = tan θBin
∣

∣r3 cos θBin
∣

∣

1−
δBx
δBy

log x1 = log DC + δB(θAin) log r3

where

δB(θAin) = δBx + δBx

log
∣

∣cos θBin

∣

∣

log r3

= δBx



1 − 1

2

log
(

1 + tan2 θAin x
2(δAy−δAx)
2

)

δA(θAin) log x2



 .

Now, tan θCin is small compared to 1, since we are in the region where cot θBin ≫ r

δBy
δBx

−1

3 .

This follows from noting that

tan θCin = tan θBinr
1−

δBx
δBy

3

∣

∣cos θBin

∣

∣

1−
δBx
δBy

=

∣

∣

∣

∣

∣

tan θBinr

δBy
δBx

−1

3

∣

∣

∣

∣

∣

δBx
δBy

∣

∣sin θBin

∣

∣

1−
δBx
δBy sgn

(

tan θBin
)

.

The first term is small by assumption, and the second and third are at most 1 since δBx < δBy

(assumption A7). Therefore we use the X part of the map at C, and get, after φC and ΨCA:

log x̂2 = log DA + δC(θAin) log x1

where x̂2 is the value of x2 on H
in
A after one full circuit of the network and

δC(θAin) = δCX − cCX − cCY

2λ log x1
log
(

1 − tan2 θCin
)

= δCX +
cCX − cCY

2λδA(θAin)δBx log x2
tan2 θCin

since tan2 θCin ≪ 1.

Substituting for x1 in the above expression for x̂2, we find that

log x̂2 = log DX + δ(θAin) log x2,

where

log DX ≈ log DA(0) + δCX (log DC(0) + δBx log DB(0))
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and

δ(θAin) = δA(θAin)δB(θAin)δC(θAin)

= δA(θAin)δBx



1 − 1

2

log
(

1 + tan2 θAin x
2(δAy−δAx)
2

)

δA(θAin) log x2





×
(

δCX +
cCX − cCY

2λδA(θAin)δBx log x2
tan2 θCin

)

≈ δBxδCX



δA(θAin) − 1

2

log
(

1 + tan2 θAin x
2(δAy−δAx)
2

)

log x2





= δX + δBxδCX

log
∣

∣cos θAin

∣

∣

log x2

.

We have ignored the correction term in δC(θAin) since it is much smaller than that in δA(θAin).

In this region, δ(θAin) ranges between δX (when θAin = 0) and δAyδByδCX , since at the

edge of region 1, cos θAin ∼ x

δBy
δBx

σ

2 .

Region 2. Now consider the region with tan θAin x

δBy
δBx

σ

2 ≫ 1. Orbits with θAin in this region

will visit the Y parts of all three maps. Note that since δBy > δBx, the above assumption also

implies that tan θAin x
δAy−δAx

2 ≫ 1.

For φA in this region we write

δA(θAin) = δAy +
log
∣

∣sin θAin

∣

∣

log x2
+

1

2

log
(

1 + cot2 θAin x
2(δAx−δAy)
2

)

log x2
,

and we can approximate δA(θAin) by δAy.

After φB , we find

δB(θAin) =δBy + δBy

1
2 cot2 θBin r

2(1−
δBy
δBx

)

3

log r3

=δBy






1 +

1
2 cot2 θAin x

−2
δBy
δBx

σ

2

δAy log x2







and after φC we find

δC(θAin) =

(

δCY − cCX − cCY

2λδAyδBy log x2
cot2 θAin x

−2
δBy
δBx

σ

2

)

.
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The corrections to the B and C parts of the map are small and comparable, but large

compared to the correction to the A part of the map, so we find, for tan θAin x

δBy
δBx

σ

2 ≫ 1,

δ(θAin) = δY +

(

δByδCY +
(δCY − δCX)eC

λ

)

cot2 θAin x
−2

δBy
δBx

σ

2

2 log x2
.

In this region, the correction term could be of either sign since δCX > δCY . However, in the

limit of small x2, the value of δ(θAin) in all of region 2 is δY .

4.3. Case I: Resonance of a single subcycle. We can use the results derived in the

previous section to consider resonance bifurcations of a distinguished subcycle within the

Case I network. These results could be derived using the traditional cross-sections (as is

done explicitly in [17]), and the results would be identical. However, rather than repeat that

analysis, we show how these results can be achieved using our new methods. Specifically, we

consider the subcycle of the network given by A → B → X → A, which lies in the subspace

y3 = 0. This cycle cannot be asymptotically stable since B has a two-dimensional unstable

manifold.

The dynamics near this cycle are described by a two-dimensional map. Using the results

of the previous section, it can be shown that the return map starting on H
in
A is given by

x2 → DXxδX

2 ,

θ3 → θ3x
νAX
2 .

If we start on a different section, the map will be similar, with, e.g., x2 replaced by r3, and

νAX replaced by νBY .

The fixed point in this map at θ3 = x2 = 0 corresponds to the heteroclinic cycle. We know

the cycle cannot be asymptotically stable, but it can be attracting if δX > 1 and νAX > 0 (as

discussed above).

A resonance bifurcation of the heteroclinic cycle occurs when δX = 1. This bifurcation

creates a fixed point of the map at θ3 = 0, x2 = D
1/(1−δX )
X , which is also in the subspace

y3 = 0. Furthermore, it is straightforward to show that if 0 < DX < 1 then a periodic orbit

occurs for δX < 1 and so the bifurcation is supercritical, while if DX > 1 then a periodic

orbit occurs when δX > 1 and so the bifurcation is subcritical. If this bifurcation occurs

supercritically, then the resulting periodic orbit will be asymptotically stable. That is, we

have the possibility that the resonance bifurcation is from a heteroclinic cycle that is not

asymptotically stable but it produces a periodic orbit that is asymptotically stable. To the

best of our knowledge, this scenario has not been reported before.
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4.4. Composing the maps: Case II. We repeat the above calculations for the network

with complex eigenvalues. There are again two regions, given by the same conditions as before.

Due to the rotation of θ3 at A, the regions are defined on H
in
B rather than H

in
A , but we could

map these back to H
in
A using the expression θBin = θAin − ω

eA
log x2.

We again begin by considering the θ3 components of the maps at θBin = 0 and θBin = π
2 .

These points are not subspaces in this case (as they are in Case I), but can still give us

information on the geometry of the θ3 part of the return maps. The calculations proceed

exactly as before, except that cAx = cAy = cA. This means we have a simplification and find

νAX = δA

(

1 − δBx

δBy

)

+
λ

eC
δAδBx

which must be positive. The relationships with νBX and νCX given in section 4.2.1 imply

that in addition νBX > 0 and νCX > 0. Thus the θ3 part of the return map will have a small

gradient close to the point where θBin = 0.

The computation of νAY , νBY and νCY follows as in Case I, and again we see that they all

have the same sign so long as we are close enough to δY = 1. We assume that this is the case,

and further, that they are all positive, as before. The dynamics in the case where νAY < 0 is

very similar. Thus, again, we need only consider the return map starting on H
in
A .

The graph of θ̂Ain against θAin will look very similar to that for Case I, shown in fig-

ure 4.1(a), except that as the initial value of x2 varies, the graph will shift to the right or left.

This is discussed in more detail in section 5.2.

We next compute δ(θAin) for Case II, in exactly the same manner as for Case I. The only

difference occurs after φA; now we have δA(θAin) = δA, which is a constant, and

θBin = θAin − ω

eA
log x2.

The remainder of the calculations follow in exactly the same manner, and we find that in

region 1,

δ(θAin) = δX + δBxδCX

log

∣

∣

∣

∣

cos

(

θAin − ω

eA
log x2

)∣

∣

∣

∣

log x2

and in region 2,

δ(θAin) = δY +

(

δByδCY +
(δCY − δCX)eC

λ

) cot2
(

θAin − ω
eA

log x2

)

x
2δA(1−

δBy
δBx

)

2

2 log x2
.

5. Resonance of heteroclinic networks. We are now in a position to determine the effect

on the dynamics near each network of one or more of the cycles within the network undergoing
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AB

C D

δXδX = 1

δY

δY = 1

Figure 5.1. The (δX , δY ) parameter plane, showing the definition of the quadrants A, B, C, and D.

a resonance bifurcation. We focus on finding fixed points of the approximate return maps we

have derived, which correspond to periodic orbits that make one circuit of the network before

closing.

Throughout this section, we start with a circle of initial conditions on H
in
A with fixed x2

and 0 ≤ θ3 < 2π, and consider the values of x2 and θ3 when these trajectories first return to

H
in
A ; we again refer to these values as x̂2 and θ̂3, respectively. We use the approximations for

the maps derived in section 4.1 to plot ‘nullclines’ of θ3 and x2 on H
in
A . A point (θ3, x2) ∈ H

in
A

is said to be on the x2-nullcline (resp. θ3-nullcline) if the value of x2 (resp. θ3) after one circuit

around the network is unchanged (resp. unchanged modulo 2π). Fixed points of the Poincaré

map occur when the x2- and θ3-nullclines cross. We can identify these from the sketches of

the nullclines, and are also able in some cases to identify the stability of the fixed points by

considering how x2 and θ3 vary close to the fixed points.

We then discuss how the nullcline figures change as the quantities δX and δY are varied

and are thus able to draw bifurcation diagrams. Figure 5.1 shows the (δX , δY ) parameter

plane, and labels the four quadrants around the point δX = δY = 1. In the following, we refer

to these quadrants and also draw bifurcation diagrams as we traverse a small circle around

the point δX = δY = 1.

Recall that for both networks the return map has the general form

log x̂2 = log D(θ3) + δ(θ3) log x2 (5.1)

where D(θ3) is the constant arising from the global parts of the map and δ(θ3) (which depends

on x2 as well as θ3) was calculated in section 4. If δ(θ3) > 1 for all θ3 and D(θ3) < 1 for

all θ3, then log x̂2 < log x2 for all θ3 and all small x2. Hence, the network is asymptotically

stable. If δ(θ3) > 1 but D(θ3) > 1 for some θ3, then for sufficiently small x2, log x̂2 < log x2

and the network is still asymptotically stable. However, if D(θ3) > 1 and x2 is large enough

that log x2 > log D(θ3)/(1 − δ(θ3)), then log x̂2 > log x2 and trajectories move away from the
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0

log x2

2ππ
2 π

θ3

Figure 5.2. The figure shows θ3-nullclines on H
in
A (in blue) for the network in Case I, when νAX > 0,

and δ(θ3) > 1, so the network is attracting (quadrant A in figure 5.1). The orange arrows indicate that x2 is

decreasing, and the blue arrows indicate the direction of change of θ3.

network. Thus, in the case that D(θ3) > 1 for some θ3, the basin of attraction of the network

could be quite small as δ(θ3) → 1 from above.

For simplicity, we thus consider only the case when D(θ3) < 1 for all θ3. This means the

network is attracting and has a large basin of attraction if δ(θ3) > 1 for all θ3, which makes it

simpler to study what happens when δ(θ3) goes through 1. This condition on D(θ3) is similar

to assuming a supercritical bifurcation in other types of bifurcation.

5.1. Case I: Computing nullclines. We first consider computing the θ3 and x2 nullclines

for Case I, the network with real eigenvalues.

5.1.1. θ3-nullclines. We begin by finding fixed points of the θ3 part of the map, and

using this information to draw θ3-nullclines on Hin
A . Figure 4.1 shows the value of θ3 after

one excursion around the network. There are fixed points at θ3 = 0, π
2 , π, 3π

2 . If νAY > 0,

then there are four further fixed points either side of π
2 and 3π

2 . These additional points are

at (approximately) π
2 ± θǫA and 3π

2 ± θǫA , and so get closer to π
2 and 3π

2 as x2 decreases.

Figure 5.2 shows a sketch of the θ3-nullclines in the case νAY > 0. The distance from

the curved θ-nullclines to π
2 scales like x

δBy
δBx

σ

2 . The blue arrows in the figure indicate how θ3

changes under iteration of the map. This shows that the nullclines at θ3 = 0, π
2 , π, 3π

2 are

attracting, but the additional (curved) nullclines are repelling. In the case that νAY < 0, the

additional nullclines are not present and the nullclines at π
2 and 3π

2 are repelling.

5.1.2. x2-nullclines. We next construct the x2-nullclines. Our calculations are done ex-

plicitly for the region 0 ≤ θ3 ≤ π
2 but results for the remaining values of θ3 follow from

symmetry.
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δY

δX

δM

0 2π
θ3

Figure 5.3. Case I: a sketch of δ(θ3) against θ3 for fixed x2.

The return map has the form given in (5.1) with

δ(θ3) =



























δX + δBxδCX
log |cos θ3|

log x2

0 < θ3 < π
2 − θǫA,

δY +

(

δByδCY +
(δCY − δCX)eC

λ

)

cot2 θ3 x
−2

δBy
δBx

σ

2

2 log x2

π
2 − θǫA < θ3 ≤ π

2 .

Figure 5.3 shows a sketch of δ(θ3) against θ3. As discussed in section 4.1, in region 1, δ(θ3)

varies between δX and δM , where δM = δAyδByδCX . Note that δM is greater than both δX

(since σ > 0 implies that δAyδBy > δAxδBx) and δY (since δCX > δCY ). The existence of this

maximum of δ(θ3) close to δM is persistent in the limit of small x2. Note also that θ3 = 0, π are

always local minima of δ(θ3) but θ3 = π
2 , 3π

2 could be local minima or maxima, depending on

the sign of the factor in front of the second term in δ(θ3) in region 2. However, this correction

term is much smaller than the correction term to δ(θ3) in region 1, and the value of δ(θ3) on

the boundary of region 2 tends to δY in the limit of small x2.

Thus, the maximum value of δ(θ3) is δM , and the minimum, in the limit of small x2, is

either δX or δY . In [18], we showed that if minθ3
δ(θ3) > 1, then the heteroclinic network

is asymptotically stable, and if maxθ3
δ(θ3) < 1, then the heteroclinic network is completely

unstable in that the basin of attraction has measure zero. Therefore, we expect to see stability

changes, or resonances, of the heteroclinic network when δX , δY or δM pass through 1.

Intuitively, we expect to find fixed points near θ3 = 0 if δX < 1 (but close to one) and

fixed points near θ3 = π
2 if δY < 1 (but close to one). To check this, we find the x2-nullclines

explicitly by finding solutions to the equation

log x2 = log D(θ3) + δ(θ3) log x2.
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If such solutions exist in the region θ < π
2 − θǫA , then we have

log x2 = log D(θ3) + δX log x2 + δBxδCX log | cos θ3|

which, after rearranging gives the curve describing the nullclines:

log x2 =
1

1 − δX
(log D(θ3) + δBxδCX log | cos θ3|) .

Since we assume D(θ3) < 1, we require δX < 1 for solutions in this region, as expected. This

curve has a maximum at θ3 = 0, where log x2 = log DX/(1 − δX). For later convenience, we

define x⋆
X = D

1/(1−δX )
X .

Suppose now that solutions exist in the region π
2 − θǫA < θ3 < π

2 . These solutions satisfy

log x2 = log D(θ3) + δY log x2 +

(

δByδCY +
(δCY − δCX)eC

λ

)

cot2 θ3 x
−2

δBy
δBx

σ

2

2 log x2
.

To leading order, we can write this as

log x2 =
1

1 − δY
log DY ,

and hence for solutions in this region we require δY < 1, as expected. For later use, we define

x⋆
Y = D

1/(1−δY )
Y .

If δY < 1 and δM > 1, then there will be additional solutions at the boundary of the two

regions, that is, where θ3 ∼ π
2 − θǫA, for x2 < x⋆

Y . Note that the x2-nullclines concerned have

the same scaling (in terms of distance from π
2 ) as the additional θ3-nullclines (which exist only

if νAY > 0). Thus, to determine the relative positions of the two sets of nullclines, and to

work out where the nullclines cross, we would have to include more details about the global

constants. In practice, it is likely that both cases are possible; we discuss the possibilities

further below.

In figures 5.4, 5.5 and 5.6 we show sketches of the θ3- and x2-nullclines in the quadrants

B, D and C around the point δX = δY = 1, sufficiently close to that point so that δM > 1.

We show figures only for the case νAY > 0, and so the additional x2-nullclines are present,

but discuss the case νAY < 0 below.

In figure 5.4, δX < 1 and δY > 1, and we can see that a stable fixed point occurs at

θ3 = 0, x2 = x⋆
X (and similarly at θ3 = π, by symmetry). In figure 5.6, δY < 1 and δX > 1.

In the case shown, νAY > 0, and there is the possibility of either one or three fixed points

appearing close to θ3 = π
2 at resonance (and also near 3π

2 , by symmetry). The figure shows

the case where the additional x2-nullclines lie further from π
2 than the additional θ3-nullclines,

and three fixed points are created, one stable and two of saddle type. A second possibility
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0

log x2

2ππ
2

π
θ3

x⋆
X

Figure 5.4. The figure shows nullclines on H
in
A for θ3 (blue) and x2 (red) for Case I, in quadrant B of the

(δX , δY )-plane. The orange and blue arrows denote the direction of change of x2 and θ3 respectively. The pink

dots indicate stable fixed points of the map.

is that the x2-nullclines lie closer to π
2 than the θ3-nullclines and there is only a single stable

fixed point created as δY passes through 1. If νAY < 0, then there would also only be a single

fixed point created as δY decreases through 1, but in this case it would be of saddle type as

the nullcline at θ3 = π
2 would be repelling.

In figure 5.5, δX , δY < 1, and we show the figure for δM > 1. Both sets of fixed points

described above exist, and all the nullclines continue to exist as log x2 decreases to −∞. In

this case, the fixed points created in the two resonance bifurcations at δX = 1 or δY = 1 do

not interact with each other, a consequence of the two red nullclines being distinct from one

another for arbitrarily small x2.

Finally, in figure 5.7 we show the case where δM < 1. This is still in quadrant C of the

(δX , δY ) plane, since δM > δX , δY . In this case the x2-nullclines created in the two resonance

bifurcations of the individual sub-cycles have joined up, and x2-nullclines exist only for a finite

range of log x2. The additional resonance bifurcation that occurs when δM passes through

1 has the possibility of creating further fixed points near the additional θ3-nullclines, if they

exist (i.e., if νAY > 0), and if they were not already created in the δY = 1 resonance.

5.1.3. Bifurcation diagrams. We now use the nullcline sketches to draw bifurcation dia-

grams. In figure 5.8 we show a bifurcation diagram obtained as a circle is traversed around

the point δX = δY = 1 in the (δX , δY ) plane. We assume we are close enough to this point so

that δM > 1 and hence that the periodic orbits created when δX passes through one are not

connected to those that arise when δY passes through one.

If νAY > 0, there are two cases to consider: either the x2-nullclines are closer to π
2 or

further from π
2 than the curved θ3-nullclines. In the first case, the only equilibria are at θ3 = 0
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Figure 5.5. The figure shows nullclines on H
in
A for θ3 (blue) and x2 (red) for Case I, in quadrant C of the

(δX , δY ) plane. All lines, curves and dots have the same interpretation as in figures 5.4 except that the green

dots indicate saddle fixed points.
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2ππ
2

π θ3

x⋆
Y

Figure 5.6. The figure shows nullclines on H
in
A for θ3 (blue) and x2 (red) for Case I, in quadrant D of the

(δX , δY ) plane, in the case δM > 1 All lines, curves and dots have the same interpretation as in figures 5.4 and

5.5.

and θ3 = π
2 . In the second case, there will be further equilibria; one possibility is shown in

the right panel of figure 5.8.

The supplementary online material contains a movie showing how the nullclines in Case I

vary as a circle of radius 0.02 around δX = δY = 1 is traversed in the (δX , δY ) plane. In

this movie, we kept σ fixed at 0.05, λ
eC

= 0.07, δBx

δBy
= 0.93, δCX

δCY
= 1.08, and chose the other

coefficients such that the value of λ
eC

for which δ(π
2 ) changes from a local minimum to a local

maximum is 0.07. The red solid curves are the small nullclines in region 1, the green solid

curves are the small nullclines in region 2, and the blue solid curves are the θ3 nullclines. The

red and green dashed curves are the approximate small nullclines computed above. Regions 1
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Figure 5.7. The figure shows nullclines on H
in
A for θ3 (blue) and x2 (red) for Case I, in quadrant C of the

(δX , δY ) plane, in the case δM < 1. All lines, curves and dots have the same interpretation as in figures 5.4

and 5.5.

log x2

δY = 1δY = 1 δX = 1δX = 1

AA B C D

log x2

δY = 1δY = 1 δX = 1δX = 1

AA B C D

Figure 5.8. The figures show the creation of periodic orbits as a circle is traversed clockwise in (δX , δY )

space around the point δX = δY = 1, for the Case I network. The left hand figure shows the case when the

x2-nullclines are inside the curved θ3-nullclines, and the right hand figure shows the case when the x2-nullclines

are outside these θ3-nullclines. The labels A, B, C and D correspond to the quadrants labelled in figure 5.1.

The pink curves indicate stable periodic orbits and the green curves indicate saddle periodic orbits. (Note that

the pink curve actually represents two symmetry-related orbits and the green curve four).

and 2 are separated by green dashed curves. As the point δX = δY = 1 is circled, the region 1

and region 2 small nullclines appear and disappear as the lines δX = 1 and δY = 1 are crossed

respectively, leading to the creation or destruction of fixed points near X or Y .

5.2. Case II: constructing nullclines. A similar analysis can be performed for the network

with complex eigenvalues.

5.2.1. θ3-nullclines. We will assume that νAY > 0; the situation for νAY < 0 in Case II

has only very minor differences.

Plotting the value of θ̂3 as a function of θ3 for some fixed initial value of x2 gives a

schematic picture similar to that shown in figure 4.1(a). However, differences are noticed as

the value of x2 is decreased. Specifically, the effects of reducing the initial value of x2 include
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those given above for Case I, i.e., the steep portions of the graphs become steeper, and the

small ‘step’ becomes smaller, but the additional time spent in a neighbourhood of A when x2

is smaller means that the value of θ3 is ‘rotated’ for longer due to the complex eigenvalues

(specifically, θBin = θAin − ω
eA

log x2). This has the effect of shifting the graph of θ̂3 to the left

as x2 is decreased. This means that the topology of the θ3-nullclines is different in Cases I

and II, as we now explain.

For the value of x2 shown in figure 4.1, there are four points at which the value of θ3 is

the same after one circuit of the network. These points are thus on the θ3-nullclines. As x2

decreases, the graph of θ̂3 moves to the left, and thus the four ‘fixed points’ in the θ3 map

come together and disappear in pairs, in a manner similar to a saddle-node bifurcation in a

map. There are then some values of x2 for which there are no fixed points in the θ3 map. If

x2 decreases so that the value of θ3 − ω
eA

log x2 has changed by 2π, then the graph in 4.1 will

have rotated back to its original position (except that since x2 will now have decreased, the

vertical parts will be steeper and the small step smaller, as discussed previously).

Figure 5.9 shows the location of the θ3-nullclines on H
in
A . The vertical gap between the

nullclines is such that the difference in log x2 is 2πeA

ω . Note that H
in
A is a cylinder, and each of

the θ3-nullclines is topologically a circle around the cyclinder. There is an infinite number of

these nullclines. The larger approximately vertical portions of each θ3-nullcline should appear

at θ3 = 0 and θ3 = π, by our assumption that the global parts of the θ3 maps do nothing.

However, for clarity, in this and following figures we show these portions of the curves slightly

away from 0 and π. This has no effect on the topology of the intersections of the θ3-nullclines

with the x2-nullclines we describe later.

In figure 5.9 we also show how θ3 changes away from the nullclines, marked with blue

arrows. We only include these close to the nullclines, as since θ3 is a circular variable, it does

not make sense to say whether θ3 is increasing or decreasing when it is changing by a large

amount. Thus the direction of change of θ3 can change from right to left without crossing a

nullcline.

5.2.2. x2-nullclines. Determination of the existence and shape of the x2-nullclines pro-

ceeds exactly as in Case I, except for consideration of additional rotation as x2 decreases, as

for the θ3-nullclines. Thus, the x2-nullclines for Case II will look the same as in Case I except

that the θ3 coordinate is replaced by θ3 − ω
eA

log x2. In other words, the θ3 coordinate of the

nullclines rotates to the left as x2 decreases.

Figures 5.10, 5.11, and 5.12 show the θ3 and x2-nullclines for quadrants B, C and D of the

(δX , δY ) plane respectively, for δM > 1. In these cases, the x2-nullclines exist for arbitrarily

small x2, and so there will be an infinite number of intersections of the θ3- and x2-nullclines,

and hence an infinite number of fixed points in the map or periodic orbits in the original flow.
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Figure 5.9. Case II: nullclines of θ3 (blue curves). Compare with figure 4.1 which shows how θ3 varies at

fixed x2. The blue arrows indicate the direction of change of θ.

In figure 5.10, δX < 1 and δY > 1. As δX decreases through 1, fixed points are created

in saddle-node bifurcations for θ3 ≈ 0, π and with x2 ≈ x⋆
X . In each saddle-node pair, the

larger amplitude solution is initially stable, and the smaller is of saddle-type. As δX changes,

it is likely that these fixed points undergo period-doubling or other types of bifurcation, and

hence their stabilities may change.

In figure 5.12, δY < 1 and δX > 1. As δY decreases through 1, fixed points are now created

in saddle-node pairs near θ3 ≈ π
2 , 3π

2 and with x2 ≈ x⋆
Y . Again these fixed points will initially

be created in stable-saddle pairs, but due to the small step in the θ3 map and the shape of

the θ3-nullcline, we expect the θ3 coordinate of these points to change rapidly as δY is varied,

and expect some of them to undergo stability changes too.

Figure 5.11 shows the situation when δX , δY < 1, δM > 1; as in Case I, sets of periodic

orbits from the resonances at δX = 1 and δY = 1 co-exist in this quadrant. Finally, in

figure 5.13, we show the case δM < 1. Here the x2-nullclines only exist for a finite region of

log x2, and hence there are only finitely many fixed points. Thus, the resonance bifurcation

which occurs at δM = 1 in the complex case results in the disappearance of infinitely many

periodic orbits.

5.2.3. Bifurcation diagrams. Figure 5.14 is a bifurcation diagram showing how periodic

orbits are created and destroyed as a circle is traversed around the point δX = δY = 1,

assuming that δM > 1.

The supplementary online material contains a movie showing how the nullclines in Case II

vary as a circle of radius 0.02 around δX = δY = 1 is traversed in the (δX , δY ) plane. In

this movie, we kept σ fixed at 0.05, λ
eC

= 0.07, δBx

δBy
= 0.93, ω

eA
= 0.5, and chose the other

coefficients such that the value of λ
eC

for which δ(π
2 ) changes from a local minimum to a local

maximum is 0.07. The red solid curves are the small nullclines in region 1, the green solid
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Figure 5.10. Case II with δY > 1 > δX (quadrant B): nullclines for θ3 (blue) and x2 (red). Pink and

green dots mark fixed points; their stabilities are discussed in the text. The orange and blue arrows denote the

direction of change of x2 and θ3 respectively.
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Figure 5.11. Case II with δY < 1, δX < 1 (quadrant C), and with δM > 1: nullclines for θ3 (blue) and x2

(red). Dots and arrows have the same meaning as in figure 5.10.

curves are the small nullclines in region 2, and the blue solid curves are the θ3 nullclines.

Regions 1 and 2 are separated by green dashed curves. As the point δX = δY = 1 is circled,

the region 1 and region 2 small nullclines appear and disappear as the lines δX = 1 and

δY = 1 are crossed respectively, leading to the creation or destruction of infinite numbers of

fixed points.

5.2.4. Chaotic attractor. It was noted in [18] that chaotic attractors can be found close

to the Case II network when δX < 1 and δY > 1; it was argued that trajectories passing near

X would be pushed away from the network (since δX < 1) while trajectories passing near

Y would be pulled towards the network (since δY > 1). A balance between contraction and
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Figure 5.12. Case II with δX > 1 > δX (quadrant D): nullclines for θ3 (blue) and x2 (red). Dots and

arrows have the same meaning as in figure 5.10.
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Figure 5.13. Case II with δY < 1, δX < 1 (quadrant C), and with δM < 1: nullclines for θ3 (blue) and x2

(red). Dots and arrows have the same meaning as in figure 5.10.

expansion for orbits that pass repeatedly near X and Y could then be achieved, and may

result in chaotic dynamics.

Here we refine this argument, supposing first that we have a chaotic attractor, and then

looking more carefully at the conditions needed to allow it to exist. This hypothesized chaotic

attractor will have a range of values of log x2 on H
in
A , and so there will be a corresponding

range of values of θAout = θAin − ω
eA

log x2. If the chaotic attractor is close to the network,

then the range of θAout will exceed 2π, and could be many times 2π. In this case, orbits on

the attractor will experience an overall contraction (towards the network) that is the average
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Figure 5.14. Case II: bifurcation diagram, showing the creation of periodic orbits as a circle is traversed

clockwise around the point δX = δY = 1 in (δX , δY ) space, where δM > 1 on the entire circle. The labels A, B,

C and D correspond to the quadrants shown in figure 5.1. The pink and green curves correspond to the fixed

points coloured pink and green in figures 5.10-5.12; stabilities may change along these curves.

of δ(θAin), as given in section 4.4. We can approximate the average as:

δ̄ =
2

π

∫ π
2

0
δ(θ) dθ ≈ δX +

δBxδCX

log x2

2

π

∫ π
2

0
log cos θ dθ +

log D

log x2
.

Note the inclusion of log D (the average of the global constant) in this expression. The con-

tribution from the Y part of the cycle will be proportional to x

δBy
δBx

σ

2 , which is small compared

to the 1/ log x2 term, and so has been dropped. The integral evaluates to −π
2 log 2, so we find

δ̄ ≈ δX +
log D − δBxδCX log 2

log x2
.

Finding x2 so that δ̄ = 1 gives the expected distance of the chaotic attractor from the network:

log x2 ≈ log D − δBxδCX log 2

1 − δX
(5.2)

suggesting that the chaotic attractor bifurcates from the network at δX = 1 in the same way as

the periodic orbits shown in figure 5.10. The term −δBxδCX log 2 is negative, which suggests

that the chaotic attractor will be closer to the network than the periodic orbits. This issue is

explored numerically in more detail below.

Replacing the actual trajectory by the average in this way implicitly assumes that the

distribtution of θAout is uniform. This will be a better approximation if the chaotic attractor

is closer to the network, or if ω is larger. However, a non-uniform distribution would just lead

to replacing log 2 by a different order-one number.

Note that this estimate for the location of the chaotic attractor created in the δX = 1

resonance is independent of δY , in contrast to the explanation offered in [18].
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5.2.5. Numerical example. In this section we give an ODE that has a network of the

type we are considering in this article. We give an example close to δX = δY = 1 where there

are a large number of stable periodic orbits coexisting with three chaotic attractors at the

same parameter values. The equations are similar to those presented in [18]:

ẋ1 = x1(1 − x2
1 − 2x2

2),

ẋ2 = x2(1 − x2
2 − (1 + δCX)x2

3 − (1 + δCY )y2
3),

ẋ3 = x3

(

1 − (1 + δA)x2
1 +

(

1 − δBx

δBx

)

x2
2 − x2

3 − (1 + λ)y2
3

)

− ωy3x
2
1,

ẏ3 = y3

(

1 − (1 + δA)x2
1 +

(

1 − δBy

δBy

)

x2
2 − (1 + λ)x2

3 − y2
3

)

+ ωx3x
2
1.

These ODEs have the fixed points A at (1, 0, 0, 0), B at (0, 1, 0, 0), X at (0, 0, 1, 0) and Y at

(0, 0, 0, 1). The constants δA, δBx, etc. are eigenvalue ratios with the same meaning as used

throughout this article.

We have carried out computations in each of the four quadrants indicated in figure 5.1,

but present only one example here, for δX = δY = 0.99 (quadrant C in the (δX , δY ) plane).

The other parameters are δA = 0.7143, δBx = 1.4, δBy = 1.5054, δCX = 0.99, δCY = 0.9207,

λ = 0.07 and ω = 0.5. The combination δM is 1.0645, σ is 0.05, and all the ν’s are positive.

The numerical methods are as described in [18].

In this example, the network is unstable and trajectories that start very close to the

network move away from it. We have found 11 stable periodic orbits in the locations that

would be expected from the considerations in section 5.2.2. Closer to the network than these,

there are two period-doubled orbits and three distinct regions of chaos. The closest of these

to the network has a reasonably uniform distribution of θBin, and equation (5.2) is satisfied

if we take the value of log D to be −1.34. The other two chaotic attractors have non-uniform

distributions of θBin. We would expect there to be (possibly stable) periodic orbits that visit Y

(since δY < 1), but we have been unable to find these. Even if the orbits were stable, we would

expect them to have small basins of attraction.

The behaviour observed for parameters in quadrant B of figure 5.1 (for example, δX = 0.99,

δY = 1.01) is the same as that seen for quadrant C; since we were unable to locate periodic

orbits that visit Y in quadrant C we do not notice their (predicted) absence in quadrant B.

The behaviour in quadrants A and D (for example, δX = 1.01 and δY = 1.01 or 0.99) is

as expected from [18]: the network is attracting, and trajectories that start close enough to

the network go towards it, repeatedly and irregularly switching between +X and −X, even

though in region D, the network is not asymptotically stable (since δY < 1). In both regions,

there are stable periodic orbits further away from the network.
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Figure 5.15. Intersection of 16 different trajectories with the Poincaré section H
in
B (h = 0.01), with

δX = δY = 0.99. Reading from the top down, there are 11 stable periodic orbits, each separated in logarithm

by 2πeA

ω
. Next, there are two period-doubled periodic orbits, then (between the horizontal lines) there are two

distinct regions of chaos that visit only +X. Below the third horizontal line there is a third region of chaos that

extends to −X as well; the average value of log r3 on this chaotic attractor is −166 (the average value of log x2

on H
in
A is −230). Black asterixes (blue plusses) indicate that the trajectory visits X (−X) immediately after

leaving the Poincaré section. The boundaries of the cuspoidal regions are tan θ3 = r
1−

δBy
δBx

3 ; inside these cusps,

trajectories would visit Y or −Y .

6. Resonance bifurcation of a single heteroclinic cycle with complex eigenvalues. To

put in context the results we have found for resonance of our Case II network, it is helpful to

look at resonance of an isolated cycle in which the linearisation of the vector field has a pair

of complex conjugate eigenvalues at one equilibrium of the cycle. The cycle we consider is the

same as one of the subcycles of the Case II network with itinerary A → B → X → A except

that at equilibrium B there is only a single positive eigenvalue, and hence, the unstable

manifolds of all the equilibria in the cycle are one dimensional. Since we are interested in

this section in orbits that lie near a single heteroclinic cycle rather than in a continuum of

heteroclinic cycles, we can use much simpler forms for the local and global maps than in our

analysis of the Case II network, and we are able to compute the full return map with ease; our

analysis is analogous to that used for investigation of homoclinic bifurcations of a saddle-focus

in, for instance, [14,15]. Furthermore, existence and stability of periodic orbits near the cycle

can be deduced from analysis of a single return map; there is no need to look at return maps

defined on cross-sections near all the equilibria. We find that at resonance of this cycle an

infinite number of periodic orbits appear in saddle-node bifurcations, in a similar way to that

seen for resonance in the Case II network.
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Specifically, we consider a system of ODEs in R
4 that is equivariant under the symmetries

κ1, κ2 and κ3 as defined in (2.1), (2.2) and (2.5), and suppose that there are equilibria, ξ1,

ξ2 and ξ3 on the positive x1, x2 and x3 coordinate axes, respectively. These play the role of

A, B and X. We assume that there is a connection from ξ1 to ξ2 in the invariant (x1, x2)

plane, a (single) connection from ξ2 to ξ3 in the invariant subspace defined by x1 = 0 (this

connection is not assumed to lie in a coordinate plane) and a connection from ξ3 to ξ1 in the

subspace defined by x2 = 0. The existence of invariant hyperplanes allows us to consider just

the region of phase space where x1 ≥ 0 and x2 ≥ 0. To simplify the discussion, we will also

consider only trajectories that leave ξ2 with x3 > 0, that is, we do not consider trajectories

that visit −ξ3.

The flow linearised about ξ1 is given by

u̇1 = −r1u1, ẋ2 = e1x2, ẋ3 = −c1x3 − ωy3, ẏ3 = ωx3 − c1y3,

where r1, e1, c1 and ω are positive constants, and where the u1 coordinate is obtained from

x1 after translation to move ξ1 to the origin of the local coordinate system. Near ξ2, we use

local coordinates u3 and v3 that are linear combinations of the global coordinates x3 and y3,

and local coordinate u2 that is a translation of x2. The coordinate x1 is the usual global

coordinate. The flow linearised about ξ2 is then given by

ẋ1 = −c2x1, u̇2 = −r2u2, u̇3 = e2u3, v̇3 = −s2v3,

where r2, e2, c2, s2 are positive constants. The flow linearised around ξ3 is similar:

ẋ1 = e3x1, ẋ2 = −c3x2, u̇3 = −r3u3, ẏ3 = −s3y3.

Here we use a translated u3 coordinate but the other coordinates are just the global coordi-

nates.

It is convenient to use planar cross-sections near each equilibrium, For instance, we define

H
in
1 ≡ {(u1, x2, x3, y3)

∣

∣ |u1| < h, x2 = h, |x3| < h, |y3| < h}

and define H
in
2 , H

in
2 , H

in
3 and H

in
3 in a similar and obvious way. We define cross-section H

in
1

slightly differently:

H
in
1 ≡ {(u1, x2, x3, y3)

∣

∣ |u1| < h, 0 ≤ x2 < h, x0e
−πc1/ω < x3 < x0e

πc1/ω, y3 = 0}

where the positive constant x0 is chosen so that the heteroclinic connection from ξ3 to ξ1

crosses H
in
1 at x3 = x0, and the bounds on x3 ensure that there is just a single intersection of

the connection with the cross-section.
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Using these coordinates and cross-sections, it is straightforward to derive local and global

maps. To lowest order, these are:

φ1(u1, x2, x3, 0) =

(

u1

(x2

h

)

r1
e1 , h, x3

(x2

h

)

c1
e1 cos

(

− ω

e1
log
(x2

h

)

)

,

x3

(x2

h

)

c1
e1 sin

(

− ω

e1
log
(x2

h

)

))

,

φ2(h, u2, u3, v3) =

(

h
(u3

h

)

c2
e2 , u2

(u3

h

)

r2
e2 , h, v3

(u3

h

)−
s2
e2

)

,

φ3(x1, h, u3, y3) =

(

h, h
(x1

h

)

c3
e3 , u3

(x1

h

)

r3
e3 , y3

(x1

h

)−
s3
e3

)

,

Ψ12(u1, h, x3, y3) = (h, ǫ2, ax3 + by3, cx3 + dy3),

Ψ23(x1, u2, h, v3) = (fx1, h, ǫ3, gx2
1 + ju2 + kv3),

Ψ31(h, x2, u3, y3) = (ǫ1, mx2, x0 + nu3 + py3 + qx2
2, 0),

where ǫi, a, b, c, d, f , g, j, k, m, n, p and q are constants. Composing these maps in order

gives the return map l : Hin
1 → H

in
1 , which to lowest order is:

l(u1, x2, x3, 0) =

(

ǫ1, A1x
δ
2

(

x3 cos

(

A2 −
ω

e1
log x2

))

c2c3
e2e3

, A3, 0

)

, (6.1)

where A1, A2 and A3 are constants and δ = (c1c2c3)/(e1e2e3). This map is defined for

sufficiently small |u1|, x2 and x3, with x2 > 0 and x3 > 0. In addition, the map is only defined

for values of x2 for which the cosine is positive.

At lowest order, fixed points of the return map occur for u1 = ǫ1, x3 = A3 and

x2 = Axδ
2

(

cos

(

A2 −
ω

e1
log x2

))

c2c3
e2e3

, (6.2)

where A = A1A
c2c3
e2e3

3 > 0. Equation (6.2) is very similar to the type of fixed point equation

obtained in analysis of a Shil’nikov homoclinic bifurcation in a non-symmetric context [14,15],

with the differences being that (6.2) has an exponent on the cosine term and no bifurcation

parameter on the left hand side of the equation; this last difference reflects the fact that we

are interested in bifurcations that occur as δ varies and the cycle persists but passes through

resonance rather than as the cycle is created or destroyed by relative movement of its stable

and unstable manifolds.

Figure 6.1 shows schematically graphs of the functions h1(x2) = x2 and

h2(x2) = Axδ
2

(

cos

(

A2 −
ω

e1
log x2

))

c2c3
e2e3
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(a)

x2

(b)

x2

(c)

x2

(d)

Figure 6.1. Schematic diagrams showing the location of fixed points of the return map l, equation (6.1), for

different choices of δ and A = A1A

c2c3
e2e3

3 . (a) δ < 1; (b) δ > 1; (c) δ = 1, A > 1; (d) δ = 1, A < 1. Each panel

shows the relative position of the graphs of h1(x2) = x2 (in red) and h2(x2) = Axδ
2

“

cos
“

A2 −
ω
e1

log x2

””

c2c3
e2e3

(in blue). The black dotted curves show the graphs of h3(x2) = ±Axδ
2. Fixed points of l correspond to intersec-

tions of the graphs of h1 and h2. Note that the shape of the graph of h2 where it cuts the x2 axis will depend

on the exact value of the exponent c2c3
e2e3

. For the purpose of illustration, we have drawn the case c2c3
e2e3

= 1, and

included h2(x2) below the x2 axis to make the graph easier to read. We are not concerned with values of x2 for

which h2 is non-positive or undefined.

for qualitatively different choices of δ and A; fixed points of l correspond to intersections of

these two graphs. As can be seen in panel (a), if δ < 1 there will exist infinitely many fixed

points of the return map, with the fixed points accumulating on the origin. This corresponds

to the existence of infinitely many periodic orbits accumulating on the heteroclinic cycle. On

the other hand, as shown in panel (b), if δ > 1, there will be no fixed points of the return

map in the vicinity of the origin; this corresponds to there being no periodic orbits lying in

a sufficiently small neighbourhood of the heteroclinic cycle. The situation for the case δ = 1

depends on the size of A; if A > 1 we expect infinitely many periodic orbits to exist when

δ = 1, while if A < 1 there will be no periodic orbits in a sufficiently small neighbourhood of

the heteroclinic cycle when δ = 1.

Consideration of the possible transitions between the different cases shown in figure 6.1 now
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enables us to sketch schematic bifurcation diagrams showing the behaviour of periodic orbits

near the resonance bifurcation. As shown in figure 6.2, in the case that A > 1, for sufficiently

large δ > 1 there will be no periodic orbits in a small neighbourhood of the heteroclinic cycle.

As δ decreases, periodic orbits will be created in pairs in saddle-node bifurcations, with the

saddle-node bifurcations accumulating on δ < 1 from above, thus producing an infinite number

of periodic orbits for all positive δ ≤ 1. For the case A < 1, there will similarly be no periodic

orbits near the heteroclinic cycle for sufficiently large δ > 1 and infinitely many periodic orbits

for δ < 1, but the periodic orbits now appear on the opposite side of the resonance bifurcation;

an infinite number of saddle-node bifurcations of periodic orbits accumulate on δ = 1 from

below, so an infinite number of periodic orbits will appear all at once as δ decreases through

1.

Approximate δ values for which saddle-node bifurcations of periodic orbits occur can be

computed by comparing the graphs of h1(x2) and h2 plotted in figure 6.1. Specifically, making

the approximation that saddle-node bifurcations occur at x2 values for which h2 has a local

maximum allows us to compute that, to first order, successive saddle-node bifurcations occur

at

δn = 1 +
ω log A

e1(2nπ − A)
,

from which it follows that the saddle-node bifurcations accumulate on δ = 1 exactly as derived

schematically in the previous paragraph. We have not computed the values of δ for which the

node-type periodic orbits created in each saddle-node bifurcation are stable, but note that

these nodes will likely change stability in period doubling bifurcations near the saddle-node

bifurcations, and may undergo cascades of period doubling bifurcations leading to chaos, just

as occurs in homoclinic bifurcations of saddle-foci [14, 15], and indeed as suggested by the

numerical results in section 5.2.5.

The bifurcation diagrams obtained for resonance of this single cycle are completely consis-

tent with the bifurcation diagram for resonance of our Case II heteroclinic network; compare

figures 5.14 and 6.2(a). This leads us to conjecture that the appearance of infinitely many

periodic orbits near resonance of the Case II cycle is primarily due to the complex eigenvalues

in the network not to the network structure. We note, however, two points. First, the analysis

in this section explicitly requires that all the equilibria in the network have one-dimensional

unstable manifolds and so, while our results are suggestive, they do not apply directly to the

network example. Second, our analysis of the Case II network focussed on periodic orbits

that made just one circuit of the network before closing and therefore excluded orbits that

explored much of the network structure. It is likely that the bifurcation diagram for the net-

work example contains sequences of saddle-node bifurcations additional to those we found.

For instance, there might be infinite sequences of bifurcations producing orbits that make one
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log x2

δ = 1

(a)

log x2

δ = 1

(b)

Figure 6.2. Schematic bifurcation diagrams for the example of an isolated heteroclinic cycle with complex

eigenvalues, showing periodic orbits that occur near the resonance bifurcation at δ = 1. (a) A < 1; (b) A > 1.

Stability of the periodic orbits is not indicated.

or more visits to Y interspersed with visits to X. Such bifurcations could be regarded as

arising from the network structure; investigation of this possibility is left to future work.

7. Discussion. In this article, we have investigated resonance bifurcations in two robust

heteroclinic networks; we believe this is the first time any examples of network resonance

have been systematically studied. The networks of interest have both previously been studied

[17, 18], and consist of a finite number of equilibria connected by heteroclinic connections.

An important feature of both networks is that several of the equilibria have two-dimensional

unstable manifolds, which results in the existence of an infinite number of heteroclinic cycles

in the network, but all the cycles have a common heteroclinic connection. The two networks

have the same basic network structure as each other (see figure 1.1) but in one network,

one of the equilibria has a pair complex contracting eigenvalues while in the other network

all eigenvalues are real; the equivariance properties of the networks are slightly different to

accommodate this feature.

Previous work on these and related networks [1, 2, 4, 16,18] concentrated on investigating

their stability properties and understanding switching dynamics near each network, but did

not look in detail at resonance. Here we have focussed on understanding the dynamics resulting

from one or more of the heteroclinic cycles in the network undergoing a resonance bifurcation.

We have been primarily interested in understanding how much of the observed dynamics can

be thought of as arising from resonance of a single cycle and how much is inherently due to

the network structure.

Our network with only real eigenvalues (Case I) contains two distinguished heteroclinic

cycles, one each in the subspaces defined by y3 = 0 and x3 = 0. We defined δX (resp. δY ) to be

the ratio of contracting to expanding eigenvalues seen by the cycle in the y3 = 0 (resp. x3 = 0)

subspace, and investigated the dynamics that occur for δX and δY near one. When δX or
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δY passes through one, the corresponding cycle undergoes a resonance bifurcation and, as ex-

pected from previous work on such bifurcations [12,22,25,26,27], a periodic orbit appears in

the corresponding subspace (see figure 5.8). Within each subspace, there is a transfer of sta-

bility between the heteroclinic cycle and the bifurcating periodic orbit, as normally expected

for resonance of single cycles. However, because of the network structure, none of the hetero-

clinic cycles can be asymptotically stable within the full phase space. This observation might

lead one to conclude that the bifurcating periodic orbit can never be asymptotically stable,

but we show this is not the case; the bifurcating periodic orbit may in some circumstances be

asymptotically stable even though the cycle from which it bifurcates is never asymptotically

stable.

In addition to the periodic orbits that appear in the subspaces when one or other of the

distinguished cycles goes through resonance, there may be further periodic orbits appearing

as δY is decreased through one, as shown in figure 5.8(b). These extra periodic orbits are

guaranteed to exist if the quantity we called δM , which is the maximum ratio of contracting

to expanding eigenvalues encountered along any cycle in the network, is greater than one when

δY = 1.

Resonance in the network with complex contracting eigenvalues at one equilibrium (Case II)

is significantly more complicated than for the case with real eigenvalues. By contrast with

Case I, the symmetry properties of this network do not induce the existence of three-dimensional

subspaces in which there are distinguished heteroclinic cycles. We can, however, still write

down two distinguished combinations of eigenvalues, corresponding to two particular cycles:

δX (resp. δY ) is now the ratio of contracting to expanding eigenvalues seen by the orbit that

approaches X (resp. Y ) with rate determined by the contracting eigenvalue cC(0) (resp. cC(π
2 ))

as defined in equations (3.10) and (4.8). We investigate the dynamics that occurs for δX and

δY near one. We find that an infinite sequence of saddle-node bifurcations of periodic orbits

accumulates on each of the lines δX = 1 and δY = 1 in the (δX , δY ) parameter space (see

figure 5.14), and expect that there may be period doubling cascades of the orbits created in

the saddle-node bifurcations. Note that in the Case II network, the quantity δM (as defined

above for the Case I network) is again always greater than the maximum of δX and δY and

thus δM > 1 in a neighbourhood of δX = 1 and δY = 1. However, δM may pass through one in

the region where δX < 1 and δY < 1. We have shown that the infinitely many periodic orbits

created in the resonance bifurcations at δX = 1 and δY = 1 will persist so long as δM > 1.

In [18], the possibility of chaotic attractors occurring in the Case II network when δX < 1,

δY > 1 was discussed; here we are able to estimate the location of such an attractor under

certain conditions on the spread of orbits. In a numerical example, we found three co-existing

chaotic attractors in the regime δX < 1, δY < 1. One of these attractors seemed to satisfy the
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spread condition on orbits, and its location was consistent with our prediction.

Analysis of the dynamics of an isolated heteroclinic cycle with placement of the complex

eigenvalues being analogous to the cycles in the Case II network showed (in section 6) the

existence of an analogous sequence of saddle-node bifurcations. We thus conjecture that the

existence of infinitely many saddle-node bifurcations in the Case II example is due to the

presence of the complex eigenvalues rather than arising from the network structure. Note

that all equilibria on the isolated cycle analyzed in section 6 had one-dimensional unstable

manifolds, and so the results from that example do not carry over directly to our network

example, meaning we are unable to make a statement stronger than a conjecture at this stage.

The bifurcations of periodic orbits we have located in our analysis appear to be essentially

just those that arise from resonance bifurcations of single heteroclinic cycles, and provide little

evidence for the effect of the network structure on the dynamics. However, we have restricted

attention to periodic orbits that make just one circuit of the network before closing; it may be

that orbits that make two or more circuits of the network (corresponding to orbits of period

two or higher in the return maps) are more influenced by the network. One way in which the

effect of the network is manifested is in the the role of the quantity δM . As discussed in [18] in

the context of Case II, network stability is determined by the maximum and minimum ratios of

contracting and expanding eigenvalues experienced by any cycle in the network; the network

ceases to be asymptotically stable when the minimum ratio (called δmin in [18]) decreases

through one, and the possibility that orbits not on the stable manifold of an equilibrium of

the network might be attracted to the network is erased when the maximum ratio (called δM

here and δmax in [18]) decreases through one. In general, neither the maximum nor minimum

ratio is δX or δY but is rather some combination of eigenvalues seen on different cycles. In this

sense, the important combinations of eigenvalues for resonance of a network carry information

about the network as a whole, not just about single cycles within the network. We note,

however, that in our examples, because of the geometry of the networks, the minimum ratio

of eigenvalues is always either δX or δY .

The method of analysis we have adopted in this article is based on the standard procedure

for construction of return maps that approximate the dynamics near the network, but with

significant adaptations to accommodate the two-dimensional unstable manifolds that occur

for some equilibria; elements of the new techniques we have developed were first described

by us in [18] but are extended in this article. We believe that similar techniques might be

used for the analysis of other heteroclinic networks, and in particular for other networks in

which all cycles have a common heteroclinic connection, as is the case in the two networks

we considered. Analysis of such networks has, to date, been largely restricted to examining

the dynamics near specific cycles in the network, but our techniques enable us to capture
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the dynamics of the whole network. The issue of extending our techniques to the study of

networks in which cycles do not all have a common connection is left for future work.

Finally, we note that numerical work on networks such as those considered here is ex-

tremely delicate. The type of analysis we have performed is, as usual, valid in the limit of

being close to the network; we have had to look within a distance of 10−60 of the network to

see some of the phenomena of interest in our numerical examples. On the other hand, very

close to our Case II network, the vast majority of orbits visit equilibrium X rather than Y

and so it is necessary to wait for a long time before a typical orbit will explore the parts of the

network passing near Y . A further complicating factor is that δX and δY have to be rather

close to one for some phenomena to be observable; otherwise contraction onto or expansion

away from the network is too rapid. Thus, while we have located a variety of phenomena

by theoretical means, verifying the existence of all these phenomena in particular examples

might not be straightforward.
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