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Learning Functional Object-Categories from a Relational
Spatio-Temporal Representation

Muralikrishna Sridhar and Anthony G Cohn and David C Hogg 1

Abstract. We propose a framework that learns functional object-

categories from spatio-temporal data sets such as those abstracted

from video. The data is represented as one activity graph that encodes

qualitative spatio-temporal patterns of interaction between objects.

Event classes are induced by statistical generalization, the instances

of which encode similar patterns of spatio-temporal relationships be-

tween objects. Equivalence classes of objects are discovered on the

basis of their similar role in multiple event instantiations. Objects are

represented in a multidimensional space that captures their role in all

the events. Unsupervised learning in this space results in functional

object-categories. Experiments in the domain of food preparation

suggest that our techniques represent a significant step in unsuper-

vised learning of functional object categories from spatio-temporal

patterns of object interaction.

1 Introduction

Children learn about the world around them by observing and par-

ticipating in activities that engage them in the course of every day

life. One aspect of learning activity models involves acquiring no-

tions of what objects mean to them based on the function they ful-

fill in activities. Functional categories and taxonomies of objects are

naturally acquired by humans during the process of observing object

behaviour and using them accordingly. An important step toward un-

supervised learning of activity models is to learn an analogous model

of functional object categories purely by observing their behaviour.

In this work, we represent the behaviour of objects involved in

an activity, in terms of an activity graph, which captures qualita-

tive spatio-temporal patterns of interaction between these objects. We

search for frequent similar subgraph instances and generalize these

by variablizing. These are our event classes, the instances of each

event class encoding a similar pattern of spatio-temporal relation-

ships between their respective object instances.

Then we learn object categories by clustering in an object space,

where the similarity measure between objects is measured, based on

whether they play a similar role across the event instances for each

of the event classes; e.g., a set of objects, even though different in

appearance, may tend to play a similar role in events such as washing,

cutting and cooking as opposed to others that do not play such a role

in these events. By observing multiple instances of such event classes

that have the same event role for this set of objects, it is natural to

form a category that correspond to what we refer to as vegetables.

Through our experiments we demonstrate that using our frame-

work it is possible to learn semantically meaningful functional object

categories and a taxonomy purely by observing object behaviour.
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In section 3 we show how functional object categories can be

learned from event classes. The rest of the paper describes a novel

procedure for inducing event classes from video input.

2 Related Work

Much previous work has focused on supervised learning of object

classes either based on the appearance of the object itself [9] or by

recognizing contextual cues such as activities associated with objects

[8] to locate and recognize objects. By contrast, unsupervised learn-

ing of objects can be divided into two stages, the first being object

discovery e.g. discovery of blobs that are candidates for objects from

video. The second stage is object class learning which involves au-

tomatically categorizing these blobs into object classes. Early work

on object discovery [6] formed candidate objects by grouping pixels

with similar temporal signatures that are constructed by recording

colour (RGB) values for stable intervals when objects arrive, stay

and depart from a region. In [7], candidate objects are obtained by

first over segmenting images in a video and after extracting image

features for these segments, rigidly moving features are grouped into

potential objects.

Both object discovery and class learning is performed simultane-

ously from a collection of static images [5] in two steps. First mul-

tiple segmentations for each image are produced, by varying the pa-

rameters of the normalized cut technique with the assumption that

each object instance is correctly segmented at least by one segmen-

tation. Then object classes which are groups of correctly segmented

objects that are coherent in a large set of candidate segments, are

learned. Another approach [1] obtains a hierarchy of object classes

for static scenes by grouping image features which spatially co-occur

across images for the same scene, under the same leaf of the hierar-

chy. In this manner, the technique learns to identify candidate objects

such as keyboards, while also learning higher level object classes

such as a desk area (consisting of a computer, desk etc).

In this work we perform object discovery by first over segment-

ing the video in terms of colour patches and then grouping spa-

tially cohesive and continuous coloured blobs to discover a candi-

date set of objects. We perform object class learning by clustering

on a object space, where the similarity between objects is based on

similar spatio-temporal behaviour (specifically object interactions) in

scenes.

Recent work on event learning [3, 4] aims at learning activ-

ity/event classes given a sequence of primitive events, where the

primitive events are defined and recognized a priori. In [2] a re-

lational representation language is introduced for defining temporal

events, and algorithms for learning these definitions from video out-

put are described. In this work, we introduce a generic definition for

events, in terms of graphs, that captures changing spatio-temporal



Figure 1. Lattice for general to specific object learning

relationships between discovered objects. We show how this repre-

sentation enables event mining and object learning.

3 Object Learning

Assume the existence of a set of event classes F (X̄), where X̄ is a

sequence of object variables in some canonical ordering, between

which some set of spatio-temporal relationships hold and which

when instantiated, yields a set of event instances. The event classes

Fi(X̄) = Fi(X1, .., Xk, ..., Xm) in general have multiple event in-

stances in the corpus so that all these instances encode the same set

(or more generally a similar set) of spatio-temporal relationships be-

tween their objects. This induces a natural mapping between objects

corresponding to each object variable Xk for the event instances of

an event class. Given a corpus of such instances, we show, using an

example, how to induce functional object categories for the set of

objects present in these instances. The event classes could be hand-

crafted manually through knowledge engineering techniques, or, as

we describe in later sections, could be induced from a video by an

event learning procedure.

Let F (X1, X2, X3) be an example event class that represents

events such as “X2 being lifted away from of X3 by X1”. The

example in fig 2(c), is one such event instance (F (h1, b1, p1))

of the event class F with object instances h1, b1, p1 having IDs

3, 4 and 6 respectively. Let us suppose that two other instances

F (h1, b2, p3), F (h1, b3, p2) of the same class F had been observed

in the scene.

A lattice as shown in fig. 1 is grown from event instances at the

bottom level (3), by generalizing exactly one argument position to

a variable at each successive level. We then search for equivalence

classes of objects from general to specific by traversing down this

lattice, using the following procedure. For every node of each level

l in the lattice, the procedure involves searching for sets of nodes at

level l + 1, where each set is formed by substituting more than one

object instance for the same variable Xk , for that node at level l.

Applying this procedure at level 0 of the lattice,

we get two such sets at level 1 (shaded with two

colours) : {F (X1, b1, X3), F (X1, b2, X3), F (X1, b3, X3)}
obtained by substituting for X2 with b1, b2, b3 and

{F (X1, X2, p1), F (X1, X2, p2)} obtained by substituting for X3

with p1, p2 respectively . As the substituted constants {b1, b2, b3}
and {p1, p2}, play the same roles (as the variables X2 and X3

respectively) for the event class F , we say that F has induced

event roles for instances of the variables X2 and X3 resulting in

equivalence classes {b1, b2, b3} and {p1, p2} respectively.

We now show that, by applying the same procedure at one level

below (level 1) of the lattice, we obtain a more specific event

role for the specific event of objects placed on a certain plate

(p1). The procedure applied at level 1 results in a set of nodes

{F (X1, b1, p1), F (X1, b2, p1)} at level 2 (as shaded in fig. 1), ob-

tained by substituting for X2 in F (X1, X2, p1) with b1, b2 respec-

tively. We say that the more specific event class F (X1, X2, p1) has

induced a more specific event role for the variable X2 resulting in an

equivalence class of objects {b1, b2}, i.e. objects being put on plate

p1. By progressively traversing down the lattice using this procedure,

it becomes possible to create event roles and corresponding equiva-

lence classes C1...Cn, from general to specific.

Applying this idea, we produce a matrix of object by equivalence

classes, O in which Oi,j equals 1 if the object i occurs in the equiv-

alence class Cj and 0 otherwise. As each equivalence class corre-

sponds to an event role, the row vectors of this matrix summarize

each object in terms of the role it plays in all the event-roles and thus

induce a multidimensional object space. In this space, objects that

have a similar role with respect to similar sets of events are expected

have a high similarity measure. We therefore perform k-means clus-

tering using a cluster partition index to determine k. Hierarchical

clustering on these categories then yields an object taxonomy.

In the next section, we show how event classes can be learned

from video input and in section 6 the results of applying our object

learning procedure are discussed.

4 Activity Graphs from Video

Object discovery is performed by first over segmenting the video in

terms of colour patches and then grouping these into spatially contin-

uous and cohesive blobs that are a mix of noisy patches along with

potential objects. These blobs are given IDs and their position and

extent are recorded from the video.

The spatio-temporal patterns in the entire video are represented

using an activity graph. The spatial relationships between the bound-

ing boxes of each pair of objects for every frame are mapped to

a set of spatial primitives ℜ = {D, S,T}. Two objects are either

spatially Disconnected(D) or connected through the Surrounds(S) or

Touches(T) relationships 2. illustrated in fig. 2(b).

For each pair of objects, these spatial relationships hold during a

time interval. In general, If {o1, o2...on} is the set of all the objects

observed in the video, for each pair oi, oj , a particular spatial rela-

tionship r ∈ ℜ holds for each frame f , i.e. holds(r(oi, oj), f). We

are interested in maximal one-piece time intervals during which r

holds between oi and oj , which we refer to as episodes.

We represent such episodes by a quadruple E = 〈oi, oj , τ, r〉,
where |{r : Holds(r(oi, oj), f) ∈ τ}| = 1 and τ is a con-

secutive sequence of frames such that ∀τ ′ (τ ⊂ τ ′ →
|{r : Holds(r(oi, oj), f) ∈ τ ′}| > 1 . We thus obtain the set of all

episodes ∆ = {E1, E2...Em} for all pairs of objects. Episodes la-

belled E1 − E20 in fig 2(a) correspond to this set, for the activity

considered in this example.

2 This approach clearly could be applicable to any set of spatial relations ℜ′.
Our simplified approach to video analysis is 2D, thus using this set of spa-
tial relations means, e.g. an object o1 placed on an object o2 is represented
as S(o1, o2) – these 3 relations have sufficed for our experiments.



(a) An activity

(b) Spatial and Tem-

poral Primitives

(c) A subactivity of the activity in (a) (d) Level-0 activity graph for

episodes E5 − E12 in (c)

(e) Level-1 Activity Graph for

episodes E1 − E20 in (a)

Figure 2.

Having obtained all the episodes, we obtain a complete graph

– which we call an activity graph – whose vertices represent the

episodes and whose edges relate the time intervals corresponding to

their respective episodes using Allen’s temporal primitives ℑ. We

call the complete graph encoding all temporal relationships between

intervals E1−E20 a level-0 activity graph for the activity in fig. 2(a).

More formally, we have the activity graph (V, E, η, ρ, ∆,ℑ),

where the function η : V −→ ∆ maps the vertices V = {vi} to

episodes in ∆ and ρ : E −→ ℑ maps the directed edges between all

pairs of vertices E : eij = 〈vi, vj〉 to temporal relationships in ℑ.

We require that η is a bijective mapping from vertices to the set of

episodes in the activity graph.

The complete activity graph is too large to display here and a typ-

ical activity graph is too complex to be able to search to find event

classes3. Fig. 2(d) shows a subgraph of the level-0 activity graph for

episodes E5 −E12 - depicted in fig. 2(c). Therefore, prior to search-

ing for event classes we use an attention mechanism to structure and

simplify the level-0 activity graph to produce a level-1 activity graph.

This is achieved by using a foreground attention mechanism (de-

scribed below) to cluster episodes and forming a new graph structure

over these clusters. Each cluster represents an atomic event and we

call the clusters of episodes and their Allen relationships, a unary

event graph (unary EG). The graph whose nodes are unary event

graphs and whose edges are Allen’s temporal relationships between

these nodes is the level-1 activity graph.

3 If we consider n = 10 objects and k as the average number of episodes
in video which is usually 102 even for scenes that last for a minute, the
activity graph results in a search space of O(k2n4) .i.e O(108).



Foreground Attention Mechanism: We hypothesize that many ac-

tivities can be conceived in terms of different foreground events each

of which involve interactions only between a subset of objects – fore-

ground objects, at different time periods. This idea can be intuitively

explained using fig. 2(a), where the entire activity shown can be con-

ceived in terms of three foreground events - (1) the left hand scooping

some butter with a knife (2) the right hand removing the bread from

the plate (3) the left hand spreading butter on the bread with a knife,

while the right hand holds the bread.

As long as {left hand,knife, butter} and {right hand, plate ,

bread }, are disconnected, we have two sets of foreground objects

{1, 2, 5}, {3, 4, 6}, between frames 26 and 49. When the knife and

the bread start to interact, the foreground set changes to the set of

IDs {1, 2, 3, 4}, in which the butter and plate with IDs 5 and 6 are

not included (frames 54-75). Three periods and their corresponding

set of episodes {E1 −E4}, {E5 −E12}, {E13 −E20} (as shown in

the parallel lines below the frames), for the three foreground events

are thus obtained. The next two paragraphs describe how, in general

foreground events are detected and may be ommited on a first read-

ing.

We look for spatial changes between a pair of objects. For each

such pair of primary foreground objects o1, o2 at some frame f , we

find the set Ω of all moving objects which are connected (i.e. T or

S) to o1 or o2, or which are connected to o1 or o2 indirectly via

another moving object which is connected to o1 or o2 (directly or

indirectly). The set Ω is propagated forwards to some frame f2 and

backwards to some frame f1 from f until such time that one of the

objects in Ω − {o1, o2} (the secondary foreground objects) changes

its spatial relation to some other object in Ω to D, (unless o1 and o2

are connected at that time). The entire time from f1 to f2 is termed a

period during which a foreground event involving o1 and o2 occurs,

involving all the foreground objects Ω.

The intuition behind this definition is that a spatial change focuses

attention on a pair of objects (at least one of which must be mov-

ing, since a change has occurred), and all the objects which are inti-

mately connected to the two objects, and groups all the interactions

involving the primary objects together until such time as one of the

secondary objects becomes fully disconnected from the group of ob-

jects (which then terminates this particular set of foreground objects).

Note that it is possible, depending on the choice of primary objects

o1 and o2 for there to be multiple temporally overlapping foreground

events involving shared objects (though this has not occurred in the

videos we have analysed so far).

For each foreground event, we create a unary event graph (unary

EG) restricted to the foreground objects of the foreground event and

just during the temporal extent of the foreground event. Each unary

EG endures for a period P and can be represented by the unary EG

(V, E, η, ρ, ∆P ,ℑ) between the episodes for the time period P . The

three unary EGs for the activity in fig. 2(a) are shown as the nodes

in the level-1 activity graph in fig. 2(e). Unary EGs (which are single

nodes of the level-1 activity graph) typically capture simple events

such as removing a slice of bread from a plate.

In the next section we show how to generalize unary events to

unary event classes, and then how to form n-ary event classes, which

are compound event classes composed of unary event classes. In-

stances of n-ary event classes are n-ary events which are composed

of n unary EGs of the level-1 activity graph and which represent

complex events such as the entire activity depicted in fig. 2(a,c).

5 Event Learning

The activity graph consists of many individual events; these can be

similar in that they have similar spatio-temporal relationships be-

tween their constituent objects. In order to formalize the idea of an

event class that captures these regularities, independent of the actual

objects involved, we first introduce a generalized version of an unary

event graph. We then show how n-ary event classes can be formed,

consisting of individual unary event classes.

To generalize events to event classes, we first consider a unary EG

φ = (V, E, η, ρ, ∆P ,ℑ) for a time period P . Instead of object in-

stances oi ∈ Ω and intervals τ ∈ Λ, consider sets of object and inter-

val variables X = 〈XO , XT 〉 so that Oi ∈ XO and T ∈ XT
4. We

can now generalize the set of episodes E ∈ ∆P to EX ∈ ∆X where

∆X is a set such that EX ∈ ∆X if and only if EX = 〈O1, O2, T, r〉
where O1 ∈ XO , O2 ∈ XO , T ∈ XT , r ∈ ℜ. We use the gener-

alised set of episodes to formalise event classes by first defining a

unary event class graph (unary ECG) which captures a common pat-

tern of spatio-temporal relationships amongst a set of similar unary

EG (instances), in a generic form.

Definition Let φ = (V, E, η, ρ, ∆P ,ℑ) be a unary EG of the trans-

formed activity graph, then γ = (V ′, E′, η′, ρ′, ∆X ,ℑ) is a unary

event class graph (unary ECG) of φ, or we say that γ θ-generalizes

φ if ∃θ = θO · θT where θO : XO → Ω and θT : XT → Λ, such

that γ is isomorphic to φ under the substitution θ, i.e.

1. {η′(v′)θ : v′ ∈ V ′} = {η(v) : v ∈ V }.

2. {ρ′(e′ij) : e′ij = (v′

i, v
′

j) ∈ E′} = {ρ(eij) : eij = (v′

iθ, v′

jθ) ∈
E}.

We require that a unary ECG generalises at least λ unary EGs, i.e.

instances must occur frequently.

We now extend the the idea of a unary event class graph to an

n-ary event class graph (n-ary ECG) composed of unary ECGs. A

n-ary ECG is just a graph made up of unary ECGs γ1...γn, n > 2 as

its vertices and whose edges relate the time periods Pi and Pj cor-

responding to γi and γj by Allen’s temporal primitives ℑ. A n-ary

ECG Γ whose vertices are the set {γ1, ..., γn} θ-generalizes an n-ary

EG Φ with vertices {φ1, ..., φm}, if each γi θ-generalizes a corre-

sponding φi and the temporal relationship between any 〈φi, φj〉 ∈ Φ
is the same as for the corresponding 〈γi, γj〉 ∈ γ. A n-ary ECG rep-

resents a n-ary event class if it generalises at least λ n-ary EGs. We

model λ as an exponential decreasing function of n in order to allow

for larger n-ary ECGs to θ-generalise fewer n-ary EGs.

Using these definitions, we finally formalize event classes as max-

imal event class graphs. We define a maximal event class graph

(MECG) as a event class graph which generalises some set of EGs,

such that no other ECG which contains it generalizes this set. I.e.

every MECG generalises a set of EGs which are not generalised by

some larger ECG. The procedure for computing MECGs involves

two stages. In the first stage, unary ECGs with a statistically signifi-

cant number of EG instantiations are found. In the second stage, these

unary ECGs are iteratively used to build larger and larger ECGs (with

statistically significant number of instantiations), until a final set of

MECGs are obtained. In this manner we discover event classes as

MECGs from the level-1 activity graph.

Having found all the MECGs, we give them names

F1(X̄)...Fk(X̄), where X̄ is a sequence of variables in the

4 Note that we use capitalized/bold letters for variables and small letters for
instances.



Figure 3. A hierarchy of objects categories.

MECGs, in some canonical ordering of nodes in each MECG.

In section 3, where we were purely concerned with inducing an

object taxonomy from the event definitions we ignored the internal

structure of an MECG and used just these Fi(X̄), which can be

defined as predicates from each of the MECGs.

6 Experiments

We demonstrate our framework using a video taken with a toy (plas-

tic) kitchen set up. We have chosen a constrained environment for

the moment, in order to minimize the complexities arising in a real

kitchen as a result of cluttered backgrounds, flickering lights, shiny

surfaces, multiple shadows etc. We have further simplified the prob-

lem by focusing only on the hand (not the entire person) along with

the other objects in the kitchen scene and taking care in the actions of

the cook to not create complications arising, for instance, from full

occlusion of objects involved. However, despite such simplifications,

a large number of noisy patches are produced from the object discov-

ery module, making the learning problem challenging. The video is

taken with a static overhead camera that focuses on the scene. The

scene consists of hands simulating the preparation of sandwiches,

hot drinks, cutting vegetables and cooking vegetable dishes, lasting

around 10 minutes. The video consists of exactly one instance for

each of these preparations.

After applying event and object learning, we obtain the object hi-

erarchy in fig. 3. While our procedure outputs a hierarchy of object

IDs, we replace these labels with the corresponding objects from the

video, in order to visualize the results. It can be observed that the pro-

posed framework has been able to differentiate between broader cat-

egories such as food items and containers and interestingly separate

noisy patches from all other objects. Finer levels of granularity are

captured in the grouping which separates a slice of white bread from

another group consisting of vegetables. A distinction between plates

pans and spoons is also clear from the hierarchy. It can therefore be

concluded that the learned categories and taxonomy is intuitive and

corresponds to a functional classification of objects.

7 Summary and Future Work

A framework for learning object and event categories from video

has been introduced. This framework offers a general way of repre-

senting activities in terms of spatio-temporal graphs. Techniques for

mining events from this graph and then learning object functional

categories from these events have been proposed in this work. Our

experiments show that our framework offers a promising approach

toward learning functional categories.

In the future, we plan to extend this framework in several direc-

tions. At present, event generalisation requires exact graph isomor-

phism. We plan to extend event classes to generalize a larger set of

event instances by experimenting with similarity metrics between our

event graphs. This will allow our approach to exploit a greater variety

of video input to learn event and object taxonomies , and to cope bet-

ter with noise (which might also intervene during an event instance).

In contrast to almost all work in object recognition which is based on

learning categories based on perceptual features, we have tackled the

little researched problem of learning categories from function. How-

ever, there is clearly scope to use the learned functional categories to

supervise visual appearance based object learning.
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