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Abstract

A new multiscale modelling framework is introduced to describe a class of lattice dy-
namical systems (LDS), which can be used to model natural systems involving multiphysics
and the multi-resolution facets of a single spatio-temporal dynamical system. The emphasis
of the paper is on the multi-resolution facets, with respect to the spatial domain, of a single
spatio-temporal dynamical system by using a Haar wavelet decomposition technique. A
multiscale identification method for such systems is then proposed, which can be consid-
ered as a dual of the multigrid method. The proposed identification method involves three
steps: the system dynamics at some specific scale of interest are identified using a recur-
sive least-squares algorithm; the residual is then projected onto coarser scales using Haar
wavelets and the parameter estimation errors are minimized; and finally a coarse correction
procedure is applied to the original scale. An outstanding advantage of the proposed iden-
tification method is a saving on the computational costs. Numerical examples are provided
to demonstrate the application of the proposed new approach.

1 Introduction

Lattice dynamical systems (LDS) and the subset coupled map lattices (CML), are systems of
differential equations, indexed by points in a homogeneous lattice such as the d-dimensional
integer lattice Zd, which incorporates some aspect of the spatial structure of the lattice. These
systems arise as models in many applications including chemical, material and biological sciences
and can exhibit many interesting dynamical behaviours such as spatio-temporal chaos (Kaneko
1993). Recently, LDS’s have been extended to investigate physical phenomena occurring in
heterogeneous media such as CML on a fractal lattice (Cosenza and Kapral 1994), on Caylay
trees (Gade, Cerdeira, and Romaswamy 1995), and on hierarchical lattices (Cosenza and Tucci
2000). Apart from these results, there are also extensions which are obtained by introducing a
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hierarchical structure on homogeneous lattices (Hilgers and Beck 1999). All these studies have
significantly enriched the theory and applications of lattice dynamical systems and motivated an
investigation of such systems from a multiscale point of view which is described in this paper.

As a generalisation to the above models, a multiscale modelling framework is introduced in this
paper to describe a class of lattice dynamical systems, which can be used to model both sys-
tems involving multiphysics in nature and the multi-resolution facets of a single spatio-temporal
dynamical system. Actually multiscale methods have been extensively studied for the past two
decades with applications in the field of applied sciences (Glimm and Sharp 1997, Krumhansl
2000, and Li and Kwauk 2003). This has been mainly driven by the requirements of the analysis
of the systems which involve natural multiscale effects such as molecular dynamics and by the
progress of computational capability both in software and hardware. Apart from these multiscale
methods, it is also interesting to investigate a single spatio-temporal dynamical system from a
multiscale or multi-resolution point of view. There are some advantages of doing this for a sin-
gle dynamical system: i) it may reduce the computational cost if a coarser scale can be used;
ii) it can separate high frequency components from low frequency components so as to be able
to deal with these separately. Some multiscale modelling methods are described in the litera-
ture, including a multiscale theory for linear dynamic processes (Stephanopoulos, Karsligil, and
Dyer 2008), the heterogeneous multiscale method (E, Engquist, Li, Ren, and Vanden-Eijnden
2007), the multiscale modelling of cancer (Martins, Ferreira Jr., and Vilela 2007), the variational
multiscale method (Hughes, Frijoo, Mazzwi, and Quincy 1998), Bayesian multiscale modelling
(Ferreira and Lee 2007), and multiscale autoregressive models (Daoudi, Frakt, and Willsky 1999).
All of these methods made important contributions to multiscale theory and applications from
different individual perspectives. The emphasis of the current paper is on the multi-resolution
facets, with respect to the spatial domain, of a single spatio-temporal dynamical system and on
multiscale parameter estimation using a Haar wavelet decomposition technique. The multiscale
identification method for such systems can be considered as a dual of the multigrid method. The
proposed identification method involves three steps: the system dynamics at some specific scale
of interest are identified using a recursive least-squares algorithm; the residual is then projected
onto coarser scales using Haar wavelets and the parameter estimation errors are minimized; and
finally a coarse correction procedure is applied to the original scale. An outstanding advantage
of the proposed identification method is a saving of the computational costs.

The paper begins in section 2 with a multiscale modelling framework for a class of lattice dy-
namical systems, in which a detailed discussion is given to the connections with Haar wavelet
multi-resolution techniques. In section 3, a multiscale parameter estimation method is presented
by using a Haar wavelet decomposition and a recursive least squares algorithm. Section 4 illus-
trates the proposed approach using examples. Finally conclusions are drawn in section 5.
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2 Multiscale lattice dynamical systems

2.1 Lattice dynamical systems (LDS)

In this section, lattice dynamical systems are introduced and definitions and terminology used
later are summarised. Let Λ ∈ Zd be an d-dimensional integral periodic lattice of points. Lattice
dynamical systems defined over the d−dimensional integral lattice Λ can be described by the
following system

u(t) = F(u(t− 1)), t = 1, 2, · · · (1)

for the discrete-time case, or

u̇(t) = F(u(t)), t ≥ 0 (2)

for a continuous-time description, in which u = {ui}i∈Λ ∈ H (i will be a multi-indexed array
when d > 1) is the state of the system and t represents the time instant. H , the phase space
of the system, can be the Banach space or Hilbert space l∞ = {u : ‖u‖∞ = supi∈Λ |ui| < +∞}
or l2 = {u : ‖u‖2 = (

∑

i∈Λ |ui|2)1/2 < +∞} and F is an operator over H . Equation (2) actually
represents an infinite system of (coupled) differential equations, one equation at each point of
the lattice representing the local dynamics at that specific point interacting with other lattice
points. In this paper we consider the case of systems with finite-range interaction, and which are
invariant under translations of the lattice. Let a finite subset Q ∈ Λ of lattice points be the fixed
neighbours which will describe the range of the coupling. In this case, equation (2) can be given
more specifically at each lattice point, by defining a map F : H → H,F(u)i = F ({ui+i′}i′∈Q), as
follows

u(i, t) = u(t)i = F(u(t− 1))i = F ({u(i + i′, t − 1)}i′∈Q), t = 1, 2, · · · , i ∈ Λ (3)

for discrete-time case, or

u̇(i, t) = u̇(t)i = F(u(t))i = F ({u(i + i′, t)}i′∈Q), t ≥ 0, i ∈ Λ (4)

for continuous-time case, where the map F can be in C1, Cp, or C∞ depending on the problems
concerned. Various properties of solutions for lattice dynamical systems can be found in the
literature under a variety of assumptions on the structure and parameters of the systems including
linear and nonlinear cases.

2.2 Multiscale lattice dynamical systems (MLDS)

In this section, a multiscale modelling framework for lattice dynamical systems will be proposed,
which will be called a multiscale lattice dynamical system in this paper. This class of spatio-
temporal processes can generally be described in terms of the following three factors to determine
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the spatio-temporal dynamical evolution at each site within a multiscale environment: a term
describing the reaction behaviour, a term describing the coupling with other lattice points within
the same spatial scale, and a term describing the coupling between different scales.

Similar to the previous discussion, the d-dimensional integral lattice Zd is considered as the
basic spatial structure. A multiscale lattice dynamical system with M scales is defined here as a
d-dimensional lattice Zd where each site evolves at scale m, m = 0, 1, · · · , M in time through a
map of the form:

um(i, t) = Rm(um(i, t− 1)) + Dm
1 ({um(i + i′, t− 1)}i′∈Q) + Dm

2 ({um′

(i + i′, t− 1)}i′∈Q′,m′∈S′) (5)

m = 0, 1, · · · , M, m′ �= m ∈ S ′ ⊂ {0, 1, 2, · · · , M}, t = 1, 2, · · ·, for the discrete-time case, and

u̇m(i, t) = Rm(um(i, t)) + Dm
1 ({um(i + i′, t)}i′∈Q) + Dm

2 ({um′

(i + i′, t)}i′∈Q′,m′∈S′) (6)

m = 0, 1, · · · , M, m′ �= m ∈ S ′ ⊂ {0, 1, 2, · · · , M}, for the continuous-time case, where um(i, t)
denotes the field value at site i, at the indicated time t, and at scale m. The three terms in
the right hand side of eqn. (6) determine the dynamics of the system: (a) the first term Rm(·)
accounts for the local reaction at its own spatial level m, (b) the second term Dm

1 (·) represents
the diffusive coupling within the same spatial level m with neighbour Q, and (c) the last term
Dm

2 (·) indicates the diffusive coupling between different spatial scales, where S ′ denotes the
levels involved. The multiscale lattice dynamical system model (6) describes a large class of
spatio-temporal dynamical systems. The following are two important examples in the literature
regarding multiscale modelling of spatio-temporal systems.

• Hierarchical CML (Hilgers and Bech 1999). Hierarchical CML was proposed to model
hydrodynamical turbulence by Higers and Bech. They used these lattice dynamical systems
to improve the efficiency of the simulation of the spatio-temporal stochastic processes.
Interestingly, the hierarchical structure proposed by them is not towards the lattice itself
but rather the levels of the energy cascade. The hierarchical CML can be treated as a
special class of the proposed multiscale lattice dynamical systems, where

R(um(i, t)) = λmum(i, t)

Dm
1 (um(i, t)) =

∑

nearest neighbours σ

um(i + σ, t)

Dm
2 (um(i, t)) = ξm(t)um−1(i, t) (7)

• Coupled maps on hierarchical lattices (Cosenza and Tucci, 2000). These models were devel-
oped to describe those processes occurring in heterogeneous media with tree-like structures.
This application is related to our multiscale lattice dynamical system framework, where
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F m(um(i, t)) = (1 − kγ)um(i, t)

Dm
1 (um(i, t)) = 0

Dm
2 (um(i, t)) = γ

∑

daughters d

um+1(id, t) + γ
∑

parents p

um−1(ip, t) (8)

2.3 Haar wavelet multiresolution as multiscale lattice dynamical sys-
tems

In this section, we will consider how to obtain a multiscale LDS model from a linear LDS model
through a Haar wavelet multiresolution analysis. As a special class of multiscale lattice dynamical
systems, the multiscale models obtained in this way are essentially multiresolution facets, with
respect to the spatial domain, of a single lattice dynamical system model. The Haar wavelets
and multiresolution analysis theory can be found in Chui (1992). For the purpose of clarity and
simplicity and without loss of generalisation, a one-dimensional linear lattice dynamical system
with the two nearest neighbours is considered as an example system in this paper

u(i, t) = a0u(i, t− 1) + a1u(i + 1, t− 1) + a−1u(i− 1, t− 1) + b0f(i, t− 1), t = 1, 2, · · · , i ∈ Z (9)

where the coefficients a0, a1, and a−1 can be interpreted as associated with the reaction and the
coupling parameters, and b0 is the control parameter for the external input f .

2.3.1 Multi-resolution representation

From a multiscale point of view, the LDS (9) can be considered as an approximation of an
underlying spatio-temporal system in a space V2m , which we will consider as at its finest scale
available. It follows that (9) can be rewritten explicitly as

um
a (i, t) = a0u

m
a (i, t−1)+a1u

m
a (i+1, t−1)+a−1u

m
a (i−1, t−1)+b0f

m
a (i, t−1), t = 1, 2, · · · , i ∈ Z

(10)
Let um

a (k, t) and um
d (k, t) be the Haar wavelet approximation and detail coefficients at the mth

scale and kth shift with respect to spatial variable i, and at time instant t. Then the wavelet
decomposition and reconstruction formula between scales m and m − 1 for the signal u(i, t) are

um−1
a (k, t) =

1√
2
um

a (2k, t) +
1√
2
um

a (2k + 1, t)

um−1
d (k, t) =

1√
2
um

a (2k, t) − 1√
2
um

a (2k + 1, t) (11)
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and

um
a (2k, t) =

1√
2
um−1

a (k, t) +
1√
2
um−1

d (k, t)

um
a (2k + 1, t) =

1√
2
um−1

a (k, t) − 1√
2
um−1

d (k, t) (12)

Note that the above approximation equation can be equivalently written as the following two
equations for k an even number

um−1
a (

k

2
, t) =

1√
2
um

a (k, t) +
1√
2
um

a (k + 1, t)

um−1
a (

k

2
+ 1, t) =

1√
2
um

a (k + 2, t) +
1√
2
um

a (k + 3, t) (13)

This relationship is shown in the tree in Fig.1.

From eqns. (13) and (10), many different multiscale relationships including coarse-to-fine, fine-
to-coarse, and the lattice dynamical systems at different scales can be derived depending on the
applications. Some of these will be derived and shown in the next two sections.

2.3.2 Lattice dynamical systems without external inputs

Given a linear lattice dynamical system (9) and its fine-scale approximation (10) with f = 0, the
following multiscale dynamical relations can be obtained

a). Coarse-to-fine equations (assume that k is an even number)

um
a (k, t) = (a0 − a1)u

m
a (k, t − 1) + a−1u

m
a (k − 1, t− 1) +

√
2a1u

m−1
a (

k

2
, t − 1)

um
a (k + 1, t) = (a0 − a−1)u

m
a (k + 1, t − 1) + a1u

m
a (k + 2, t − 1) +

√
2a−1u

m−1
a (

k

2
, t − 1)(14)

b). Fine-to-coarse equations (assume that k is an even number)

um−1
a (

k

2
, t) = a0u

m−1
a (

k

2
, t − 1) +

√
2

2
(a1u

m
a (k + 2, t − 1) + a1u

m
a (k + 1, t− 1)

+a−1u
m
a (k, t − 1) + a−1u

m
a (k − 1, t − 1))

um−1
a (

k

2
+ 1, t) = a0u

m−1
a (

k

2
+ 1, t − 1) +

√
2

2
(a1u

m
a (k + 4, t − 1) + a1u

m
a (k + 3, t − 1)

+a−1u
m
a (k + 2, t − 1) + a−1u

m
a (k + 1, t − 1)) (15)
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t-1 t

m-1

m

m-1

m

(k, t)

(k+1, t)

(k-1, t)

(k, t-1)

(k+1, t-1)

(k-1, t-1)

(k/2, t)

(k/2+1, t)

(k/2-1, t)(k/2-1, t-1)

(k/2, t-1)

(k/2+1, t-1)

Figure 1: The tree structure of the proposed Haar wavelet based multiscale lattice dynamical
systems
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c). Lattice dynamical system equations at scale m − 1

um−1
a (

k

2
, t) = 2a0u

m−1
a (

k

2
, t − 1) + (−a2

0

2
+ 2a1a−1)u

m−1
a (

k

2
, t − 2) + a2

−1u
m−1
a (

k

2
− 1, t − 2)

+a2
1u

m−1
a (

k

2
+ 1, t− 2) (16)

The coarse and fine relationships (14) in a) and (15) in b) can be easily derived as follows.
Because of the nature of the tree structure by Haar wavelets, that is, (k/2, t) is the average of
(k, t) and (k + 1, t) while (k/2 + 1, t) is the average of (k + 2, t) and (k + 3, t)(see Fig. 1), there
is a need to distinguish the case where k is an even number or an odd number when considering
the lattice dynamics (10) at (k, t) and (k + 1, t). Rewritting (10) for k and k + 1 (k is assumed
to be even) as follows

um
a (k, t) = a0u

m
a (k, t − 1) + a1u

m
a (k + 1, t− 1) + a−1u

m
a (k − 1, t − 1)

um
a (k + 1, t) = a0u

m
a (k + 1, t − 1) + a1u

m
a (k + 2, t − 1) + a−1u

m
a (k, t − 1) (17)

Inserting (13) yields (14) while adding the two equations in (17) together and using (13) again
yields (15).

The relationship (16) at scale m−1 in c) can be done by introducing a spatial translation operator
Sp : Spu(k, t) = u(k+p, t) and a temporal translation operator T q : T qu(k, t) = u(k, t+ q). Then
it follows that they have the following simple properties

• S0u(k, t) = u(k, t) and T 0u(k, t) = u(k, t);

• Sp1Sp2 = Sp1+p2, T q1T q2 = T q1+q2, p1, p2, q1, q2 ∈ R;

• SpT q = T qSp with T qSpu(k, t) = u(k + p, t + q), p, q ∈ R;

• Spau(k, t) = au(k + p, t) and T qau(k, t) = au(k, t + q), p, q ∈ R, a ∈ R.

To derive the lattice dynamical model at scale m−1 from scale m, will require the reconstruction
equations. Rewritting the reconstruction equations (12) for k even as follows

um
a (k, t) =

1√
2
um−1

a (
k

2
, t) +

1√
2
um−1

d (
k

2
, t)

um
a (k + 1, t) =

1√
2
um−1

a (
k

2
, t) − 1√

2
um−1

d (
k

2
, t)

um
a (k + 2, t) =

1√
2
um−1

a (
k

2
+ 1, t) +

1√
2
um−1

d (
k

2
+ 1, t)

um
a (k + 3, t) =

1√
2
um−1

a (
k

2
+ 1, t) − 1√

2
um−1

d (
k

2
+ 1, t) (18)
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Substituting um
a (k, t), um

a (k + 1, t − 1), um
a (k − 1, t − 1) given directly or indirectly by (18) into

(10) with k an even number yields

1√
2
um−1

a (
k

2
, t) +

1√
2
um−1

d (
k

2
, t) = a0(

1√
2
um−1

a (
k

2
, t − 1) +

1√
2
um−1

d (
k

2
, t − 1)))

+a1(
1√
2
um−1

a (
k

2
, t − 1) − 1√

2
um−1

d (
k

2
, t − 1)))

+a−1(
1√
2
um−1

a (
k

2
− 1, t − 1) − 1√

2
um−1

d (
k

2
− 1, t − 1)))

(19)

Rearranging gives

(um−1
a (

k

2
, t) − (a0 + a1)u

m−1
a (

k

2
, t − 1) − a−1u

m−1
a (

k

2
− 1, t − 1))

+(um−1
d (

k

2
, t) − (a0 − a1)u

m−1
d (

k

2
, t − 1) + a−1u

m−1
d (

k

2
− 1, t − 1)) = 0 (20)

and with the spatial and temporal operators

(1− (a0 +a1)T
−1−a−1T

−1S−1)um−1
a (

k

2
, t)+(1− (a0−a1)T

−1 +a−1T
−1S−1)um−1

d (
k

2
, t) = 0 (21)

By repeating the same procedure, the following equation for the case of k + 1 can be given

(1− (a0 +a−1)T
−1 −a1T

−1S1)um−1
a (

k

2
, t)+ (−1+ (a0−a−1)T

−1 −a1T
−1S1)um−1

d (
k

2
, t) = 0 (22)

By solving the equations (21) and (22) through eliminating the details ud, yields

(−2 + 4a0T
−1 + (−a2

0 + 4a1a−1)T
−2 + 2a2

−1T
−2S−1 + 2a2

1T
−2S1)um−1

a (
k

2
, t) = 0 (23)

which gives the lattice dynamical model at scale m − 1 (16) by expressing the system in its
conventional way without the operators.

2.3.3 Lattice dynamical systems with external inputs

For the linear lattice dynamical systems with external input f , the following multiscale dynamical
relations can be obtained
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a). Coarse-to-fine equations (assume that k is an even number)

um
a (k, t) = (a0 − a1)u

m
a (k, t − 1) + a−1u

m
a (k − 1, t− 1) +

√
2a1u

m−1
a (

k

2
, t − 1)

+b0f
m
a (k, t − 1)

um
a (k + 1, t) = (a0 − a−1)u

m
a (k + 1, t − 1) + a1u

m
a (k + 2, t − 1) +

√
2a−1u

m−1
a (

k

2
, t − 1)

+b0f
m
a (k + 1, t − 1) (24)

b). Fine-to-coarse equations (assume that k is an even number)

um−1
a (

k

2
, t) = a0u

m−1
a (

k

2
, t − 1) +

√
2

2
(a1u

m
a (k + 2, t − 1) + a1u

m
a (k + 1, t− 1)

+a−1u
m
a (k, t − 1) + a−1u

m
a (k − 1, t − 1)) + b0f

m
a (k, t − 1)

um−1
a (

k

2
+ 1, t) = a0u

m−1
a (

k

2
+ 1, t − 1) +

√
2

2
(a1u

m
a (k + 4, t − 1) + a1u

m
a (k + 3, t − 1)

+a−1u
m
a (k + 2, t − 1) + a−1u

m
a (k + 1, t − 1)) + b0f

m
a (k + 1, t − 1) (25)

c). Lattice dynamical system equations at scale m − 1

um−1
a (

k

2
, t) = 2a0u

m−1
a (

k

2
, t − 1) + (−a2

0

2
+ 2a1a−1)u

m−1
a (

k

2
, t − 2) + a2

−1u
m−1
a (

k

2
− 1, t − 2)

+a2
1u

m−1
a (

k

2
+ 1, t − 2) + b0f

m−1
a (

k

2
, t − 1) − 1

2
(2a0 − a − 1 − a−1)b0f

m−1
a (

k

2
, t − 2)

+
a1b0

2
fm−1

a (
k

2
+ 1, t − 2) +

a−1b0

2
fm−1

a (
k

2
− 1, t − 2) − 1

2
(a1 − a−1)b0f

m−1
a (

k

2
, t − 2)

+
a1b0

2
fm−1

a (
k

2
+ 1, t − 2) − a2b0

2
fm−1

a (
k

2
− 1, t − 2) (26)

The coarse and fine relationships (14) in a) and (15) in b) can be obtained in the similar way as
above. The relationship (16) at scale m − 1 in c) can be treated in a similar way but with an
extra term representing the forces, where the equations to be solved are

(1 − (a0 + a1)T
−1 − a−1T

−1S−1)um−1
a (

k

2
, t) + (1 − (a0 − a1)T

−1 + a−1T
−1S−1)um−1

d (
k

2
, t)

= b0T
−1(fm−1

a (
k

2
, t) + fm−1

d (
k

2
, t))

(1 − (a0 + a−1)T
−1 − a1T

−1S1)um−1
a (

k

2
, t) + (−1 + (a0 − a−1)T

−1 − a1T
−1S1)um−1

d (
k

2
, t)

= b0T
−1(fm−1

a (
k

2
, t) − fm−1

d (
k

2
, t)) (27)
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3 Multiscale identification of the linear lattice dynamical

model

In this section, a least squares based multiscale method is proposed for the identification of the
linear lattice dynamical system (10), that is

u(i, t) = a0u(i, t − 1) + a1u(i + 1, t − 1) + a−1u(i − 1, t − 1), t = 1, 2, · · · , i ∈ Z (28)

3.1 Recursive least squares estimates of the parameters at scale m

The approximation in finite dimensional space V2m can be written as

um
a (i, t) = a0u

m
a (i, t − 1) + a1u

m
a (i + 1, t − 1) + a−1u

m
a (i − 1, t − 1) + wm(i, t) (29)

where t = 1, 2, · · · and i = 0, 1, · · · , 2m − 1 or in matrix form as

ym(t) = φm(t − 1)T θm + wm(t) (30)

where ym(t) = (um
a (0, t), um

a (1, t), · · · , um
a (2m − 1, t))T , θm = (a−1, a0, a1)

T , and the modelling
error vector or noise wm(t) = (wm(0, t), wm(1, t), · · · , wm(2m − 1, t))T , and

φm(t − 1)T =

⎛

⎜

⎜

⎜

⎜

⎝

um
a (−1, t − 1) um

a (0, t − 1) um
a (1, t − 1)

um
a (0, t − 1) um

a (1, t − 1) um
a (2, t − 1)

...
um

a (2m − 2, t− 1) um
a (2m − 1, t − 1) um

a (2m, t − 1)

⎞

⎟

⎟

⎟

⎟

⎠

(31)

in which the um
a (−1, t − 1) and um

a (2m, t − 1) are the boundary conditions. A standard least
squares estimate to the problem (30) is given by

θ̂n
m = (Rn

m)−1
n

∑

t=1

φm(t − 1)ym(t) (32)

with the least squares criterion

Jn
m(θ) =

1

2

n
∑

t=1

‖ym(t) − φm(t − 1)T θ‖2 (33)

where Rn
m =

∑n
t=1 φm(t − 1)φm(t − 1)T and n the number of time samplings. The recursive

estimation equation is

θ̂n
m = θ̂n−1

m + (Rn
m)−1φm(t − 1)(ym(n) − φm(t − 1)T θ̂n−1

m ) (34)

11



For the deterministic case where wm(t) = 0 for all t, it follows that

Rn
mθ̃n

m = Rn−1
m θ̃n−1

m = constant (35)

with θ̃n
m = θ∗m − θ̂n

m. It follows that limn→∞ θ̃n
m = 0 if limn→∞ λminRn

m = ∞ where λminR
n
m is the

smallest eigenvalue of Rn
m . In the stochastic case, it has been shown that if the noise wm(t) is

a martingale difference sequence, then under certain assumptions (e.g. Lai and Wei 1982) the
least squares estimate θ̂n

m of the true parameter θ∗m satisfies

‖θ̂n
m − θ∗m‖2 = O(

log λmaxR
n
m

λminRn
m

) (36)

provided that λminRn
m → ∞ as n → ∞. Here λmaxR

n
m and λminR

n
m are the largest and smallest

eigenvalues of the matrix Rn
m. Moreover, the least squares estimates are strongly consistent if

λminR
n
m → ∞ and the following excitation condition

lim
n→∞

log λmaxR
n
m

λminRn
m

→ 0, a.s. (37)

is satisfied.

3.2 Multiscale view of the parameter estimation

In this section a coarser scale correction method to the least squares estimates obtained at certain
scale m will be presented. The proposed method is similar to the coarse grid correction to the
multigrid method but here this procedure is used in the parameter estimation process.

From the earlier discussion, the least squares estimates θ̂n
m of the system parameters θ∗m at scale

m leads to two possible errors: the first is the parameter estimate error θ̃n
m and the other is the

residual em(t) = ym(t) − φm(t − 1)T θ̂n
m. From (30), it follows that

em(t) = ym(t)−φm(t−1)T θ̂n
m = φm(t−1)T θ∗m+wm(t)−φm(t−1)T θ̂n

m = φm(t−1)T θ̃n
m+wm(t) (38)

which shows the relationship between the residual and estimate errors of the least squares method.
Consider the following criterion

Jm−1
m (ηm−1) =

1

2
< φm(t − 1)T (θ̂n

m + ηm−1), θ̂
n
m + ηm−1 > − < ym(t), θ̂n

m + ηm−1 > (39)

where < ·, · > denotes the bilinear form defined by

< u, v >=
2m

∑

i=1

uivi, u, v ∈ R2m

(40)

12



A direct solution to the minimisation of (39) can be obtained easily as

φm(t − 1)Tηm−1 = ym(t) − φm(t − 1)T θ̂n
m = em(t) (41)

which is in exactly the same form as the residual equation (38), which can be rewritten as

em(k, t) = ã0u
m
a (k, t − 1) + ã1u

m
a (k + 1, t − 1) + ã−1u

m
a (k − 1, t − 1), i = 0, 1, · · · , 2m − 1 (42)

Projecting this equation from space V2m onto the coarser space V2m−1 by multiplying by the
2m−1 × 2m Haar wavelet transform matrix P

P =
1√
2

⎛

⎜

⎜

⎜

⎜

⎝

1 1 0 0 · · · 0 0
0 0 1 1 · · · 0 0

. . .

0 0 0 0 · · · 1 1

⎞

⎟

⎟

⎟

⎟

⎠

(43)

on both sides of the eqn. (41) yields the following coarse relationship in coarse space V2m−1

φm−1(t − 1)T ηm−1 = em−1(t) (44)

where em−1(t) = Pem(t) = (em−1
a (0, t), em−1

a (1, t), · · · , em−1
a (2m−1 − 1, t))T , ηm−1 = (ã−1, ã0, ã1)

T ,
and

φm−1(t−1)T = Pφm(t−1)T =

⎛

⎜

⎜

⎜

⎜

⎝

um−1
a (0, t− 1) um−1

a (0, t − 1) um−1
a (1, t− 1)

um−1
a (1, t− 1) um−1

a (1, t − 1) um−1
a (2, t− 1)

...
um−1

a (2m−1 − 1, t − 1) um−1
a (2m−1 − 1, t − 1) um−1

a (2m−1, t − 1)

⎞

⎟

⎟

⎟

⎟

⎠

(45)
in which um−1

a (k + 1, t− 1) = 1/
√

2(um
a (2k + 1, t− 1) + um

a (2k + 2, t− 1)), k = 0, 1, · · · , 2m−1 − 1.
Similar results can be achieved by using Haar wavelet detail transform Q

Q =
1√
2

⎛

⎜

⎜

⎜

⎜

⎝

1 −1 0 0 · · · 0 0
0 0 1 −1 · · · 0 0

. . .

0 0 0 0 · · · 1 −1

⎞

⎟

⎟

⎟

⎟

⎠

(46)

Next let us see how the Haar wavelet transforms P and Q change the eigenvaules of the matrix
φm(t − 1)φm(t − 1)T . Firstly, notice that P T P + QT Q = I so that

φm(t − 1)φm(t − 1)T = φm(t − 1)(P TP + QT Q)φm(t − 1)T

= φm(t − 1)P TPφm(t − 1)T + φm(t − 1)QT Qφm(t − 1)T (47)

13



By adding up both side of (47), it follows that

Rn
m = Rn

m−1 + Hn
m−1 (48)

where Hn
m−1 =

∑n
t=1 φm(t− 1)QT Qφm(t− 1)T . It is interesting to see that the covariance matrix

Rn
m at scale m can be divided into a low frequency part Rn

m−1 and a high frequency part Hn
m−1

at scale m − 1. It can be checked that the 3 × 3 matrices φm(t − 1)P TPφm(t − 1)T and φm(t −
1)QT Qφm(t−1)T have the same eigenvalues: 1/2(λ1(t−1)2 +λ2(t−1)2), 1/2λ3(t−1)2 assuming
that λ1(t− 1)2, λ2(t− 1)2, λ3(t− 1)2 are the three eigenvalues of the matrix φm(t− 1)φm(t− 1)T .
This shows that the matrices φm(t − 1)P TPφm(t − 1)T and φm(t − 1)QT Qφm(t − 1)T are only
semi-positive definite but this does not affect the positive definiteness of the matrix Rl

m−1 because
Rl

m−1 =
∑l

t=1 φm(t− 1)P TPφm(t− 1)T =
∑l

t=1 φm−1(t − 1)φm−1(t− 1)T will be positive definite
as long as φm−1(0)φm−1(0)T is chosen to be positive definite.

3.3 Convergence analysis

The proposed multiscale method involves the following three steps

• Recursive least squares estimates for the parameters at scale m;

• Recursive least squares estimates of the estimation errors of the parameters at scale m− 1

• Coarse correction from m − 1 to m

The coarse correction is accomplished by simply adding the coarse estimates to the fine estimates
as follows

θ̂n
m ← θ̂n

m + η̂l
m−1 (49)

Applying the standard least squares method to the problem (44) again gives the following esti-
mate

η̂l
m−1 = (Rl

m−1)
−1

l
∑

t=1

φm−1(t − 1)em−1(t) (50)

where the matrix Rl
m−1 =

∑l
t=1 φm−1(t − 1)φm−1(t − 1)T and l the number of time samplings.

For the deterministic case, again the least squares solution to (44) satisfies

Rl
m−1η̃

l
m−1 = Rl−1

m−1η̃
l−1
m−1 = constant (51)

with η̃l
m−1 = η∗

m−1 − η̂l
m−1 = θ̃n

m − η̂l
m−1. Now let θ̃n+l

m = θ∗m − (θ̂n
m + η̂l

m−1), then it follows that

14



Rl
m−1θ̃

n+l
m = Rl

m−1(θ
∗

m − (θ̂n
m + η̂l

m−1)) (52)

= Rl
m−1(θ

∗

m − θ̂n
m) − Rl

m−1η̂
l
m−1

= Rl
m−1θ̃

n
m − Rl

m−1η̂
l
m−1

= Rl
m−1η̃

l
m−1

= Rl−1
m−1η̃

l−1
m−1

= Rl−1
m−1θ̃

n+(l−1)
m

so that

Rl
m−1θ̃

n+l
m = Rl−1

m−1θ̃
n+(l−1)
m = constant (53)

Hence, since (Rl
m−1)

+ is a sequence of decreasing semi-positive definite matrices, both (Rl
m−1)

+

and θ̃n+l
m converge. This shows that liml→∞ θ̃n+l

m = 0 if λminR
l
m−1 → ∞. Moreover

(θ̃n+l
m )T Rl

m−1θ̃
n+l
m ≤ (θ̃n+(l−1)

m )T Rl
m−1θ̃

n+(l−1)
m ≤ · · · ≤ (θ̃n

m)T R0
m−1θ̃

n
m (54)

Since Rl
m−1 = Rl−1

m−1 + φm−1(l − 1)φm−1(l − 1)T , it has

λminR
l
m−1 ≥ λminR

l−1
m−1 ≥ · · · ≥ λminR

0
m−1 (55)

It follows that

‖θ̃n+l
m ‖2 ≤ κ(Rl−1

m−1)‖θ̃n+l−1
m ‖2 (56)

and

‖θ̃n+l
m ‖2 ≤ κ(R0

m−1)‖θ̃n
m‖2 (57)

where κ(R) = λmaxR/λminR is the condition number of the matrix R.

This shows that liml→∞ θ̃n+l
m = 0 if liml→∞ λminR

l
m−1 = ∞ when the system is deterministic,

where λminR
l
m−1 is the smallest eigenvalue of Rl

m−1.

4 Numerical results

In this section, a numerical simulation is conducted to illustrate the proposed multiscale param-
eter estimation method. We will continue to use the example system (10), that is

u(i, t) = a0u(i, t − 1) + a1u(i + 1, t − 1) + a−1u(i− 1, t − 1), t = 1, 2, · · · (58)
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Figure 2: The parameter estimate errors for case 1 without noise (solid: LS at scale m, dashed:
Multiscale method)

where i = 0, 1, · · · , 2m − 1 representing an approximation in finite dimensional space V2m . The
numerical studies are carried out for four different cases, chosen to illustrate the properties of
the new algorithm.

Case 1. In this simulation, the parameters were chosen as a0 = 0.1, a1 = 0.5, a−1 = −0.2 and
m = 6. The initial conditions of the lattice dynamical system were

u(i, 0) = sin(
2iπ

2m
) +

1

2
sin(

16iπ

2m
) +

1

2
sin(

32iπ

2m
) (59)

and Dirichlet boundary conditions were considered. The reason for the choice of this initial
condition is to include different frequency components. The recursive least squares algorithm
was run for three simulation steps at fine scale m = 6 and then projected to coarse scale m = 5
for the rest of the computation. Moreover, to test the performance of the proposed multiscale
identification method, the same procedure was applied to the system with a white noise of zero
mean and std = 0.3. Fig.2 and Fig.3 shows the infinity norm of the parameter estimate errors
‖e(t)‖∞ for the cases without noise and with noise. These results indicate that the multiscale
identification method has a faster convergence rate than the conventional recursive least squares
method.

Case 2. In this case, the parameters were still chosen as a0 = 0.1, a1 = 0.5, a−1 = −0.2 and m = 6
but the initial conditions of the lattice dynamical system were chosen as a Gaussian white noise
with zero mean and std = 1. The same procedure as in case 1 was employed and the results are
shown in Fig.4 and Fig.5.

From all these numerical results, it can be observed that

1) The proposed multiscale method can speed up the convergence of the parameter estimates
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Figure 3: The parameter estimate errors for case 1 with noise (solid: LS at scale m, dashed:
Multiscale method)

5 10 15 20 25 30 35 40 45 50
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Simulation steps

In
fin

ity
 n

or
m

 o
f p

ar
am

et
er

 e
rro

rs

Figure 4: The parameter estimate errors for case 2 without noise (solid: LS at scale m, dashed:
Multiscale method)
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Figure 5: The parameter estimate errors for case 2 with noise (solid: LS at scale m, dashed:
Multiscale method)

compared to applying the least squares method at a single scale.

2) Due to the projection from fine to coarse, the computational costs are reduced because of the
reduction of the dimension of the problem.

5 Conclusions

A multiscale modelling framework for a class of lattice dynamical systems has been introduced.
It has been demonstrated that the proposed framework not only includes many existing models
as special cases but also connects the multiresolution analysis to the multiscale problem. Apart
from that, a new multiscale identification method has been presented by using a Haar wavelet
decomposition method and a recursive least squares algorithm. It has been shown by numerical
studies that the convergence properties of the parameter estimation can be improved by the
proposed multiscale method.

With the proposed framework, there are plenty of problems to be solved such as a detailed
analysis of the convergence and consistency in the presence of noise and how to extend the
proposed identification method to nonlinear lattice dynamical systems.
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