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Abstract: This study considers the identification problem for a class of nonlineampi@rvarying

systems associated with the following scenario: the system behaviour depends on some specifically
prescribed parameter properties, which are adjustable. To understand the effect of ithge vary
parameters, several different experiments, coordipg to different parameter properties, are carried

out and different data sets are collected. The objective is to find, from the available data sets, a
common parametatependent model structure that best fits the adjustable parameter psofoerthe
underlying system. An efficient common model structure selection (CMIg8jitam, called the
extended forward orthogonal regression (EFOR) algorithm, is proposesletti such a common

model structure. Several examples are presented to illustrate the application afiectheness of

the new identification approach.

Keywords: Forward orthogonal regression, nonlinear system identification, pematie@endent

model.

1. Introduction

The task of system identification is to deduce, from observed alatmdel (or a set of models)
that can be used for specific purposes such as system analysis, control and prediction. A system model
is defined by two properties: the model structure and the associated paca®leters. Traditionally,
the identification pocedure for dynamical systems often merely involves a single (training) data set,
corresponding to one specific experimental situation, and the msdliteal model is thus
experimentally specific; both the model structure and the associated model pesarefixedin the
real world, however, parameters in a given common model structure for a dynamical system may be
required to be changeable to meet varying situations caused by the vasfadither internal or
exogenous parameters (Billings and Vd@87). For example, typical masgringdamper vibration
systems can be described using a common model structure, in the form of satmndrdinary
differential equation (ODE), where the associated parameters are changeable and deterrhmed by t

threeelements of mass, spring and damper. The ODE model for the vibration system cavebeagie
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a special case of interaparameteddependent (IPD) models, where the dynamical behaviour of the
model is directly affected by changes of the internal parameters.

In terms of system identification, the task for general IPD model identification problems can be
summarized as follows. By setting the process internal parameters to be diffévesst a number of
experiments are carried out on the same system, ardetiffdata sets are obtained, corresponding to
different parameter properties. The objective is to find from the available data a parsimonious
common model structure, to accommodate all the different parameter properties filgirigestl the
data sets sing the common structured model, with varying process internal parameters. This is
different from conventional parametearying models, where process internal parameters are assumed
to be timevarying.

There are many other cases where parandetgendentmodels are desirable. Consider the
following scenario. In typical normal operating conditions, the dynamical mivaaf an underlying
system is often determined by the system model structure and the associated process internal
parameters. In many casé®wever, several external parameters, for example temperature, pressure
intensity, light illumination, geometry shape and size, etc., may also indirectlst #ie dynamical
behaviour of the system, via the associated process internal parametersr to éuthg understand
the mechanisms of the underlying dynamics under different operating condiéorsal experiments,
with respect to different exogenous parameter properties, may be required. The task of- external
parametedependent (EPD) model identification is to find a best common model s&uxsed on
the available data, to accommodate the effects of all the external parameters, byrigesl fitte data
sets using the common structured model, with adjustable process internal parameters. Tieid e rela
but distinct from the concepts of spatial piecewise linear models adédlsnwith single dependent
parameters (Billings and Voon 1987).

The objective of this study is to present a unified parartietieendent commaosiructured (PDCS)
modelling framework for handling the IPD and EPD identification problem, where lixetisa of the
common model structure is the critical stage in the procedurefficient common model structure
selection (CMSS) algorithm, called the extended forward ortredgegression (EFOR) algorithm, is
developed in this study to select a common model structure based on several data sets collected from
different experiments. Once the common model structure has been obtaime@ntrainodel
parameters corresponding to lkandividual experimental condition can then be calculated based on
the available individual data sets. The novel study of common model strigeutdication is very
useful for engineering system design and control, where only a fixed common shadiire is
involved but with adjustable process internal parameters. A PDCS model can be usegswothral
effects of varying parameter properties on the performance of the behavidbe afnderlying
dynamical systems without carrying out experiments @nrdal system. This will save time and

money spent on real system experiments.



For convenience of description, in the following all Aoternal parameters, including different
experimental conditions, will be referred to as external or exogenous giasantSpecifically
prescribed parameters, either internal or exogenous, will be called experiment paranmdssignor
parameters. This work involves several abbreviations and these are collected in the appendix t

facilitate reading of text.

2.  The concpt of the parameterdependent commonly structured model

The parametedependent common-structured (PDCS) model is defined as below

y(t) = f(y(t-1),---, y(t—ny),ut-1),---,u(t-n,),0(5)) +e(t) 1)
where
o the nonlinear mappinfyis often unknown and needs to be identified from given observations of

the inputu(t) and the outpuy(t); n,and n, are the maximm input and output lags(t) is

the model prediction error, which can often be treated as an independent zero mean noise
sequence providing that the functibgives a sufficient description of the system.

® 0(&) < O represerd aninternal parametevector, which is a function of the external parameter
seteQ, where® and QQ are theinternal and externalparametersets, respectively The
external parameter sétmay not explicitly appear in the model but does indirectly affect the

dynamical behaviour of the model through the internal parafeter

Assume thaa total ofK experinents, corresponding t€ different cases of exogenous parameter

propertiesg,;,&,,---,&«, have been completed on the same system, nf@dean then be expressed

in a more explicit fornas

F(y(t-D),-, y(t-n ) ut -1, ut-n),0), S.tE

f2(y(t-1),--,y(t—n,)ut-1),---,ut-n,),0,), s.tg,

y(t) = (2)

FE(y(t=2, -, y(t—-n,)ut -2, --,u(t-n,).0, ), s.t.&

wheref'() (i=1,..K) are differentlinear or nonlineafunctions that share a common structure in
representation. The symbol ‘sg.” means the individual model is subject to the exogenous parameter
g . Clearly, if K=1, the PDCS model (2) will reduce to the traditional NARX ofiinear

AutoRegressive with eXogenous inputs) model (Leontaritis and Billings 1985, Pearson 1999).
Note that thePDCS model considered here is different from coneeat timevarying or
parametewarying models, where process internal parameters are assumed to ‘varyimg. The

PDCS model is also different from the traditional minput and multoutput (MIMO) model



structure, where each subsystem model may not need to share the same common model structure, and

which often involves one single data set.

3. The identification of the commonly structured model
3.1 The linearin-the-parameters regression model

The nonlinear mapping in (1) can be constructed using a variety of local or global basis
functions including polynomials, kernel functions, splines, rdiais functions, neural networks and
wavelets (Chen and Billings 199avli 1993,Berger1994, Wu and Harris 1997, Pearson 1944,
2001, Harris et al. 2002, Chen et al. 2005, Billings and Wei 20@5)e of the most popular

representations is the polynomial mofletontaritis and Billings 1985Wwhich takes the form below

VO =05+ 3,05, )3 3, (6,05, )+

iy =1i y=i

d d
# 2 Yig, 06,0, 000, (©) +€(0) 3)
whereg,; ; are parameters =n, +n, and
fiyei, (%, (0,3, (), % (1) = 9i1i2-~-imHXik (t),1=m</ 4)
k=1
~ y(t —k) 1<k<n,
% _{u(t—(k—ny)) n,+1<k<d ®)

The degree of a multivariate polynomial is defined as the highest order among the terms, for example,
the degree of the polynomidi(x,,X,,X,) = a,X; +a,X,X; + 8,X’X,X; is determined by the term
x2x,%2 and thug =2+1+2=5. Similarly, a NARX model with a nonlinear degremeans that the

order of each term in the model is not higher than
A NARX model constructed using basis function expansions can often be expressedinsirg a

in-theparameters form

M
Y(t) = 2 Ot (1) + (1) (6)
m=1
whereM is the total number of candidate regressgtgt) = ¢,,(x(t)) ("m=1,2, ...,M) are the model

terms generated in some way from theptit’ (predictor) vectomx(t) =[x (t),--- x4 (t)]" defined by

Eq.(5), 6, = 6,,(€) are the model parameters, ahid a known collection of external parameters.



3.2 The multiple regression model

Assume thata total of K experiments, corresponding td different cases of the experiment
parameter properties, have been carried out on the same systéfrdiiatent data sets, with respect
to theK experiments, have been obtained. Also, assume that a common model strudtutes fortm

of (6), can best fit all the data sets. Denote the input and the output sequencektiorettperiment

by{uk(t)}tN:kland{ yk(t)}t’\'zkl, respectively, foik=1,2,..., K. The kth predictor vector is thus given by
X (1) = [ X2 (1), Xy 7" =[Y (-2, Y (t—ny), u (t-1),---,u (t-n,)]". It is assumed that all the

K data sets can be represented using a common model structure, with a different parameter set,

deduced from the initial candidate regression model below
M M
Yie®) = 2 B (X () + & (1) = 2 Bu e (D) + & (1) (1)
m=1 m=1

This can be expressed using a compact matrix form
Yi =Py +€ (8)

wherey, =[y, (1)1"‘;yk(Nk)]T B =B Bum I & =& (l)!"'iek(Nk)]T and®, =[@y, @y ]
with @ =[d m @, G m(N]™ fork=1,2, ... Kandm=1,2,...,M.
For large lag:, andn,, the regression model (7) often involves a large number of candidate

model terms, even if the nonlinear degras not very high, sag=2 or ¢ =3. Experience has shown

that an initial candiate model with a large number of candidate model terms can often be drastically
reduced by including in the final model only the effectively selected significnodel terms.
Furthermore, a simple concise model is usually desirable for practical applcatcluding system
analysis, design, control and prediction. This is one of the motivatiotie giresent study to select

significant model terms to form a parsimonious common model structure.

3.3 The extended forward orthogonal regression algorithm

A new common model structure selection (CMSS) algorithm, called the egtefodward
orthogonal regression (EFOR) algorithm, which is generalized ftemstandard orthogonal least
squares (OLS) algorithm (Billings et al. 1989, Chen et al. 1989) and thetlyedeveloped forward
orthogonal regression (FOR) algorithm (Wei and Billings 2006, Wei et al. 2006penilesigned for
the PDCS identification problem.

Letl ={12,---,M} . Denote byD ={¢,,:me |1} the dictionary of candidate modelrries for an
initially chosen candidate common model structure that fits to aK tlegression models given by (7).

For thekth data set, the dictionafy can be used to form a dual dictionsfy={¢, ,:mel}, where

the mth candidate basis vectey, ., is formed by themth candidate model tergg, € D, in the sense



that @, , =[¢ (X @), b (X (N)]T (k=1,2, ...K). The common model structure selection problem
is equivalent to findingfrom |, a subset of indices, ={i,,:m=1212,---,n,i_, €1} wheren<M , so that

y; (i=1,2, ...,K) can be approximated using a linear combinatiogp,afp; ,---,¢; as

Yi =610, ++06 .0 +€ 9)

Following Billings et al. (1989) and Chen et al. (1989)kquared correlation coefficient will be
used to measure the dependency between two associated random vectors. The squared correlation

coefficient between two vectoxsandy of sizeN is defined as

_ Wy? o xw)?
C(X,y) = (XTX)(yTy) - zil\ilxiizil\il yi2 (10)

The squared correlation coefficient is closely related to the error reduction (EERRB) criterion
defined in he standard orthogonal least squares (OLS) algorithm for model struetectios. A
comprehensive discussion on GERR algorithm can be found in Billings et al. (1989) &iwn et
al. (1989).

Letrkyozyk(kzl,z, ...K). Fork=1,2, ...,K andj=1,2, ..., M, calculatecl(k,j):C(yk,(pk'j),

and define
§ =arg max —1 KE G K, j 11
rg]SjSM{Kk_l ( 1])} ( )

The first significant common model term can then be selected asltmelement,@l, in the

dictionary D. Accordingly, the first significant basis vector for tké regression model is thus

0,1 =9, s, and the first associated orthogobakisvector can be chosen &g, =¢, ; .The model

residual for thékth regression modgetelated to the first step search, is given as

.
e od
Mea="Tvo _MQM (12)

k Mk 1

Notice thatc(k,s) can be viewed as the error reduction rgRR) that is introduced by
including the first basis vecta, ; =9, into the kth regression model. The criterion (11), by

maximizing the sum of the ERR values relative to allkh#atasets, guarantees that the variation of

the outputs in all th& data sets can be explained by including the model #ermwith the highest
percentage, compared with selecting any other candidate modelgteln={4,:mel}. The

quantityAERR(@) = (1/ K)Zlecl(k,sl) is referred to as the first averagieor reduction ratio (AERR).



In general, thenth significant model terng, can be chosen as follows. Assume that atrth&)th

step, (n-1) significant model termsg,¢,---,¢,,,, have been selected. lgt,, 0, ,,--,0, , , be the

associated basis vectors for #th regression model, and assume that thd)(selectecbaseshave

been transformed into a new group of orthogdmasesd, ;,q; ,, "4y n4 Via Some orthogonal

transformationLet

m’l(PI,'Qk,
pf(r,nj) =@y - =2

T
s=1 qk,sq k,s

qk,s ' J € ‘]m (13)

whereJ,, ={j:1<j<M,j#s1<t<m-1} . For k=1,2,...K and jeJ,, calulatec,(k,j)=

C(y,.p{"), and define
1 .
Sn = argmaX{—Zcm(k, J)} (14)
]E‘Jm K k=1

The mth significant common model term can then be selected as,ttre element,g; , in the
dictionary D. Accordingly, themth significant basis vector for thkth regression model is thus
o m =9y s » and the first associated orthogohasisvector can be chosen &g, = pfj’“s)m .The model
residual for thékth regression modetelated to thenth step search, is given as

r;,m—lqk,m (15)

r‘k,m :rk,m—l_ T k,m
qk,mqk,m

Subsequent ghificantbasescan be selected in the same way step by step. Noticthéh@t-1) basis
vectors,a, ,,a, 5, -+, 0, (respectivelythe associatedrthogonalized bases 1,0y 5,***, 0y m1), DY
including he mth basise, ,, = ¢, s (resgectively the orthogonalized bagig ., = p@m ) , can explain
the variation in the outputs of thé data sets with a higher percentage than by including any other
candidate bases. The quanfgRR(M) = (1/ K)Z::lcm(k,sn) is referred to as theth aveageerror

reduction ratio (AERR).

From (15), the vectors, ,andq, ., areorthogonal, thus

(rllrm—lqk m)2
I E=r g P -7 (16)
« om-L q-lz,mqk,m
By respectively summing (15) and (16) farfrom 1 ton, yields
0 Mem i
kK= Z&qk,m Hyn (17)

T
m=1 qk,mqk,m



I ir e [~ SaBen)” oo (Fimsion)” (18)

T
k,n4k,n m=1 qk mqkm

From (17) and (18), the model residugl|, can be used to form a criterion for model selection, and

the search procedure will be terminated when the rqup”zsatisﬁes some specified cotidns. In

the present study, an approximate minimum description length (AMDL) oriteeveloped byaito
(1994) andAntoniadis et al. (1997), on the basis of the Rissanen’'s MDL critericssdRén 1984),

will be used to determine the model size. Fordhse of single regression model, AMDL is defined as

15nlog, N
N

2
AMDL(n) = 05log,[MSE(n)] +1'5”'%2N _ o.5|ogz(”rln\l” J+ (19)

where MSE is the measquareerror from the associated mod&l,is the length of the associated

training data set is the number of model terms, angds the associated model residual

The present study uses the following average AMDL as the criteriondorde¢ the number of

common model terms

K
AAMDL( n) =%ZAMDL[k](n) (20)
k=1
whereAMDL!¥ (n) is value for the AMDL criterion associated to #ik data set.

3.4 Parameter estimation

It is easy to verify that the relationship between the selected original dases ., --,a, , and
the associated orthogonal bagesq, ,,---,d, ,, for thekth data setis given by

Ain=QxnRin (21)

whereA, | =[a, 4, -,0, ], Q,, IS an N, xnmatrix with orthogonal columrg,,d, ,, "4y, and

Ry.n is annxnunit upper triangular matrix whosmtriesu; (L<i < j <n) are calculated during the

orthogonalization procedur@he unknown parameter vector, denotedpy=[6,,,--,6,,]", for the

model with respect to the original bases (similar to (9)), can be atddurom the triangular equation

Rk,n(')k,n :gk,n Wlth gk,n :[gk,li"'lgk,n]T ’ Wher@m = (rl;r,m—lqk,m) /(qlmqkm) fOf I'T'I:].,Z, i

3.5 A general procedure for PDCS model identification

Common model structure selection is a critical step in PDCS idewittic Once the common
model structure has been identified, relevant model parameters for each individual data set can then be
estimated, and the dependency of the model parameters on the associated experiment parameter
properties can be deduced finally. The procedure for the identificatiBCSmodels can briefly be

summarized below:



CollectK different data sets froik experiments.

Select common model terms using the new ERDIRSS algorithm

Estimate relevant model parameters for each individual case of experiment parameters.

Deduce the dependence of the model parameters on the associated experiment parameter set.

4. Applications

Three examples, one for a forcewhssspringdamper system antvo for real data setsre

presented to illustrate the application of the new PDCS model idemtifigaibcedure.

4.1 A forced massspring-damper system
The massspring-damper system is described by the differential equation model below
d%y

dy 3
M+ ky(t) = u(t) (22)

whereu(t) is the force imposed on a mass y(t) is the displacement of the mass relative to the

equilibrium position,c is a damping coefficienk is a constant relative to the spring stiffness. In this
example, the parameters and k were set to fixed valuesr=1[kg] and k=100[N/m], and the
coefficientc was the design parameter, which was assumbd &aljustable.

Four cases were considered for the design parambterespectively setting=2, 10, 20, and 40.
Using these values, the model (22) was simulated four times, at each time the inputi sigsal
chosen to be aandom sequence uniformly stlibuted in §100,100], and 1000 inpatutput data
points, with a sample interval=0.01, were collected for each case. The objective was to find a
common linear model structure for the four collected datavddisno a priori infornation other than

the measured data. The predictor vector tltoe commonstructured model was chosen to be
X(t) =[x (1),---, %, O] =[y(t—-2),y(t-2),u(t-1),ut—2)]", and he initial candidate model structure
was chosen to be

y(t)=ét9i°>q 1)+ 36°,% (1) (t) +e(t) (23)

i=1 =i

Note that thecandidatemodel terms (t)x; (t) were purposely included in the candidate model (23), to

check whether theew EFORCMSS algorithncan correctly select the signifidamodel terms. The

new EFORCMSS algorithmwas applied to the four data sets, and the associated result is shown in
Table 1, where only the first 8 selected model terms are presented. The AAMDL index il Table
clearly indicates that a common model struetuvith 4 model terms, is preferred, and the final

common-structured model was thus of the form

y(t) = 6(c)y(t -1 + 6,(c) y(t - 2) + G5 (c)u(t — 1) + 6, (c)u(t — 2) + &t) (24)



where the parametefs(n=1,2,3,4) were viewed as a function of the adjistaoefficientc. The
parameter estimates for the three model terms in (24), about the four data sets, are shown in Table 2.
Assume that the parametgcan be fitted using the adjustable coefficienwith a polynomial of

order 3 below
gm(c) = ﬂm,o + :Bm,lc+ ﬂm,zc2 + ﬂm,3c3 , MF1,2,3,4, (25)

The parameters, , were directly estimated using the results in Table e PDCS model for the

system (22) was

y(t) = [ 1.990002—9.945500<10 3c +4.919167%10°c? —1.366667A10'c®]y(t—1)
+[-0.999993+ 9.995458¢103c —4.935854x10°c? +1.37083310 'c3]y(t-2)
+[4.99583310° —1.66666710'c +4.166668<10°c? —3.070176<10*8c3|u(t —1)
+[4.99581910° —3.329174x10'c +1.252084<10°c? —4.166670<10 *2c®u(t — 2)
+e(t) (26)
It will be easy to verify that the PDCS model (26) provides a perfect representation for the original
continuous model (22), and this model thus can be used to analyse the effect of the desigarparamet

on the dynamical behaviour of the original system.

Table 1. Identification result for the nsaspringdamper
system given by (22), using the EF@RISS algorithm.

Search| Model term AERR AAMDL
step (%)

1 y(t-1) 99.000423 -6.343372
2 y(t-2) 0.877384 -8.050587
3 u(t-1) 0.068845 -8.613702
4 u(t-2) 0.053349 -52.251190
5 VA(t-1) 8.27335560030 | -52.230380
6 y(t-1)y(t-2) 5.605229€0028 | -51.839465
7 VA(t-2) 9.031232e0026 | -49.679149
8 const 3.103675€0026 | -49.466224

Run time: 0.609sec

Table 2. Parameter estimates for the selected model terms for thepriags
damper systemigen by (22).

Model Parameter estimates

term c=2 c=10 c=20 c=40
y(t-1) 1.970306 1.895329 1.809675 1.662142
y(t-2) -0.980199 -0.904838 -0.818731 -0.670375

u(t-1) 4.962667€005 | 4.833333€005 | 4.679167€005 4.3958336005
u(t-2) 4.922973e005 | 4.675501€005 | 4.3767356005 3.8378176005

1C



4.2 Modelling a particle damper system

A particle damper is a device with one or more cavities filled with dry granular partidesce
shapes and small sizes. The particles can move freely and the frictions and collisions imeiviegn
particles or with a container wall will arise under the vibrating motérthe structure. These
collisions exchange momentum and thus dissipate kinetic energy due todtiemohinelastic losses.
Particle dampers have the advantage of being simgjeametry, small in volume, and are applicable
in extreme temperature environments. More importantly, the interactionsdreiwdividual grains
(and between grains and the container walls) are dissipative because of surface frictiba and t
inelasticity d collisions. An overwhelming advantage of particle dampers is that they can operate in
extreme temperature conditions when using metallic, tungsten carbide or ceramic paiticles. T
makes particle dampers extremely applicable in areas such as gas turbiessatemdconditions and
other high temperature environments. Comprehensive discussions on pantiskrsiaan be found in
the literature say in Liu et al. (2005), and Rongong and Tomlinson (2005).

Several parameters may affect the performance oftelpadamper and one crucial parameter is
the cavity geometry. This example concerns such a geometry design parameter: the-t&gidter
ratio: R=H/D, whereH and D are the height and diameter of the particle damper respectively. Five
experiments, avesponding tdr=2,4,6,8,10, have been completed on a particle damper device in the
Department of Mechanical Engineering, University of Sheffield, and five different data sets, have bee
collected. Each data set consists of 2000 data pairs of the input (apptedl &nd the output
(acceleration) observations, sampled with a frequefyeyl2.8kHz. The objective is to identify a
PDCS model, with a dependence ondlsign parametd®, which can be used to analyze the effect of
the desigrparameteR on the performance of the particle damper. Four data sets, corresponding to
R=2,4,6,10, which are shown in Figure 1, were used for model identification, and one tdata se

correspond t&=8 , was used to test the performance of the identifx@d3model.

Denote the system input and the output sequence {s{t)y]’, and{y(t)}\,, respectively, with
N=2000. The predictor vector for all theommonstructured modsl was chosen to be
X(t) =[%(t),---, %o (®)]" , wherex, (t) = y(t—k) for k=1,..., 5, andx,(t) = u(t —k +5) for k=6, ...,10.
The initial candidate common model structure for all the four data setschosen to be a NARX

model below

10 10

10
y(t) =65 + X 00% 1)+ > 6°% (1)x; (t) + eft) (27)
i=1 i=1 =i
This candidate model involves a total of 66 candidate model terms. Basesl canttidate common
model structure, theew EFORCMSS algorithm was applied to the four training data sets. The
AAMDL index, shown in Figure 2, suggests that a common model structurelWinodel terms, is

preferred. The 11 selected common model terms, ranked in order of sigafithecrder that the

11



terms entered into the model), are shown in Table 3, where results for AERR and AAMBIscare
presergd. From Table 3, the resultant common model structure is of a simple NAR3Serfation,
which only includes linear model terms and a DC term with a small value.

The PDCS model for the particle damper system was chosen to be
10
Y1) = 6o (R) + 2. 0 (R) Xy, (1) + (1) (28)
m=1

where the parametet, (m=0,1,...,10) depends omthe design parameteR. Assume that the

parameteg, can be fitted usin&, with apolynomial function below
On(R) = B + BniR+ B R + BnsR®, MEO,1, .., 10, (29)

The parameters,,, can directly be estimated using the results given in Table 3. The estimated values

for B, form=0,1, ...,10 ana=0,1,2,3, are presented in Table 4.

5
20
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5o g0
E 3
-20 , | b9 5 , , ,
0 0.05 0.1 0.15 0 0.05 0.1 0.15
5
20
N K
3 0 g0
E 3
-20 , | R , , ;
0 0.05 0.1 0.15 0 0.05 0.1 0.15
5
20
© <
5 0 20
E -}
-20 , | 4 ° 5 , , ,
0 0.05 0.1 0.15 0 0.05 0.1 0.15
Lo o 5
é 0 E 0
— 3
= 20 , | 5 0 5 , , ,
0 0.05 0.1 0.15 0 0.05 0.1 0.15
time (s) time (s)

Fig. 1. Inputoutput data used for the particle damper system identification.-2y&,10 (OutpuR,4,6,10)
correspond respectively to the caRe®,34,6,10
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AAMDL

S 10 15 20 25 30 35 40
Mode| size

Fig. 2. AAMDL versus the model size of common model structure models, forothiedata sets, corresponding to
R=2,4,6,10, used for the particle damper system identification.

Table 3. Identification result for the partiaiamper system described in Example 2, using tt
EFORCMSS algorithm.

Search | Model Parameter for different data sets AERR AAMDL
step | term R=2 R4 | R6 | Re10 (%)
1 y(t-1) 2.1590 1.7173 1.5291 1.2342 97.7609 -2.1776
2 y(t-2) -1.7710 -0.8474 | -0.4701 | 0.144 2.1065 -4.2127
3 y(t-5) -0.2052 2386 0.3059 0.4939 0.0418 -4.4944
4 y(t-3) 0.8049 0.7025 0.5786 0.4173 0.0173 -4.6247
5 u(t-1) -0.3439 -0.5601 | -0.6835 | -0.6963 0.0046 -4.6630
6 u(t-5) -0.1668 -0.3119 | -0.3875 | -0.3272 0.0086 -4.7474
7 u(t-2) 1.0432 1.8016 2.2228 2.1882 0.0170 -4.9806
8 u(t-4) 0.6890 1.3032 1.6290 1.4488 0.0060 -5.2148
9 y(t-4) -0.0065 -0.8290 | -0.9637 | -1.3123 0.0064 -5.0786
10 u(t-3) -1.2214 -2.2329 | -2.7811 | -2.6139 0.0041 -5.3216
11 const 0.0051 0.0047 0.0077 0.0083 0.0013 -5.3571
Run time: 2.37sec

Now consider the performance of the identified PDCS model (28), whose pasaraeter
determined by (29) and Table 4. The data set, correspondRetavhich has never been used in the
identification procedure, was used to test the performance of the ideRBHES model. The PDCS
model was simulatedsing the same input as in the data set correspondReetcand the output from
the PDCS model was then compared with the corresponding measurements. Figurent3 pres

comparison between theode predicted output and the original measuremenidote that themodel
predicted output (MPO) is defined asj(t) = f (J(t-1),---, y(t —5),u(t—1),---,u(t—5)) , implying that
y(t) is produced from the identified model iterativeljhe mearsquareerror was calculated to

MSE=0.1158. Clearly, the PDCS model provides an alpedect representation for the test data set.

13



Table 4. Estimates for the parametgrs, in (29).

Model 'Bm’n
n
term m
0 1 2 3

const 0 0.012800 | -0.006325| 0.001400 | -0.000081

y(t-1) 1 3.023950 | -0.566579 | 0.114194 | 0.074125

y(t-2) 2 -3.6156 B 0.775356 | -0.161981| 0.007808

y(t-3) 3 0.848050 | -0.000471| -0.012125| 0.000786

y(t-4) 4 2.039450 | -1.418113| 0.219888 | -0.011159

y(t-5) 5 -1.321225 | 0.485829 | -0.120994| 0.006161

u(t-1) 6 {0.023800 | -0.187875| 0.014375| -0.000231

u(t-2) 7 0.086050 | 0.662946 | -0.060563 | 0.000701

u(t-3) 8 0.284975 | -0.882169| 0.065806 | -0.000658

u(t-4) 9 0.221950 | 0.531054 | -0.038138| 0.000174

u(t-5) 10 0.047050 | -0.123988 | 0.008500 | 0.000016
4 T T T T T T
21 A A
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O ¥ v v i ¥ 1k U la ¥ \ ( 8
_ I !
2L ‘ byl ! i i
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T " J ) 'r r l‘ : \
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time (s)

Fig. 3. A comparison between the model predicted output and the caomlagpmeasurements for the particle
damper system. The thin solid line indicates the original measumts for the casB=8, and the thick dashed
line indicates the model predicted output from the identified PDCSImode
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4.3 Modelling of thermoplastic auxetic foams

Dynamic tests on a class of auxetic elastomeric foams have been carried out at ttraeDepér
Mechanical Engineering, University of Sheffield, and it has been shown from experimental results that
the associated foam specimens present nonlinear behaviour that may be applicable to design nonlinear
dynamic filters. Several parameters may affect the nonlinear dynamic behaviour of thel raate
the imposed compression ratio is one crucial factbis example concerns two design parameters
related to the imposed compression ratio: the Aipbhd the Volume\() of the associated materials.

The objective is to identify RDCS model, whose parameters depend on the design parafnaters
V, and which can be used to analyze the dynamic behaviour of the associated nmagerihlendesign
parameteA andV change.

Ten cases, corresponding to tfa@lowing values for the design parametarand V, were

considered in this example:

| 213 1.88 1.63 1.38 1.13 2.13 1.87 1.60 1.33 1.20
| 5.30 4.67 4.05 343 2.80 148 129 11.1 9.20 8.30

A
\%

Ten different data sets, symbolized by Data0l1, Data02, ..., DatalO, corresptindliregabove 10
cases, have been collected, and each data set consists of 2000 slataopaervations for the input
(displacement: mm) and the output (force: N), sampled with a freqient®0Hz. Note that all the
10 data sets are with the same input signal, as shown in Figurewittbdifferent output signalssa
shown in Figure 5, where only part of the observations are plotted for cleaizatoal Eight data
sets, numbered by 1,2,4,5,6,7,9, and 10, were used for model identification, and the retwaining
data sets, numbered by 3 and 8, were used for the performance test of tHeddebtS model.

Denote the system input and the output sequence {s{t)y;’, and{y(t)}\,, respectively, with
N=2000. The predictor vector forthe common model structure was chosen to be
X(t) =[%(t),---, %, ()], with x (t) =u(t—k+1) for k=1,2,3,4.The initial candidate common model
structure was chosen to be

VO =03+ 3 0% 0+ 3 3% % 0% (0 + ) (30)

i=1 j=i

This candidate model involves a totd 15 candidate model terms. Based on the candidate common
model structure, theew EFORCMSS algorithm was applied to the 8 training data sets. The AAMDL
index, shown in Figure 6, suggests that a common model structure, with 8 modeldeyreerred.

The 8 selected common model terms, ranked in order of the significancbpareia Table 5. The

PDCS model for the 8 training data sets was chosen to be

y(t) = 6,(AV)U*(t) + 6, (AV)u(t —1) + 65 (A V)u(t —Du(t - 3) + 6, (A V)u?(t - 3)
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+ 05 (AV)U(E = 2) + G5 (AV)U(L) + 6, (AV) + 5 (AV)u(t)u(t - 1) + e(t) (31)

where the parametéy, (m=1,...,8) were fitted using the following polynomial function

On(AN) = By o+ Broa Bt BN + g+ B f AV + B V2, ML, L., 8, (32)

The parameterg,, , were directly estimated using the results given in Table 5 and the associated
estimatesdr 5, , are shown in Table 6.

To inspect the performance of the identified PDCS model (31), the model makted by
choosing the same input signal as that in the two test data sets numbered by 3 and 8. Theroutput f
the PDCS model v&athen compared with the relevant measurements. Figures 7 and 8 present
comparisons between the model outputs and the associated measurements. Nokg plazt of the
data points are shown in Figures 7 and 8 for a close inspecherrobdtmeansquareerror (RMSE),
defined as the root of the meaguareerror, with respect to two training data sets, was calculated to
RMSE=1.71 and 6.44, respectively. Clearly, the PDCS model provides an excellesgntgtien for

the two test data sets.
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Fig. 4. The input signal used for the modelling of the auxetic elastofoarts
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Fig. 5. The output signals in the data sets numbered by 1, 2, 4, 5, 6, 7, ©r iite Bssicated auxetic
elastomeric foams.
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Fig. 6. AAMDL versus model size for common model structure modethenassicated auxetic elastomeric
foams.
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Table 5. Identification result fahe assicated auxetic elastomeric foatascribed in Example 3, using the GR-
CMSS algorithm.

Parameter for different data sets AERR
Step | Model term ™Baia01 | Data02 | Data04 | Data05 | Data06 | Data07 | Data09 | Datai0 | (%)
1 UA(t) -24.78 -19.10 -10.71 -10.33 -173.65 -148.65 -81.78 -66.62 88.397
2 u(t-1) 71.22 51.28 33.09 25.26 47751 426.92 229.47 196.34 | 10.042
3 u(t-1)u(t3) -0.35 0.43 -0.73 0.67 3.53 1.43 1.49 0.66 0.117
4 U(t-3) 0.52 -0.06 0.35 -0.31 1.80 2.18 0.66 0.70 0.057
5 u(t-2) 1.43 -0.50 -2.78 -0.19 37.94 30.22 13.51 8.64 0.025
6 u(t) -168.66 | -129.39 | -77.67 -67.08 -118799 | -1016.74 | -559.00 | -454.19 0.015
7 const -234.68 | -194.87 | -118.63| -101.74 | -1701.85| -1415.05 | -801.24 | -632.16 0.025
8 u(t)u(t1) 14.63 10.60 6.23 5.53 100.55 88.73 47.78 40.04 0.083
Run time: 2.53sec
Table 6. Estimates for the parametgys, in (32).
n
m
0 1 2 3 4 5
1 -14.05 20.09 -30.01 292.02 -161.80 16.52
2 47.98 -72.58 10.23 -1172.89 649.59 -67.22
3 1.81 -2.29 0.05 29.88 -16.05 1.72
4 -0.28 0.18 -0.03 -20.62 11.29 -1.19
5 16.35 -22.45 -0.70 -80.71 47.70 -4.83
6 51.41 78.40 -20.05 1955.65 -1074.11 109.58
7 75.10 -92.45 -27.90 1688.76 -896.05 88.65
8 12.31 -17.74 1.90 -230.03 127.98 -13.21
0' IJ T T T
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Fig. 7. A comparison between the model predicted output from the fidednBDCS model (31) and the

corresponding meairements in Data03, for the assicated auxetic elastomeric foanthimkelid line indicates
the measurements, and the thick dashed line indicates the modeieutrediput.
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Fig. 8. A comparison between the model predicted outmunh fthe identified PDCS model (31) and the
corresponding measurements in Data08, for the assicated auxstticreldc foams. The thin solid line indicates
the measurements, and the thick dashed line indicates the modeieutediput.

5. Conclusions

Many exogenous parameters may affect the underlying dynamics of a system, where the internal
model structure of the system is fixed but the process internal parameters chatmthdwedfects of
the variation of the external parameters for example dgmgameters or experimental conditions.
Parametedependent commestructured (PDCS) models are thus desirable for system analysis and
design. In many cases, the true model structure of the relevant sgat@known but only the input
and the output obseations, subject to given specific design parameters, are available, and a common
model structure is often deduced from the available observations. Common mactatetselection
(CMSS) is a crucial stage to obtain an effective PDCS model. A new effeigended forward
orthogonal regression (EFOR) algorithm has been designed to solve the CMSS prbisem
identification of PDCS models includes to steps. Firstly, the common modetiustr is selected using
the new EFOR algorithm, and individual parameters corresponding to each of thenexjzeare
calculated using this algorithm. Secondly, the individual parameterslirsked to the design
parameters by fitting some functions where the independent variables are the design parameter
Results from casstudies have strongly supported the applicability and effectiveness of the new EFOR
algorithm for the CMSS problem.
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Appendix—Some abbreviations

AAMDL.: averageapproximate minimum description length.
AERR: average error ratio reduction.

AMDL: approximate nmimum description length.

CMSS: common model structure selection.

EFOR: extended forward orthogonal regression.

EPD: externalparametedependent.

ERR: error ratio reduction.

FOR: forward orthogonal regression.

IPD: internalparametedependent.

MDL: minimum description length.

OLS: orthogonal least squares.

PDCS: parametattependent common-structured (model).

References

A. Antoniadis, |. Gijbels, G. Gregoire, “Modeselection using wavelet decomposition and
applications, Biometrika, 84(4), pp. 751-763, 1997.

C. S. Berger, “Linear Splines with Adaptive Mesh Sizes for Modeling NanliBDgnamicSystems,”
|EE Proc.-Control Theory Appl., 141(5), pp. 277-284, 1994.

S. A. Billings and W. S. F. Voon, “Piecewise linear identification of ino@ar systems,Int. J.
Control, 46(1), pp.215835, 1987.

S. A. Billings, S. Chen, and M. J. Korenberg, “ldentification of MIMO hoear systems suing a
forward regression orthogonal estimatdnt. J. Control, 49(6), pp.2152189, 1989.

S. A. Billings and H. L. Wei, The waveleNARMAX representation: A hybrid model structure
combining polynomial models with multiresolution wavelet decompositidns,J. Syst. Sci.,
36(3), pp. 137-152, 2005.

S. Chen and S. A. Billings, “Representations of hioear systemsthe NARMAX model,” Int. J.
Control, 49(3), pp. 1013-1032, 1989.

S. Chen, S. A. Billings, and W. Luo, “Orthogonal least squares methods and theiatagaplio non-
linear system identificationJnt. J. Control, 50(5), pp.1873-1896, 1989.

20



S. Chen, S. A. Billings, C. F. N. Cowan, and P. M. Grant, “Practical identificatio/ABMMX
models using radial basis functionkjt. J. Control, 52(6), pp. 1327-1350, 1990.

S. Chen, X. Hong, C. J. Harris, and X. X. Wang, “Identification of nonlinear systéngs us
generalized kernel modeldEEE Trans. Control Syst.Technal., 13(3), pp. 401-411, 2005.

C. J. Harris, X. Hong, and Q. Gakdaptive Modelling, Estimation and Fusion from Data: A
Neurofuzzy Approach. Berlin: SpringeiVerlag, 2002.

J. A. Rongong and G. R. Tomlinson, “Amplitude dependent behaviour in the application dé partic
dampers to vibrating structures,” In tReoceedings of the 46th AIAA/ASME/ASCE/AHSASC
Sructures, Sructural Dynamics & Materials Conference, Art No.: AIAA 20052327, 18-21
April 2005, Austin,Texas, USA.

T. Kavli, “Asmod- an algorithm for adaptive spline modeling of observation data,J. Control,
58(4), pp. 947-967, 1993.

I. J. Leontaritis and S. A. Billings, “Inpututput parametric models for ndinear systems, part

deterministic no-linear systems,Int. J. Control, 41, pp. 303-344, 1985.

G. P. Liu, Nonlinear Identification and Control: A Neural Network Approach. Berlin: Springef
Verlag 2001.

W. Liu, G. R. Tomlinson, and J. A. Rongong, “The dynamic characterisation of disk g panicle
dampers,'J Sound Vibr., 280, pp. 849-861, 2005.

R. K. Pearsomiscrete-Time Dynamic Models. Oxford: Oxford University Press, 1999.

J. Rissanen, “A universal prior for integers and estimation by minidesuription length,Ann. Sat.,
11, pp. 416-431, 1983.

N. Saito, “Simultaneous noise suppression and signal compression usirsgyadflorthonormal
bases and the minimum description length criterionWavelet in Geophysics, Foufoula
Georgiou, E. and Kumar, P., Eds, New York: Academic, pp. 299-324, 1994.

H. L. Wei and S. A. Billings, “Feature subset selection and ranking for datasloneality reduction,”
Accepted by EEE Trans. Pattern Anal. Machine Intell., 2006.

H. L. Wei, S. A. Billings, and M. A. Balikhin, “Wavelet based nonparametric NARX fisdde
nonlinear input-output system identification,” Accepted iy J. Syst. Sci., 2006.

Z. Q. Wu and C. J. Harris, “A neurofuzzy network structure for modelling aredlegtitnation of
unknown nonlinear systemdyit. J. Syst. i, 28(4), pp 335-345, 1997.

21



