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Abstract:  This study considers the identification problem for a class of nonlinear parameter-varying 

systems associated with the following scenario: the system behaviour depends on some specifically 

prescribed parameter properties, which are adjustable. To understand the effect of the varying 

parameters, several different experiments, corresponding to different parameter properties, are carried 

out and different data sets are collected. The objective is to find, from the available data sets, a 

common parameter-dependent model structure that best fits the adjustable parameter properties for the 

underlying system. An efficient common model structure selection (CMSS) algorithm, called the 

extended forward orthogonal regression (EFOR) algorithm, is proposed to select such a common 

model structure. Several examples are presented to illustrate the application and the effectiveness of 

the new identification approach. 

Keywords: Forward orthogonal regression, nonlinear system identification, parameter-dependent 

model. 

1.     Introduction 

The task of system identification is to deduce, from observed data, a model (or a set of models) 

that can be used for specific purposes such as system analysis, control and prediction. A system model 

is defined by two properties: the model structure and the associated model parameters. Traditionally, 

the identification procedure for dynamical systems often merely involves a single (training) data set, 

corresponding to one specific experimental situation, and the resultant final model is thus 

experimentally specific; both the model structure and the associated model parameters are fixed. In the 

real world, however, parameters in a given common model structure for a dynamical system may be 

required to be changeable to meet varying situations caused by the variation of either internal or 

exogenous parameters (Billings and Voon 1987). For example, typical mass-spring-damper vibration 

systems can be described using a common model structure, in the form of second order ordinary 

differential equation (ODE), where the associated parameters are changeable and determined by the 

three elements of mass, spring and damper. The ODE model for the vibration system can be viewed as 
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a special case of internal-parameter-dependent (IPD) models, where the dynamical behaviour of the 

model is directly affected by changes of the internal parameters. 

In terms of system identification, the task for general IPD model identification problems can be 

summarized as follows. By setting the process internal parameters to be different values, a number of 

experiments are carried out on the same system, and different data sets are obtained, corresponding to 

different parameter properties. The objective is to find from the available data a parsimonious 

common model structure, to accommodate all the different parameter properties by best fitting all the 

data sets using the common structured model, with varying process internal parameters. This is 

different from conventional parameter-varying models, where process internal parameters are assumed 

to be time-varying. 

There are many other cases where parameter-dependent models are desirable. Consider the 

following scenario. In typical normal operating conditions, the dynamical behaviour of an underlying 

system is often determined by the system model structure and the associated process internal 

parameters. In many cases, however, several external parameters, for example temperature, pressure 

intensity, light illumination, geometry shape and size, etc., may also indirectly affect the dynamical 

behaviour of the system, via the associated process internal parameters. In order to fully understand 

the mechanisms of the underlying dynamics under different operating conditions, several experiments, 

with respect to different exogenous parameter properties, may be required. The task of external-

parameter-dependent (EPD) model identification is to find a best common model structure based on 

the available data, to accommodate the effects of all the external parameters, by best fitting all the data 

sets using the common structured model, with adjustable process internal parameters. This is related to 

but distinct from the concepts of spatial piecewise linear models and models with single dependent 

parameters (Billings and Voon 1987). 

The objective of this study is to present a unified parameter-dependent common-structured (PDCS) 

modelling framework for handling the IPD and EPD identification problem, where the selection of the 

common model structure is the critical stage in the procedure. An efficient common model structure 

selection (CMSS) algorithm, called the extended forward orthogonal regression (EFOR) algorithm, is 

developed in this study to select a common model structure based on several data sets collected from 

different experiments. Once the common model structure has been obtained, relevant model 

parameters corresponding to each individual experimental condition can then be calculated based on 

the available individual data sets. The novel study of common model structure identification is very 

useful for engineering system design and control, where only a fixed common model structure is 

involved but with adjustable process internal parameters. A PDCS model can be used to analyse the 

effects of varying parameter properties on the performance of the behaviour of the underlying 

dynamical systems without carrying out experiments on the real system. This will save time and 

money spent on real system experiments. 
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For convenience of description, in the following all non-internal parameters, including different 

experimental conditions, will be referred to as external or exogenous parameters. Specifically 

prescribed parameters, either internal or exogenous, will be called experiment parameters or design 

parameters. This work involves several abbreviations and these are collected in the appendix to 

facilitate reading of text. 

2.     The concept of the parameter-dependent commonly structured model 

The parameter-dependent common-structured (PDCS) model is defined as below 

))(),(,),1(),(,),1(()( ȟșuy ntutuntytyfty −−−−=  )(te+                                                  (1) 

where  

•  the nonlinear mappingf is often unknown and needs to be identified from given observations of 

the input )(tu and the output )(ty ; un and yn  are the maximum input and output lags; )(te  is 

the model prediction error, which can often be treated as an independent zero mean noise 

sequence providing that the functionf gives a sufficient description of the system. 

• Θ∈)(ȟș  represents an internal parameter vector, which is a function of the external parameter 

set Ω∈ȟ , where Θ and Ω  are the internal and external parameter sets, respectively. The 

external parameter set ȟ  may not explicitly appear in the model but does indirectly affect the 

dynamical behaviour of the model through the internal parameterș . 

Assume that a total of K experiments, corresponding to K different cases of exogenous parameter 

properties, Kȟȟȟ ,,, 21  ,  have been completed on the same system, model (1) can then be expressed 

in a more explicit form as 
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where )(⋅if (i=1,..,K) are different linear or nonlinear functions that share a common structure in 

representation. The symbol ‘s.t. iȟ ’ means the individual model is subject to the exogenous parameter 

iȟ . Clearly, if K=1, the PDCS model (2) will reduce to the traditional NARX (Nonlinear 

AutoRegressive with eXogenous inputs) model (Leontaritis and Billings 1985, Pearson 1999). 

Note that the PDCS model considered here is different from conventional time-varying or 

parameter-varying models, where process internal parameters are assumed to be time-varying. The 

PDCS model is also different from the traditional multi-input and multi-output (MIMO) model 
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structure, where each subsystem model may not need to share the same common model structure, and 

which often involves one single data set. 

3.     The identification of the commonly structured model 

3.1   The linear-in-the-parameters regression model 

The nonlinear mappingf in (1) can be constructed using a variety of local or global basis 

functions including polynomials, kernel functions, splines, radial basis functions, neural networks and 

wavelets (Chen and Billings 1990, Kavli 1993, Berger 1994, Wu and Harris 1997, Pearson 1999, Liu 

2001, Harris et al. 2002, Chen et al. 2005, Billings and Wei 2005). One of the most popular 

representations is the polynomial model (Leontaritis and Billings 1985), which takes the form below 
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The degree of a multivariate polynomial is defined as the highest order among the terms, for example, 

the degree of the polynomial 2
32

2
13322

4
11321 ),,( xxxaxxaxaxxxh ++=  is determined by the term 

2
32

2
1 xxx  and thus = 2+1+2=5. Similarly, a NARX model with a nonlinear degree  means that the 

order of each term in the model is not higher than . 

A NARX model constructed using basis function expansions can often be expressed using a linear-

in-the-parameters form 

)()()(
1

tetty
M

m
mm += ∑

=
φθ                                                                                                     (6) 

where M is the total number of candidate regressors, )(tmφ ))(( tm xφ= (m=1,2, …, M) are the model 

terms generated in some way from the ‘input’ (predictor) vector T
d txtxt )](),([)( 1 =x defined by 

Eq.(5), )(ȟmm θθ = are the model parameters, and ȟ is a known collection of external parameters. 
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3.2   The multiple regression model 

Assume that a total of K experiments, corresponding to K different cases of the experiment 

parameter properties, have been carried out on the same system, and K different data sets, with respect 

to the K experiments, have been obtained. Also, assume that a common model structure, with the form 

of (6), can best fit all the data sets. Denote the input and the output sequence for the kth experiment 

by kN
tk tu 1)}({ = and kN

tk ty 1)}({ = , respectively, for k=1,2,…, K. The kth predictor vector is thus given by 

T
dkkk txtxt )](),([)( ,1, =x ),(,),1([ ykk ntyty −−=  T

ukk ntutu )](,),1( −−  . It is assumed that all the 

K data sets can be represented using a common model structure, with a different parameter set, 

deduced from the initial candidate regression model below 

)())(()(
1

, tetty k

M

m
kmmkk += ∑

=
xφβ )()(

1
,, tet k

M

m
mkmk += ∑

=
φβ                                                       (7) 

This can be expressed using a compact matrix form 

kkkk eȕy +Φ=                                                                                                                          (8) 

where T
kkkk Nyy )](,),1([ =y , T

Mkkk ],,[ ,1, ββ =ȕ , T
kkkk Nee )](,),1([ =e ,and ],,[ ,1, Mkkk ĳĳ =Φ   

with T
kmkmkmk N )](,),1([ ,,, φφ =ĳ  for k=1,2, …, K and m=1,2,…, M.  

For large lags yn  and un , the regression model (7) often involves a large number of candidate 

model terms, even if the nonlinear degree  is not very high, say =2 or  =3. Experience has shown 

that an initial candidate model with a large number of candidate model terms can often be drastically 

reduced by including in the final model only the effectively selected significant model terms. 

Furthermore, a simple concise model is usually desirable for practical applications including system 

analysis, design, control and prediction. This is one of the motivations of the present study to select 

significant model terms to form a parsimonious common model structure. 

3.3   The extended forward orthogonal regression algorithm 

A new common model structure selection (CMSS) algorithm, called the extended forward 

orthogonal regression (EFOR) algorithm, which is generalized from the standard orthogonal least 

squares (OLS) algorithm (Billings et al. 1989, Chen et al. 1989) and the recently developed forward 

orthogonal regression (FOR) algorithm (Wei and Billings 2006, Wei et al. 2006), will be designed for 

the PDCS identification problem. 

Let },,2,1{ MI = . Denote by }:{ ImD m ∈= φ  the dictionary of candidate model terms for an 

initially chosen candidate common model structure that fits to all the K regression models given by (7). 

For the kth data set, the dictionary D can be used to form a dual dictionary }:{ , ImV mkk ∈= ĳ , where 

the mth candidate basis vector mk ,ĳ  is formed by the mth candidate model term Dm ∈φ , in the sense 
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that T
ikmkmmk N ))]((,)),1(([, xxĳ φφ =  (k=1,2, …,K). The common model structure selection problem 

is equivalent to finding, from I, a subset of indices, },,,2,1:{ IinmiI mmn ∈==   where Mn ≤ , so that 

iy (i=1,2, …, K) can be approximated using a linear combination of 
niii ĳĳĳ ,,,

21
  as 

iiiniiiii n
eĳĳy +++= ,,,1, 1

θθ                                                                                                     (9) 

Following Billings et al. (1989) and Chen et al. (1989), a squared correlation coefficient will be 

used to measure the dependency between two associated random vectors. The squared correlation 

coefficient between two vectors x and y of size N is defined as 
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The squared correlation coefficient is closely related to the error reduction ratio (ERR) criterion 

defined in the standard orthogonal least squares (OLS) algorithm for model structure selection. A 

comprehensive discussion on OLS-ERR algorithm can be found in Billings et al. (1989) and Chen et 

al. (1989). 

Let kk yr =0, (k=1,2, …, K).  For k=1,2, …, K and j=1,2, …, M,  calculate ),(),( ,1 jkkCjkc ĳy= , 

and define 
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The first significant common model term can then be selected as the s1th element, 
1sφ , in the 

dictionary D. Accordingly, the first significant basis vector for the kth regression model is thus 

1,1, skk ĳĮ = , and the first associated orthogonal basis vector can be chosen as 
1,1, skk ĳq = .The model 

residual for the kth regression model, related to the first step search, is given as 

1,
1,1,

1,0,
0,1, k

k
T
k

k
T
k

kk q
qq

qr
rr −=                                                                                                           (12) 

Notice that ),( 11 skc  can be viewed as the error reduction ratio (ERR) that is introduced by 

including the first basis vector 
1,1, skk ĳĮ =  into the kth regression model. The criterion (11), by 

maximizing the sum of the ERR values relative to all the K data sets, guarantees that the variation of 

the outputs in all the K data sets can be explained by including the model term 
1sφ , with the highest 

percentage, compared with selecting any other candidate model term }:{ ImD m ∈=∈ φφ . The 

quantity ∑ == K

k
skcK

1 11 ),()/1()1AERR(  is referred to as the first average error reduction ratio (AERR). 
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In general, the mth significant model term 
msφ can be chosen as follows. Assume that at the (m-1)th 

step, (m-1) significant model terms, 121 ,, −mφφφ  , have been selected. Let 1,2,1, ,,, −mkkk ĮĮĮ  be the 

associated basis vectors for the kth regression model, and assume that the (m-1) selected bases have 

been transformed into a new group of orthogonal bases 1,2,1, ,,, −mkkk qqq  via some orthogonal 

transformation. Let  

∑
−
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where }11,,1:{ −≤≤≠≤≤= mtsjMjjJ tm . For k=1,2,…,K and mJj∈ ,  calculate =),( jkcm  
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,
m
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The mth significant common model term can then be selected as the ms th element, 
msφ , in the 

dictionary D. Accordingly, the mth significant basis vector for the kth regression model is thus 

mskmk ,, ĳĮ = , and the first associated orthogonal basis vector can be chosen as )(
,,
m

skmk m
pq = .The model 

residual for the kth regression model, related to the mth step search, is given as 

mk
mk

T
mk

mk
T

mk
mkmk ,

,,

,1,
1,, q

qq

qr
rr −

− −=                                                                                                   (15) 

Subsequent significant bases can be selected in the same way step by step. Notice that the (m-1) basis 

vectors, 1,2,1, ,,, −mkkk ĮĮĮ   (respectively the associated orthogonalized bases, 1,2,1, ,,, −mkkk qqq  ), by 

including the mth basis 
mskmk ,, ĳĮ =  (respectively the orthogonalized basis )(

,,
m

skmk m
pq = ) , can explain 

the variation in the outputs of the K data sets with a higher percentage than by including any other 

candidate bases. The quantity ∑ == K

k mm skcKm
1

),()/1()AERR(  is referred to as the mth average error 

reduction ratio (AERR). 

From (15), the vectors mk ,r and mk ,q  are orthogonal, thus  
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By respectively summing (15) and (16) for m from 1 to n, yields 
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From (17) and (18), the model residual nk ,r  can be used to form a criterion for model selection, and 

the search procedure will be terminated when the norm 2
, |||| nkr satisfies some specified conditions. In 

the present study, an approximate minimum description length (AMDL) criterion developed by Saito 

(1994) and Antoniadis et al. (1997), on the basis of the Rissanen’s MDL criterion (Rissanen 1984), 

will be used to determine the model size. For the case of single regression model, AMDL is defined as 

N

Nn
nn 2

2
log5.1

)][MSE(log5.0)AMDL( +=
N

Nn

N
n 2

2

2
log5.1||||

log5.0 +







=

r
                    (19) 

where MSE is the mean-square-error from the associated model, N is the length of the associated 

training data set, n is the number of model terms, and nr is the associated model residual.  

The present study uses the following average AMDL as the criterion to determine the number of 

common model terms 

∑
=

=
K

k

k n
K

n
1

][ )(AMDL
1

)AAMDL(                                                                                             (20) 

where )(AMDL ][ nk is value for the AMDL criterion associated to the kth data set. 

3.4   Parameter estimation 

It is easy to verify that the relationship between the selected original bases nkkk ,2,1, ,,, ĮĮĮ   and 

the associated orthogonal bases nkkk ,2,1, ,,, qqq  , for the kth data set, is given by 

nknknk ,,, RQA =                                                                                                                       (21) 

where ],,[ ,1,, nkknk ĮĮA = , nk ,Q  is an nNk × matrix with orthogonal columns nkkk ,2,1, ,,, qqq  , and 

nk ,R  is an nn× unit upper triangular matrix whose entries )1( njiuij ≤≤≤  are calculated during the 

orthogonalization procedure. The unknown parameter vector, denoted by T
nkknk ],,[ ,1,, θθ =ș ,  for the 

model with respect to the original bases (similar to (9)), can be calculated from the triangular equation 

nknknk ,,, gșR =  with T
nkknk gg ],,[ ,1,, =g  , where )/()( ,,,1, mk

T
mkmk

T
mkmg qqqr −=  for m=1,2, …, n. 

3.5  A general procedure for PDCS model identification 

Common model structure selection is a critical step in PDCS identification. Once the common 

model structure has been identified, relevant model parameters for each individual data set can then be 

estimated, and the dependency of the model parameters on the associated experiment parameter 

properties can be deduced finally. The procedure for the identification of PDCS models can briefly be 

summarized below: 
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•   Collect K different data sets from K experiments. 

•   Select common model terms using the new EFOR-CMSS algorithm. 

•   Estimate relevant model parameters for each individual case of experiment parameters.  

•   Deduce the dependence of the model parameters on the associated experiment parameter set. 

4.     Applications 

Three examples, one for a forced mass-spring-damper system and two for real data sets, are 

presented to illustrate the application of the new PDCS model identification procedure.  

4.1   A forced mass-spring-damper system 

The mass-spring-damper system is described by the differential equation model below 

)()(2

2

tutky
dt

dy
c

dt

yd
m =++                                                                                                         (22) 

where )(tu  is the force imposed on a mass m, )(ty  is the displacement of the mass relative to the 

equilibrium position, c is a damping coefficient, k is a constant relative to the spring stiffness. In this 

example, the parameters m and k were set to fixed values: m=1[kg] and k=100[N/m], and the 

coefficient c was the design parameter, which was assumed to be adjustable.  

Four cases were considered for the design parameter c by respectively setting c=2, 10, 20, and 40. 

Using these values, the model (22) was simulated four times, at each time the input signal u was 

chosen to be a random sequence uniformly distributed in [-100,100], and 1000 input-output data 

points, with a sample interval∆ =0.01, were collected for each case. The objective was to find a 

common linear model structure for the four collected data sets with no a priori information other than 

the measured data. The predictor vector for the common-structured model was chosen to be 

Ttxtxt )](,),([)( 41 =x Ttututyty )]2(),1(),2(),1([ −−−−= , and the initial candidate model structure 

was chosen to be 

)()()()()(
4

1

4
0
,

4

1

0 tetxtxtxty
i ij

jijii
i

i ∑∑∑
= ==

++= θθ                                                                                 (23) 

Note that the candidate model terms )()( txtx ji were purposely included in the candidate model (23), to 

check whether the new EFOR-CMSS algorithm can correctly select the significant model terms. The 

new EFOR-CMSS algorithm was applied to the four data sets, and the associated result is shown in 

Table 1, where only the first 8 selected model terms are presented. The AAMDL index in Table 1 

clearly indicates that a common model structure, with 4 model terms, is preferred, and the final 

common-structured model was thus of the form 

)()2()()1()()2()()1()()( 4321 tetuctuctyctycty +−+−+−+−= θθθθ                                     (24) 
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Table 1.  Identification result for the mass-spring-damper 
system given by (22), using the EFOR-CMSS algorithm. 
 

Search 
step  

Model term AERR 

(%) 

AAMDL  

1 y(t-1) 99.000423 -6.343372 

2 y(t-2) 0.877384 -8.050587 

3 u(t-1) 0.068845 -8.613702 

4 u(t-2) 0.053349 -52.251190 

5 y2(t-1) 8.273355e-0030 -52.230380 

6 y(t-1)y(t-2) 5.605229e-0028 -51.839465 

7 y2(t-2) 9.031232e-0026 -49.679149 

8 const 3.103675e-0026 -49.466224 

Run time: 0.609sec 

 
Table 2.  Parameter estimates for the selected model terms for the mass-spring-
damper system given by (22). 
 

Model 
term 

Parameter estimates 
c=2 c=10 c=20 c=40 

y(t-1) 1.970306 1.895329 1.809675 1.662142 

y(t-2) -0.980199 -0.904838 -0.818731 -0.670375 

u(t-1) 4.962667e-005 4.833333e-005 4.679167e-005 4.395833e-005 

u(t-2) 4.922973e-005 4.675501e-005 4.376735e-005 3.837817e-005 

 

where the parametersmθ (m=1,2,3,4) were viewed as a function of the adjustable coefficient c. The 

parameter estimates for the three model terms in (24), about the four data sets, are shown in Table 2.  

Assume that the parametermθ can be fitted using the adjustable coefficient c, with a polynomial of 

order 3 below 

3
3,

2
2,1,0,)( cccc mmmmm ββββθ +++= , m=1,2,3,4,                                                                   (25) 

The parameters nm,β  were directly estimated using the results in Table 2. The PDCS model for the 

system (22) was  

)1(]10366667.1  10919167.4  10945500.9  990002.1   [)( 37253 −×−×+×−= −−− tycccty  

)2(]10370833.1  10935854.4  10995458.9  999993.0[ 37253 −×+×−×+−+ −−− tyccc  

)1(]10070176.3  10166668.4  10666667.1  10995833.4[ 31821075 −×−×+×−×+ −−−− tuccc  

)2(]10166670.4  10252084.1  10329174.3  10995819.4[ 3122975 −×−×+×−×+ −−−− tuccc  
)(te+                                                                                                                                         (26) 

It will be easy to verify that the PDCS model (26) provides a perfect representation for the original 

continuous model (22), and this model thus can be used to analyse the effect of the design parameter c 

on the dynamical behaviour of the original system. 
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4.2   Modelling a particle damper system 

A particle damper is a device with one or more cavities filled with dry granular particles of diverse 

shapes and small sizes. The particles can move freely and the frictions and collisions between moving 

particles or with a container wall will arise under the vibrating motion of the structure. These 

collisions exchange momentum and thus dissipate kinetic energy due to frictional and in-elastic losses. 

Particle dampers have the advantage of being simple in geometry, small in volume, and are applicable 

in extreme temperature environments. More importantly, the interactions between individual grains 

(and between grains and the container walls) are dissipative because of surface friction and the 

inelasticity of collisions. An overwhelming advantage of particle dampers is that they can operate in 

extreme temperature conditions when using metallic, tungsten carbide or ceramic particles. This 

makes particle dampers extremely applicable in areas such as gas turbines, underwater conditions and 

other high temperature environments. Comprehensive discussions on particle dampers can be found in 

the literature say in Liu et al. (2005), and Rongong and Tomlinson (2005). 

Several parameters may affect the performance of a particle damper and one crucial parameter is 

the cavity geometry. This example concerns such a geometry design parameter: the height-to-diameter 

ratio: R=H/D, where H and D are the height and diameter of the particle damper respectively. Five 

experiments, corresponding to R=2,4,6,8,10, have been completed on a particle damper device in the 

Department of Mechanical Engineering, University of Sheffield, and five different data sets, have been 

collected. Each data set consists of 2000 data pairs of the input (applied force) and the output 

(acceleration) observations, sampled with a frequency sf =12.8kHz. The objective is to identify a 

PDCS model, with a dependence on the design parameter R, which can be used to analyze the effect of 

the design parameter R on the performance of the particle damper. Four data sets, corresponding to 

R=2,4,6,10, which are shown in Figure 1, were used for model identification, and one data set, 

correspond to R=8 , was used to test the performance of the identified PDCS model. 

Denote the system input and the output sequence using Nttu 1)}({ =  and N
tty 1)}({ = , respectively, with 

N=2000. The predictor vector for all the common-structured models was chosen to be 

Ttxtxt )](,),([)( 101 =x , where )()( ktytxk −=  for k=1,…, 5, and )5()( +−= ktutxk  for k=6, …,10. 

The initial candidate common model structure for all the four data sets was chosen to be a NARX 

model below 

)()()()()(
10

1

10
0
,

10

1

00
0 tetxtxtxty

i ij
jiji

i
ii +++= ∑∑∑

= ==
θθθ                                                                      (27) 

This candidate model involves a total of 66 candidate model terms. Based on the candidate common 

model structure, the new EFOR-CMSS algorithm was applied to the four training data sets. The 

AAMDL index, shown in Figure 2, suggests that a common model structure, with 11 model terms, is 

preferred. The 11 selected common model terms, ranked in order of significance (the order that the 
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terms entered into the model), are shown in Table 3, where results for AERR and AAMDL are also 

presented. From Table 3, the resultant common model structure is of a simple NARX representation, 

which only includes linear model terms and a DC term with a small value. 

The PDCS model for the particle damper system was chosen to be  

)()()()()(
10

1
0 tetxRRty m

m
m ++= ∑

=
θθ                                                                                         (28) 

where the parametermθ (m=0,1,…,10) depends on the design parameter R. Assume that the 

parametermθ can be fitted using R, with a polynomial function below 

3
3,

2
2,1,0,)( RRRR mmmmm ββββθ +++= , m=0,1, …, 10,                                                       (29) 

The parameters nm,β  can directly be estimated using the results given in Table 3. The estimated values 

for nm,β , for m=0,1, …,10 and n=0,1,2,3, are presented in Table 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Input-output data used for the particle damper system identification. Input-2,4,6,10 (Output-2,4,6,10) 
correspond respectively to the cases R=2,34,6,10. 
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Table 3.  Identification result for the particle damper system described in Example 2, using the 
EFOR-CMSS algorithm. 

Search 
step 

Model 
term 

Parameter for different data sets AERR 

(%) 

AAMDL  

R=2 R=4 R=6 R=10 

1 y(t-1) 2.1590 1.7173 1.5291 1.2342 97.7609 -2.1776 

2 y(t-2) -1.7710 -0.8474 -0.4701 0.1447 2.1065 -4.2127 

3 y(t-5) -0.2052 2386 0.3059 0.4939 0.0418 -4.4944 

4 y(t-3) 0.8049 0.7025 0.5786 0.4173 0.0173 -4.6247 

5 u(t-1) -0.3439 -0.5601 -0.6835 -0.6963 0.0046 -4.6630 

6 u(t-5) -0.1668 -0.3119 -0.3875 -0.3272 0.0086 -4.7474 

7 u(t-2) 1.0432 1.8016 2.2228 2.1882 0.0170 -4.9806 

8 u(t-4) 0.6890 1.3032 1.6290 1.4488 0.0060 -5.2148 

9 y(t-4) -0.0065 -0.8290 -0.9637 -1.3123 0.0064 -5.0786 

10 u(t-3) -1.2214 -2.2329 -2.7811 -2.6139 0.0041 -5.3216 

11 const 0.0051 0.0047 0.0077 0.0083 0.0013 -5.3571 

Run time: 2.37sec 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  AAMDL versus the model size of common model structure models, for the four data sets, corresponding to 
R=2,4,6,10, used for the particle damper system identification. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now consider the performance of the identified PDCS model (28), whose parameters are 

determined by (29) and Table 4. The data set, corresponding to R=8, which has never been used in the 

identification procedure, was used to test the performance of the identified PDCS model. The PDCS 

model was simulated using the same input as in the data set corresponding to R=8, and the output from 

the PDCS model was then compared with the corresponding measurements. Figure 3 presents a 

comparison between the model predicted output and the original measurements. Note that the model 

predicted output (MPO) is defined as ))5(,),1(),5(ˆ,),1(ˆ(ˆ)(ˆ −−−−= tututytyfty  , implying that 

)(ˆ ty is produced from the identified model iteratively. The mean-square-error was calculated to 

MSE=0.1158. Clearly, the PDCS model provides an almost perfect representation for the test data set. 
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Table 4.  Estimates for the parametersnm,β  in (29). 

 
Model 
term 

nm,β  

m 
n 

0 1 2 3 

const 0 0.012800 -0.006325 0.001400 -0.000081 

y(t-1) 1 3.023950 -0.566579 0.114194 0.074125 

y(t-2) 2 -3.615675 0.775356 -0.161981 0.007808 

y(t-3) 3 0.848050 -0.000471 -0.012125 0.000786 

y(t-4) 4 2.039450 -1.418113 0.219888 -0.011159 

y(t-5) 5 -1.321225 0.485829 -0.120994 0.006161 

u(t-1) 6 -0.023800 -0.187875 0.014375 -0.000231 

u(t-2) 7 -0.086050 0.662946 -0.050563 0.000701 

u(t-3) 8 0.284975 -0.882169 0.065806 -0.000658 

u(t-4) 9 -0.221950 0.531054 -0.038138 0.000174 

u(t-5) 10 0.047050 -0.123988 0.008500 0.000016 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  A comparison between the model predicted output and the corresponding measurements for the particle 
damper system. The thin solid line indicates the original measurements for the case R=8, and the thick dashed 
line indicates the model predicted output from the identified PDCS model. 
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A 2.13   1.88   1.63   1.38   1.13   2.13   1.87    1.60   1.33   1.20 
V 5.30   4.67   4.05   3.43   2.80   14.8   12.9    11.1   9.20   8.30 

 

4.3   Modelling of thermoplastic auxetic foams 

Dynamic tests on a class of auxetic elastomeric foams have been carried out at the Department of 

Mechanical Engineering, University of Sheffield, and it has been shown from experimental results that 

the associated foam specimens present nonlinear behaviour that may be applicable to design nonlinear 

dynamic filters. Several parameters may affect the nonlinear dynamic behaviour of the material and 

the imposed compression ratio is one crucial factor. This example concerns two design parameters 

related to the imposed compression ratio: the Axial (A) and the Volume (V) of the associated materials. 

The objective is to identify a PDCS model, whose parameters depend on the design parameters A and 

V, and which can be used to analyze the dynamic behaviour of the associated material when the design 

parameter A and V change. 

Ten cases, corresponding to the following values for the design parameter A and V, were 

considered in this example: 

 

 

 

Ten different data sets, symbolized by Data01, Data02, …, Data10, corresponding to the above 10 

cases,  have been collected, and each data set consists of 2000 data pairs of observations for the input 

(displacement: mm) and the output (force: N), sampled with a frequencysf =100Hz. Note that all the 

10 data sets are with the same input signal, as shown in Figure 4, but with different output signals, as 

shown in Figure 5, where only part of the observations are plotted for clear visualization. Eight data 

sets, numbered by 1,2,4,5,6,7,9, and 10, were used for model identification, and the remaining two 

data sets, numbered by 3 and 8, were used for the performance test of the identified PDCS model.  

Denote the system input and the output sequence using Nttu 1)}({ =  and N
tty 1)}({ = , respectively, with 

N=2000. The predictor vector for the common model structure was chosen to be 

Ttxtxt )](,),([)( 41 =x , with )1()( +−= ktutxk  for k=1,2,3,4. The initial candidate common model 

structure was chosen to be 

)()()()()(
4

1

4
0
,

4

1

00
0 tetxtxtxty

i ij
jiji

i
ii +++= ∑∑∑

= ==
θθθ                                                                      (30) 

This candidate model involves a total of 15 candidate model terms. Based on the candidate common 

model structure, the new EFOR-CMSS algorithm was applied to the 8 training data sets. The AAMDL 

index, shown in Figure 6, suggests that a common model structure, with 8 model terms, is preferred. 

The 8 selected common model terms, ranked in order of the significance, are shown in Table 5. The 

PDCS model for the 8 training data sets was chosen to be  

)3(),()3()1(),()1(),()(),()( 2
432

2
1 −+−−+−+= tuVAtutuVAtuVAtuVAty θθθθ  
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 )()1()(),(),()(),()2(),( 8765 tetutuVAVAtuVAtuVA +−+++−+ θθθθ                          (31) 

where the parametermθ (m=1,…,8) were fitted using the following polynomial function 

2
5,4,

2
3,2,1,0,,),( VAVAVAVA mmmmmmm ββββββθ +++++= ,  m=1, …, 8,                           (32) 

The parameters nm,β  were directly estimated using the results given in Table 5 and the associated 

estimates for nm,β  are shown in Table 6. 

To inspect the performance of the identified PDCS model (31), the model was simulated by 

choosing the same input signal as that in the two test data sets numbered by 3 and 8. The output from 

the PDCS model was then compared with the relevant measurements. Figures 7 and 8 present 

comparisons between the model outputs and the associated measurements. Note that only part of the 

data points are shown in Figures 7 and 8 for a close inspection. The root-mean-square-error (RMSE), 

defined as the root of the mean-square-error, with respect to two training data sets, was calculated to 

RMSE=1.71 and 6.44, respectively.  Clearly, the PDCS model provides an excellent representation for 

the two test data sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  The input signal used for the modelling of the auxetic elastomeric foams 
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Fig. 5.  The output signals in the data sets numbered by 1, 2, 4, 5, 6, 7, 9, 10, for the assicated auxetic 
elastomeric foams.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.  AAMDL versus model size for common model structure models of the assicated auxetic elastomeric 
foams.  
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Table 5.  Identification result for the assicated auxetic elastomeric foams described in Example 3, using the EFOR-
CMSS algorithm. 

 
Step 

 
Model term 

Parameter for different data sets AERR 
(%) Data01 Data02 Data04 Data05 Data06 Data07 Data09 Data10 

1 u2(t) -24.78 -19.10 -10.71 -10.33 -173.65 -148.65 -81.78 -66.62 88.397 

2 u(t-1) 71.22 51.28 33.09 25.26 477.51 426.92 229.47 196.34 10.042 

3 u(t-1)u(t-3) -0.35 0.43 -0.73 0.67 3.53 1.43 1.49 0.66 0.117 

4 u2(t-3) 0.52 -0.06 0.35 -0.31 1.80 2.18 0.66 0.70 0.057 

5 u(t-2) 1.43 -0.50 -2.78 -0.19 37.94 30.22 13.51 8.64 0.025 

6 u(t) -168.66 -129.39 -77.67 -67.08 -1187.99 -1016.74 -559.00 -454.19 0.015 

7 const -234.68 -194.87 -118.63 -101.74 -1701.85 -1415.05 -801.24 -632.16 0.025 

8 u(t)u(t-1) 14.63 10.60 6.23 5.53 100.55 88.73 47.78 40.04 0.083 

Run time: 2.53sec 

 

Table 6.  Estimates for the parameters
nm,β  in (32). 

 

m 
n 

0 1 2 3 4 5 

1 -14.05 20.09 -30.01 292.02 -161.80 16.52 

2 47.98 -72.58 10.23 -1172.89 649.59 -67.22 

3 1.81 -2.29 0.05 29.88 -16.05 1.72 

4 -0.28 0.18 -0.03 -20.62 11.29 -1.19 

5 16.35 -22.45 -0.70 -80.71 47.70 -4.83 

6 -51.41 78.40 -20.05 1955.65 -1074.11 109.58 

7 75.10 -92.45 -27.90 1688.76 -896.05 88.65 

8 12.31 -17.74 1.90 -230.03 127.98 -13.21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  A comparison between the model predicted output from the identified PDCS model (31) and the 
corresponding measurements in Data03, for the assicated auxetic elastomeric foams. The thin solid line indicates 
the measurements, and the thick dashed line indicates the model predicted output. 
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Fig. 8.  A comparison between the model predicted output from the identified PDCS model (31) and the 
corresponding measurements in Data08, for the assicated auxetic elastomeric foams. The thin solid line indicates 
the measurements, and the thick dashed line indicates the model predicted output. 

5.     Conclusions 

Many exogenous parameters may affect the underlying dynamics of a system, where the internal 

model structure of the system is fixed but the process internal parameters change due to the effects of 

the variation of the external parameters for example design parameters or experimental conditions. 

Parameter-dependent common-structured (PDCS) models are thus desirable for system analysis and 

design. In many cases, the true model structure of the relevant system is unknown but only the input 

and the output observations, subject to given specific design parameters, are available, and a common 

model structure is often deduced from the available observations. Common model structure selection 

(CMSS) is a crucial stage to obtain an effective PDCS model. A new efficient extended forward 

orthogonal regression (EFOR) algorithm has been designed to solve the CMSS problem. The 

identification of PDCS models includes to steps. Firstly, the common model structure is selected using 

the new EFOR algorithm, and individual parameters corresponding to each of the experiments are 

calculated using this algorithm. Secondly, the individual parameters are linked to the design 

parameters by fitting some functions where the independent variables are the design parameters. 

Results from case studies have strongly supported the applicability and effectiveness of the new EFOR 

algorithm for the CMSS problem. 
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Appendix—Some abbreviations  

AAMDL: average approximate minimum description length. 

AERR: average error ratio reduction. 

AMDL: approximate minimum description length. 

CMSS: common model structure selection. 

EFOR: extended forward orthogonal regression. 

EPD: external-parameter-dependent. 

ERR: error ratio reduction. 

FOR: forward orthogonal regression. 

IPD: internal-parameter-dependent. 

MDL:  minimum description length.  

OLS: orthogonal least squares. 

PDCS: parameter-dependent common-structured (model). 
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