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Abstract: Nonlinear Output Frequency Response Functions (NOFRFs) are a new 

concept proposed by the authors for the analysis of nonlinear systems in the frequency 

domain. The present study is concerned with investigating inherent relationships between 

the NOFRFs of two masses in nonlinear MDOF systems. The results reveal very 

important properties of a class of nonlinear systems, and have considerable significance 

for the application of the NOFRF concept in engineering practices. 

1 Introduction 

Linear systems, which have been widely studied by practitioners in many different fields, 

have provided a basis for the development of the majority of control system synthesis, 

mechanical system analysis and design, and signal processing methods. However, there 

are many qualitative behaviors in engineering, such as the generation of harmonics and 

inter-modulations, which cannot be produced by linear models [1]. In these cases, 

nonlinear models are needed to describe the system, and nonlinear system analysis 

methods have to be applied to investigate the system dynamics.  

The Volterra series approach [2] is a powerful tool for the analysis of nonlinear systems, 

which extends the familiar concept of the convolution integral for linear systems to a 

series of multi-dimensional convolution integrals. The Fourier transforms of the Volterra 

kernels are called Generalised Frequency Response Functions (GFRFs) [3], and can be 

considered as extensions of the linear Frequency Response Function (FRF) to the 

nonlinear case. If a differential equation or discrete-time model is available for a 

nonlinear system, the GFRFs can be determined using the algorithm in [4]~[6]. However, 

the GFRFs are much more complicated than the FRF. GFRFs are multidimensional 

functions [7][8], and can be difficult to measure, display and interpret in practice. 
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Recently, the novel concept known as Nonlinear Output Frequency Response Functions 

(NOFRFs) was proposed by the authors T[9]. The concept can be considered to be an 

alternative Textension of the FRF to the nonlinear case. TNOFRFs are one dimensional 

functions of frequency, which allow the analysis of nonlinear systems in the frequency 

domain to be implemented in a manner similar to the analysis of linear systems and 

which provide great insight into the mechanisms which dominate important nonlinear 

behaviours.T 

Based on the GFRFs for MIMO system achieved in [2][10], most recently, the authors 

also extended the concept of NOFRFs for the MIMO Volterra nonlinear systems [11]. 

Although great efforts have been made to analyze nonlinear systems in the frequency 

domain, most studies, including both numerical and experimental studies, have tended to 

focus on nonlinear systems with a single degree of freedom. 

In engineering practice, many mechanical and structural systems require more than one 

coordinates to describe the system behaviours. This implies a MDOF model is often 

needed to describe such systems. In addition, these systems may also behave nonlinearly 

due to nonlinear characteristics of some components within the systems. For example, a 

beam with breathing cracks behaves nonlinearly only because of the cracked elements 

inside the beam [12]. These nonlinear MDOF systems can be regarded as locally 

nonlinear MDOF systems. The present study is concerned with derivation of the inherent 

relationships between the NOFRFs of any two masses in locally nonlinear MDOF 

systems. The results reveal the important properties of nonlinear MDOF systems and 

have considerable significance for the application of the NOFRF concept in engineering 

practices. 

2. Nonlinear Output Frequency Response Function 

2.1 Nonlinear Output Frequency Response Functions under General Input T 

The definition of NOFRFs is based on the Volterra series theory of nonlinear systems. 

The Volterra series extends the well-known convolution integral description for linear 

systems to a series of multi-dimensional convolution integrals, which can be used to 

represent a wide class of nonlinear systems [3].  

Consider the class of nonlinear systems which are stable at zero equilibrium and which 

can be described in the neighbourhood of the equilibrium by the Volterra series 
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where  y(t) and u(t) are the output and input of the system, ),...,( n1nh ττ  is the nth order 

Volterra kernel, and N denotes the maximum order of  the system nonlinearity. Lang and 

Billings [3] derived an expression for the output frequency response of this class of 

nonlinear systems to a general input. The result is  
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This expression reveals how nonlinear mechanisms operate on the input spectra to 

produce the system output frequency response. In (2), )( ωjY  is the spectrum of the 

system output, )( ωjYn  represents the nth order output frequency response of the system, 
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is the nth order Generalised Frequency Response Function (GFRF) [3], and 
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ωωω =++ nL1 . Equation (2) is a natural extension of the well-known linear relationship 

)()()( ωωω jUjHjY = , where )( ωjH  is the frequency response function, to the 

nonlinear case.  

For linear systems, the possible output frequencies are the same as the frequencies in the 

input. For nonlinear systems described by equation (1), however, the relationship between 

the input and output frequencies is more complicated. Given the frequency range of an 

input, the output frequencies of system (1) can be determined using the explicit expression 

derived by Lang and Billings in [3].  

Based on the above results for the output frequency response of nonlinear systems, a new 

concept known as the Nonlinear Output Frequency Response Function (NOFRF) was 

recently introduced by Lang and Billings [9]. The NOFRF is defined as 
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Notice that )( ωjGn  is valid over the frequency range of )( ωjUn , which can be 

determined using the algorithm in [3]. 

By introducing the NOFRFs )( ωjGn , Nn L,1= , equation (2) can be written as  
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which is similar to the description of the output frequency response for linear systems. 

The NOFRFs reflect a combined contribution of the system and the input to the system 

output frequency response behaviour. It can be seen from equation (4) that )( ωjGn  

depends not only on nH  (n=1,�,N) but also on the input )( ωjU . For a nonlinear system, 

the dynamical properties are determined by the GFRFs nH  (n= 1,�,N). However, from 

equation (3) it can be seen that the GFRF is multidimensional [7][8], which can make the 

GFRFs difficult to measure, display and interpret in practice. According to equation (4), 

the NOFRF )( ωjGn  is a weighted sum of ),...,( 1 nn jjH ωω  over ωωω =++ nL1  with 

the weights depending on the test input. Therefore )( ωjGn  can be used as an alternative 

representation of the dynamical properties described by nH . The most important 

property of the NOFRF )( ωjGn  is that it is one dimensional, and thus allows the analysis 

of nonlinear systems to be implemented in a convenient manner similar to the analysis of 

linear systems. Moreover, there is an effective algorithm [9] available which allows the 

estimation of the NOFRFs to be implemented directly using system input output data. 

2.2 Nonlinear Output Frequency Response Functions under Harmonic Inputs 

When system (1) is subject to a harmonic input 

)cos()( βω += tAtu F                                                     (7) 

Lang and Billings [3] showed that equation (1) can be expressed as 
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Define the frequency components of the nth order output of the system as nΩ , then 

according to equation (8), the frequency components in the system output can be 

expressed as 
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where nΩ  is determined by the set of frequencies 
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From equation (11), it is known that if all 
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1
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If k of these are taken as Fω , then Fkn ωω )2( +−= . The maximal k is n. Therefore the 

possible frequency components of  )( ωjYn  are     
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Equation (13) explains why superharmonic components are generated when a nonlinear 

system is subjected to a harmonic excitation. In the following, only those components 

with positive frequencies will be considered. 

The NOFRFs defined in equation (4) can be extended to the case of harmonic inputs as 
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Obviously, )( ωjG H
n  is only valid over nΩ  defined by equation (12). Consequently, the 

output spectrum )( ωjY  of nonlinear systems under a harmonic input can be expressed as 
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where ),...,( 1 nn jjH ωω  is assumed to be a symmetric function. Therefore, in this case, 

)( ωjG H
n  over the nth order output frequency range nΩ ={ }nkkn F ,,1,0,)2( L=+− ω  is 

equal to the GFRF ),...,( 1 nn jjH ωω  evaluated at ,1 Fk ωωω ===L  Fnk ωωω −===+ L1 , 

nk ,,0 L= . 

3. Analysis of Nonlinear MDOF Systems Using the NOFRFs 

3.1 Locally Nonlinear MDOF System 

 
Figure 1, a multi-degree freedom oscillator 

The considered multi-degree-of-freedom oscillator is shown as Figure 1, the input force 

is added on the Jth mass. 

If all springs and damping are linear, then the governing motion equation of the MDOF 

oscillator in Figure 1 can be written as 
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are the system damping and stiffness matrix respectively. '
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displacement vector, and  

'

1

)0,,0),(,0,,0()(
876

L
876

L

JnJ

tftF
−−

=  

 is the external force vector acting on the oscillator.  

mBnB kBnB mBn-1B mB2B  mB1B kB2B kB1B 

xB1B  xB2B  xBn-1B 

xBnB 

f(t) 

cB1B cB2B cBnB 



 8

Equation (19) is the basis of the modal analysis method, which is a well-established 

approach for determining dynamic characteristics of engineering structures. In the linear 

case, the displacements )(txi  ( ni ,,1L= ) can be expressed as 

∫
+∞

∞−
−= τττ dfthtx ii )()()( )(                                              (20) 

where )()( th i  ( ni ,,1L= ) are the impulse response functions that are determined by 

equation  (19), and the Fourier transform of )()( th i is the well-known FRF. 

Assuming the component between the Lth and (L-1)th masses has a nonlinear stiffness 

and damping, and the restoring forces )(∆LSS  and )(∆&LDS  are the polynomial functions 

of the deformation ǻ and its derivative ∆&  respectively, i.e.,  
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where P is the degree of the polynomial. Without loss of generality, assume nL ,1≠  and 

JL < , 1rkL =  and 1wcL = . Then the motion of the oscillator in Figure 1 is determined 

by equations (22)~(28) in the following. 

For the masses that are not connected to the Lth spring, the governing motion equations 

are  
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is  

0)()(

)()(

2

1

2

121

11211111

=−+−+−−

++−−++

∑∑
=

−
=

−−−

−−−−−−−−

P

i

i
LLi

P

i

i
LLiLLLL

LLLLLLLLLLLL

xxwxxrxcxc

xccxkxkxkkxm

&&&&

&&&

             (26) 

For the mass that is connected to the right of the Lth spring, the governing motion 

equation is 
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Then, equation (22)~(27) can be rewritten in a matrix form as 
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 9

The system described by equations (28)~(30) is a typical locally nonlinear MDOF system. 

The Lth nonlinear component can lead the whole system to behave nonlinearly. In this 

case, the Volterra series can be used to describe the relationships between the 

displacements )(txi  ( ni ,,1L= ) and the input force )(tf  as below 
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under quite general conditions [3]. In equation (31), ),...,( 1),( jjih ττ , ( ni ,,1L= , 

Nj ,,1L= ), represents the jth order Volterra kernel for the relationship between f(t) and 

the displacement of mBiB. The Fourier Transform of ),...,( 1),( jjih ττ  is the corresponding 

GFRF ),...,( 1),( jji jjH ωω  ( ni ,,1L= , Nj ,,1L= ).  

3.2 GFRFs of the Locally Nonlinear MDOF System 
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Denote 
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It is obtained from equations (40)~(42) that 
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Thus, for any two consecutive masses, the relationship between the first order GFRFs can 

be expressed as 
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The above procedure used to analyze the relationships between the first order GFRFs can 

be extended to investigate the relationship between the N th order GFRFs with 2≥N . 
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( ) ),,()(

),,())(()(

1),1(1

1),(111

2

1

NNLLNL

NNLLLNLLNL

jjHkjc

jjHkkccjm

ωωωω

ωωωωωω

LL

LLL

−

++

+++−

++++++++−
 



 11

( ) 0),,(),,()( 1

,1

1),1(111 =Λ−+++− −
+++ N

LL

NNNLLNL jjjjHkjc ωωωωωω LLL        (51) 

In equations (50) and (51), ),,( 1

,1

N

LL

N
jj ωω L−Λ  represents the extra terms introduced by 

∑∑
=

−
=

− −+−=
P

i

i
LLi

P

i

i
LLi xxrxxwNonF

2

1

2

1 )()( && for the N th order GFRFs, for example, for 

the second order GFRFs,   

( )(
))()()()()()(

)()(),(

1)1,(2)1,1(2)1,(1)1,1(2)1,(1)1,(

2)1,1(1)1,1(221221

,1

2

ωωωωωω

ωωωωωω

jHjHjHjHjHjH

jHjHrwjj

LLLLLL

LL
LL

−−

−−
−

−−+

+−=Λ
  (52) 

Denote 

( )T
NNnNNNN

jjHjjHjjH ),,(),,(),,( 1),(1),1(1 ωωωωωω LLLL =          (53) 

and 

} }
′

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Λ−Λ=Λ

−
−−

− Ln

N

LL

NN

LL

N

L

NN
jjjjjj 00),,(),,(00),,( 1

,1

1

,1

2

1 LLLLL ωωωωωω (54) 

then equations (47)~(51) can be written in a matrix form as  

),,(),,())(( 111 NNNNN
jjjjHj ωωωωωω LLL Λ=++Θ                  (55) 

so that  

),,())((),,( 11

1

1 NNNNN
jjjjjH ωωωωωω LLL Λ++Θ= −                (56) 

Therefore, for each mass, the N th order GFRF can be calculated as  

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Λ−
Λ

++++= −

−

−
),,(

),,(
)(()),((

),,(

1

,1

1

,1

1,11,

1),(

N

LL

N

N

LL

N
NLiNLi

NNi

jj

jj
jQjQ

jjH

ωω
ωω

ωωωω

ωω

L

L
LL

L

 

),,1( ni L=   (57) 

Consequently, for two consecutive masses, the N th order GFRFs have the following 

relationships   

                 
))(())((

))(())((

),,(

),,(

1,111,1

1,11,

1),1(

1),(

NLiNLi

NLiNLi

NNi

NNi

jQjQ

jQjQ

jjH

jjH

ωωωω
ωωωω

ωω

ωω

++−++

++−++
=

+−+

−

+
LL

LL

L

L
 

)())(( 1

1,

1

1,

N

ii

NN

ii jQ ωωλωω ++=++= ++ LL         )1,,1( −= ni L   (58) 

Equations (44) and (58) give a comprehensive description for the relationships between 

the GFRFs of any two consecutive masses for the nonlinear MDOF system (30).  

In addition, denote 0)( 1

1,0 =++
NN

jj ωωλ L , ( NN ,,1L= ), then for the first two masses, 

from equations (34) and (47), it can be known that 
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( )( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−+++−+

+++++−

+++
==

++

2

11211

1,0

1211

1,0

212

1),2(

1),1(

1

2,1

)()(1

)()(1

)(

),,(

),,(

)(

NNN

NNN

N

NN

NN

NN

mkk

ccj

kjc

jjH

jjH

ωωωωλ

ωωωωλ

ωω
ωω

ωω

ωωλ

LL

LL

L

L

L

L

 

( NN ,,1L= ) (59) 

Starting with equation (59), and iteratively using equations (36) and (49) from the 1P

st
P 

mass until i=(L-2), it can be deduce that, for the masses on the left of the nonlinear spring 

excluding the (L-1)th mass, the following relationships exist for the system GFRFs 

( )( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−+++−+

+++++−

+++
==

++

+
−

+
−

++

+

+

2

111

,1

111

,1

111

1),1(

1),(

1

1,

)()(1

)()(1

)(

),,(

),,(

)(

NiiiN

ii

N

NiiN

ii

N

iNi

NNi

NNi

N

ii

N

mkk

ccj

kjc

jjH

jjH

ωωωωλ

ωωωωλ

ωω
ωω

ωω

ωωλ

LL

LL

L

L

L

L

 

 ( 21 −≤< Li , NN ,,1L= ) (60) 

Denote 1)( 1

,1 =+++
N

nn

N
ωωλ L , ( NN ,,1L= ),  01 =+nc  and 01 =+nk . Then, for the last 

two masses, from equations (35) and (48) it is can be deduced that 

)(

1

),,(

),,(
)(

1

,1

1),1(

1),(

1

1,

N

nn

NNNn

NNn

N

nn

N jjH

jjH

ωωλωω

ωω
ωωλ

++
==++ −

−

−

LL

L
L  

( )( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−+++−+

+++++−

+++
=

+
+

+
+

2

111

,1

111

,1

1

)()(1

)()(1

)(

NnnnN

nn

N

NnnN

nn

N

nNn

mkk

ccj

kjc

ωωωωλ

ωωωωλ

ωω

LL

LL

L
 ( NN ,,1L= )  (61) 

Starting with equation (61), and iteratively using equations (36) and (49) from nth mass 

until i=(J+1), it can be deduced that, for the masses on the right of the Jth mass, the 

following relationships can be established for the system GFRFs 

 
)(

1

),,(

),,(
)(

1

,1

1),1(

1),(

1

1,

N

ii

NNNi

NNi

N

ii

N jjH

jjH

ωωλωω

ωω
ωωλ

++
==++ −

−

−

LL

L
L  

( )( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−+++−+

+++++−

+++
=

+
+

+
+

2

111

,1

111

,1

1

)()(1

)()(1

)(

NiiiN

ii

N

NiiN

ii

N

iNi

mkk

ccj

kjc

ωωωωλ

ωωωωλ

ωω

LL

LL

L
 

( niJ ≤≤+1 , NN ,,1L= ) (62) 

For the masses between the (L-1)th and Jth masses, ( JiL ≤≤ ), the relationships between 

the GFRFs can also be described as equation (62), but a little modifications are required 

for )(1,

1 ωλ −JJ  and )( 1

1,

N

LL

N
ωωλ ++− L , ( NN ,,1L= ). 

Denote  
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( )( ) ( )[ ]JJ
JJ

JJ
JJ

J

JJJJ

kkccjm

kjc

+−++−+−
+

=
+

+
+

+

−

1

,1

11

,1

1

2

1,

1

)(1)(1
)(

ωλωωλω
ω

ωλ      (63) 

Then, from equation (37), it can be known that, when 1=N and Ji = , the relationship 

given in (62) needs to be modified as 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+===

−

−

−
−

−

)(

11
1)(

)(

1

)(

)(
)(

)1,1(

1,

1
,1

1)1,1(

)1,(1,

1 ωω
ωλ

ωλω
ω

ωλ
jHkjcjH

jH

JJJ

JJ

JJ
J

JJJ    (64) 

Denote 

( )( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−+++−+

+++++−

+++
=++

+
+

+
+

−

2

111

,1

111

,1

1

1

1,

)()(1

)()(1

)(
)(

NLLLN

LL

N

NLLN

LL

N

LNL

N

LL

N

mkk

ccj

kjc

ωωωωλ

ωωωωλ

ωω
ωωλ

LL

LL

L
L      (65) 

Then, for the Lth mass, using equation (51), it can be known that, when 2≥N , the 

relationships given in (62) need to be modified as 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Λ

+++
+++=

++
==++

−

−
−

−
−

−

),,(

),,(

)(

1
1)(

)(

1

),,(

),,(
)(

1),1(

1

,1

1

1

1,

1

,1

1),1(

1),(

1

1,

NNL

N

LL

N

LNL
N

LL

N

N

LL

NNNL

NNL

N

LL

N

jjH

jj

kjc

jjH

jjH

ωω
ωω

ωω
ωωλ

ωωλωω

ωω
ωωλ

L

L

L
L

LL

L
L

   ( 2≥N ) (66) 

Under other occasions, if i=J, ,1≠N and if i=L, 1=N , for the masses ( JiL ≤≤ ), the 

relationships between the GFRFs can be expressed as  

)(

1

),,(

),,(
)(

1

,1

1),1(

1),(

1

1,

N

ii

NNNi

NNi

N

ii

N jjH

jjH

ωωλωω

ωω
ωωλ

++
==++ −

−

−

LL

L
L  

( )( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

++−+++−+

+++++−

+++
=

+
+

+
+

2

111

,1

111

,1

1

)()(1

)()(1

)(

NiiiN

ii

N

NiiN

ii

N

iNi

mkk

ccj

kjc

ωωωωλ

ωωωωλ

ωω

LL

LL

L
 

( JiL ≤≤ , NN ,,1L= , and if i=J, ,1≠N and if i=L, 1=N ) (67) 

From a different respective, equations (59)~(67) give a comprehensive description for the 

relationships between the GFRFs of any two consecutive masses for the nonlinear MDOF 

system (30).  

3.3 NOFRFs of the Locally Nonlinear MDOF System 

According to the definition of NOFRF in equation (4), the N th order NOFRF of the ith 

mass can be expressed as 
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∫ ∏

∫ ∏

=++ =

=++ =
=

ωωω
ω

ωωω
ω

σω

σωωω

ω

N

N

N

N

q
q

N

N

q
qNNi

Ni

djF

djFjjH

jG

,..., 1

,..., 1

1),(

),(

1

1

)(

)(),...,(

)(  

)1  ,1( niNN ≤≤≤≤  (68) 

where )( ωjF  is the Fourier transform of )(tf . 

According to equation (58), for any 2≥N , equation (68) can be rewritten as 

∫ ∏

∫ ∏

=++ =

=++ =
+

+ ++

=

ωωω
ω

ωωω
ω

σω

σωωωωω

ω

N

N

N

N

q
q

N

N

q
qNNiN

ii

Ni

djF

djFjjHjQ

jG

,..., 1

,..., 1

1),1(1

1,

),(

1

1

)(

)(),...,())((

)(

L

 

)()(
),1(

1, ωω jGjQ
Ni

ii

+
+=                                 )11  ,2( −≤≤≤≤ niNN  (69) 

Then for two consecutive masses, the NOFRFs have the following relationships 

)()(
)(

)(
1,1,

),1(

),( ωλω
ω

ω
++

+

== ii

N

ii

Ni

Ni jQ
jG

jG
           )11  ,2( −≤≤≤≤ niNN  (70) 

Similarly, according to equation (44), for  N = 1, equation (68) can be rewritten as 

)()()( )1,1(

1,

1)1,( ωωλω jGjG i
ii

i +
+=                         )11 ( −≤≤ ni  (71) 

therefore 

)(
)(

)(

)(

)(
1,

1

),1(

),(

)1,1(

)1,( ωλ
ω
ω

ω
ω +

++

== ii

Ji

Ji

i

i

jQ

jQ

jG

jG
                )11 ( −≤≤ ni  (72) 

Equations (70) and (72) give a comprehensive description for the relationships between 

the NOFRFs of two consecutive masses of the nonlinear MDOF system (30).  

The relationships between the NOFRFs of two consecutive masses can also be derived 

from equations (59)~(67).  

From equation (59), it can be known that  

( ) )(
)))((1()(

)(
2,1

2211

1,02

1

22

),2(

),1( ωλ
ωωωλω

ω
ω

ω
N

NN

N

jckjckm

kjc

jG

jG
=

+++−+−
+

=    )1( NN ≤≤  (73) 

Starting with equation (73), and iteratively using equations (60) and (70) from the 1P

st
P 

mass until i=(L-2), it can be deduced that, for the masses on the left of the nonlinear 

spring excluding the (L-1)th mass, the following relationships exists for the NOFRFs. 

( )( )[ ]11

,12

11

),1(

),(1,

)(1)(

)(
)(

++
−

++

+

+

+++−+−
+

==
iiii

ii

Ni

ii

Ni

Niii

N kjckjcjm

kjc

jG

jG
j

ωωωλω
ω

ω

ω
ωλ  

 ( 21 −≤≤ Li , NN ,,1L= )  (74) 
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Similarly, for the masses on at the right of the Jth mass, the following relationship about 

the NOFRFs can be established using equations (62) and (68).    

( )( )[ ]iiii
ii

Ni

ii

Ni

Ni

ii

N

ii

N kjckjcjm

kjc

jG

jG

j
j

+++−+−
+

===
++

+
−

−
−

ωωωλω
ω

ω

ω

ωλ
ωλ

11

,12

),1(

),(

,1

1,

)(1)(

)(

)(

1
)(  

                                    ( niJ ≤≤+1 , NN ,,1L= )  (75) 

Starting from the Jth mass, it is easily deduced that the NOFRFs of two consecutive 

masses, which locate between the (L-1)th and Jth masses, have the similar relationships 

given in equation (75), but a little modifications are required for )(1,

1 ωλ −JJ  and )(1, ωλ −LL

N
, 

( NN ,,1L= ).. 

From equation (64), it can be known that, when 1=N and Ji = , the relationship given in 

equation (75) needs to be modified as 

 
)(

1

)(

11
1)(

)(

)(
)(

,1

1)1,1(

1,

1

)1,1(

)1,(1,

1 ωλωω
ωλ

ω
ω

ωλ
JJ

JJJ

JJ

J

JJJ

jGkjcjG

jG
−

−

−

−

− =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+==       (76) 

Denote  

( )( )[ ]LLLL
LL

NL

LLLL

N kjckjcm

kjc

+++−+−
+

=
++

+

−

ωωωλω
ω

ωλ
11

,12

1,

)(1
)(                  (77) 

and 

∫ ∏

∫ ∏

=++ =

=++ =

−

−

Λ

=Γ

ωωω
ω

ωωω
ω

σω

σωωω

ω

N

N

N

N

q
q

N

N

q
qN

LL

N

NL

djF

djFjj

j

,..., 1

,..., 1

1

,1

),1(

1

1

)(

)(),,(

)(

L

        )2( NN ≤≤  (78) 

Then, for the Lth mass, from equations (65) and (66), it can be known that, when 2≥N ,  

the relationship given in (75) needs to be modified as 

)(

1

)(

)(1
1)(

)(

)(
)(

,1

),1(

),1(1,

),1(

),(1,

ωλω

ω

ω
ωλ

ω

ω
ωλ

jjG

j

kjc
j

jG

jG
j

LL

NNL

NL

LL

LL

N
NL

NLLL

N −
−

−−

−

− =
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ Γ

+
+==  

 )2( NN ≤≤  (79) 

Under other conditions, if i=J, ,1≠N and if i=L, 1=N , for the masses ( JiL ≤≤ ), from 

equation (67), it is known that the relationships between the NOFRFs can be expressed as 

( )( )[ ]iiii
ii

Ni

ii

Ni

Ni

ii

N

ii

N kjckjcjm

kjc

jG

jG

j
j

+++−+−
+

===
++

+
−

−
−

ωωωλω
ω

ω

ω

ωλ
ωλ

11

,12

),1(

),(

,1

1,

)(1)(

)(

)(

1
)(  

( JiL ≤≤ , NN ,,1L= , and if i=J, ,1≠N and if i=L, 1=N ) (80) 

From a different respective, equations (73)~(80) also give a comprehensive description 

for the relationships between the NFRFs of any two consecutive masses of the nonlinear 

MDOF system (30).  
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3.4 The Properties of NOFRFs of Locally Nonlinear Systems 

Important properties of the NOFRFs of locally nonlinear MDOF systems can be obtained 

from equations (70)~(80) as the following 

i) For the masses which are on the left of the nonlinear spring or on the right of the input 

force, below relationships hold.  

 
)(

)(

)(

)(

),1(

),(

)1,1(

)1,(

ω
ω

ω
ω

jG

jG

jG

jG

Ni

Ni

i

i

++

==L         ( 21 −≤≤ Li , niJ <≤ ) (81) 

that is 

)()()( 1,1,1,

1 ωλωλωλ +++ === iiii
N

ii L      ( 21 −≤≤ Li , niJ <≤ ) (82) 

ii) For the masses located between the nonlinear spring and the input force, the following 

relationships hold. 

)(

)(

)(

)(

)(

)(

),1(

),(

)2,1(

)2,(

)1,1(

)1,(

ω
ω

ω
ω

ω
ω

jG

jG

jG

jG

jG

jG

Ni

Ni

i

i

i

i

+++

==≠ L             ( 11 −≤≤− JiL )  (83) 

 that is 

)()()( 1,1,

2

1,

1 ωλωλωλ +++ ==≠ ii
N

iiii L                    ( 11 −≤≤− JiL ) (84) 

iii) For the masses which are on the left of the nonlinear spring or on the right of the input 

force, the following relationships about the output frequency responses hold 

)()()( 1

1, ωωλω jxjjx i
ii

i +
+=        ( 21 −≤≤ Li , niJ <≤ ) (85) 

The first property is straightforward. For the masses on the left of the nonlinear spring, 

from equation (73), it can be known that 

( )( ) )()()( 2,1

2121

2

1

222,12,1

1 ωλ
ωω

ωωλωλ j
kkccjm

jck
jj N =

++++−
+

===L          (86) 

Consequently, substituting (86) into equation (73) yields 

( )( ) ( )[ ]32

2,1

32

2,12

2

333,23,2

1
)(1)(1

)()(
kkjccjjm

kjc
N +−++−+−

+
===

ωλωωλω
ω

ωλωλ L                  

)(3,2 ωλ j=                                                                              (87) 

Iteratively use the above procedure until i=(L-2), for the masses ( 21 −≤≤ Li ) the first 

property can be proved. Similarly, starting from the nth mass, and iteratively using 

equation (75) until i=J, the first property for the masses ( NiJ <≤ ) can also be proved. 

From equation (70), it can be known that, for the masses located between the nonlinear 

spring and the input force, the following relationship is tenable 

)(

1
)()(

)(

)(

)(

)(
,1

1,1,

),1(

),(

)2,1(

)2,(

ωλ
ωλω

ω
ω

ω
ω

j
jjQ

jG

jG

jG

jG
ii

iiii

Ni

Ni

i

i

+
++

++

=====L  

( 11 −≤≤− JiL ) (88) 

So part of the second property has been proved.  
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According to Property i), it can be known that  

)(

1
)(

)(

1
)(

1,

,1

1,

1

,1

1 ωλ
ωλ

ωλ
ωλ +

+
+

+ ====
JJ

N

JJ
NJJ

JJ L                  (89) 

Substituting (89) into )(
1,

1 ωλ j
JJ −

, ,),(1,

2 Lωλ −JJ )(1, ωλ −JJ
N , it follows 

( )( ) ( )[ ]JJ
JJ

JJ
JJ

J

JJ

JJ
N

JJJJ

kkccjm

kjc

+−++−+−
+

=

==

+
+

+
+

−−−

1

,1

11

,1

1

2

1,1,

2

1,

1

)(1)(1

)()()(

ωλωωλω
ω
ωλωλωλ L

      (90) 

According equation (76), it is known that 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+=

−

−−

)(

11
1)()(

)1,1(

1,

1
1,

1 ωω
ωλωλ

jGkjc JJJ

JJJJ                        (91) 

As 0)()1,1( ≠− ωjG J , obviously 

 )()()()( 1,1,

2

1,

1
1,

1 ωλωλωλωλ −−−− ==≠ JJ
N

JJJJJJ L                          (92) 

then 

)(

1
)(

)(

1
)(

)(

1
)(

1,

,1

1,

2

,1

21,

1

,1

1 ωλ
ωλ

ωλ
ωλ

ωλ
ωλ −

−
−

−
−

− ====≠=
JJ

N

JJ
NJJ

JJ
JJ

JJ L       (93) 

Substituting (93) into )(2,1

1 ωλ −− JJ , ,),(2,1

2 Lωλ −− JJ )(2,1 ωλ −− JJ
N , it can be proved that 

)(

1
)(

)(

1
)(

)(

1
)(

2,1

1,2

2,1

2

1,2

22,1

1

1,2

1 ωλ
ωλ

ωλ
ωλ

ωλ
ωλ −−

−−
−−

−−
−−

−− ====≠=
JJ

N

JJ
NJJ

JJ
JJ

JJ L  

                (94) 

Iteratively using above procedure until i=(L-1), then the property    

)()()( 1,1,

2

1,

1 ωλωλωλ jjj ii
N

iiii +++ ==≠ L                      ( 11 −≤≤− JiL ) 

can be proved. By now, the whole second property is proved. 

The third property is also straightforward since, according to equation (6), the output 

frequency response of the ith mass can be expressed as 

∑
=

++ =
N

k
kkii jFjGjx

1

),1(1 )( )()( ωωω                                       (95) 

Using the first property, equation (95) can be written as 

∑
=

+
+ =

N

k
kki

ii
i jFjGjjx

1

),(

1,

1 )( )()()( ωωωλω                                  (96) 

Obviously, )()()( 1,

1 ωωλω jxjjx i
ii

i
+

+ = , then the third property is proved. 

The above three properties can be easily extended to more general cases, as follows. 

iv) For any two masses which are either on the left of the nonlinear spring or on the right 

of the input force, the following relationships hold.  

)(
)(

)(

)(

)(
,

),(

),(

)1,(

)1,( ωλ
ω
ω

ω
ω

kii

Nki

Ni

ki

i

jG

jG

jG

jG +

++

===L  

( 21 −≤≤ Li  and 1−≤+ Lki  or  niJ <≤  and nkiJ ≤+< )  (97) 
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and 

∏
−

=

++++ =
1

0

1,, )()(
k

d

didikii ωλωλ                                          (98) 

v) For any two masses which are either on the left of the nonlinear spring or on the right 

of the input force, the following relationships hold 

)()()( , ωωλω jxjx ki
kii

i +
+=  

( 21 −≤≤ Li  and 1−≤+ Lki  or  niJ <≤  and nkiJ ≤+< ) (99) 

vi) For any two masses located between the nonlinear spring and the input force, the 

following relationships can be deduced from property ii). 

)(
)(

)(

)(

)(

)(

)(
,

),(

),(

)2,(

)2,(

)1,(

)1,( ωλ
ω
ω

ω
ω

ω
ω

kii

Nki

Ni

ki

i

ki

i

jG

jG

jG

jG

jG

jG +

+++

===≠ L  

( 11 −≤≤− JiL  and JkiL ≤+≤ ) (100) 

and 

∏
−

=

++++ =
1

0

1,, )()(
k

d

didikii ωλωλ                                          (101) 

vii) For any two masses at the different sides of the nonlinear spring or at the different sides 

of the input force, the following relationships hold. 

)(

)(

)(

)(

)(

)(

),(

),(

)2,(

)2,(

)1,(

)1,(

ω
ω

ω
ω

ω
ω

jG

jG

jG

jG

jG

jG

Nk

Ni

k

i

k

i ==≠ L  

( 11 −≤≤ Li  and nkL ≤≤  or 11 −≤≤ Ji  and nkJ ≤≤ ) (102) 

The proof of properties (iv)-(vii) only needs some simple calculations. The details are 

omitted here. 

4 Numerical Study 

To verify the analysis results in Section 3, a damped 8-DOF oscillator was used to conduct 

numerical studies, in which the fourth spring was nonlinear. As widely used in modal 

analysis, the damping was assumed to be proportional to the damping, e.g., KC µ= . The 

values of the system parameters are taken as 

181 === mm L ,  ,105531.3 4

811 ×==== kkr L  µ =0.01 
2

12 8.0 rr ×= , 3

13 4.0 rr ×= , 11 rw µ= , 2

2

2 1.0 kw µ= , 03 =w  

and the input was a harmonic force acting on the 6P

th
P mass, )202sin()( tAtf ×= π . 

If only the NOFRFs up to the 4P

th
P order is considered, according to equations (16) and (17), 

the frequency components of the outputs of the 8 masses can be written as 

)()()()()( 3)3,(1)1,( FF
H
iFF

H
iFi jFjGjFjGjx ωωωωω +=

)2()2()2()2()2( 4)4,(2)2,( FF
H
iFF

H
iFi jFjGjFjGjx ωωωωω +=  

                        )3()3()3( 3)3,( FF
H
iFi jFjGjx ωωω =  
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)4()4()4( 4)4,( FF
H
iFi jFjGjx ωωω =                                    )8,,1( L=i  (103) 

From equation (103), it can be seen that, using the method in [9], two different inputs with 

the same waveform but different strengths are sufficient to estimate the NOFRFs up to 4P

th
P 

order. Therefore, in this numerical study, two different inputs are used with A=0.8 and 

A=1.0 respectively. The simulation studies were conducted using a fourth-order Runge�

Kutta method to obtain the forced response of the system.  

The evaluated results of )(1 F
H jG ω , )(3 F

H jG ω , )2(2 F
H jG ω  and )2(4 F

H jG ω for all 

masses are given in Table 1 and Table 2. According to the analysis results in the previous 

section, it is known that the following relationships should be tenable. 
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++
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(104) 

Table 1, the evaluated results of )(1 F
H jG ω  and )(3 F

H jG ω  

 )(1 F
H jG ω (×10P

-6
P) )(3 F

H jG ω (×10P

-9
P) 

Mass 1 -1.944241903169+2.877586360412i 5.458634750380-7.366308497467i 

Mass 2 -4.176583568969+4.838272030553i 11.57208415372-12.28123597097i 

Mass 3 -6.736933696283+5.060776930464i 18.34919935969-12.57357666987i 

Mass 4 -9.231909382744+2.952034620849i -12.79690672083+5.455660873182i 

Mass 5 -10.77575870137-1.664260696852i -5.435201264096+7.592249482842i 

Mass 6 -10.10143823260-8.327479816646i 1.220710849413+7.243210130819i 

Mass 7 -15.11217068758-0.8377017815558i 6.097443770670+5.910417338742i 

Mass 8 -17.33646514165+3.523672640104i 8.643601249962+4.879496926152i 
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Table 2, the evaluated results of )2(2 F
H jG ω  and )2(4 F

H jG ω  

 )2(2 F
H jG ω (×10P

-9
P) )2(4 F

H jG ω (×10P

-10
P) 

Mass 1 6.021454230962-12.98554218901i -1.952110843919-3.410834151117i  

Mass 2 18.50884595656-19.14114684937i -1.347439298947-7.185522342534i  

Mass 3 38.19859798519-9.325491210626i     3.976662752654-10.03496188850i    

Mass 4 -38.08895161488+6.216540013903i     -4.655561901388+9.516667048108i     

Mass 5 -16.52707738569+16.85454389201i     1.150036085197+6.378527258423i     

Mass 6 -1.252587907918+13.28718243146i     2.777020782522+2.390650901502i    

Mass 7 6.213180893960+5.729219962027i 2.269896229546-0.4816873854849i 

Mass 8 8.669835294787+0.5734813561479i 1.505312897830-1.850711607214i  

Table 3, the evaluated and theoretical values of )(1,

1 F
ii jωλ +  

 Evaluated Theoretical 

i=1 0.539568255325-0.063929850245i 0.539568125657-0.063929279767i 

i=2 0.741189550115-0.161390493546i 0.741190530388-0.161389040027i 

i=3 0.821079057389-0.285631391869i 0.821050118371-0.285603877540i 

i=4 0.795445087122-0.396803857097i 0.795467221982-0.396815218346i 

i=5 0.715984832936-0.425492731775i 0.715981624553-0.425452611957i 

i=6 0.696835117313+0.512417438733i 0.696881219804+0.512400603715i 

i=7 0.827684503605+0.216548817240i 0.827677050338+0.216547405081i 

Table 4, the evaluated and theoretical values of  )(1,

3 F
ii jωλ +  

 Evaluated Theoretical 

i=1 0.539559368397-0.063934254540i 0.539568125657-0.063929279767i 

i=2 0.741241865615-0.161378950912i 0.741190530388-0.161389040027i 

i=3 -1.567808155157 +0.314149907382i -1.567764971393+0.314134164548i 

i=4 1.272881818401+0.774281438682i 1.272989592311+0.774409671174i 

i=5 0.896268022564+0.901435309110i 0.896263983491+0.901393838300i 

i=6 0.696884187038+0.512400583943i 0.696881219804+0.512400603715i 

i=7 0.827675930682+0.216550385077i 0.827677050338+0.216547405081i 
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Table 5, the evaluated and theoretical values of )(1,

1 F
ii jωλ +  and )(1,

3 F
ii jωλ +  

)(1,

1 F
ii jωλ +  )(1,

3 F
ii jωλ +   

 Evaluated Theoretical Evaluated Theoretical 

i=1 0.543342367119 0.543342171230 0.543334060158 0.543342171230 

i=2 0.758557078015 0.758557726596 0.758605740248 0.758557726596 

i=3 0.869342343673 0.869305971303 1.598972349882 1.598926914797 

i=4 0.888924174288 0.888949052960 1.489879146073 1.490037865607 

i=5 0.832873547298 0.832850293702 1.271173467620 1.271141211600 

i=6 0.864957115837 0.864984284946 0.864986663810 0.864984284946 

i=7 0.855543703007 0.855536135008 0.855535806093 0.855536135008 

Table 6, the evaluated and theoretical values of )2(1,

2 F
ii j ωλ +  

 Evaluated Theoretical 

i=1 0.507797183488-0.176441131870i 0.507802742120-0.176493868719i 

i=2 0.572740375500-0.361271414124i 0.572987984997-0.361057530431i 

i=3 -1.015780193448+0.079047935558i -1.015815300438+0.079073403521i 

i=4 1.317748969503+0.967716037022i 1.317984293172+0.966962918880i 

i=5 1.373531878255+1.114352726037i 1.373306980736+1.114467844922i 

i=6 0.956810202664+1.256265744021i 0.956791143622+1.256208857322i 

i=7 0.757042356332+0.610746352706i 0.757019558226+0.610676456673i 

Table 7, the evaluated and theoretical values of )2(1,

4 F
ii j ωλ +  

 Evaluated Theoretical 

i=1 0.507770526862-0.176454935457i 0.507802742120-0.176493868719i 

i=2 0.572874980296-0.361293838014i 0.572987984997-0.361057530431i 

i=3 -1.015785489514+0.079060186566i -1.015815300438+0.079073403521i 

i=4 1.317558601335+0.967433639033i 1.317984293172+0.966962918880i 

i=5 1.373533098461+1.114463794374i 1.373306980736+1.114467844922i 

i=6 0.956829585455+1.256244054577i 0.956791143622+1.256208857322i 

i=7 0.757036113181+0.610748859977i 0.757019558226+0.610676456673i 
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Table 8, the evaluated and theoretical values of )2(1,

2 F
ii j ωλ + and )2(1,

4 F
ii j ωλ +  

)2(1,

2 F
ii j ωλ +  )2(1,

4 F
ii j ωλ +   

Evaluated Theoretical Evaluated Theoretical 

i=1 0.537577392171   0.537599954055 0.537556743234 0.537599954055 

i=2 0.677162146307 0.677257536859 0.677287959760 0.677257536859 

i=3 1.018851302947 1.018888280308 1.018857533617 1.018888280308 

i=4 1.634911824820 1.634655891476 1.634591237553 1.634655891476 

i=5 1.768720390172 1.768618285754 1.768791316560 1.768618285754 

i=6 1.579141977000 1.579085173677 1.579136466637 1.579085173677 

i=7 0.972689177808 0.972627547560 0.972685893093 0.972627547560 

From the NOFRFs in Table 1 and Table 2, )(1,

1 F
ii jωλ + , )(1,

3 F
ii jωλ + , )2(1,

2 F
ii j ωλ + and 

)2(1,

4 F
ii j ωλ +  ( 7,,1L=i ) can be evaluated. Moreover, from equations (44) and (58), the 

theoretical values of )(1,

1 F
ii jωλ + , )(1,

3 F
ii jωλ + , )2(1,

2 F
ii j ωλ + and )2(1,

4 F
ii j ωλ +  ( 7,,1L=i ) 

can also be calculated. Both the evaluated and theoretical values of )(1,

1 F
ii jωλ + , 

)(1,

3 F
ii jωλ + , )2(1,

2 F
ii j ωλ + and )2(1,

4 F
ii j ωλ +  ( 7,,1L=i ) are given in Tables 3, 4, 6 and 7. 

Their moduli are given in Table 5 and Table 8. 

It can be seen that the evaluated results match the theoretical results very well. Moreover,  

the results shown in Tables 5 and 8 have a strict accordance with the relationships in 

(104). Therefore, the numerical study verifies the properties of NOFRFs of the locally 

nonlinear MDOF systems described in Section 3. 

From Table 5, it can be seen that )(1,

1 F
ii jωλ +  and )(1,

3 F
ii jωλ +  at the 4P

th
P and 5P

th
P masses 

are only slight different, but have a significant difference at the 3P

rd
P mass. This means that, 

for the two masses connected to the nonlinear spring, their )(1,

1 F
ii jωλ +  and )(1,

3 F
ii jωλ +  

have a considerable difference. This result implies that a class of novel approaches can be 

developed based on the properties of NOFRFs derived in the present study for MDOF 

nonlinear systems to detect and locate fault elements which make engineering structures 

behave nonlinearly. This is the focus of our current research studies. The results will be 

present in a series of later publications. 

5 Conclusions 

In the present study, the relationships between the NOFRFs of MDOF nonlinear system 

have been investigated to reveal important properties of nonlinear system. The derivation 
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considered general cases where the input force was allowed to be added at any mass in 

the system and the damping characteristics were also taken into account. The results have 

considerable significance for the application of the NOFRF concept in engineering 

practices to locate the position of the nonlinear element in a locally nonlinear MDOF 

system and to diagnose faults in engineering systems which make the system behave 

nonlinearly. Further research results on this application will be discussed in later 

publications. 
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