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Model structure selection plays a key role in nonlinear system identification. The first step in 

nonlinear system identification is to determine which model terms should be included in the 

model. Once significant model terms have been determined, a model selection criterion can then 

be applied to select a suitable model subset. The well known orthogonal least squares type 

algorithms are one of the most efficient and commonly used techniques for model structure 

selection. However, it has been observed that the orthogonal least squares type algorithms may 

occasionally select incorrect model terms or yield a redundant model subset in the presence of 

particular noise structures or input signals. A very efficient integrated forward orthogonal 

searching (IFOS) algorithm, which is interfered with squared correlation and mutual information, 

and which incorporates a general cross-validation (GCV) criterion and hypothesis tests, is 

introduced to overcome these limitations in model structure selection. 

Keywords: correlation, hypothesis tests, identification, model selection, mutual information, 

NARX / NARMAX model. 

1.     Introduction 
Model structure selection is the central task in nonlinear system identification. This topic, which 

accompanies the development of system identification techniques, has been extensively studied in the 

literature. In a broader sense, model structure selection is closely related to many practical themes 

including data fitting, time series prediction, feature selection in classification, and complexity 

reduction in neural networks. The conventional Akaike information criterion (AIC) (Akaike 1974), the 

Bayesian information criterion (BIC) (Schwarz 1978), the minimum description length (MDL) 

(Rissanen 1978), generalized cross-validation (GCV) (Golub et al. 1979), and many variants (Stoica et 

al. 1986, Miller 1990, Haber and Unbehauen 1990, Stoica and Selen 2004) have been proposed to 

determine the number of variables or regressors in the model, and this is often termed as model 

selection or model order determination. Both parametric and nonparametric techniques have been 

developed for variable selection (Hocking 1976, 1983, Breiman and Freedman 1983, Tjostheim and 

Auestad 1994, Breiman 1995, Vieu 1995, Rech et al. 2001, Huang and Yang 2004). Statistical 

methods, for example, conditional probability analysis (Savit and Green 1991) and hypothesis tests 
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(Montgomery et al. 2001, Stark and Fitzgerald 1995, Anders and Korn 1999, Lind and Ljung 2005) 

have been studied for variable or regressor selection for some specific model structures. In network 

modeling, mutual information (Battiti 1994, Zheng and Billings 1996), genetic algorithms (Mao and 

Billings 1997), and robust regression and optimization methods (Hong and Harris 2002, 2002, Chen et 

al. 2003, Hong and Chen 2005), have been introduced for network training. In order to increase the 

robustness of a selected model for effectively handling ill-imposed problems (for example 

multicollinearity) or to avoid undesirable overfitting, regularisation methods have been introduced to 

interfere with the model structure detection procedure (Sjoberg and Ljung 1995, Orr 1995, Chen et al. 

1996).  

In nonlinear system identification and function (signal) approximation, model structure selection 

often involves a great number of candidate model terms or basis functions. The first key step is to 

determine which terms or bases are significant and should be included in the model. It is known that 

inclusion of insignificant or redundant model terms might result in a much more complex model, 

involving a large number of parameters, and as a consequence the model may become oversensitive to 

training data and is likely to exhibit poor generalisation properties. For example, a redundant or 

overfitted model may lack a satisfactory long term predictive capability. One of the main tasks in 

nonlinear system identification therefore is to select a parsimonious model structure. Ideally, this 

requires that the resulting model structure is optimal or at least suboptimal with regard to specified 

modelling goals. Several approaches have been proposed to address this problem (Korenberg et al. 

1988, Billings et al. 1988, Haber and Unbehauen 1990, Miller  1990, Mallat and Zhang 1993, David et 

al. 1994). One of the most efficient and popular model structure detection techniques are the class of  

orthogonal least squares (OLS) type algorithms (Korenberg et al. 1988, Billings et al. 1989, Chen et 

al. 1989), which have been widely applied in nonlinear system identification. The orthogonal forward 

regression (OFR) routine (Billings et al. 1989, Chen et al. 1989), which is one version of the OLS 

algorithm, has a desirable advantage: the contributions of candidate model terms can be decoupled 

and decomposed, and as a consequence the significance of each candidate model term can be 

measured using the associated error reduction ratio (ERR). Significant model terms can thus be 

ranked according to the ERR values. The order of selected model terms is independent of the order in 

which the candidate model terms are progressively entered into the regression equation (Wei et al. 

2004). The incorporation of the OFR-ERR type algorithms with other modelling techniques has 

greatly raised the capability of improving the generalisation properties of the resulting models, see for 

example, Aguirre and Billings (1994, 1995a, 1995b), Chen et al. (2003, 2005),  and Billings and Wei 

(2005a, 2005b).  

It has been observed that the OFR-ERR type algorithms may occasionally select incorrect model 

terms or yield a redundant model subset when either the training data are contaminated by certain 

noise sequences (Mao and Billings), or the input is poorly designed, for example a second order low 

frequency autoregressive process (Piroddi and Spinelli 2003). These are generic problems in nonlinear 
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system identification and any algorithm may fail to produce correct models in these worse case 

scenarios. As will be seen later, however, the problems related to these cases can be avoided or 

alleviated by inspecting and comparing the performance of a few models produced from some trial-

and-error tests. Piroddi and Spinelli (2003) proposed a promising approach to solve the model 

structure selection problem by minimizing the simulation error, which is defined as the discrepancy 

between the model predicted output and the measurements. However, the method of Piroddi and 

Spinelli requires calculating model predicted outputs for all candidate model term combinations and is 

thus time demanding. Mao and Billings (1997) proposed a solution to the combined problem of model 

structure selection and parameter estimation by introducing a genetic searching algorithm, combined 

with the standard orthogonal least squares routine. Although this requires much less calculations 

compared with an optimal exhaustive search, the necessary computation is still quite large. In the 

present study, a much simpler but efficient approach, which is easier to implement and quicker to 

compute, for general nonlinear model structure selection, is proposed to solve the problem addressed 

in Piroddi and Spinelli (2003) and in Mao and Billings (1997).   

This study focuses on the model structure selection problem in nonlinear dynamical system 

identification including model term detection and model subset selection. The main contributions of 

the work include: i) a new criterion for measuring the significance of model terms is introduced based 

on mutual information; the mutual information criterion can be used as a complementary approach or 

an alternative to the ERR criterion; ii) a simple hypothesis test, based on the t-test, is introduced and 

incorporated into the new orthogonal forward search algorithm; for linear-in-the-parameters models, 

this kind of t-test provides an index to indicate which model terms are significant; iii) a new approach 

is proposed for selecting an accurate model subset for a given identification problem. The squared 

correlation and mutual information criteria, along with the t-tests and a general cross-validation (GCV) 

criterion, are all incorporated into the new forward orthogonal search algorithm. For convenience, the 

new integrated forward orthogonal search algorithm interfered with squared correlation and mutual 

information will be referred to as the IFOS algorithm. 

The remainder of the paper is organised as follows. In section 2 the orthogonal forward regression 

(OFR) algorithm is briefly reviewed and the performance of this algorithm is discussed and analysed. 

In section 3, the new integrated forward orthogonal search (IFOS) algorithm interfered with mutual 

information is proposed. Four examples are described in section 4 to demonstrate the effectiveness and 

applicability of the new IFOS algorithm. Some suggestions and discussions are included in section 5, 

and finally the work is concluded in section 6.  
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2.     The OFR-ERR algorithm 
In the following the discussion is restricted to models that can be expressed in a linear-in-the-

parameters form. This is an important class of representations for nonlinear system identification and 

signal procession. Compared to nonlinear-in-the-parameters models, linear-in-the-parameters models 

are simpler to analyse mathematically and quicker to compute numerically. The polynomial NARX 

model will be used as an example to demonstrate the OFR-ERR algorithm. For the sake of 

convenience in the descriptions, the two terms ‘system’ and ‘model’ will not be strictly distinguished 

but the meanings of the two terms should be self-evident from the context. 

2.1   The NARX model 

The general form of the NARMAX (N onlinear AutoRegressive Moving Average with eXogenous 

inputs) model (Leontaritis and Billings 1985, Billings and Chen 1998, Pearson 1999, Piroddi and 

Spinelli 2003) takes the form of the following nonlinear recursive difference equation: 

  )())(,),1(),(,),1(),(,),1(()( tentetentutuntytyfty euy +−−−−−−=            (1) 

where f  is some unknown nonlinear mapping, )(tu , )(ty and )(te  are the input, output, and the 

prediction error, un , yn and en  are the associated maximum lags. If the function f is specified as a 

polynomial function, model (1) can then be decomposed into a process related part and a noise related 

part as 

))(())(()( tftfty nnpp ϕϕ += )(te+                                                                                        (2) 

where )(tpϕ  ,),1([ −= ty ),( ynty − ,),1( −tu T
untu )]( −  is the process regressor vector, and 

)(tnϕ  ,),1([ −= ty  ),( ynty −  ,),1( −tu T
eu ntetentu )](,),1(),( −−−  is the extended regressor 

vector. The polynomial NARX (Nonlinear AutoRegressive with eXogenous inputs) model is a special 

case of the polynomial NARMAX model, where the noise related model nf reduces to a single noise 

term e(t) that can often be treated as an independent identical distributed (iid) zero mean noise 

sequence providing that the functionpf gives a sufficient description of the data set. 

The polynomial NARX model can be expressed using a linear-in-the-parameters form 

)()()(
1

tetty
M

m
mm +=∑

=

φθ                                                                                                         (3) 

where ))(()( tt mm ϕφφ = are model terms generated in some way from the regressor vector )(tϕ  

,),1([ −= ty ),( ynty − ,),1( −tu T
untu )]( − , mθ  are unknown parameters, and M  is the total 

number of potential model terms. Clearly, the candidate model terms )(tmφ are of the 
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form )()(1
1 txtx ii 

 , where ,),1({)( −∈ tytx ji
j ),( ynty −  ,),1( −tu  )}( untu −   for j=1, 2, …, , 

with ≤≤ ji0  and   ≤++≤ ii10 . The order of such a polynomial model is determined by yn and 

un , and the nonlinear degree of such a model is referred to as . 

2.2   The OFR-ERR algorithm 

Consider the term selection problem for the linear-in-the-parameters model (3). Let 

TNyy )](,),1([ =y be a vector of measured outputs at N time instants, and T
mmm N )](,),1([ φφ =ĳ  

be a vector formed by the mth candidate model term, where m=1,2, …, M. Let },,{ 1 Mĳĳ =D be a 

dictionary composed of the M candidate bases. From the viewpoint of practical modelling and 

identification, the finite dimensional set D  is often redundant. The model term selection problem is 

equivalent to finding a full dimensional subset },,{},,{
11 niinn ĳĳĮĮ  ==D  of n ( )Mn ≤ bases, 

from the libraryD , where
kik ĳĮ = , },,2,1{ Mik ∈  and k=1,2, …, n, so that y can be satisfactorily 

approximated using a linear combination of nĮĮĮ ,,, 21   as below 

eĮĮy +++= nnθθ 11                                                                                                            (4) 

or in a compact matrix form  

eAșy +=                                                                                                                                (5) 

where the matrix ],,[ 1 nĮĮA =  is assumed to be of full column rank, T
n ],,[ 1 θθ =ș  is a parameter 

vector, ande is the approximation error.  

The model structure selection procedure starts from equation (3), with },,{ 1 Mĳĳ =D . For 

j=1,2,…, M, define 

))((

)(
][ERR

2
)1(

j
T
j

T
j

T

j
ĳĳyy

ĳy
=                                                                                                       (6) 

]}[ERR{maxarg (1)

1
1 j

Mj≤≤
=                                                                                                        (7) 

The first significant basis can then be selected as 
11 ĳĮ = , and the first associated orthogonal variable 

can be chosen as 
11 ĳq = . 

Assume that a subset 1−mD , consisting of (m-1) significant bases, 121 ,,, −mĮĮĮ  , has been 

determined at step (m-1), and the (m-1) selected bases have been transformed into a new group of 

orthogonalized bases 121 ,,, −mqqq  via some orthogonal transformation. To select the mth significant 

basis mĮ , let  
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∑
−

=

−=
1

1

)(
m

k
k

k
T
k

k
T
j

j
m
j q

qq

qĳ
ĳq                                                                                                      (8) 

]))[((

)(
][ERR )()(

2)(
)(

m
j

Tm
j

T

m
j

T
m j

qqyy

qy
=                                                                                        (9) 

where 1−−∈ mj DDĳ . The mth significant basis can then be chosen as
mm ĳĮ =  and the mth associated 

orthogonal basis can be chosen as )(m
m m

qq = , where ]}[ERR{maxarg )(

1
jm

Mj
m

≤≤
= . Subsequent 

significant bases can be selected in the same way step by step. At each step, the ‘best’ basis with the 

strongest capability to represent the output y is selected. The selection procedure can be terminated 

when some specified termination conditions are met. 

The indices ][ERR )( jm  are referred to as the error reduction ratios (ERR), and provide a simple 

but effective means of selecting a subset of significant regressors. A more detailed explanation of ERR 

can be found in Billings et al. (1989) and Chen et al. (1989).  

Note that in many cases the noise signal )(te  in Eq. (3) may be a correlated or coloured noise 

sequence. This is likely to be the case for most real data sets. The NARX model (3) will then become 

the NARMAX model. For the NARMAX model, the structure selection procedure starts from 

identifying the process NARX model, and the noise model can then be identified in the same way as 

selecting the NARX model structure (Billings and Chen 1998). The inclusion of noise terms is mainly 

used to reduce the bias in the parameters of the process NARX model. 

2.3   The performance of the OFR-ERR algorithm 

The OFR-ERR algorithm has been widely applied in model structure selection for nonlinear 

system identification (Billings and Chen 1998) and has already become a standard algorithm for 

nonlinear function approximation and neural network training (Haykin 1999, Nelles 2001, Harris et al. 

2002). It has been observed, however, that this algorithm has some deficiencies when it is applied in  

some worse case situations, where there are some uncertainties in the data or the input signal is not 

very persistently exciting (Mao and Billings 1997, Piroddi and Spinelli 2003).  

It has been observed that for some specific input signals, the model term y(t-1) is nearly always 

selected as the first term with a very high ERR value, and as a consequence the contributions of other 

model terms, measured by the associated ERR values, become small and are sensitive to the effect of 

noise (Piroddi and Spinelli 2003). This problem seems to arise because of the input: a low order, low 

frequency autoregressive (AR) process, though it is, by the standard definition for linear system 

identification (Ljung 1987, Söderström and Stoica 1989), persistently exciting (of any finite order), 

such an AR process as an input may not be sufficient for all ARX or NARX model identification. In 

fact, as noted in Piroddi and Spinelli (2003), such a low frequency AR process often yields a slowly 
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varying output signal. Assuming that the output signal, denoted by y(t), is sampled with at a fast 

sampling rate (oversampled), the signal y(t) and the first few linear terms, y(t-1), y(t-2), …, will then 

become strongly correlated and thus indistinguishable, implying that )1()( −≈ tyty . This results 

in 1),ERR( 1 ≈yy , where y and 1y are vectors formed by the output variable y(t) and the term y(t-1). 

Consequently, the term y(t-1) is nearly always selected as the first term, regardless of whether the term 

y(t-1) exists in the true model. The implication is that the type of input and the sampling regime may 

affect the identification, irrespective of which particular algorithm is used. 

The sampling interval for practical identification problem should therefore not be chosen to be too 

small (Billings and Aguirre 1995). This is because too a small sampling interval may preclude 

accurate structure selection for the following two reasons. Firstly, for a sufficiently small sampling 

interval some candidate model terms will become indistinguishable, for example, the model terms 

)3()2()1( −−− tutyty , )1()1(2 −− tuty , )2()2(2 −− tuty , etc. may become equivalent to each other, 

and the model selection criterion (ERR) may thus fail to distinguish between them. Secondly, 

numerical problems will arise when the sampling time is chosen too small and such difficulties are 

reflected in poor performance of the structure selection algorithm as shown in Billings and Aguirre 

(1995). 

Noise may also affect the model structure selection even when the training data are sampled with 

an appropriate sampling rate. While all correct model terms ( ‘correct term’ here means that the term 

exists in the original real model) can often be detected and included in the identified model, some 

‘unnecessary’ (incorrect) model terms that do not exist in the original model may occasionally enter 

into the selected model subset above some correct model terms. In most cases, nonlinear identification 

is a structure-unknown problem. Almost all existing model structure selection algorithms are thus 

data-oriented, that is, any algorithm will try to find a model structure that reflects as closely as 

possible the information carried by observed noisy data (it is assumed that the data cannot be cleaned 

by filtering), without any knowledge of the true model structure. Since realistically models must be 

learned from noise contaminated data, spurious terms (incorrect terms) may also be included in the 

identified model subset. However, a good model structure selection algorithm should be able to 

provide a good model structure that minimizes the effects of incorrect (spurious) model terms to a 

negligible level, such that the main underlying dynamics embodied in the data can be revealed or 

captured by the identified model.  

The effects of data uncertainty, the sample rate and the richness of the input signal on model 

structure selection are genetic problems in all nonlinear system identification. The development of 

methods that can overcome these problems is however highly desirable. 
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Table 1  Model selection results for Model I using the OFR-ERR algorithm 

Term 
Parameter 

ERR(%) 
True Estimate 

y(t-1) -1.7 -1.704552 67.4213 
u(t-1) 1.0 1.000453 28.0911 
y(t-4) 0 -0.007688 2.9753 
u(t-4) 0 0.008823 0.5170 
y(t-3) 0 -0.020076 0.4823 
u(t-3) 0 0.011086 0.1250 
u(t-2) 0.8 0.801407 0.1524 
y(t-2) -0.8 -0.815569 0.0342 

 

2.4   Two examples 

Two simple examples will be used to illustrate some of the problems that arise if the training data 

are contaminated by noise, or if the input is not sufficiently exciting. The two artificial examples are 

given below: 

Model I:    y(t)=-1.7y(t-1)-0.8y(t-2)+u(t-1)+0.8u(t-2)+e(t)                                                       (10) 

Model II:  )1()2(1.0)1(7.0)( −+−−−= tutytyty                                                                     (11) 

The input u(t) in Model I is uniformly distributed on [-2,2], with the noise )1.0,0(~)( 2Nte . The input 

u(t) in Model II is a low frequency AR(2) process of the form: u(t)=1.6u(t-1)- 0.6375u(t-2)+ )(tξ , with 

)1,0(~)( Ntξ . Note that although the AR(2) process is persistently exciting of almost any finite order, 

it is a narrow band process behaving like a lowpass filter with minimum attenuation of low 

frequencies nearω =0, with sharply increasing attenuation asω  increases toward πω = . This kind of 

AR processes may not be sufficiently exciting for ARX and NARX model structure selection 

(Leontaritis and Billings 1987).  

One thousand input-output data points were generated from Model I.  The candidate model terms 

were set to be y(t-k) and u(t-k) where k=1,2,3,4,5. By applying the OFR-ERR algorithm to the given 

10 candidate model terms, a model of 8 terms was produced as shown in Table 1, where the model 

terms are ranked according to the order in which they were selected. It can be seen from Table 1 that 

even though all the correct model terms were selected, the resulting model structure is not the 

minimum or correct structure. The structure is a redundant model structure due to the inclusion of 

some incorrect model terms. As will be seen later, all the incorrectly selected model terms can 

however easily be eliminated by introducing a simple t-statistic. 
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Table 2  Model selection results for Model II using the OFR-ERR algorithm 

Selected model structure 
Number of times 
selected out of 100 

y(t)= 0.39y(t-2)-0.07y(t-3)+u(t-1)+ 0.7u(t-2) 35 

y(t)= 0.557143y(t-1)-0.014286y(t-3)+u(t-1)+0.142857u(t-2)  31 

y(t)= 0.5205y(t-1)-0.00256y(t-3)+u(t-1)+0.1795u(t-2)+0.02564u(t-3) 18 

y(t)= 0.7y(t-1)-0.1y(t-2)+u(t-1) 16 

 

 

Model II was simulated 100 times and at each time 1000 input-output data points were recorded. 

By setting the candidate model terms to be the same as in Model I, the OFR-ERR algorithm was 

applied over the 100 data sets respectively, and the model selection results are illustrated in Table 2, 

where the model terms in each model structure are ranked according to the order that the terms were 

selected. From Table 2, it can be seen that the true model structure was only correctly selected 16 

times out of a 100 when the input signal was chosen to be a low frequency AR(2) process, even 

though noise free data were used. These results suggest that the low frequency AR(2) input process is 

so slowly varying that it is not sufficient exciting for ARX or NARX model structure identification. 

An interesting phenomenon is that, although the 4 models given in Table 2 have different structures, 

they all produce the same (in fact indistinguishable) model predicted or long term outputs for any 

given input. Thus, in this regard, the four models are equivalent. It was also noticed that if the input 

signal was set to a high frequency AR(2) process, say u(t)=0.6u(t-1)- 0.0875u(t-2)+ )(tξ with 

)1,0(~)( Ntξ , then the true model structure will be correctly identified. 

As noted earlier, many factors can affect model structure selection including the presence of noise, 

the sample rate and the richness of the input signal. Some subjective factors such as the selected 

maximum lags in the input and output terms, and the nonlinear degree specified for nonlinear 

candidate model terms will also affect the model structure selection. It has been verified by numerous 

simulation examples that if the maximum lags or key variables of the system can be appropriately 

chosen, then most of the irrelative model terms can be excluded and confidence of correctly selecting 

a minimum model structure or nearly minimum model structure can be significantly increased. Thus 

determining suitable values for the maximum lags and selecting significant variables as a first stage in 

model structure selection is likely to be highly beneficial. In many cases, however, suitable maximum 

lags and significant variables may be difficult to determine, and some alternatives are thus worthy of 

investigation. 
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3.     The new IFOS algorithm 
The above discussion suggests that there is a need to improve the OFR-ERR algorithm to try and 

ensure that the correct model structure can be determined even when the data sets are not ideal. This 

motivates the development of the new integrated forward orthogonal search (IFOS) algorithm 

interfered with both the squared correlation and mutual information criteria. Before describing the 

IFOS algorithm, some preliminaries will be described first.  

3.1   Some definitions 

Definition 1: Primary variables and derivative variables 

A primary variable is a dependent variable that originally exists in the model which characterises a 

given system. A derivative variable is derived from the primary variables. Generally, a primary 

variable is explicit in the model, but a derivative variable is implicit.  

    Consider a model where there are three of primary dependent variables 

     ))1(),2(),1(()( −−−= tutytyfty                                                                                         (12) 

The variables )1(),2(),1( −−− tutyty  here are the primary dependent variables. Iterating (12) by one 

step with respect to the primary variable y(t-1), yields 

                ))1(),2(),1(()( −−−= tutytyfty  

  ))1(),2()),2(),3(),2((( −−−−−= tutytutytyff                                                         (13) 

The induced model (13) now involves 4 variables )2( −ty , )3( −ty , )1( −tu and )2( −tu , where y(t-3) 

and u(t-2) are derived variables. Inspection of the results in Table 1 for Model 1 in section 2.4 shows 

that, some of the derived variables may have been induced by the presence of noise if the candidate 

maximum lags are set to be too high. Therefore, if the primary variables of the system can be 

determined initially from the observational data, the accuracy of the model structure selection can then 

be significantly improved. Notice that the non-uniqueness which produces the result that the models in 

Eqs. (12) and (13) are equivalent is a direct result of the discrete model form and not the structure 

selection algorithm. 

Definition 2: Model term dictionary 

A model term dictionaryD is a set whose elements are some specified (candidate) model terms 

(also called atoms or bases in signal procession). A dictionary D is said to be over-complete if all the 

true model terms are included inD . A dictionary D is said to be under-complete (or incomplete) if at 

least one true model term is not included inD . A dictionary D is said to be exactly-complete if all the 

true model terms are included in D , but D contains no other candidate model terms. Clearly, for an 
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exactly-complete dictionary the identification problem reduces to a structure-known estimation 

problem. 

Assume that a system is described by the model: )1()2(1.0)1(7.0)( −+−−−= tutytyty , then 

)}2(),1(),2(),1({1 −−−−= tututytyD is over-complete; =2D ),1({ −ty ),1()1( −− tuty )}2( −tu is 

under-complete;  and =3D )}1(),2(),1({ −−− tutyty is exactly-complete.  

For a NARX model with a nonlinear degree  and maximum lags yn (for output) and un (for 

input), the candidate model term dictionary, including the constant term, is   

}0  ,0  ,1  ,:)()({ 11,1,,
1  

 ≤++≤≤≤≤≤∈= iiijxtxtx jnn
i
j

ii
nn uy

j

uy
VD                                   (14) 

where ,),1({, −= ty
uy nnV ),( ynty −  ,),1( −tu  )}( untu − . The number of elements in the dictionary 

,, uy nnD is ]!)!/[(])![( 


 uyuy
nn

nnnnC uy +++=++ . 

Definition 3: Model library 

A model libraryL is a set whose elements are some specified models. A model selection criterion 

is always performed over a given model library.  

Given a model libraryL , the objective of model selection is to find the ‘best’ model from the 

library. All model selection criteria are relative, and there exists no absolute criterion that is able to 

measure all model fits under all conditions. A criterion will select the ‘best’ model structure over all 

the others even when the model library is inadequate (‘inadequate’ here means that no models in the 

library are exactly correct but only approximately correct). With regard to what the ‘best’ model is, 

this depends on the specific situation. For example, the first three models given in Table 2 are 

structure incorrect compared with the true model. However, all the four models are equivalent if the 

model predicted outputs are used as the criterion. The ‘correctness’ of a model structure is thus always 

relative. 

Definition 4: Model behaviour equivalence 

Two models 1M  and 2M  are said to be equivalent with each other in behaviour, if the (model 

predicted) outputs of the two models, driven by the same input, are the same. In practice, it may be 

impossible to get exactly the same output behaviour for two different models. Thus, two models 1M  

and 2M  are often considered approximately equivalent when their outputs are sufficiently close.  

Assume that an identified model,M , is given by  

))(,),1(),(,),1(()( uy ntytuntytyfty −−−−=  )(te+                                                     (15) 

At a given time instance0t , setting )()(ˆ 00 ktyktympo −=−  for k=1,2, …, yn , model predicted outputs 

at time instances 0tt ≥  are defined as 
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=)(ˆ tympo =),(ˆ Mtympo ))(,),1(),(ˆ,),1(ˆ( uy
mpompo ntutuntytyf −−−−                           (16) 

While one-step-ahead predictions are often used to validate an identified model, previous 

experience shows that even a poor (e.g., insufficient, biased, unstable, etc.) model can provide good 

one-step-ahead predictions. Model predicted outputs can reveal severe model deficiencies which 

would otherwise go undetected by one-step-ahead predictions. However, in some cases, model 

predicted outputs may be unstable or may decay to zero, implying that model predicted outputs 

become invalid. In this case, a trade-off between one-step-ahead predictions and model predicted 

outputs is to use multi-step-ahead predictions.  

Multi -step-ahead predictions, for example m-step-ahead predictions, can be calculated in an 

iterative way. At a given time instance0t , setting )()(ˆ 00 ktyktymsa −=−  for k=1,2, …, m-1; m-step-

ahead predictions at time instances0tt ≥  can be obtained by calculating the two stages alternatively as 

below: 

Stage 1: Prediction: 

=)(ˆ tymsa ),(ˆ Mtymsa  

))(,),1(),(),(),1(ˆ,),1(ˆ( uy
msamsa ntutuntymtymtytyf −−−−+−−=                (17a) 

)(ˆ)(ˆ tyty msatemp =                                                                                                                    (17b) 

Stage 2: Updating:   





+−

−+−
=+−

otherwise.     ),1(ˆ

, of multiple is           ),1(
)1(ˆ 0

mty

mttmty
mty

temp
msa                                                   (17c) 

3.2   Model term selection interfered with squared correlation and mutual information 

3.2.1   Squared correlation coefficient  

The Pearson correlation coefficient is a frequently used function. The standard correlation 

coefficient between two N-dimensional random vectors x and y is defined as =),( yxr  

)var()var(/),cov( yxyx  , where )cov(⋅  designates the covariance and )var(⋅  the variance. Using this 

definition, an estimate of the standard correlation coefficient can be calculated based on centralized 

data; the estimate is given by 

∑∑
∑

==

=

−−

−−
=

N

i i

N

i i

N

i ii

yyxx

yyxx
r

1

2

1

2

1

)()(

))((
),( yx                                                                                  (18a) 

where x  and y  are the mean values of x and y. Notice that in many cases data centralisation may be 

undesirable, and non-centralised data are required for signal processing and system identification. The 
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non-centralised squared correlation coefficient, which is also known as the squared correlation value 

between x and y, is defined as 

∑∑
∑

==

=== N

i i

N

i i

N

i ii

TT

T

yx

yx
C

1

2

1

2

1

22 )(

))((

)(
),(

yyxx
yx

yx                                                                                (18b) 

Note that the ERR criterion in the OFR-ERR algorithm described in section 2.2 is equivalent to the 

non-centralized squared correlation function (18b). This function is also employed as the selection 

criterion in the matching pursuit orthogonal least squares algorithm (Wei and Billings 2005). 

3.2.2   Mutual information 

Mutual information has now been extensively studied in the literature and applied to various areas. 

Following Cover and Thomas (1991), mutual information is defined as follows. 

Consider two random discrete variables x and y with alphabet X  andY , respectively, and with a 

joint probability mass function p(x, y) and marginal probability mass functions )(xp and )(yp . The 

mutual information ),( yxI  is the relative entropy between the joint distribution and the product 

distribution )()( ypxp , given as 

















=

)()(
),(

log),(
yx

yx
yx

pp

p
EI   









=∑∑

∈ ∈ )()(
),(

log),(
ypxp

yxp
yxp

x yX Y

                                                                                 (19) 

The mutual information ),( yxI is the reduction in the uncertainty of y due to the knowledge of x, and 

vice versa. Mutual information provides a measure of the amount of information that one variable 

shares with another one. If y is chosen to be the system output (the response), and x is one regressor in 

a linear model, ),( yxI can be used to measure the coherency of x with y in the model.  

3.2.3   Interference of mutual information in model structure selection 

Mutual information can easily be incorporated into the orthogonalization procedure in the same 

way as the squared correlation coefficient. Let }1:{ Mjjj ≤≤== ĳD be a given model term 

dictionary. Let yr =0 , and 

)},({maxarg 0
1

1 j
Mj

I ĳr
≤≤

=                                                                                                           (20) 

where ),( ⋅⋅I is the mutual information function given by (19). The first significant basis can thus be 

selected as 
11 ĳĮ = , and the first associated orthogonal basis can be chosen as 

11 ĳq = . Set  
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1
11

10
01 q

qq
qr

rr T

T

−=                                                                                                                      (21) 

At the second step, let 1111
)2( )]/()[( qqqqĳĳq TT

jjj −= , where D∈jĳ  and 1≠j . Define  

)},({maxarg )2(
12

1
j

j
I qr




≠
=                                                                                                          (22) 

The second significant basis can thus be chosen as 
22 ĳĮ = , and the second associated orthogonal 

basis can be chosen as )2(
2 2

qq = . Set  

2
22

21
12 q

qq
qr

rr
T

T

−=                                                                                                                   (23) 

In general, the mth significant model term can be chosen as follows. Assume that at the (m-1)th 

step, a subset 1−mD , consisting of (m-1) significant bases, 121 ,,, −mĮĮĮ  , has been determined, and the 

(m-1) selected bases have been transformed into a new group of orthogonal bases 121 ,,, −mqqq  via 

some orthogonal transformation. Let  

1
11

12
21 −

−−

−−
−− −= m

m
T
m

m
T
m

mm q
qq
qr

rr                                                                                                    (24) 

∑
−

=

−=
1

1

)(
m

k
k

k
T
k

k
T
j

j
m
j q

qq

qĳ
ĳq                                                                                                         (25) 

)},({maxarg )(
1

11,

m
jm

mkj
m I

k

qr −
−≤≤≠

=


                                                                                         (26) 

where 1−−∈ mj DDĳ . The mth significant basis can then be chosen as
mm ĳĮ =  and the mth associated 

orthogonal basis can be chosen as )(m
m m

qq = . Subsequent significant bases can be selected in the same 

way step by step.  

From (24), the vectors 1−mr and 1−mq  are orthogonal, thus  

11

2
122

2
2

1
)(

||||||||
−−

−−
−− −=

m
T
m

m
T
m

mm qq
qr

rr                                                                                           (27) 

By respectively summing (24) and (27) for m from 2 to n+1, yields 

n

n

m
m

m
T
m

m
T
m rq

qq
qr

y ∑
=

− +=
1

1                                                                                                            (28) 

∑
=

−−=
n

m m
T
m

m
T
m

n
1

2
122 )(

||||||||
qq
qr

yr                                                                                                 (29) 
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The residual sum of squares, also called the sum-squared-error, 2|||| nr , or its variants including the 

mean-square-error (MSE) or the error-to-signal ratio defined as 22 |||||||| yrn , can be used to form 

criteria for model selection. The model term selection procedure can be terminated when some 

specified termination conditions are met. 

The motivation for introducing the mutual information interfered criterion here is not to totally 

replace the commonly used ERR criterion, but rather to provide an alternative and complementary 

approach to the ERR criterion. Further details will be given in Section 4.  

3.2.4   Parameter estimation 

It is easy to verify that the relationship between the selected original bases mĮĮĮ ,,, 21  , and the 

associated orthogonal bases mqqq ,,, 21  , is given by 

mmm RQA =                                                                                                                         (30) 

where mR  is an mm× unit upper triangular matrix whose entries )1( mjiuij ≤≤≤  are calculated 

during the orthogonalization procedure, and mQ  is an mN × matrix with orthogonal 

columns mqqq ,,, 21  . The unknown parameter vector, denoted by T
mm ],,,[ 21 θθθ =ș ,  for the model 

with respect the original bases (similar to (4)), can be calculated from the triangular equation 

mmm gșR =  with T
mm ggg ],,,[ 21 =g  , where )/()( 1 k

T
kk

T
kkg qqqr −=  or )/()( k

T
kk

T
kg qqqy= . 

Note that some tricks can be used to avoid selecting strongly correlated model terms. Assume that 

at the mth step, a subset mD , consisting of m significant bases, mĮĮĮ ,,, 21  , has been determined. 

Also assume that mj DD −∈ĳ is strongly correlated with some bases in mD , that is, jĳ  is a linear 

combination of mĮĮĮ ,,, 21  . Thus there exist m real numbers mkkk ,,, 21  , at least one of which is 

different from zero, such that 

mmj kkk ĮĮĮĳ ++= 2211                                                                                                         (31) 

From (30), there exists another set of real numbers, mµµµ ,,, 21  , such that 

mmj qqqĳ µµµ ++= 2211                                                                                                       (32) 

For the candidate basis given by (32), equation (25) becomes 

0q
qq

qĳ
ĳq =−= ∑

−

=

1

1

)(
m

k
k

k
T
k

k
T
j

j
m
j                                                                                                      (33) 

Therefore, 0)( )()( =m
j

Tm
j qq .  
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In the IOFS algorithm, the candidate basis mj DD −∈ĳ  will be automatically discarded if 

},1{10)( )()(
j

T
j

m
j

Tm
j ĳĳqq τ−< , where τ is a positive number that is large enough. In this way, any severe 

mullticolinearity or ill-conditioning can be avoided.  

 

 

3.3   Model order determination  

The role of model order determination in dynamical system identification has been widely 

recognised and various model selection criteria have been well established, see for example the recent 

review paper by Stoica and Selen (2004). Model selection criteria are often established on the basis of 

estimates of prediction errors, by inspecting how the identified model performs on future (never used) 

data sets.  

One general routine for model selection, which tries to avoid or reduce any possible bias 

introduced by relying on any particular test data sets, is cross validation (Stone 1974). Cross-validation 

has a number of variations, two commonly used variants of which are the leave-one-out (LOO), also 

called predicted sum of squares (PRESS) (Allen 1974), and generalised cross-validation (GCV) 

(Golub et al. 1979). Generalised cross-validation, due to its convenience of use and effectiveness for 

avoiding overfitting, has been widely accepted.  

Now consider the model (28) obtained in the m-th search step. Notice that the inner product term 

m
T
m qr 1−  in this model can be replaced by m

Tqy . Following Orr (1995), Chen et al. (1996), and Billings 

and Chen (1998), a penalised GCV approach is given below.  

The penalised algorithm is based on the following minimisation criterion 

∑
=

+=
m

i
im

T
mm gJ

1

2( λλ rrg, ),M m
T
mm

T
m ggrr λ+=                                                                       (34) 

whereλ is the regularisation parameter. The solution to the above ridge regression is 

yQIQQg T
mmm

T
mm

1)( −+= λ                                                                                                  (35) 

and the minimised error (energy) is  

yPy m
T

mE =                                                                                                                         (36) 

where T
mmm

T
mmmm QIQQQIP 1)( −+−= λ , and mI  is the m-dimensional identity matrix. Following 

Golub et al. (1979) and Orr (1995), GCV is given by 

2

2

GCV ))trace()/1((

1
),(

m

m
T

m NN
m

P
yPy

=MO
NN

N m
T

m

yPy 22









−

=
γ

                                             (37) 
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where mγ is the effective number of parameters (Moody 1992). Clearly, if 0=λ , (37) reduces to the 

ordinary GCV criterion with mm =γ and m
T
mm

T
m

T rryPyyPy ==2 . For the general case in ridge 

regression, where 0≠λ , it can be shown that  










+
+

+
−

−
= ∑

=

m

i i
T
i

i
T
i

i
T
i

i
T

T

m
m N

N
m

1

2

2GCV
2)(

)(
),(

qq
qq

qq
qy

yy
λ
λ

λγ
MO                                                (38) 

where mqqq ,,, 21   are the columns of the matrixmQ , and the effective number mγ is calculated to be 

∑
= +

=
m

i i
T
i

i
T
i

m
1 qq

qq
λ

γ                                                                                                                (39) 

It has been suggested (Orr 1998) that the regulation parameterλ  should be determined based on 

GCV minimisation, and the formula for updatingλ for the identified model with m terms is given as 

m
T
m

m
T
m

N gVg
rr

1−−
=

γ
ηλ                                                                                                            (40) 

where )( mm
T
m IQQV λ+= , )trace( 21 −− −= VV λη . Other simple updating formula are also available 

(Chen et al. 1996, Billings and Chen 1998) 

m
T
m

m
T
m

m

m
m N gg

rr
new

new
new

γ
γλ
−

=                                                                                                              (41) 

whereγ is given by (39). 

3.4   Hypothesis tests on individual regression coefficients 

Statistical methods play a unique role in the diagnosis and analysis of linear models. One aspect of 

the application of statistical methods for linear model analysis is hypothesis tests on regression 

coefficients (Hocking 1976, 1983, Montgomery et al. 2001).  Consider the linear regression model 

with k regressors below 

eXșy +=                                                                                                                              (42) 

where y is 1×N , X is nN × ( all the elements of the first column of X are assume to be unit), ș is 

1×n , e  is 1×n , and n=k+1. A frequently asked question is: do all the k regressors contribute 

significantly to the regression model?  

To inspect whether some subset of r < k regressors contribute significantly to the regression model, 

let the design matrix X be sub-divided into two parts as ],[ 21 XXX = , and the parameter vector ș  be 

partitioned as TTT ],[ 21 șșș = , accordingly, where 1X is )( rnN −× , 2X is rN × , 1ș is 1)( ×− rn , and 

2ș is 1×r . The model (42) can now written as 
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eșXșXy ++= 2211                                                                                                             (43) 

The objective now is to test the hypotheses 

0ș =20 :H                                                                                                                         (44a) 

0ș ≠21 :H                                                                                                                         (44b) 

Montgomery et al. (2001) suggested that the null hypothesis 0ș =20 :H  may be tested by the statistic 

sMS

SSSSr
F

Re

1RR
0

)]()()[/1( șș −
=                                                                                            (45) 

where Hyyș TSS =)(R , yHyș 11R )( TSS = , )/()(Re nNMS T
s −−= yHIy , and TT XXXXH 1)( −= , 

TT
1

1
1111 )( XXXXH −= .  

For a given α , whereα is a small positive number such that %100)1( ×−α  indicates the 

confidence interval, if nNrFF −> ,,0 α , the 0ș =20 :H  can then be rejected, concluding that at least one 

of the parameters in 2ș in not zero, and consequently at least one of the regressors in 2X contributes 

significantly to the regression model. The test given in (45) is also called a partial F-test because it 

measures the contribution of the regressors in 2X  given that the other regressors in 1X are already in 

the model. See Montgomery et al. (2001) for details about the partial F-test and other hypothesis tests. 

The simplest but useful hypothesis for testing the significance of any individual regression 

coefficient, for instance jș  in the model (42), is  

0:0 =jșH                                                                                                                         (46a) 

0:1 ≠jșH                                                                                                                         (46b) 

If there is no sufficient reason to reject the null hypothesis 0:0 =jșH , then the corresponding 

regressor jx can be removed from the model. The test statistic for this hypothesis is  

)ˆse(

|ˆ|
0

j

jt
θ
θ

=                                                                                                                         (47) 

where *2ˆ)ˆse( jjj cσθ = is the standard error of the regression coefficient jș , *
jjc is the diagonal 

element of 1)( −XXT  corresponding to jș̂ , and sMSRe
2ˆ =σ is the unbiased estimator of variance. 

For a givenα , if nNtt −> ,2/0 α , the null hypothesis 0:0 =jșH  can then be rejected. Note that this is 

really a partial or marginal test (Montgomery et al. 2001) because the regression coefficient 

jș̂ depends on all of the other regressors that are in the model. Thus it is a test of the contribution of 

jx given the other regressors in the model. Clearly, the t-test in (47) is a special case of the F-test in 

(45). 
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For practical identification problems, where 120>− nN , 96.1,2/ ≈−nNtα if α is set to 0.05, an 

equivalent test to (47) is 

)ˆse(96.1

|ˆ|
0

j

jt
θ

θ
=                                                                                                                 (48) 

If 10 >t , the null hypothesis 0:0 =jșH  can then be rejected.  

4.     Case studies 
In this section, several examples are provided to illustrate how to select an accurate model 

structure using the new IFOS algorithm. It will be shown that the IFOS algorithm can detect spurious 

model terms even when the data are contaminated with noise. A spurious model term here means that 

the model term is not in the true model but is selected with an ERR value that is not small. For cases 

where the input is not sufficiently exciting, a trial-and-error approach can be used to avoid selecting 

the terms y(t-1), y(t-2), etc., providing that these terms are not in the true model. 

Notice that in the given examples, both artificial models and real data sets, where it is believed to 

be difficult to find the correct model structure, have been deliberately chosen to illustrate the 

effectiveness of the new IFOS algorithm. 

The IFOS algorithm interfered with squared correlation will be referred to as IFOS-SC. Similarly, 

the mutual information interfered IFOS, will be referred to as IFOS-MI.  

4.1   Example 1—the input is white 

The following model was taken from Mao and Billings (1997) 

)2(5.0)( −−= tyty )1()1(7.0 −−+ tuty )2(6.0 2 −+ tu  

)1(2.0 3 −+ ty )2()2(7.0 2 −−− tuty )(te+                                                                (49) 

where the input u(t) was uniformly distributed on [-1, 1], with the noise )02.0,0(~)( 2Nte . Following 

Mao and Billings (1997), the maximum lags of both the input and the output were assumed to be 4 and 

the nonlinear degree to be 3. Five hundred input-output data were generated and were used for model 

structure selection. The new IFOS algorithm, which incorporates the t-test given by (48), was applied 

to the data set, and the results are shown in Tables 3 and 4.  

From Table 3, the ERR values show that the first 6 model terms are significant and should be 

included in the model. The first selected term, y(t-1)u2(t-2), with the highest ERR value is spurious. 

The t-tests show that among all the 10 model terms selected with the ERR criterion, only 5 are 

significant and the t-tests of the 5 terms are significantly different from unity. This means that the 5 

terms with the highest t-tests dominate the regression model. This can easily be confirmed by 

inspecting the model predicted outputs based on the model with regard to the 5 model terms. The GCV 
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Table 3  Identified model structure for system (49) using the IFOS-SC algorithm 

Term 
Parameter 

ERR(%) t-test GCV 
True  Estimate 

y(t-1)u2(t-2) 0 0.014704 34.9921 0.7382 0.074273 

y(t-1)u(t-1) 0.7 0.706678 21.9095 69.9612 0.049441 

u2(t-2) 0.6 0.601460 12.3828 99.9614 0.035379 

y(t-2) -0.5 -0.491838 23.6688 59.4477 0.008150 

y3(t-1) 0.2 0.204638 4.5382 33.6203 0.002915 

y(t-2)u2(t-2) -0.7 -0.708220 2.1595 27.4588 0.000412 

y(t-1)u(t-4) 0 -0.026297 0.0045 1.1833 0.000403 

y2(t-2)u(t-3) 0 -0.012915 0.0044 1.1315 0.000400 

y(t-4)u(t-2) 0 0.017330 0.0043 1.6214 0.000396 

y(t-3)y(t-4)u(t-2) 0 -0.025846 0.0032 1.1110 0.000397 

Run time: 0.906s 

 

Table 4  Identified model structure for system (49) using the IFOS-MI algorithm 

Term 
Parameter Mutual 

Info t-test GCV 
True  Estimate 

y(t-2)u2(t-2) -0.7 -0.690247 0.251193 42.2583 0.118617 

u2(t-2) 0.6 0.599793 0.320914 149.1860 0.048510 

y(t-1)u(t-1) 0.7 0.705487 0.188335 99.3864 0.026045 

y(t-2) -0.5 -0.501902 0.227581 66.5005 0.014168 

y3(t-1) 0.2 0.201394 0.214758 65.9884 0.000393 

u2(t-1)u(t-4) 0 -0.002367 0.012226 0.3664 0.000394 

u2(t-2)u(t-3) 0 -0.001729 0.008698 0.2627 0.000396 

y(t-4)u(t-2)u(t-4) 0 -0.010032 0.008073 0.8780 0.000396 

Run time: 2.126s 

 

values show that the appropriate number of model terms is 9, but clearly a model of 9 terms is 

overfitted. 

Compared with Table 3, results given in Table 4 are quite optimistic. The t-tests show that only 5 

model terms are significant, and the five model terms are exactly consistent with the 5 true model 

terms. In addition, GCV provides a correct indication of the structure, suggesting that 5 model terms 

are appropriate. Thus, from the results given by Table 3 and 4, all model terms can be correctly 

determined. 
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4.2   Example 2—the input is non-white 

Consider the following two systems 

1S :     )2(8.0)1(5.0)( −+−= tutwtw 5.0)2(05.0)1( 22 +−−−+ twtu                                  (50a) 

)(
5.01

1
)()( t

q
twty q ξ−−
+= , )05.0,0(~)( 2Ntξ                                                         (50b) 

2S :     )2(5.0)1()( −+−= tututw )1(3.0)2()1(25 3 −−−−+ tututu                                      (51a) 

)(
8.01

1
)()( t

q
twty q ξ−−
+= , )02.0,0(~)( 2Ntξ                                                        (51b) 

Following Piroddi and Spinelli (2003), the input u(t) to the two systems were chosen as a low 

frequency AR(2) process of the form: u(t)=1.6u(t-1)-0.6375u(t-2)+ )(16.0 tζ , with )1,0(~)( Ntζ . Two 

data sets of 500 input-output samples were generated from each system and the two data sets were 

used for model structure selection. 

4.2.1   Experiments for system 1S  

Following Piroddi and Spinelli (2003), the maximum lags of both the input and the output were 

assumed to be 2 and the degree of nonlinearity to be 2. Model structure selection results for system 

1S are reported in Tables 5 and 6. Following the analysis in Example 1, it is clear that the significant 

model terms should be selected as y(t-1), u(t-2), u2(t-1), y2(t-2), and the const term,  which are exactly 

the same as the true model. Note that once the 5 model terms have been determined, the parameters 

need to be re-estimated based on just these selected model terms.  
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Table 5  Identified model structure for the system (50) using the IFOS-SC algorithm 

Term 
Parameter 

ERR(%) t-test GCV 
True  Estimate 

y(t-1) 0.5 0.500106 91.1027 71.4985 1.511037 

y2(t-2) -0.05 -0.049757 3.5098 128.3416 0.922388 

u2(t-1) 1 1.000401 2.0742 132.8120 0.571884 

u(t-2) 0.8 0.806721 2.8537 125.5270 0.079973 

const 0.5 0.493459 0.4406 43.4106 0.003336 

y2(t-1) 0 -0.000419 0.0001 0.8359 0.003343 

u2(t-2) 0 0.006367 0.0001 0.6223 0.003360 

Run time: 0.032s 

 

Table 6  Identified model structure for the system (50) using the IFOS-MI algorithm 

Term 
Parameter Mutual 

Info t-test GCV 
True  Estimate 

u(t-1) 0 0.006148 1.313614 0.3120 15.160800 

u2(t-1) 1 0.994118 1.203510 61.4893 1.587509 

y(t-1) 0.5 0.496906 0.244386 84.2243 1.077226 

y2(t-2) -0.05 -0.049833 0.818507 135.5297 0.102098 

u(t-1)u(t-2) 0 0.011942 0.332722 0.5739 0.091160 

const 0.5 0.499216 0.218877 51.2285 0.039561 

u(t-2) 0.8 0.800587 1.156804 36.8467 0.003281 

y(t-1)u(t-1) 0 0.000024 0.000976 0.0210 0.003294 

Run time: 0.141s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.2   Experiments for system 2S  

Following Piroddi and Spinelli (2003), the maximum lags of both the input and the output were 

assumed to be 2 and the degree of nonlinearity to be 3. To ensure selection of the correct model 

subset, the IFOS-SC algorithm was applied over the following 5 different candidate model term 

dictionaries:  

3,2,0DD =u ,  3,2,2
0 DD = ,  
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)}1({01 −−= tyDD ,  

)}2({02 −−= tyDD ,  

)}2(),1({03 −−−= tytyDD ,  

where the model term dictionary ,, uy nnD  was defined by (14). The reason that the 5 different 

candidate dictionaries were considered here was to avoid selecting the terms y(t-1) and y(t-2), 

providing that these terms were not in the true model. Five different models, corresponding to the 5 

dictionaries, were selected and the identified models are shown in Table 7. Similar results were also 

obtained using the IFOS-SC algorithm, but to save space the results are not shown here. 

While it is not quite apparent which model terms should be included in the model from the results 

with respect to 0D and 2D , it is quite clear from the results with regard to uD , 1D and 3D  that the 

significant model terms included in the model should be u(t-1), u(t-2), u(t-1)u(t-2), and u3(t-1), which 

are exactly the same as required by the system. Note that the search time to select the model terms is 

quite short, and it is less than 0.1s for each of the 5 cases. 
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Table 7  Identified model structures for the system (51) using the IFOS-SC algorithm 

Term 
Parameter 

ERR(%) t-test GCV 
True  Estimate 

 

 
uD  

u(t-2) 0.5 0.496879 66.5315 31.3303 0.344189 

u2(t-1)u(t-2) 0 0.000176 16.4164 0.0154 0.176546 

u(t-1)u(t-2) 0.25 0.253131 14.2253 113.7397 0.029466 

u(t-1) 1 1.002408 2.2567 61.4645 0.005983 

u3(t-1) -0.3 -0.299978 0.4670 26.4503 0.001090 

const 0 -0.002844 0.0005 0.8391 0.001092 

 

 
 

 
0D  

y(t-1) 0 0.117996 90.4984 3.2882 0.121247 

y(t-2) 0 -0.012730 3.8298 1.2854 0.072865 

u2(t-1) 0 0.040058 0.1612 2.4779 0.071273 

u(t-1)u(t-2) 0.25 0.184041 1.1284 18.3499 0.057063 

u(t-1) 1 1.026177 0.3607 52.7857 0.008343 

u3(t-1) -0.3 -0.296222 3.3894 85.2908 0.008343 

u(t-2) 0.5 0.318613 0.5477 15.5183 0.001121 

u3(t-2) 0 0.027746 0.0044 2.8930 0.001070 

 

 

 
1D  

y(t-2) 0 0.005719 81.2615 0.8224 0.195498 

u(t-1) 1 1.005003 5.5294 72.3156 0.138739 

u3(t-1) -0.3 -0.297251 5.5040 121.4937 0.081477 

u(t-1)u(t-2) 0.25 0.251067 6.9853 91.0853 0.007663 

u(t-2) 0.5 0.490089 0.6127 29.7224 0.001148 

const 0 0.003600 0.0007 0.9898 0.001148 

 

 

 

 
2D  

y(t-1) 0 0.097761 94.6515 4.0993 0.072308 

u(t-1) 1 1.021391 0.3734 60.3493 0.067714 

u3(t-1) -0.3 -0.307184 1.4250 55.8901 0.048646 

u2(t-1) 0 -0.029880 3.0680 1.9263 0.006651 

u(t-2) 0.5 0.336549 0.2329 7.6580 0.003461 

u(t-1)u(t-2) 0.25 0.265645 0.1777 19.8444 0.001000 

u(t-1)u2(t-2) 0 0.034981 0.0036 3.1287 0.000955 

y2(t-1) 0 -0.006900 0.0022 2.2771 0.000930 

 

 
 
3D  

y(t-1)u2(t-1) 0 0.000027 71.7306 0.0242 0.981663 

y2(t-1)u(t-1) 0 -0.000045 12.3847 0.1902 0.555321 

u(t-2) 0.5 0.496203 4.9718 43.4379 0.384091 

u3(t-1) -0.3 -0.298608 6.4838 228.1314 0.156944 

u(t-1)u(t-2) 0.25 0.251097 3.1894 141.8768 0.044227 

u(t-1) 1 1.000408 1.2084 77.1917 0.001123 

Run time: uD (0.031s), 0D (0.059s), 1D (0.079s), 2D (0.094s), 3D (0.047s) 
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4.3   Example 3—forecasting annual sunspot numbers 

The data set used in this example contains 301 observations of the annual sunspot numbers from 

1700 to 2000. The first 280 samples for years 1700 to 1979 were used for model identification and the 

remaining 22 data were used for model performance testing. The candidate model term dictionaries 

were chosen as 1,0,12
0 DD = ,),1({ −= ty )}12( −ty , and 01 DD = -{ y(t-1),y(t-2)}. The reason that the 

maximum lag was chosen to be 12 is due to the fact that the annual sunspot time series has a cycle that 

is about 11years. A nonlinear model for the sunspot time series may be more appropriate, the objective 

in this example, however, is to illustrate the efficiency of the new IFOS algorithm for model structure 

selection, and a linear model was thus adopted.  

The selected model structures from the dictionary 0D using both IFOS-SC and IFOS-MI are shown 

in Table 8. Both algorithms suggested that the best model subset be chosen as {y(t-1), y(t-2), y(t-9), 

const}. The selected model structures from the dictionary 1D  by both IFOS-SC and IFOS-MI required 

5 model terms: y(t-3), y(t-4), y(t-9), y(t-11), and const. It easily be shown that the performance of the 

model generated from 1D  is much inferior compared with the model generated from0D .  

The fact that the two different criteria (squared correlation and mutual information) yield the same 

results indicates that the linear regression model is dominated by the three significant variables y(t-1), 

y(t-2) and y(t-9). This result enhances the previous conclusion (Wei et al. 2004) that y(t-1), y(t-2) and 

y(t-9) are the three most important variables for describing the sunspot time series over the period 

from 1700 to 1979. By re-estimating the parameters in a linear model, the final identified model was 

given by y(t)= 6.0223 + 1.2352y(t-1)-0.5404y(t-2)+0.1917y(t-9). One-step-ahead predictions and 

model predicted outputs produced by the identified model over the test data set are shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  One-step-ahead predictions and model predicted outputs produced from the identified model (with 4 
model terms) for the sunspot time series. Solid line with circles indicates the measurements; dashed line with 
stars, one-step-ahead predictions; and dotted line with squares, model predicted outputs. 
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Table 8  Identified model structures for the sunspot time series 

Term 
 

Parameter 
ERR(%) 

or 
Mutual 

info 

t-test GCV 

 

 

 

SC 

y(t-1) 1.202332 86.0183 10.1523 551.750797 

y(t-9) 0.187390 5.2192 3.3646 348.392854 

y(t-2) -0.428369 2.7622 2.2895 240.374414 

const 6.275233 0.1884 1.2828 234.594548 

y(t-3) -0.134668 0.0262 0.7185 235.314457 

y(t-4) 0.054645 0.0193 0.4780 236.322559 

 

 

 

MI  

y(t-1) 1.215845 0.442097 10.3688 551.750797 

y(t-2) -0.532471 0.239983 4.2013 358.789312 

y(t-9) 0.161627 0.171117 1.6646 240.374414 

const 6.469004 0.036343 1.3200 234.594548 

y(t-10) 0.038577 0.045810 0.3668 235.862834 

y(t-4) -0.005922 0.030401 0.0835 237.642482 

Run time: IFOS-SC (0.078s), IFOS-MI (0.094s) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4   Example 4—fruit fly modelling  

This data set came from experiments and observations on a fruit fly, called Drosophila. The system 

input was the response of the photoreceptors, and the output was the response of the large monopolar 

cells. Recordings of 1000 points, sampled at a rate of 1KHz, on wild-type flies were collected. 

The relationship between the input and the output in the fruit fly experiment is complex, because 

in addition to the response from the photoreceptors, several other factors may also affect the output 

response of the large monopolar cells. Identification of models relating these responses is therefore 

quite challenging. The objective of this example is to find a model that reflects, as closely as possible, 

the relationship between the response of the photoreceptors (the input) and the response of the large 

monopolar cells (the output), to facilitate the analysis and understanding of the associate behaviour of 

this kind of insect.  

For the fruit fly modeling, the 1000 points in the data set were partitioned into two parts: the first 

600 points were used for model identification, and the remaining 400 points were used for model 

testing. The input and the output over the test data set are shown in Figure 2.  
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The maximum lag for the input and the output were chosen to be 5 and 3, respectively, and the 

degree of nonlinearity to be 3. Similar to previous examples, the following 6 candidate model term 

dictionaries will be considered:  

5,3,0DD =u ,  3,5,3
0 DD = , )}1({01 −−= tyDD , )}2({02 −−= tyDD ,  

)}2(),1({03 −−−= tytyDD ,  )}3(),2(),1({04 −−−−= tytytyDD , 

where the set
uy nn ,V was defined as defined as 

uy nn ,V ={y(t-1), …, y(t- yn ), u(t), u(t-1), …, u(t- un )} . The 

reason that the 6 different candidate dictionaries were considered here was to avoid selecting the terms 

y(t-1), y(t-2), and y(t-3), providing that these terms were not in the true model. The average time used 

by the IFOS-SC algorithm for model structure selection, over different model term dictionaries, was 

2.425s, and for the IFOS-MI algorithm, it was 4.688s. 

Following the same procedures as described in previous examples, the IFOS-MI identified model, 

selected over the dictionary2D , was found to be the best model, because the performance of the long-

term predictions produced by this model were superior to the other identified models. The final IFOS-

MI identified model contained 10 model terms. A comparison between the model predicted outputs 

and the measurements over the validation data set is shown in Figure 3. Clearly, the identified model 

fitted the experimental data extremely well. 
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Fig. 2.  The input and output data over the estimation data set for the fruit fly modeling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  A comparison between model predicted outputs and the measurements over the validation data set. Solid 
line indicates the measurements and the dashed line indicates the model predicted outputs from the identified 
model for the fruit fly data set. 

5.     Discussions and recommendations 
Model structure selection is a central issue in any nonlinear system identification problem. In 

addition to the input signal and sampling interval, many other factors, including the initial choice of 

the maximum lags for both the input and the output, the determination of the primary variables, the 

choice of initial candidate model term dictionaries, and the presence of noise (uncertainty in the data),  

all affect model structure selection. All these are generic problems in nonlinear system identification.  

It is known that if the maximum lags or key (primary) variables for the system can be 

appropriately determined in advance, then irrelative model terms can be precluded. Thus determining 

suitable maximum lags and selecting significant variables is a key step that could greatly improve the 

accuracy of all model structure selection procedures.  

Results on numerous examples and applications in the literature have shown that the OFR-ERR 

algorithm can select accurate model structures for general nonlinear system identification problems. 

The algorithm, may however occasionally produce redundant or incorrect model subsets in the 

presence of noise or if the input signal is non-white. To solve this problem, Piroddi and Spinelli (2003) 



 30 

suggested a simulation error based approach, which was implemented by minimizing the simulation 

error. This method, however, has two main drawbacks. First, it requires the calculation of model 

predicted outputs for all candidate model terms and can thus be very time consuming. Secondly, for a 

given candidate model term dictionary, model predicted outputs with respect to a selected model 

subset are not always available. For example, assume that a system is totally determined by a model 

subset of n model terms.  An often encountered scenario is that, models formed by any subset of up to 

r (< n) terms may be unstable (infinitely divergent) or over attenuated (converge to zero), the model 

predicted output may thus be either infinite or zero. Clearly, the simulation error based approach will 

not work well for these cases and will not select any correct model subsets.  

This study suggests the following four-stage trial-and-error experiments: 

•  Stage 1—Select candidate model term dictionaries.  

Let ,,0 un
u DD = , ,,

0
uy nnDD = , 01 DD = -{ y(t-1)}, 02 DD = -{ y(t-2)}, and 03 DD = -{ y(t-1),   

y(t-2)}, where the model term dictionary ,, uy nnD  is defined by (14).  

•  Stage 2—Model structure selection. 

Perform the model structure selection algorithm over the 5 candidate dictionaries, 

respectively. This will lead to different model structures.  

•  Stage 3—Model comparison.  

Compare the performance of the identified models selected over the different model term 

dictionaries uD , 0D , 1D , 2D and 3D . Select the best model according to a specified 

criterion, for example the performance of model predicted outputs or multi-step-ahead 

predictions. 

•  Stage 4—Model refinement.  

Re-estimate model parameters if a couple of model terms need to be removed from or 

added into the selected model in Stage 3.  

Note that the time spent on model structure selection using the orthogonal least squares type 

algorithms, for instance the IFOS algorithm here, is very short even for general cases. The above 4-

stage trial-and-error experiments are thus not time demanding and can often be completed in a very 

short time. From the experience of numerous experiments including the four examples described in the 

present study, this 4-stage approach will usually provide accurate model structures. 

In many cases the noise signal )(te  in Eq. (1) may be a correlated or coloured noise sequence. 

This is likely to be the case for most real data sets. In this case the NARX model (3) may fail to give a 

sufficient description due to the bias in the parameter estimates. As a consequence, the identified 

NARX model may not be sufficiently accurate if the model is used for other types of input signals. 

Practical identification experience shows that the bias on the parameter estimates can be virtually 

eliminated by including the noise signals )(,),1( entete −−  in the model. Readers are referred to 
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Billings et al. (1989) and Billings and Chen (1998) for details about the NARMAX modelling 

methodology. 

6.     Conclusions 
A new integrated forward orthogonal search (IFOS) algorithm, which is interfered with by both the 

squared correlation and mutual information, and which incorporates a t-test and a general cross-

validation (GCV) procedure, has been proposed for nonlinear system identification. The incorporation 

of the t-tests into the new IFOS algorithm has greatly enhanced the capability of detecting and hence 

removing any incorrect (spurious) model terms. The incorporation of a GCV into the new algorithm 

provides an important index for choosing an appropriate number of model terms.  

It has been observed that for some input signals with a specific structure, the model term y(t-1) is 

nearly always selected as the first term with a very high ERR value, and as a consequence the 

contributions of the other model terms, measured by the associated ERR values, can become small and 

sensitive to the effects of noise. This problem, however, has been effectively solved by introducing the 

four stage model selection procedure.  

The new mutual information criterion can be used as a complementary approach or alternative to 

the squared correlation criterion. For a given identification problem, the two criteria may or may not 

produce exactly the same model structure. By inspecting and comparing the performance of the 

resulting models, in accordance with some specified measures, for example model predicted outputs, 

or multi-step-ahead predictions, a more accurate model structure can often be obtained. In this way, 

the accuracy of the identified model structure will be significantly improved compared with results 

based on any one single criterion. 

The application of IFOS algorithm is not limited to the polynomial NARMAX model. The key 

idea in the IFOS algorithm can be applied to any linear-in-the-parameters model identification 

including the configuration and training of radial basis function (RBF) network and wavelet 

modelling. This is worthy of further investigation. 
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