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Model structure selection plays a key role in nonlinear system identificafioe first step in
nonlinear system identification is to determine which model termsigHhee included in the
model. Once significant model terms have been determined, a model seledddnrcican then
be applied to select a suitable model subset. The well known orthogostlstpeares type
algorithms are one of the most efficient and commonly used technfquewodel structure
selection. However, it has been observed that the orthogonal dgases type algorithms may
occasionally select incorrect model terms or yield a redundant model sutiket presence of
particular noise structures or input signals. vAry efficient integrated forward orthogonal
searching (IFOS) algorithm, which is interfered with squared @dioal and mutual information,
and which incorporates a general crealidation (GCV) criterion and hypothesis tests, is
introduced to overcomilese limitations in model structure selection.

Keywords: correlation, hypothesis tests, identification, model selectmatual information,

NARX / NARMAX model.

1. Introduction

Model structure selection is the central task in nonlinear system idatifi. This topic, which
accompanies the development of system identification techniques, has been extensiesl\irsthe
literature. In a broader sense, model structure selection is closely related to maicgl greeahes
including data fitting, the series prediction, feature selection in classification, and complexity
reduction in neural networksh€& conventional Akaike information criterion (AlGAKaike 1974) the
Bayesian information criterion (BIC)SEhwarz 1978) the minimum description letiy (MDL)
(Rissanerl978), generalized crosslidation (GCV) Golub et al. 1979), and many variaff&oica et
al. 1986, Miller 1990, Haber and Unbehauen 1990, Stoica and Selen 2004) have been pooposed
determine the number of variables or regressomthénmodel, and this is often termed as model
selection or model order determination. Both parametric and nonparamelniggtees have been
developed for variable selection (Hocking 1976, 1983, Breiman and Freedman I#2Beim and
Auestad 1994, Breimanl1995, Vieu 1995Rechet al. 2001, Huang and Yargp04). Statistical
methods, for example, conditional probability analysis (Savit and Green 1991) potthdsis tests
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(Montgomery et al. 2001, Stark and Fitzgerald 1995, Anders and Korn 1999, Lind aigd2Doib)
have been studied for variable or regressor selection for some specific model structuregorka net
modeling, mutual information (Battiti 1994, Zheng and Billings 1996), geneticitigs (Mao and
Billings 1997), and robust regression and optimization methods (Hong and 2082is2002, Chen et
al. 2003, Hong and Chen 2005), have been introduced for network training. In order tceitlceeas
robustness of a selected model for effectively handlingmplosed problems (for example
multicollinearity) or to avoid undesirable overfitting, regularisation methods have beeduped to
interfere with the model structure detection proced8jeberg and Ljung 1995, Orr 1995, Chen et al.
1996).

In nonlinear system identification and function (signal) approximation, modelfgre selection
often involves a great number of candidate model terms or basis fumclioa first key step is to
determine which terms or bases are significant and should be included indik this known that
inclusion of insignificant or redundant model terms might result in a much monglecomodel,
involving a large number of parameters, and as a consequence the model may become oversensitive to
training data and is likely to exhibit poor generalisation properties. ¥@npe, a redundant or
overfitted model may lack a satisfactory long term predictive capability. One of timetasiis in
nonlinear system identification therefore is to select a parsimonious model structafly, ks
requires that the resulting modetusture is optimal or at least suboptimal with regard to specified
modelling goals. Several approaches have been proposed to address this (fobderinerg et al.
1988, Billings et al. 1988{aber and Unbehauen 19%iller 1990, Mallat and Zhang 1993 akid et
al. 1994) One of the most efficient and popular model structure detection techniguthe aass of
orthogonal least squares (OLS) type algorithms (Korenberg et al. 1988, Billiasl689, Chen et
al. 1989), which have been widely applied in nonlinear system identification. Themréhdgrward
regression (OFR) routine (Billings et al. 1989, Chen et al. 1989), which is osierverf the OLS
algorithm, has a desirable advantage: the contributions of candidate model terms can be decoupled
and decomposed, and as a consequence the significance of each candidate model term can be
measured using the associated error reduction ratio (ERR). Significant model terms can thus be
ranked according to the ERR values. The order of selected model tenhspsndent of the order in
which the candidate model terms are progressively entered into the regression equation (Wei et al.
2004). The incorporation of the OHERR type algorithms with other modelling techniques
greatly raised the capability of imgving thegeneralisation propertied the resulting models, see for
example, Aguirre and Billings (1994, 1995a, 1995b), Chen et al. (2003, 2005), and Billings and Wei
(2005a, 2005b).

It has been observed that tBER-ERR type algorithmsnay occasionally select incorrect model
terms or yield a redundant model subset when either the training data are coethijnatrtain
noise sequences (Mao and Billipger the input is poorly designed, for example a second order low

frequency autoregressive procéBgoddi and Spinelli 2003)'hese are generic problems in nonlinear



system identification and any algorithm may fail to produce correct models in these worse case
scenarios. As will be seen later, however, the problems related to these cases can Heoavoide
alleviated by inspecting and comparing the performance of a few models produced from seme trial
anderror tests.Piroddi and Spinelli (2003) proposed a promising approach to solve the model
structure selection problem by minimizing the simulationremdnich is defined as the discrepancy
between the model predicted output and the measurements. However,tlloe wie Piroddi and
Spinelli requires calculating model predicted outputs for all candidatkeinterm combinations and is
thus time demanding. Mao and Billings (1997) proposed a solution to the combined problemlof mode
structure selection and parameter estimation by introducing a genetic searching algoritbimeetom
with the standard orthogonal least squares routine. Although this requirdslessccalculations
compared with an optimal exhaustive search, the necessary computationgaitstilarge. In the
present study, a much simpler but efficient approach, which is easier tnieml and quicker to
compute, for general nonlinear model stwie selection, is proposed to solve the problem addressed
in Piroddi and Spinelli (2003) and in Mao and Billings (1997).

This study focuses on the model structure selection problem in nonlinear dghaystem
identification including model term detection and model subset selectiorma@imecontributions of
the work include: i) a new criterion for measuring the significance of model ternisoduced based
on mutual information; the mutual information criterion can be usesl @mplementary approach or
an alternative to the ERR criterion; ii) a simple hypothesis test, based ttesiieis introduced and
incorporated into the new orthogonal forward search algorithm; for findheparameters models,
this kind oft-test provides an index to iradite which model terms are significant; iii) a nagproach
is proposed for selecting an accurate model subset for a given identifipatiblem. The squared
correlation and mutual information criteria, along with thests and a general cregdidation (GCV)
criterion, are all incorporated into the new forward orthogoeatch algorithm. For convenience, the
new integratedforward orthogonalsearch algorithm interfered with squared correlation and mutual

information will be referred to as the IFOS aighm.

The remainder of the paper is organised as follows. In section 2 theaméthdgrward regression
(OFR) algorithm is briefly reviewed and the performance of this algorithmdsstied and analysed.
In section 3, the new integrated forward orthogonal search (IFOS) alganitérfered with mutual
information is proposed. Four examples are described in section 4 to demohstedfedtiveness and
applicability of the new IFOS algorithm. Some suggestions and discusseimlaided in section 5,

and finally the work is concluded in section 6.



2. The OFRERR algorithm

In the following the discussion is restricted to models that can be expressed in -&nithear
parameters form. This is an important class of representations fangemdytem identification and
signal procession. Compared to nonlineatheparameters models, lineer-theparameters models
are simpler to analyse mathematically and quicker to compute numerically. The polynomisl NAR
model will be used as an example to demonstrate the-ERFR algorithm. For the sake of
convenience in the descriptions, the two terms ‘system’ and ‘mode¢lhatilbe strictly distinguished

but the meanings of the two terms should be self-evident from the context.

2.1 The NARX model

The generaform of theNARMAX (N onlinear AutoRegressive Moving Average with eXogenous
inputs) model (Leontaritis and Billings 1985, Billings and Chen 1998, Pearson R®88di and

Spinelli 2003) takes the form of the following nonlinear recursive differegoation:
y(t) = f (y(t _1)1"" Y(t - ny),U(t —1),"',U(t - nu)!e(t _1)!"'|e(t - ne)) + e(t) (1)

wheref is some unknown nonlinear mapping(t) , y(t) ande(t) are the input, output, and the
prediction error,n,,n andn, are the associated maximum lags. If the funcfios specified as a

polynomial function, model (1) can then be decomposed into a process related panbiedralated

part as

y(t) = fP(pP (M) + (0" (1) +et) )
where pP(t) =[y(t-2),---, y(t—ny), ut-1,---, utt—n,)]" is the process regresseector, and
o"(t) =[yt-1),-, yt-ny), u(t-1),--, ut-n,),et-1,--,et-n,)]" is the extended regressor
vector. The polynomial NARX (Bhlinear AutoRegressive with eXogenous inputs) model is a special
case of the polynomial NARMAX model, where the noise related mddekduces to a single noise

term e(t) that can often be treated as an independent identical distributed (iid) zero mean noise

sequence providing that the functibfgives a sufficient description of the data set.

The polynomial NARX model can be expressed using a limetireparameters form
M
Y = D Ouh(t) + (1) 3)
m=1

whereg,, (t) = ¢,,(¢(t)) are model terms generated in some way from the regressor vgtjor
=[y(t-2,---, ytt—-ny), ut-3,--, utt-n,)]", 6, are unknown parameters, and is the total

number of potential model terms. Clearly, the candidate model tefpfy are of the



formx}(t)-'-xi/(t), Wherexiji O e{yt-1,---, yt-n,), u(t-2),-, ut-n,)} forj=1, 2, .../,
with 0<i; </ and0<i, +---+i, </. The order of such a polynomial model is determineahgnd

n,, and the nonliear degree of such a model is referred to.as

2.2 The OFRERR algorithm

Consider the term selection problem for the lireatheparameters model (3). Let
y =[y@, -, y(N)]" be a vector of measured outputshatime instantsande ., =[¢..@),--,¢..(N)]"
be a vector formed by theth candidate model term, whene=1,2, ...,M. Let 9 ={¢,,---,0,,} be a

dictionary composed of th& candidate basedzrom the viewpoint of practical modelling and
identification, the finite dimensnal set? is often redundanfThe model term selection problem is

equivalent to finding a full dimensional subsgt={a,,---,a,} ={e; ,---,@; } of n (n<M) bases,
from the libraryd, wherea, =9 . I, €{12---,M} andk=1,2, ...,n, so thaty can be satisfactorily
approximated using a linear combinationegfa,,---,a, as below

y=00,+--+6,0,+€ 4)
or in a compact matrix form

y=A0+e (5)
where the maix A =[a,,---,a,] is assumed to be of full column rark=[64,,---,6,]" is a parameter
vector, ane is the approximation error.

The model structure selection procedure starts from equation (3),2w%{e,,---,¢,} . For

j=1,2,...,M, define

o (YTe))?
ERRY[j]=-——1— 6
bl y'y)eje;) ©
A :argg}g&({ERRm[j]} (7)

The first significant basis can then be selected,asg, , and the first associated orthogonal variable
can be chosen ap =9, .

Assume that a subsef,,, consisting of(m-1) significant basesq,,a,,---,a, ,, has been

determined at stepml), and therfr1) selected bases have been transformed into a new group of

orthogonalized bases,,q,, :-,q,,, via some orthogonal transformatiofo select thernth significant

basisa,,, let



m-1 T
m (pq
q(j)z(pj_ TJ ka (8)
k=1 Ak
T (m)y2
ERR™[j]= AL 9)

(v YI@™) af™]

wherep; € D-9,, ;. Themth significantbasiscan then be chosen@g=¢, and themth associated

orthogonal basis can be chosen qﬁzqﬁ”‘) , Where 7, :argina&qERR(m)[j]} . Subsequent
m <jS

significant bases can be selected in the same way step by step. At each step, the ‘besthlihsis wit

strongest capability to represent the outpig selected. The selection procedure can be terminated
when some specified termii@at conditions are met.
The indicesERR™[ j] are referred to athe error reduction ratios (ERR), andprovide a simple

but effective means of selecting a subset of significant regressors. A more detailed explanation of ERR
can be found in Billings et al. (1989) and Chen et al. (1989).

Note that in many cases the noise sigg&) in Eq. (3) may be a correlated or coloured noise

sequence. This is likely to be the case for most real data sets. The NARX model (3) willctirae be
the NARMAX model. Forthe NARMAX model, the structure selection procedure starts from
identifying the process NARX model, and the noise model can then be emifthe same way as
selecting the NARX model structure (Billings and Chen 1998). Ttiasion of noise terms is mainly

used to reduce the bias in the parameters of the process NARX model.

2.3 The performance of the OFRERR algorithm

The OFRERR algorithm has been widely applied in model structure selection for remline
system identificabn (Billings and Chen 1998) and has already become a standard algorithm for
nonlinear function approximation and neural network training (Haykin 1999, Nellesi2a61is et al.

2002). It has been observed, however, that this algorithm has some deficighen it is applied in
some worse case situations, where there are some uncertainties in the data or the input signal is not
very persistently excitinMao and Billings 1997, Piroddi and Spinelli 2003).

It has been observed that for some specifictigignals,the model terny(t-1) is nearly always
selected as the first term with a very high ERR value, and as a consequence the contributiens of ot
model terms, measured by the associated ERR values, become small and are sensitive toahe effect
noise (Piroddi and Spinelli 2003). This problem seems to arise because of theaitgwtorder, low
frequency autoregressive (AR) process, though it is, by the standard definitianefar dystem
identification (Ljung 1987, Soderstrom and Stoica 1988sistently exciting (of any finite order),
such an AR process as an input may not be sufficient for all ARX or NARX modteificktion. In

fact, as noted in Piroddi and Spinelli (2003), such a low frequency AR process &fiigs g slowly



varying outputsignal. Assuming that the output signal, denotedyly is sampled with at a fast
sampling rate (oversampled), the sigy@ and the first few linear termyg(t-1), y(t-2), ..., will then

become strongly correlated and thus indistinguishable, implyiag y(t) ~ y(t—1) . This results
iNERR{,y,) 1, wherey andy, are vectors formed by the output varia@p(® and the terny(t-1).

Consequently, the tergit-1) is nearly always selected as thistfterm, regardless of whether the term
y(t-1) exists in the true model. The implication is that the type of input anshthpling regime may
affect the identification, irrespective of which particular algorithm is used.

The sampling interval for pracal identification problem should therefore not be chosen to be too
small (Billings and Aguirre 1995). This is because too a small sampling interval may preclude
accurate structure selection for the following two reasons. Firstly, for a swofifcEmall sampling
interval some candidate model terms will become indistinguishable, for example, the model terms
y(t-Dy(t-2)ut-3), y?(t-Du(t-1), y*(t—2)u(t-2), etc. may become equivalent to each other,
and the model selection criterion (ERR) may thus fail toingjeish between them. Secondly,
numerical problems will arise when the sampling time is chosen too small and such difficelties a
reflected in poor performance of the structure selection algorithshawn in Billings and Aguier
(1995).

Noise may also affect the model structure selection even when the training data are sampled w
an appropriate sampling rate. While all correct model terms ( ‘correct term’ here means thahthe t
exists in the original real model) can often detected and included in the identified model, some
‘unnecessary’ (incorrect) model terms that do not exist in the origiodelnmay occasionally enter
into the selected model subset above some correct model terms. In most cases, nonlifieatiaenti
is a structurainknown problem. Almost all existing model structure selection algorithmshase t
dataeriented, that is, any algorithm will try to find a model structure that reflects as closely as
possible the information carried by observed noisy (iata assumed that the data cannot be cleaned
by filtering), without any knowledge of the true model structure. Sindestieally models must be
learned from noise contaminated data, spurious terms (incorred) teray also be included in the
identified model subset. However, a good model structure selection algorithm should ke able
provide a good model structure that minimizes the effects of incorrect (spurious) modeloterms t
negligible level, such that the main underlying dynamics embodiedeimdata can be revealed or
captured by the identified model.

The effects of data uncertainty, the sample rate and the richness of the input signal on mode
structure selection are genetic problems in all nonlinear system identification. The development o

methods that can overcome these problems is however highly desirable.



2.4 Two examples
Two simple examples will be used to illustrate some of the @nabkhat arise if the training data

are contaminated by noise, ibthe input is not sufficiently xiting. The two artificial examples are

given below:
Model I:  y(t)=1.7y(t-1)-0.8y(t-2)+u(t-1)+0.8u(t-2) +&(t) (20)
Model II: y(t)=0.7y(t -1 - 01y(t—2)+u(t-1) (12)

The inputu(t) in Model | is uniformly distributed on2,2], with the noisee(t) ~ N (0,0.1%) . The input

u(t) in Model Il is a low frequency AR(2) process of the fougt)=1.6u(t-1)- 0.637%u(t-2)+£(t) , with

£(t)~ N (0D . Note that although the AR(2) process is persistently exciting of aBngdinite order,

it is a narrow band process behaving like a lowpass filter with minimuemuattion of low
frequencies neay =0, with sharply increasing attenuationa@sncreases toware =z . Thiskind of
AR processes may not be sufficiently exciting for ARX and NARX model structure selection
(Leontaritis and Billings 1987).

One thousand inpdutput data points were generated from Model I. The candidate model terms
were set to bg(t-k) andu(t-k) where k=1,2,3,4,5. By applying the OfHRR algorithm to the given
10 candidate model terms, a model of 8 terms was produced as shown in Table thevherdel
terms are ranked according to the order in which they were selected. It can be seen lecntAatb
even though all the correct model terms were selected, the resulting model structurehis not
minimum or correct structure. The structureaisedundant model structure due to the inclusion of
some incorrect model terms. As will be seen later, all the incorrectly selected maoakel cim

however easily be eliminated by introducing a sintydtatistic.

Table 1 Model selection results for Model | using the €EFR algorithm

Parameter
Term ERR(%)
True Estimage
y(t-1) -1.7 -1.704552 67.4213
u(t-1) 1.0 1.000453 28.0911
y(t-4) 0 -0.007688 2.9753
u(t-4) 0 0.008823 0.5170
y(t-3) 0 -0.020076 0.4823
u(t-3) 0 0.011086 0.1250
u(t-2) 0.8 0.801407 0.1524
y(t-2) -0.8 -0.815569 0.0342




Model 1l was simulated 100 times and at each time 1000-mytput data points were recorded.
By setting the candidate model terms to be the same as in Model I, th&RRRlgorithm was
applied over the 100 data sets respectively, and the model selection resultsteatedlusTable 2,
where the model terms in each model structure are ranked according to the order thaistheter
selected. From Table 2, it can be seen that the true model structure was only correctly selected 16
times out of a 100 when the input signal was chosen to be a low frequency AR(2) ,peve@ss
though noise free data were used. These results suggest that the low frequency AR(2) input process is
so slowly varying that it is not sufficient exciting for ARX or NARX model structure itieation.
An interesting phenomenon is that, although the 4 models given in Table 2 havendgtaretures,
they all produce the same (in fact indistinguishable) model predictdohg term outputs for any

given input. Thus, in this regard, the four models are etgritalt was also noticed that if the input

signal was set to a high frequency AR(2) process, W8y0.6u(t-1)- 0.087%u(t-2)+ &(t) with

E(t)~ N (0D, then the true model structure will be correctly identified.

As noted earliermany factors can affect model structure selection including tisenpre of noise
the sample rate and the richness of the input signal. Some subjective factors such as the selected
maximum lags in the input and output terms, and the nonlinear degree specified foeanonl
candidate model terms will also affect the model structure selectioas been verified by numerous
simulation examples that if th@aximum lags or key variables of the system can be appropriately
chosen, then most of the irrelativedel terms can be excluded and confidence of correctly selecting
a minimum model structure or nearly minimum model structure can bdicagtly increased. Thus
determining suitable values for the maximum lags and selecting significant variables as a first stage in
model structure selection is likely to be highly beneficial. In many cases, howeva|esuiaximum
lags and significant variables may be difficult to determine, and some alternatives are thysofvor

investigation.

Table 2 Model selection results for Model 1l using the @GFRR algorithm

Selected model structure Nsuerr;bggd th gfrq%S(
y(t)= 0.39y(2)-0.07y(t3)+u(t1)+ 0.7u(t2) 35
y(t)= 0.557143y({1)-0.014286y(*3)+u(t1)+0.142857u¢R) 31
y(t)= 0.5205y(t1)-0.00256y(3)+u(t1)+0.1795u@2)+0.02564u3) 18
y(t)= 0.7y(£1)-0.1y(£2)+u(t1) —

1C



3. Thenew IFOS algorithm

The above discussion suggests that there is a need to improve tHeRBF&gorithm to try and
ensure that the correct model structure can be determined even when the data sets areTios ideal
motivates the development of the newegrated forward orthogonal search (IFOS) algorithm
interfered with both the squared correlation and mutual information criigefare describing the

IFOS algorithm, some preliminaries will be described first.

3.1 Some definitions

Definition 1. Primary variables and derivative variables

A primary variable is a dependent variable that originally exists in the model which chaescier
given system. A derivative variable is derived from the primary variables. Genexaflyimary
variable is explicitn the model, but a derivative variable is implicit.

Consider a model where there are threprishary dependent variables
y(t) = f(y(t-1),y(t—2),u(t -1)) (12)

The varables y(t —1), y(t — 2),u(t —1) here arg¢he primary dependent variables. Iterating (12) by one
step with respect to the primary variap{el), yields

y(®) = f(y(t-1),y(t-2),u(t-1)
= F(F(y(t-2), y(t-3),u(t-2)),y(t-2),u(t-1) (13)

The induced model (13) now involves 4 variablés-2), y(t—3), u(t—1) and u(t — 2) , wherey(t-3)

andu(t-2) are derived variables. Inspection of the results in Table Mddel 1 in section 2.4 shows

that, some of the derived variables may have been induced by the presence of noise if the candidate
maximum lags are set to be too high. Therefore, if the primary variables of the system can be
determined initially from the adervational data, the accuracy of the model structure selection can then
be significantly improved. Notice that the roniqueness which produces the result that the models in
Egs. (12) and (13) are equivalent is a direct result of the disoretlel formand not the structure

selection algorithm.

Definition 2: Model term dictionary
A model term dictionary is a set whose elements are some specified (candidate) model terms
(also called atoms or bases in signal procession). A dictianaysaid to beover-complete if all the
true model terms are included4in A dictionary 2 is said to beunder-complete (or incomplete) if at
least one true model term is not include@ inA dictionary 2 is said to bexactly-complete if all the

true model terms are included 40, but 2 contains no other candidate model terms. Clearly, for an

11



exactly-complete dictionary the identification problem reduces to a struekm@vn estimation
problem.
Assume that a system is described by the mogl= 0.7y(t—-1) - 0.1y(t —2) +u(t—1) , then

2 ={y(t-1),yt-2),ut-1),u(t-2)} is overcomplete; 2, = {y(t-1), y(t-Du(t-1), u(t-2)} is
underecomplete; andy, = {y(t-1), y(t —2),u(t -1} is exactlycomplete.
For a NARX model with a nonlinear degréeand maximum lags, (for output) andn, (for
input), the candidate model term dictionary, including the constant term, is
Dy e =0 (1) X (t): ] €T, n, 1< j <0, 0<i; <0, 00+ 40, < 1) (14)

whereq, . ={y(t-1),-, y(t-n), ult-1), -, ult-n,)}. The number of elements in the dictionary
Duy ny,e 18 C T =0y + 0y + OU(N, + 1)1

Definition 3: Modél library

A model librarys is a set whose elements are some specified models. A model selection criterion
is always performed over a given model library.

Given a model library’, the objective of model selection is to find the ‘best’ model from the
library. All model selection criteria are relative, and there exists no absol@goerithat isable to
measure all model fits under all conditions. A criterion will select the ‘best’ modetwseuaver all
the others even when the model library is inadequate (‘inadequate’ here hegams models in the
library are exactly correct but only approximately correct). With regard to what the ‘bas¢l s,
this depends on the specific situation. For example, the first three models miveable 2 are
structure incorrect compared with the true model. However, all the four snadekquivalent if
model predicted outputs are used as the criterion. The ‘correctness’ of a model structure is thus always

relative.

Definition 4: Model behaviour equivalence

Two models; and 9%, are said to be equivalent with eacther in behaviour, if the (model

predicted) outputs of the two models, driven by the same input, are the same. In pracagebét m

impossible to get exactly the same output behaviour for two differentlsnddeis, two models;
and 9, are often considered approximately equivalent when their outputs are sufficiently close.

Assume that an identified modet,, is given by
y(t) = f (y(t _1)!" o y(t - ny)’u(t _1)1'“! y(t - nu)) + e(t) (15)

At a given time instandg, settingy™ (t, —k) = y(t, —k) for k=1,2, ..., n,, model predicted outputs

at time instances> t, are defined as

12



y™ = y™ o) = f(Y™ (-1, -, y™(t-n ) ut -1, ult-n,)) (16)

While onestepahead predictions are often used to validate an identified model, previous
experience shows that even a poor (e.g., insufficient, biased, unstable, etc.) modeVickengood
onestepahead predictions. Model predicted outputs can reveal severe model deficiencies which
would otherwise go undetected by estepahead predictions. However, in some cases, model
predicted outputs may be unstable or may decay to zero, implying that modetgareoutputs
become invalid. In this case, a traafé between onatepahead predictions and model predicted
outputs is to use multitepahead predictions.

Multi-stepahead predictions, for exampla-stepahead predictions, can bmlculated in an
iterative way. A a given time instandg, settingy™ (t, —k) = y(t, — k) for k=1,2, ...,m-1; mstep
ahead predictions at time instantes, can be obtained by calculating the two stages alterhatge
below:
Stage 1: Prediction:
y™(t) = Y™, 0n)
= f(y™ (-1, y™=(t-m+D, y(t—-m), y(t—ny),ut -1, u(t—n,)) (17a)
YR =91 (17b)
Stage 2: Updating:

. y(t-m+1),  t—t, ismultipleof m,
YRt -m+1) =< . (17c)
Y™ (t-m+1), otherwise.

3.2 Model term selection interfered with squared correlation and mutual information

3.2.1 Squared correlation coefficient
The Pearson cortation coefficient is a frequently usefdinction. The standard correlation

coefficient between twoN-dimensional random vectorx and y is defined asr(x,y)=

cov(x,y)/+/varx)vary) , wherecov() designates the covariancedavar() the variance. Using this

definition, an estimate of the standard correlation coeffigantbe calculated based on centralized

data; the estimate is given by

>N (6 -X) - )
JZLM -0 (v -9)?

whereX andy are the mean values »fandy. Notice that in many cases data centralisation may be

(18a)

r(x,y)=

undesirable, and necentralised data are required for signal procesampsystem identification. The

13



non<centralised squared correlation coefficient, which is also known as the squaredicorvelae

betweerx andy, is defined as

oy)? Q%)
Cix,y) = _ i 18b
o) X)) Zi'il Xizz:il Y (%)

Note that the ERR criterion in the OFRR algorithm described in section 2.2 is equivalent to the

non<centralized squared correlation function (18b). This function is also entplsye¢he selection

criterion inthe matching pursuit orthogal least squares algorithm (Wei and Billings 2005).

3.2.2 Mutual information
Mutual information has now been extensively studied in the literature anddfgplarious areas.
Following Cover and Thomas (1991), mutual information is defined as follows.

Consider two random discrete variableandy with alphabet and?y, respectively, and with a
joint probability mass functiop(x, y) and marginal probability mass functiopgx) andp(y). The
mutual informationl (x,y) is the relative entropy between the joint distribution and the product

distributionp(x) p(y) , given as

L x.y) - Ellog] _POY) J}

() {og( p(X) P(Y)
_ W p(x.y)] 10
2.2, P(eY) Og(mx)p(y) (19)

The mutual informatioh(x,y)is the reduction in the uncertainty ypfdue to the knowledge of, and

vice versaMutual information providess measure of the amount of information tbae variable
shares with another one.\ffis chosen to be the system output (the response ianmhe regressor in

a linear model] (x,y) can be used to measure tiwderency ok with y in the model.

3.2.3 Interference of mutual information in model structure selection
Mutual information can easily be incorporated into the orthogonalizgarocedure in the same

way as the squared correlation coefficienet 2 ={¢,;:j=1<j<M} be a given model term

dictionary. Letr, =y, and
f=argmax{! (ro, @)} (20)

where (-,)is the mutual information function given by (19he first significant basisan thus be

selected as, = ¢, , and the first associated orthogobasiscan be chosen ag = ¢, . Set

14



roGh
QIQ1

r=ro—

0z (21)

At the second step, lef” =g, —[(¢]a,)/(91d,)]a,, whereg, €2 and j = ¢, . Define
0, =argmax| (r,,q}”)} (22)
J#6,

The second significant basis can thus be choser asp, , and the second associated orthogonal
basiscan be chosen ag, =q . Set

rd,
q39,

In general, thenth significant model term can be chosen as follows. Assume that atthih(

f,=r,—

d: (23)

step, a subset, ,, consisting of f+-1) significantbasesa,,a,,---,a,,_,, has been determined, and the
(m1) selectedbaseshave been transformed into a new group of orthogbasésg,,q,, --,q,,, via

some orthogonal transformatidret

(T

M1 =mo— n;—zqm—l Ama (24)
Am-1dma
m-1,T

m (Pq

q" =9, - —L*Xq, (25)
k=1 Ak

lp=arg  max {I(r,;,q")} (26)

j#l0 I<ksm-1
wherep; € D-9D,,;. Themth significant basis can then be chosea as ¢, and themth associated
orthogonabasiscan be chosen ag, = qﬁ’:’ . Subsequent significabasescan be selected in the same
way step by step.

From (24), the vectors,_;andq,, ; areorthogonal, thus

T 2
r
162 P=llr | —mzlms)” (27)
m—1qm—1

By respectively summing (24) and (27) farfrom 2 ton+1, yields

n r.T ¥
y= e mQm'H"n (28)
;qmm
n rT 2
e, (B=lty | - Lmsm)” (29)
m=1 m¥m
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The residual sum of squares, also called the-syumareeerror, ||r, |F, or its variants including the

meansquareerror (MSE) or the erreto-signal ratio defined afjr, ||2/||y||2 , can be used to form

criteria for model selection. The model term selection procedure cderininated when some

specified termination conditions are met.

The motivation for introducing the mutual information interfereitedon here is not to totally
replace the commonly used ERR criterion, but rather to provide an alternativeomplementary

approach to the ERR criterion. Further details will be given in Section 4.

3.2.4 Parameter estimation

It is easy to verify that the relationship between the selected originaloQasgs -, e, and the

associated orthogonal basgsy,, -,q,,, IS given by

An=QnR, (30)
where R, is an mxmunit upper triangular matrix whosentriesu; (L<i< j<m) are calculated
during the orthogonalization procedurand Q,, is a Nxm matrix with orthogonal

columngy,,g,,-,q,,- The unknown parameter vector, denoteddhy=[6,,6,,---,6,]", for the model

with respect the original bases (similar to (4)), can be calculated tinentriangular equatio

R =0 With g, =[0;, 95, gl Whereg, = (1) /(@iay) or g = (y'di) /(aiay) -
Note that some tricks can be used to avoid selecting strongly correlated model terms. Assume that

at themth step,a subsed,,, consisting ofm significantbasesa,,a,,--,a,,, has been determined.

Also assume thab; € DD, is strongly correlated with some bases?jp, that is,e; is a linear

combination ofa,,a,, --,a,. Thus there existn real numberk,k,,---,k.,, at least one of which is

1 Ny

different from zero, such that

0 =k, + Ko, +---K o, (32)
From (30), there exists another set of real numbgrgy,,---, 1, such that

Q) =0y + a0+ Ml (32)
For the candidate basis givby (32), equation (25) becomes

LS 1(P Ak
k:lq A

m) _(PJ qk (33)

Therefore,(q™)"q{™ =
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In the IOFS algorithm, the candidate bagise D-9,, will be automatically discarded if

(M)\T ~(m) 7 T : 4 : :
(@j”) aj” <107°{Le;0,}, whereris a positive number that is large enough. In this way, any severe

mullticolinearity or il-conditioning can be avoided.

3.3 Model order determination

The role of model order determination in dynamical system identification has beely wide
recognised and various model selection criteria have been well established, see for tnearapbnt
review paper bystoica and Selen (2004). Model selection criteria are often established on the basis of
estimates of prediction errors, by inspecting how the identified model performs on hgvee ysed)
data sets.

One general routine for model selection, which tries to avoid or reduce any pdssible
introduced by relying on any particular test data sets, is cross validatiore (B274). Crosgalidation
has a number of variations, two commonly used variants of which are theoleaaat (LOO), also
called predicted sum of squares (PRESS) (Allen 1974), andrajesed crossalidation (GCV)

(Golub et al. 1979). Generalised crasdidation, due to its convenience of use and effectiveness for

avoiding overfitting, has been widely accepted.

Now consider the model (28) obtained in the¢h search step. Notice thidne inner product term
rl .0, in this model can be replaced lyq,, . Following Orr (1995), Chen et al. (1996), aBitlings
and Chen (1998), a penalised GCV approach is given below.

The penalised algorithm is basedtba following minimisation criterion

IOy G A) =T g+ A G =T 10+ 205Gy (34)

i=1

wherei is the regularisation parameter. The solution to the above ridge regression is

O = (QuQm + Al ) "Qry (35)
and the minimised error (energy) is

En=Y"Pny (36)

whereP. =1_-Q.(Q'Q, + Al )'Ql , andl  is the mdimensional identity matrix. Following

Golub et al. (1979) and Orr (1995), GCV is given by

2
®GCV (@Kmv m) — i yT Priy _ N yT Pnzqy (37)
N (@/N)tracef,))*> |\ N-y, N
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wherey, is the effective number of parameters (Moody 1992). Clearly,=0, (37) reduces to the
ordinary GCV criterion withy,, =mand y'P2y=y'P y=r r.. For the general case in ridge

regression, wherg= 0, it can be shown that

N (o % (a)? 22+q]q,
. o e N B | of 38
scv (M, M) (N_;,m)Z[yy ig‘;wq?qi /1+QiTqi >

whereq,,q,, :-,q,, are the columns of the mat@,,, andthe effective numbey is calculated to be

m

.
gi 9;
y = i Qi (39)
) ;quqi
It has been suggested (Orr989 that the regulation parameteshould be determined based on
GCV minimisation, and the formula for updatibépr the identified model witimterms is given as
T
m

nooorar
=y (40)

ﬂ/ = —T—
N_7 ng gm
whereV = (Q1 Q. + Al ), n=tracel/ " -1V ?). Other simple updating formula are also available

(Chen et al. 1996, Billings and Chen 1998)

new T
inmewz Ym Mmlm (41)
N—7m" 9nOm

wherey is given by (39).

3.4 Hypothesis tests on individual regression coefficients

Statistical methods play a unique role in the diagnosis and analysisasfriiodels. One aspect of
the application of statistical methods for linear model analysis is hypothesis tests osigegres
coefficients Hocking 1976, 1983, Montgomery et al. 2001). Consider the linear regressidal m

with k regressors below
y=X0+e (42)

wherey is Nx1, X is Nxn( all theelements of the first column of are assume to be unif)js
nx1l, e is nx1l, andn=k+1. A frequently asked question is: do all tkaegressors contribute
significantly tothe regression model?

To inspect whether some subset e&fk regressors contribute significantly to the regression model,

let the design matriX be subdivided into two parts a¥X =[X;,X,], and the parameter vect@rbe
partitioned asd =[60,,0,]", accordingly, whereX,is Nx(n-r), X,is Nxr, 0,is (n-r)x1, and

0,is r x1. The model (42) can now written as
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y=X0,+X,0,+e (43)
The objective now is to test the hypotheses
H,:0,=0 (44a)
H,:0,=#0 (44b)
Montgomery et al. (2001) suggested that the null hypothégsi®, =0 may be tested by the statistic

- (1/r>[s's»RN$gze - SS,(0)] )

where SS,(8) =y Hy , SS;(0,)=y ' H,y , MSe.=y (I -H)y/(N-n), and H=X(X"X)"X",

H, = Xl(Xle)ilXI :

For a givena , wherea is a small positive number such th@t «)x100% indicates the
confidence interval, iff, > F, . \_,, the H;:0, =0 can then be rejected, concluding that at least one
of the parameters ifi,in not zero, and consequently at least one of the regressirscontributes

significantly to the regression model. The test given in (45) is also called a pa#d&l because it

measures the contribution of the regressorX jrgiven that the other regressorsXpare already in

the model. See Montgomery et al. (2001) for details about the patéat Bnd other hypothesis tests.
The simplest but useful hypothesis for testing the significance of anyiduadi regression

coefficient, for instancé; in the model (42), is
Hy:60,=0 (46a)
H;:0, =20 (46b)
If there is no sufficient reason to reject the null hypothegist; =0, then the corresponding
regressox; can be removed from the model. The tatistic for this hypothesis is
_16)]
se@;)

t, (47)

where seéj)z &Zc’;j is the standard error of the regressionffodent 6, , c]j is the diagonal

element of(X"X)™ corresponding taﬁj , and 6% = MS,is the unbiased estimator of variance.
For a givenx, if t, >1t,,, y_,, the null hypothesidl, :¢; =0 can then be rejected. Note that this is
really a partial or marginal test (Montgomery et al. 2001) because the regression esteffici

éi depends on all of the other regsors that are in the model. Thus it is a test of the contribution of
X; given the other regressors in the model. Clearly, tiesttin (47) is a special case of théebt in

(45).
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For practical identification problems, whe¥e-n>120, t,,,\_,~196if o is set to 0.05, an
equivalent test to (47) is
;|

- To6se6) (48)

0

If t,>1, the null hypothesisl, :¢; =0 can then be rejected.

4. Case studies

In this section, severatxamples are provided to illustrate how to select an accurate model
structure using the new IFOS algorithm. It will be whahat the IFOS algorithm can detect spurious
model terms even when the data are contaminated with noise. A spurious model term here means that
the model term is not in the true model but is selected with an ERR value that is hoFsmzdses
wherethe input is not sufficiently excitingatrial-anderror approacttan be used to avoid selecting
the termsy(t-1), y(t-2), etc., providing that these terms are not in the true model.

Notice that in the given examples, both artificial models and real data sets,iwbdrelieved to
be difficult to find the correct model structure, have beenbdediely chosen to illustrate the
effectiveness of the new IFOS algorithm.

The IFOS algorithm interfered with squared correlation will be refaored IFOSSC. Smilarly,

the mutual information interfered IFOS, will be referred to as IRMDS-

4.1 Example 1-the input is white

The following model was taken from Mao and Billings (1997)
y(t) = -05y(t—2) + 0.7y(t—Du(t—1) + 0.6u(t —2)
+02y3(t—1) — 0.7y(t—2u?(t—2) +e(t) (49)
where the inputi(t) was uniformly distributed on1, 1], with the noisee(t) ~ N (0,002%) . Following

Mao and Billings (1997), the maximum lags of both the input and the output were assumddtalbe
the nonlinear degree to be 3. Five hundred hooiput data were generated and were used for model
structure selection. The new IFOS algorithm, which incorpotaestest gven by (48), was applied

to the data set, and the results are shown in Tables 3 and 4.

From Table 3, the ERR values show that the first 6 model terms arecsighiéind should be
included in the model. The first selected term;)(f(t-2), with the highest ERR value is spurious.
The ttests show that among all the 10 model terms selected with the ERFRowyitmly 5 are
significant and the-tests of the 5 terms are significantly different from unity. This means that the 5
terms with the highest-tests dominate the regression model. This can easily be confirmed by

inspecting the model predicted outputs based on the model with regard toddelSerms. The GCV
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values show that the appropriate number of model terms is 9, but clearly a m&ié¢tmis is
overfitted.

Compared with Table 3, results given in Table 4 are quite optimistic.-Hs¢stshow that only 5
model terms are significant, and the five model terms are exactly consistent wihrtree model
terms. In addition, GCV provides a carrendication of the structure, suggesting that 5 model terms

are appropriate. Thus, from the results given by Table 3 and 4, all model terms can be correctly

determined.
Table 3 Identified model structure for system (49) using the {60%lgorithm
Parameter
Term - ERR(%) t-test GCV
True Estimate

y(t-1)U4(t-2) 0 0.014704 | 34.9921 0.7382 0.074273
y(t-1)u(t1) 0.7 0.706678 | 21.9095 69.9612 | 0.049441
u(t-2) 0.6 0.601460 | 12.3828 99.9614 | 0.035379
y(t-2) -0.5 -0.491838 | 23.6688 59.4477 | 0.008150
y(t-1) 0.2 0.204638 45382 33.6203 | 0.002915
y(t-2)U4(t-2) -0.7 -0.708220 2.1595 27.4588 | 0.000412
y(t-1)u(t4) 0 0.026297 0.0045 1.1833 0.000403
yA(t-2)u(t-3) 0 {0.012915 0.0044 1.1315 0.000400
y(t-4)u(t-2) 0 0.017330 0.0043 1.6214 0.000396
y(t-3)y(t-4)u(t-2) 0 {0.025846 0.0032 1.1110 0.000397
Run time: 0.906s

Table 4 Identified model structure for system (49) using the {MD&gorithm

Parameter Mutual
Term ) Info t-test GCV
True Estimate

y(t-2)UA(t-2) -0.7 -0.690247 | 0.251193| 42.2583 | 0.118617
u(t-2) 0.6 0.599793 | 0.320914 | 149.1860 | 0.048510
y(t-1)u(t1) 0.7 0.705487 | 0.188335| 99.3864 | 0.026045
y(t-2) -0.5 -0.501902 | 0.227581| 66.5005 | 0.014168
y(t-1) 0.2 0.201394 | 0.214758| 65.9884 | 0.000393
U(t-1)u(t4) 0 0.002367 | 0.012226 0.3664 0.000394
U(t-2)u(t3) 0.001729 | 0.008698 0.2627 0.000396
y(t-4)u(t-2)u(t-4) 0.010032 | 0.008073 0.8780 0.000396
Run time: 2.126s




4.2 Example 2—the input is nonwhite

Conside the following two systems

S0 W(t) = 05w(t —1) + 0.8u(t — 2) +u?(t —1) — 005w (t — 2) + 0.5 (50a)
_ 1 - 2
y(t) = w(t) + 050 E(t), £(t)~ N (0005%) (50b)
S,. W(t) =u(t—1)+ 05u(t - 2) +25u(t —1)u(t —2) — 0.3u(t —1) (51a)
_ 1 - 2
y(t) = w(t) + 08 E(t), £(t)~ N (0002%) (51b)

Following Piroddi and Spinelli (2003), the inpuit) to the two systems were chosen as a low
frequency AR(2) process of the forot)=1.6u(t-1)-0.637%(t-2)+ 0164 (t) , with £'(t) ~ N (0) . Two
data sets of 500 inpatutput samples were generated from each systeirtte two data sets were

used for model structure selection.

4.2.1 Experiments for syste&
Following Piroddi and Spinelli (2003), the maximum lags of both the input and the output were
assumed to be 2 and the degree of nonlinetwitbe 2. Model structure selection results dgstem
S, are reported in Tables 5 and 6. Following the analysis in Example 1, it iste@édne significant
model terms should be selected asly( u(t2), (t-1), yA(t-2), and theconst term, which are exactly
the same as the true model. Note that once the 5 model terms have been determined, tleesparamet

need to be restimated based on just these selected model terms.

22



Table 5 Identified model structure for the system (50) using the-BO8&lgorithm

Parameter
Term - ERR(%) t-test GCV
True Estimate
y(t-1) 0.5 0.500106 91.1027 71.4985 1.511037
VA(t-2) -0.05 -0.049757 3.5098 128.3416 0.922388
u%(t-1) 1 1.000401 2.0742 132.8120 0.571884
u(t-2) 0.8 0.806721 2.8537 125.5270 0.079973
const 0.5 0.493459 0.4406 43.4106 0.003336
yA(t-1) {0.000419 0.0001 0.8359 0.003343
u%(t-2) 0.006367 0.0001 0.6223 0.003360
Run time: 0.03s

Table 6 Identified model structure for the system (50) using the-M&gorithm

Parameter Mutual
Term _ Info t-test GCV
True Estimate

u(t-1) 0 0.006148 | 1.313614 0.3120 15.160800
uz(t-l) 1 0.994118 | 1.203510 61.4893 1.587509
y(t-1) 0.5 0.496906 | 0.244386 84.2243 1.077226
yz(t-2) -0.05 -0.049833 | 0.818507 | 135.5297 | 0.102098
u(t-1)u(t-2) 0 0.011942 | 0.332722 0.5739 0.091160
const 0.5 0.499216 | 0.218877 51.2285 0.039561
u(t-2) 0.8 0.800587 | 1.156804 36.8467 0.003281
y(t-1)u(t1) 0 0.000024 | 0.000976| 0.0210 | 0.003294
Run time: 0141s

4.2.2 Experiments folystems,

Following Piroddi and Spinelli (2003), the maximum lags of both the input and the output were
assumed to be 2 and the degree of nonlinearity to be 3. To ensure selection of ttencmted
subset, the IFOSC algorithm was @plied over the following 5 different candidate model term

dictionaries:

" = @0,2,31 %= @2,2,3 )
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Dt =% —{y(t-1)},
D=2 —{y(t-2)},
D% =9° —{y(t-1),y(t-2)},

where themodel term dictionarybny'nu'% was defined by (14). The reason that the 5 different

candidate dictionaries were considered here was to avoid selecting theytefhsand y(t-2),
providing that these terms were not in the true model. Five different modelssmonding to the 5
dictionaries, were selected and the identified models are shown in Table 7. Similarwesealalso
obtained using the IFOSE algorithm, but to save space the results are not shown here.

While it is not quite apparent which model terms should be included in the modeh&aestlts
with respect tod®and 9?, it is quite clear from the results with regardaib, 9'and 9° that the
significant model termicluded in the model should Ipé-1), u(t-2), u(t-1)u(t-2), andu®(t-1), which
are exactly the same as required by the system. Note that the search time to selectl tteemsode

quite short, and it is less than 0.1s for each of the 5 cases.
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Table 7 Identified model structures for the system (51) using the-8&O&gorithm

Parameter
Term : ERR(%) t-test GCvV
True Estimate
u(t-2) 0.5 0.496879 66.5315 31.3303 0.344189
u(t-1)u(t2) 0 0.000176 | 16.4164 0.0154 0.176546
DY | ut-Du(t2) 0.25 0.253131 | 14.2253 | 113.7397 | 0.029466
u(t-1) 1 1.002408 2.2567 61.4645 0.005983
u3(t-l) -0.3 -0.299978 0.4670 26.4503 0.001090
const 0 0.002844 0.0005 0.8391 0.001092
y(t-1) 0 0.117996 | 90.284 3.2882 0.121247
y(t-2) 0 0.012730 3.8298 1.2854 0.072865
uz(t-l) 0 0.040058 0.1612 2.4779 0.071273
u(t-1)u(t2) 0.25 0.184041 1.1284 18.3499 0.057063
@O u(t-1) 1 1.026177 0.3607 52.7857 0.008343
ui(t-1) -0.3 -0.296222 3.3894 85.2908 0.008343
u(t-2) 0.5 0.318613 0.5477 15.5183 0.001121
u3(t-2) 0 0.027746 0.0044 2.8930 0.001070
y(t-2) 0 0.005719 81.2615 0.8224 0.195498
u(t-1) 1 1.005003 5.5294 72.3156 0.138739
u’(t-1) 0.3 -0.297251 5.5040 121.4937 | 0.081477
b | ut-1)u(t2) 0.25 0.251067 6.9853 91.0853 0.007663
u(t-2) 0.5 0.490089 0.6127 29.7224 0.001148
const 0 0.003600 0.0007 0.9898 0.001148
y(t-1) 0 0.097761 94.6515 4.0993 0.072308
u(t-1) 1 1.021391 0.3734 60.3493 0.067714
ui(t-1) 0.3 -0.307184 1.4250 55.8901 0.048646
uz(t-l) 0 {0.029880 3.0680 1.9263 0.006651
@2 u(t-2) 0.5 0.336549 0.2329 7.6580 0.003461
u(t-1)u(t2) 0.25 0.265645 0.1777 19.8444 0.001000
u(t-1)UA(t-2) 0 0.034981 0.0036 3.1287 0.000955
yA(t-1) 0 -0.00800 0.0022 2.2771 0.000930
y(t-1)UA(t-1) 0 0.000027 | 71.7306 0.0242 0.981663
y2(t-1)u(t-1) 0 -0.000045 | 12.3847 0.1902 0.555321
u(t-2) 0.5 0.496203 4.9718 43.4379 0.384091
D* | W¥(t-1) 0.3 -0.298608 6.4838 228.1314 | 0.156944
ut-1)u(t2) 0.25 0.251097 3.1894 141.8768 | 0.044227
u(t-1) 1 1.000408 1.2084 77.1917 0.001123

Run time: 9" (0.031s),9° (0.059s),D* (0.079s),D? (0.094s),D° (0.0475s)
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4.3 Example 3—forecasting annual sunspot numbers
The data set used in this example contains 301 observations of the annual sunspet fnombe
1700 to 2000. The first 280 samples for years 1700 to 1979 were used forideatiétation and the

remaining 22 data were used for model performance testing. The candidate mroddict®naries

were chosen a8°=9,,,, ={y(t-1),--, y(t-12)}, andd* = 9°-{y(t-1),y(t-2)}. The reason that the

maximum lag was chosen to be 12 is due to the fact that the annual sunspot time series has a cycle that
is about 11lyears. A nonlinear model for the sunspot time series may be more ajgptberizbjective
in this example, however, is tliuistrate the efficiency of the new IFOS algorithm for model structure

selection, and a linear model was thus adopted.
The selected model structures from the dictionaltysing bothFOS-SC and IFOSMI are shown
in Table 8. Both algdthms suggested that the best model subset be choseft-aj, §(t-2), y(t-9),
const}. The selected model structures from thietionary 9* by both IFOSSC and IFOSMI required
5 model termsy(t-3), y(t-4), y(t-9), y(t-11), andconst. It easily be shown that the performance of the
model generated from* is much inferior compared with the model generated ®8m
The fact that the two different criteria (squared correlation and mufoamaion) yield the same
results indicates that the linear regression model is dominated byekestgnificant variablegt-1),
y(t-2) andy(t-9). This result enhances the previous conclusion (Wei et al. 20@4)(tt13, y(t-2) and
y(t-9) are the three ast important variables for describing the sunspot time series over the period

from 1700 to 1979. By restimating the parameters in a linear model, the final identified model was

given by y(t)= 6.0223 + 1.2352y{)-0.5404y(t-2)+0.1917y(®). Onestepahead predictionsand

model predicted outputs produced by the identified model over the test data sebwn in Figure 1.

o]
1980 1985 1990 1995 2000

Fig. 1. Onestepahead predictions and model predicted outputs produced from the idemdibel (with 4
model terms) for the sunspot time series. Solid line with circles indithée measurements; dashed line with
stars, onestepahead predictions; and dotted line with squares, model predicted outputs.
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Table 8 Identified model structures for the sunspot time series

ERR(%)
Term Parameter or t-test GCV
Mutual
info
y(t-1) 1.202332 86.0183 | 10.1523 | 551.750797
y(t-9) 0.187390 5.2192 3.3646 | 348.392854
sc y(t-2) -0.428369 2.7622 2.2895 | 240.374414
const 6.275233 0.1884 1.2828 | 234.594548
y(t-3) -0.134668 0.0262 0.7185 | 235.314457
y(t-4) 0.054645 0.0193 0.4780 | 236.322559
y(t-1) 1.215845 | 0.442097| 10.3688 | 551.750797
y(t-2) -0.532471 | 0.239983| 4.2013 | 358.789312
y(t-9) 0.161627 | 0.171117| 1.6646 | 240.374414
Ml const 6.469004 | 0.036343| 1.3200 | 234.594548
y(t-10) 0.038577 | 0.045810| 0.3668 | 235.862834
y(t-4) -0.005922 | 0.030401| 0.0835 | 237.642482
Run time: IFOSSC (0.078s), IFO$/1 (0.094s)

4.4 Example 4—uit fly modelling

This data secame from experiments and observations on a fruit fly, called Drosophila. The system
input was the response of the photoreceptors, and the output waspbase of the large monopolar
cells. Recordings of 1000 points, sampled at a rate of 1KHz, ortypidflies were collected.

The relationship between the input and the output in the fruit fly experimeatriglex, because
in addition to the response from the photoreceptors, several other factoedsmaffect the output
response of the large mondgocells. Identification of models relating these responses is therefore
quite challenging. The objective of this example is to find a model that reflects, as closelylale,possi
the relationship between the response of the photoreceptors (the inpthgaerdponse of the large
monopolar cells (the output), to facilitate the analysis and uiagheliag of the associate behaviour of
this kind of insect.

For the fruit fly modeling, the 1000 points in the data set were partiiomne two parts: the first
600 points were used for model identification, and the remaining 400 pointsused for model

testing. The input and the output over the test data set are shown in Figure 2.
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The maximum lag for the input and the output were chosen to be 5 and 3tivegpeand the
degree of nonlinearity to be 3. Similar to previous examples, the following 6desmdnodel term

dictionaries will be considered:
D = Doas ?° = D353 Pt =9° —{y(t-1}, D?=9° —{y(t-2)},
D*=2° —{y(t-1),yt-2)}, D*=2°—{y(t-1),y(t-2),yt-3)},

where the S@Dny,nu was defined as defined ag o, ={y(t-1), ..., y(t-n,), u(®), u(t-1), ..., u(t-n,)}. The

reason that the 6 differentradidate dictionaries were considered here was to avoid selecting the terms
y(t-1), y(t-2), andy(t-3), providing that these terms were not in the true mddwed. average time used

by the IFOSSC algorithm for model structure selection, over different mteteh dictionaries, was
2.425s, and for the IFGRII algorithm, it was 4.688s.

Following the same procedures as described in previous examples, thiMIk@itified model,

selected over the dictionamy , was found to be the best model, because the performance of the long
term predictions produced by this model were superior to the other identifiedsmblelfinal IFOS

MI identified model contained 10 model terms. A comparison between the model prexnigpeits

and the measurementsgen the validation data set is shown in Figure 3. Clearly, the identifoet&im

fitted the experimental data extremely well.

Input

-90 ! ! ! ! !
0 100 200 300 400 500 600

Qutput

-a0 ! ! ! ! !
0 100 200 300 400 500 600

Samplind index
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Fig. 2. The input and output data over the estimation data set for the frabdigling.

Output

_9 1 1 1 | 1 | 1
800 650 700 750 800 850 900 950 1000
Sampling index

Fig. 3. A comparison between model predicted outputs and the meastsrenmrthe validation data set. Solid
line indicates the measurements and the dashed line indicatesottel predicted outputs from the identified
model for the fruit fly data set.

5. Discussions and recommendations

Model structure selection is a central issue in any nonlinear system identification problem. In
addition to the input signal and sampling interval, many other factors, ingltigée initial choice of
the maximum lag$or both the input and the output, the determination of the primary variates,
choice of initial candidate model term dictionaries, and the presence of noise (uncerttiatgatsa),
all affect model structure selection. All these are generic prabie nonlinear system identification.

It is known that if the maximum lags or key (primary) variables for the system can be
appropriately determined in advance, then irrelative model terms can hedpceclhus determining
suitable maximum lags and selecting significant variables is a key step that @ailg gnprove the
accuracy of all model structure selection procedures.

Results on numerous examples and applications in the literature have shown that BRROFR
algorithm can select accurate model structures for general nonlinear system identification problems.
The algorithm, may however occasionally produce redundant or incorrect rmooletts in the

presence of noise or if the input signal is non-white. To solve this problemdiParati Spinelli (2003)
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suggested a simulation error based approach, which was implemented by maqiméisimulation

error. This method, however, has two main drawbacks. First, it requires tutattah of model
predicted outputs for all candidate model terms and can thusrip¢ime consuming. Secondly, for a

given candidate model term dictionary, model predicted outputs with regpectselected model

subset are not always available. For example, assume that a system is totally determined by a model
subset oh mocdel terms. An often encountered scenario is that, models formed by any subset of up to

r (< n) termsmay be unstable (infinitely divergent) or over attenuated (converge tq #ezanodel
predicted output may thus be either infinite or zero. Clearlysithalation error based approach will

not work well for these cases and will not select any correct model subsets.

This study suggests the following fostiage trialand-error experiments:

¢ Stage +—Sdect candidate model term dictionaries.
Letd" =D, ,, D° =D ot Pt =% -{y(t-1)}, D? =D°-{y(t-2)}, andD® = D°-{y(t-1),

y(t-2)}, where thanodel term dictionar;@ny'nw{( is defined by (14).

e Stage 2-Modd structure selection.
Perform the model structure selectialgorithm over the 5 candidate dictionaries
respectively. This will lead to differenmtodel structures.

¢ Stage 3—Model comparison.

Compae the performance of the identified models selected over the different model term

dictionaries®", 9°, o', 9?andd®. Select the best model according aospecified
criterion, for example the performance of model predicted outputs or-stepihead
predictions.

o Stage 4-Mode refinement.
Reestimate model parameters if a couple of model terms need to be removed from or

added intadhe selected model in Stage 3.

Note that the time spent on model structure selection using thegortal least squares type
algorithms, for instance the IFOS algorithm here, is very short even for general cases. The above 4
stage trialanderror experiments are thus not time demanding and can often be completed in a very
short time. From the experience of numerous experiments including the four exaeggléised in the
present study, this-gtage approach will usually provide accurate model structures.

In many cases the noise sigreé) in Eg. (1) may be a correlated or coloured noise sequence.
This is likely to be the case for most real data sets. In this case the NARX model (3) mayivailato g
sufficient description due to theds in the parameter estimates. As a consequence, the identified
NARX model may not be sufficiently accurate if the model is used for ofpestof input signals.
Practical identification experience shows that the bias on the parameter estimates ctualbe vir

eliminated by including the noise signag -1),---,e(t—n,) in the model.Readers are referred to
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Billings et al. (1989) and Billings and Chen (1998) for details about the NARMAX modelling
methodology.

6. Conclusions

A new integrated forward orthogonal search (IFOS) algorithm, which igargdrwith by both the
squared correlation and mutual information, and which incorporateest and a general cress
validation (GCV) procedure, has been proposed for nonlinear systemiadiatil. Tre incorporation
of the ttests into the new IFOS algorithm has greatly enhanced the capabiligfecting and hence
removing any incorrect (spurious) model terms. The incorporation of a iGG\the new algorithm
provides an important index for choosing an appropriate number of model terms.

It has been observed that for some input signals with a specific strubirapdel terny(t-1) is
nearly always selected as the first term with a very high ERR value, and as a consequence the
contributions of the ther model terms, measured by the associated ERR values, can become small and
sensitive to the effects of noise. This problem, however, has been effestied by introducing the
four stage model selection procedure.

The new mutual information critem can be used as a complementary approach or alternative to
the squared correlation criterion. For a given identification probleentvto criteria may or may not
produce exactly the same model structure. By inspecting and comparing the aecrof the
resulting models, in accordance with some specified measures, for example model predicted outputs,
or multi-stepahead predictions, a more accurate model structure can often be obtained. In this way,
the accuracy of the identified model structure willdignificantly improved compared with results
based on any one single criterion.

The application of IFOS algorithm is not limited to the polynomial NARMAXdel. The key
idea in the IFOS algorithm can be applied to any luedheparameters model identétion
including the configuration and training of radial basis function (RB&jwork and wavelet

modelling. This is worthy of further investigation.
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