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Abstract: In this paper, the energy transfer phenomenon of bilinear oscillators in the 

frequency domain is analyzed using the new concept of Nonlinear Output Frequency 

Response Functions (NOFRFs). The analysis provides insight into how new frequency 

generation can occur using bilinear oscillators, and reveals, for the first time, that it is the 

resonant frequencies of the NOFRFs that dominate the occurrence of this well-known 

nonlinear behaviour. The results are of significance for the design and fault diagnosis of 

mechanical systems and structures which can be described by a bilinear oscillator model.   

1 Introduction 

There are abundant dynamical systems with nonlinear components in engineering. For 

example, vibration components with clearances and motion limiting stop or vibration 

components with fatigue damage, which cause abrupt changes of the damping and 

stiffness coefficients, represent a significant portion of these systems. In practice, bilinear 

oscillators can be used to model some of these nonlinear mechanical components [1]-[13]. 

To investigate the motion of an articulated mooring tower, Thampson et al. [1] modelled 

the system as a bilinear oscillator that has different stiffness for positive and negative 

deflections due to the slackening of mooring lines. A comparison between the model 

responses and experimental results showed a good agreement. Based on the same model, 

Gerber and Engelbrecht [2] studied the response of an articulated mooring tower driven 

by irregular seas, and Huang, Krousgrill and Rajaj [3] studied the dynamic response of an 

offshore structure subjected to a nonzero mean, oscillatory fluid flow where the particular 

interest was the interaction between the bilinear stiffness characteristic and the 

asymmetric hydrodynamic drag force. When investigating the behaviour of an articulated 

offshore platform, Choi and Lou [4] modelled the structure as a SDOF upright pendulum 

with bilinear springs at the top. The springs have different stiffness for positive and 

negative displacement (bilinear oscillator). Wilson and Gallis [5] modelled a common 

multi-bay, multi-story scaffold with loose tube-in-tube connecting joints as a plane 
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structure in sway and evaluated the essential dynamic characteristics when subjected to 

lateral base excitations. Their investigations were based on a two-degree of freedom 

model with a lumped mass where the loose restraining joint between adjacent stories was 

treated as a bilinear stiffness. Butcher [6] investigated the effects of a clearance or 

interference in mechanical systems on the normal mode frequencies of a n-DOF system 

with bilinear stiffness without damping. The bilinear model has also been widely used to 

model cracks occurring in mechanical structures or rotors where the size of crack is often 

expressed as the stiffness ratio. Zastrau [7] demonstrated the bilinear behaviour by using 

the finite element method to determine the dynamic response of a simply supported beam. 

Friswell and Penny [8] studied the non-linear behaviour of a beam with a closing crack 

and then analyzed the forced response to a harmonic excitation at a frequency near the 

first natural frequency of the beam using a numerical integration method. The results 

highlighted the presence of superharmonic components in the response spectrum, a 

common property for non-linear systems. Sundermeyer and Weaver [9] exploited the 

weakly non-linear character of a cracked vibrating beam. Their studies supported the 

possibility that the bilinear behaviour of a fatigue crack can be exploited for the purposes 

of non-destructive evaluation. Based on a bilinear crack model, Chati, Rand and 

Mukherjee [10] used perturbation methods to obtain the non-linear normal modes of 

vibration and the associated period of the motion, and the results justified the definition 

of the bilinear frequency as the effective natural frequency. Rivola and White [11] 

employed the bilinear oscillator model to simulate the nonlinear behaviour of a beam 

with a closing crack and used the bispectrum to analyze the system response. They found 

that the normalized bispectrum shows high sensitivity to the bilinear nature of the crack. 

In cracked rotor studies [12][13], the cracked element can often be modelled as a weight-

loaded hinge, and if the hinge is weight dominant, then it can further be represented as a 

spring element with a bilinear stiffness.  

It can be seen that the bilinear oscillator is of great importance in the modeling of the 

nonlinear phenomena occurring in mechanical structures and machines. Accurate 

knowledge of this oscillator is helpful in the design, control and fault detection of these 

systems. A number of analytical and numerical studies on bilinear oscillators have 

appeared in the literature. Natsiavas [14] applied an analytical procedure to determine the 

exact, single-crossing, periodic response of a similar class of harmonically excited 

piecewise linear oscillators whose damping and restoring force are bilinear functions of 

the system velocity and displacement. Chu and Shen [15] employed two square wave 

functions to model the stiffness change in bilinear oscillators, and proposed a new closed-
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form solution for bilinear oscillators under low-frequency excitation. Bayly [16] derived 

an analytical relationship between the strength of a weak stiffness discontinuity and the 

magnitudes of superharmonic peaks in the output Fourier spectrum of a bilinear oscillator. 

Since bilinear oscillators are nonlinear, they exhibit much of the complicated phenomena 

associated with nonlinear systems. All the above mentioned research studies on bilinear 

oscillators have shown that considerable harmonic components can be generated in the 

spectrum of the response when a bilinear oscillator is subjected to a sinusoidal force 

excitation. The generation of higher harmonic components implies that some energy of 

the input signal is transferred from the input frequency modes to modes at other 

frequency locations. The conventional Frequency Response Function (FRF) can not 

explain why and how the energy shift occurs in bilinear oscillators as the definition of the 

classical frequency response is based on linear systems in which the possible output 

frequencies at steady state are exactly the same as the frequencies of the input.  

This paper is dedicated to the study of the frequency domain energy transfer properties of  

bilinear oscillators using a new concept recently developed by the authors known as 

Nonlinear Output Frequency Response Functions (NOFRFs) [17]-[20]. The NOFRFs are 

a one dimensional function of frequency, which allow the analysis of nonlinear systems 

to be implemented in a manner similar to the analysis of linear system frequency 

responses. Consequently, the NOFRF based analysis in the present study not only 

provides new insight into how nonlinear phenomena such as new frequency generations 

occur with bilinear oscillators, but also reveals that it is the resonances of the NOFRFs 

that dominate the occurrence of the well-known nonlinear behaviour. Simulation studies 

justify the conclusions, and demonstrate the significance of the NOFRF based analysis. 

The results achieved are of significance for the design and fault diagnosis of mechanical 

systems and structures which can be described by a bilinear oscillator model.  

2 Bilinear Oscillator Model 

The bilinear oscillator is a simple and effective model that can interpret many nonlinear 

phenomena in mechanical structures and machines. Figure 1 shows a SDOF bilinear 

oscillator whose corresponding motion can be expressed as  
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Figure 1.  bilinear oscillator model 

where m and c are the object mass and damping coefficient respectively; x(t) is the 

displacement; k is the stiffness; Į is known as the stiffness ratio (0 ≤ Į  ≤ 1). f(t) is the 

external force exciting the model. Obviously, if the stiffness ratio Į is equal to one, then 

the model is linear. When excited by a sinusoidal force, the response will be a sinusoidal 

function of the same frequency. Otherwise, if Į is smaller than one, the response is 

expected to contain several harmonics of the excitation frequency. Define S(x) as the 

restoring force of a bilinear oscillator as follows  
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Obviously S(x) is a piecewise linear continuous function of displacement x illustrated in 

Figure 2. 

In mathematics, the Weierstrass Approximation Theorem [21] guarantees that any 

continuous function on a closed and bounded interval can be uniformly approximated on 

that interval by a polynomial to any degree of accuracy. This theorem is expressed as  

If f(x) is a continuous real-valued function on [ a ,b ] and if any İ > 0 is given, then there 

exists a polynomial P(x) on  [ a , b ] such that  ε<− )()( xPxf  for all ∈x  [ a , b ]. 

 
Figure 2. The restoring force of a bilinear oscillator 
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Figure 3. Approximation of S(x) (Į = 0.8) with polynomials 

Since the restoring force S(x) is a continuous function of displacement x, it can be well 

approximated by a polynomial. Figure 3 gives the results of using polynomials with 

different orders to approximate S(x) where the stiffness ratio Į is taken as 0.8.  It can be 

seen that a fourth order polynomial can fit S(x) very well. If using a polynomial P(x) to 

replace for S(x) and ignoring the tiny approximation error, the SDOF model Equation (1) 

can be rewritten as 

)()( tfxPxcxm =++                                                   (3) 
where  

∑
=

=
N

i

i
ikxcxP

1

)(                                                         (4) 

where N  is the order of the approximating polynomial, and ikc  , Ni ,,1=  are the 

polynomial coefficients.  

Table 1 The polynomial approximation result for a bilinear oscillator 

c 
g 1c  2c  3c  4c  

1.00 1.0000 0.0000 0.0000 0.0000 

0.95 0.9750 -0.0409 0.0000 0.0204 

0.90 0.9500 -0.0818 0.0000 0.0407 

0.85 0.9250 -0.1228 0.0000 0.0611 

0.80 0.9000 -0.1637 0.0000 0.0814 
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The model described by Equation (3) is an extensively studied polynomial-type nonlinear 

system where the term kxc1  represents the linear part and the other high order terms 

represent the nonlinear part. For the bilinear oscillator model, the polynomial coefficients 

are determined by the stiffness ratio Į. Table 1 shows the results of using a fourth order 

polynomial to approximate the bilinear oscillator with different stiffness ratios. It is 

known from Table 1 that all coefficients, apart from 1c , will increase with a decrease of Į. 
This means that the nonlinear strength of the bilinear oscillator will increase with the 

decrease of Į. It is worth to noting that except for 1c , the values of 2c … and 
N

c  also 

depend on the range of x which the polynomial approximation is defined. In the case 

shown in Table 1, this range of x is [-1, 1].  

For the free undamped vibration of bilinear oscillators, its effective natural frequency can 

be substituted with a bilinear frequency Bω  [11], as 
)/(2 1010 ωωωωω +=B                                                    (5) 

where 

mk /0 =ω  and mk /1 αω =                                              (6) 

Therefore   

0
)1(

2

)1(

2 ω
α
α

α
αω

+
=

+
=

m

k
B                                            (7) 

For the polynomial-type nonlinear system (3), the natural frequency of the linear part can 
be defined as 

011 / ωω cmkcL ==                                                    (8) 

Table 2 shows a comparison between Lω  and Bω  under different stiffness ratios. It can 

be seen that the Lω  is a good approximation of Bω . To a certain extent, this further 

justifies using a polynomial-type nonlinear model to describe a bilinear oscillator.   

Table 2. Comparison between Lω  and Bω  

g ( )0ωω ×L  ( )0ωω ×B  BLB ωωω /|| −  

1.00 1.0000 1.0000 0.0000% 

0.95 0.9874 0.9872 0.0203% 

0.90 0.9747 0.9737 0.1027% 

0.85 0.9618 0.9594 0.2501% 

0.80 0.9487 0.9443 0.4660% 

For polynomial-type nonlinear systems, a powerful analysis tool called the Nonlinear 

Output Frequency Response Function (NOFRF) has been used to study system 

behaviours [19]. The objective of the present study is to use the NOFRF concept to study 
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the frequency domain energy transfer properties of bilinear oscillators under harmonic 

loading. 

3 Nonlinear Output Frequency Response Functions (NOFRFs)  

3.1 NOFRFs under General Inputs 

NOFRFs were recently proposed and used to investigate the behaviour of structures with 

polynomial-type non-linearities [19]. The definition of NOFRFs is based on the Volterra 

series. The Volterra series extends the familiar concept of the convolution integral for 

linear systems to a series of multi-dimensional convolution integrals.  

For a linear system, with input u(t) and output y(t), the input and output relationship in 

the time domain can be described by a convolution integral, as 

∫
∞

∞−
−= τττ dtuhty )()()(                                                   (9) 

In the frequency domain, the linear system input output relationship is given by 

)()()( ωωω jUjHjY =                   (10) 

when the system is subject to an input where the Fourier Transform exists. In equation 

(10), )( ωjY  and )( ωjU  are the system input and output spectrum which are the Fourier 

Transforms of the system time domain input )(tu  and output )(ty  respectively. It can be 

seen that the possible frequency components of )( ωjY  are the same as the frequencies of 

)( ωjU . 

Consider the class of nonlinear systems which are stable at zero equilibrium and which 

can be described in the neighbourhood of the equilibrium by the Volterra series 

i

n

i
in

N

n
n dtuhty ττττ )(),...,()(

11
1 ∏∑∫ ∫

==

∞

∞−

∞

∞−
−=     (11) 

where  ),...,( n1nh ττ  is the nth order Volterra kernel, and N denotes the maximum order of  

the system nonlinearity. Lang and Billings [17] have derived an expression for the output 

frequency response of this class of nonlinear systems to a general input. The result is  
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This expression reveals how nonlinear mechanisms operate on the input spectra to 

produce the system output frequency response. In (12), )( ωjYn  represents the nth order 

output frequency response of the system, 
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n
j

nnnn ddehjjH nn ττττωω τωτω ...),...,(...),...,( 1
),...,(

11
11 ++−∞

∞−

∞

∞− ∫∫=  (13) 

is the definition of  the Generalised Frequency Response Function (GFRF), and 

∫ ∏
=++ =ωωω

ωσωωω
n

n

n

i
inn djUjjH

,..., 1
1

1

)(),...,(  

denotes the integration of ∏
=

n

i
inn jUjjH

1
1 )(),...,( ωωω  over the n-dimensional hyper-plane, 

with the constraint of ωωω =++ n1 . Equation (12) is a natural extension of the well-

known linear relationship (10) to the nonlinear case.  

For linear systems, equation (10) shows that the possible output frequencies are the same 

as the frequencies in the input. For nonlinear systems described by equation (11), however, 

the relationship between the input and output frequencies is generally given by 


N

n
YY n

ff
1=

=      (14) 

where Yf  denotes the non-negative frequency range of the system output, and 
nYf  

represents the non-negative frequency range produced by the nth-order system 

nonlinearity. This is much more complicated than that in the linear system case. For the 

cases where system (12) is subjected to an input with a spectrum given by 
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where 0ab ≥> . Lang and Billings [17] derived an explicit expression for the output 

frequency range Yf  of the systems. The result obtained is 

 

( )
( )
























+−=
−=+−+−=









+

=











≥







+

−
+

<







+

−
+

=

=

=

−

=

−−

)(,0

,1,...,0for    )(),(
 

partinteger      the  take  tomeans  .   where

1+
)(

    

1
)()(

n         whe

1
)()(

n         whe

    

*

*

*

0

1

0

*

*

*

)1*2(

bainbI

ikbaknbbaknaI

ba

na
i

ba

na

ba

nb
I

ba

na

ba

nb
I

f

fff

i

k

i

k
k

i

k
k

Y

YYY

n

pNN







  (16) 



 10 

In (16) *p  could be taken as  221 N,,,  , the specific value of which depends on the 

system nonlinearities. If the system GFRFs 0(.))12( =−− iNH , for 1,,1 −= qi  , and 

0(.))12( ≠−− qNH , then qp =* . This is the first analytical description for the output 

frequencies of nonlinear systems, which extends the well-known relationship between the 

input and output frequencies of linear systems to nonlinear cases. 

Based on the above results for output frequency responses of nonlinear systems, a new 

concept known as Nonlinear Output Frequency Response Functions (NOFRF) was 

recently introduced by Lang and Billings [19]. The concept was defined as 

∫ ∏

∫ ∏

=++ =

=++ =
=

ωωω
ω

ωωω
ω
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,..., 1
1
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1
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)(                                (17) 

under the condition that 

0)()(
,..., 1

1

≠= ∫ ∏
=++ =ωωω

ωσωω
n

n

n

i
in djUjU                                 (18) 

Notice that )( ωjGn  is valid over the frequency range 
nYf  as defined in (16). 

By introducing the NOFRFs )( ωjGn , Nn ,1= , Equation (12) can be written as  

∑∑
==

==
N

n
nn

N

n
n jUjGjYjY

11

)( )( )()( ωωωω                               (19) 

which is similar to the description of the output frequency response of linear systems. For 

a linear system, the relationship between )( ωjY  and )( ωjU   can be illustrated as in 

Figure 4. Similarly, the nonlinear system input and output relationship of Equation (19) 

can be illustrated as in Figure 5.  

 

 

 

Figure 4. The output frequency response of a linear system 

 

 

 

 

 

 

Figure 5. The output frequency response of a nonlinear system 
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The NOFRFs reflect a combined contribution of the system and the input to the 

frequency domain output behaviour. It can be seen from Equation (17) that )( ωjGn  

depends not only on nH  (i=1,…,N) but also on the input )( ωjU . For any structure, the 

dynamical properties are determined by the GFRFs nH  (i= 1,…,N). However, from 

Equation (13) it can be seen that the GFRF is multidimensional [22][23], which makes it 

difficult to measure, display and interpret the GFRFs in practice. Feijoo, Worden and 

Stanway [24]-[26] demonstrated that the Volterra series can be described by a series of 

associated linear equations (ALEs) whose corresponding associated frequency response 

functions (AFRFs) are easier to analyze and interpret than the GFRFs. Here, according to 

Equation (17), the NOFRF )( ωjGn  is a weighted sum of ),...,( 1 nn jjH ωω  over 

ωωω =++ n1  with the weights depending on the test input. Therefore )( ωjGn  can be 

used as alternative representation of the structural dynamical properties described by nH . 

The most important property of  the NOFRF )( ωjGn  is that it is one dimensional, and 

thus allows the analysis of nonlinear systems to be implemented in a very convenient 

manner very similar to the analysis of linear systems. Moreover, there is an effective 

algorithm [19] available which allows the estimation of the NOFRFs to be implemented 

directly using system input output data. The algorithm generally requires experimental or 

simulation results for the system under investigation under N different input signal 

excitations, which have the same waveforms but different intensities. 

3.2 NOFRFs under Harmonic Input 

Harmonic inputs are pure sinusoidal signals which have been widely used for dynamic 

testing of many engineering structures. Therefore, the extension of the NOFRF concept to 

the harmonic input case is of considerable engineering significance.  

When system (11) is subject to a harmonic input 

)cos()( βω += tAtu F                                                     (20) 

Lang and Billings [17] showed that equation (12) can be expressed as 

∑ ∑∑
= =++=
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where 
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otherwise

kk F 1, ±=∈ ωω
                          (22) 

Define the frequency components of nth order output of the system as nΩ , according to 

Equation (21), the frequency components in the system output can be expressed as 
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N

n
n

1=

Ω=Ω                                                      (23) 

and nΩ  is determined by the set of frequencies 

{ }niFkkk in
,,1,|

1
 =±=++= ωωωωω                           (24) 

From Equation (24), it is known that if all 
nkk ωω ,,

1
  are taken as Fω− , then Fnωω −= . 

If  k of them are taken as Fω , then Fkn ωω )2( +−= . The maximal k is n. Therefore the 

possible frequency components of  )( ωjYn  are     

nΩ ={ }nkkn F ,,1,0,)2( =+− ω                                   (25) 

Moreover, it is easy to deduce that   

},,1,0,1,,,{
1

NNkk F

N

n
n  −−==Ω=Ω

=

ω                          (26) 

Equation (26) explains why some superharmonic components will be generated when a 

nonlinear system is subjected to a harmonic excitation. In the following, only those 

components with positive frequencies will be considered. 

The NOFRFs defined in Equation (17) can be extended to the case of harmonic inputs as 
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under the condition that 
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                           (28) 

Obviously, )( ωjG H
n  is only valid over nΩ  defined by Equation (25). Consequently, the 

output spectrum )( ωjY  of nonlinear systems under a harmonic input can be expressed as 

∑∑
==

==
N

n
n

H
n

N

n
n jAjGjYjY

11

)( )( )()( ωωωω                             (29) 

When k of the n frequencies of 
nkk ωω ,,

1
  are taken as Fω  and the others are as Fω− , 

substituting Equation (22) into Equation (28) yields,   

βω )2(||
2

1
))2(( knjn

nFn eAknjA +−=+−                              (30) 

Thus )( ωjG H
n  becomes 
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Where ),...,( 1 nn jjH ωω  is a symmetric function. Therefore, in this case, )( ωjG H
n  over 

the nth order output frequency range nΩ = { }nkkn F ,,1,0,)2( =+− ω  is equal to the 

GFRF ),...,( 1 nn jjH ωω  evaluated at ,1 Fk ωωω === ,1 Fnk ωωω −===+   nk ,,0= .  

3.3 NOFRFs of Bilinear Oscillators under Harmonic Inputs 

Consider the fourth-order nonlinear polynomial system used to approximate a bilinear 

oscillator 

)(4
4

3
3

2
21 tfkxckxckxckxcxcxm =+++++                              (32)  

where 3c  = 0 according to the approximation results in Table 1.  By setting 

kmc

c

12
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=ε ,  0
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3
3 ==
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c
ε ,  

1

4
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c
=ε ,  

m

tf
tf

)(
)(0 =  

Equation (32) can be expressed in a standard form 

)(2 0
42

4
22

2
2 tfxxxxx LLLL =++++ ωεωεωςω                             (33) 

The first order frequency response function can easily be determined from the linear part 

of Equation (33) as 

2211 )(2)(

1
)()(

LL

H

jj
jHjG

ωωςωω
ωω

++
==                            (34) 

The GFRF up to 4th order can be calculated recursively using the algorithm by Billings 

and Peyton Jones [31] to produce the results below. 

)()()(),( 2112111
2
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),,( 31221322112

2
3213 ωωωωωωεωωωω jjHjHjjHjHjjjH L +−=  

                                  ] )(),()( 321121231 ωωωωωω jjjHjjHjH ++×+                        (36) 

[ ),,,()(),,,( 432142243211
2

43214 ωωωωεωωωωωωωωω jjjjHjjjjHjjjjH L ×+++−=  

]),,,( 4321444 ωωωωε jjjjH+                                                  (37) 

where 

[ ),,()(
2

1
),,,( 432311432142 ωωωωωωωω jjjHjHjjjjH =  



 14 

                                        ),,()(),,()( 421331431321 ωωωωωωωω jjjHjHjjjHjH ++  

                                        ] [ ),(),(
3

1
),,()( 432212321341 ωωωωωωωω jjHjjHjjjHjH ++  

]),(),(),(),( 322412422312 ωωωωωωωω jjHjjHjjHjjH ++   (38) 

),,,( 432144 ωωωω jjjjH )()()()( 41312111 ωωωω jHjHjHjH=                                      (39) 

From Equations (35)~(39), it can be seen that ),,,( 43214 ωωωω jjjjH , 

),,( 3213 ωωω jjjH  and ),( 212 ωω jjH  are symmetric functions. Therefore, when the 

system in (32) is subjected to a harmonic loading, the NOFRFs of the system can be 

described as  

)2()(),()2( 1
2
1

2
222 ωωωεωωω jHjHjjHjG L

H −==                        (40) 

[ ] 2
1

2
11

22
2

2
33 |)(|)(2)2(

3

2
),,()( ωωωωεωωωωω jHjHjHjjjHjG LL

H +=−=                   (41) 

)3()2()(2),,()3( 11
3
1

2
2

4
33 ωωωεωωωωω jHjHjHjjjHjG L

H ==                                    (42) 

[ ])2()2()2(),,,()2( 4444221
2

44 ωεωεωωωωωωω jHjHjHjjjjHjG L
H +−=−=             (43) 

[ ])4()4()4(),,,()4( 4444221
2

44 ωεωεωωωωωωω jHjHjHjjjjHjG L
H +−==               (44)  

where 
[ ]{ )2()()3()2(),,,()2( 1111

22
2

2
4242 ωωωωωεωωωωωω jHjHjHjHjjjjHjH LL +==  

 } [ ]2|)2(||)(|
3

1
|)(|)()(2 2

1
44

1
2
2

2
1

2
11 +++ ωωωεωωω jHjHjHjHjH L       (45) 

2
1

2
14444 |)(|)(),,,()2( ωωωωωωω jHjHjjjjHjH =−=                                               (46) 

[ ])2()3(4)2()(),,,()4( 111
4
1

2
2

4
4242 ωωωωεωωωωωω jHjHjHjHjjjjHjH L +==       (47) 

)(),,,()4( 4
14444 ωωωωωω jHjjjjHjH ==                                                                   (48) 

4 Frequency Domain Energy Transfer of Bilinear Oscillators under 
Harmonic Loadings 

4.1 General Analysis 

It is well known that nonlinear systems subject to a harmonic input can generate higher 

order harmonic output components, and consequently transfer signal energy from the 

input frequency to higher order harmonics in the output. The introduction of the NOFRF 

concept can clearly explain and even predict how and when this phenomenon happens. 

Equations (25) and (29) indicate that if N = 4, then the 2nd, 3rd and 4th order harmonics 

could appear in the system output frequency response, and the output spectrum can 

analytically be described as 
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)()()()()( 3311 FF
H

FF
H

F jAjGjAjGjY ωωωωω +=                            (49) 
         )2()2()2()2()2( 4422 FF

H
FF

H
F jAjGjAjGjY ωωωωω +=                   (50) 

                        )3()3()3( 33 FF
H

F jAjGjY ωωω =                                                         (51) 

)4()4()4( 44 FF
H

F jAjGjY ωωω =                                                         (52) 

Equations (50)~(52) clearly show how the higher order harmonics are generated. This is a 

combined effect of the system characteristics reflected by the NOFRF )( ωjG H
n  and the 

spectrum of the harmonic input raised to power n given by nA  for 4,3,2=n . In addition, 

by taking into account the specific expressions for )2(2 ωjG H , )3(3 ωjG H , )2(4 ωjG H  and 

)4(4 ωjG H  given by Equations (40) and (42)~(44), situation where a strong harmonic 

component can appear in the output of a bilinear oscillator can be easily predicted. 

Because )(1 ωjH  of system (32) has only one resonance at the frequency Lω , )(1 ωjkH  

will have one resonance at the frequency kLω . Therefore the resonances of )2(1 ωjH , 

)3(1 ωjH  and )4(1 ωjH  occur at 2Lω , 3Lω  and 4Lω  respectively. Equation (40) 

shows that  )2(2 ωjG H  contains terms of  )(1 ωjH  and )2(1 ωjH . Consequently, this may 

produce two resonance outputs at Lω  and 2Lω . Similarly, from Equation (41)~(48), 

)3(3 ωjG H  may produce three resonances at Lω , 2Lω  and  3Lω ; )2(4 ωjG H  has three 

possible resonances at Lω , 2Lω  and 3Lω ; and )4(4 ωjG H  has four possible resonances 

at Lω , 2Lω , 3Lω  and 4Lω .  

It is known from equations (50)~(52) that when the driving frequency Fω  coincides with 

one of these resonant frequencies of the NOFRFs, a significant amplitude in the output 

maybe produced corresponding to the higher order harmonic components. Consequently, 

considerable input signal energy may be transferred from the driving frequency to the 

higher order harmonic components in the output. For example, under the case when 

2/LF ωωω == , that is,  the resonant frequency 2/Lω  of )3(3 ωjG H  is reached. It is 

known from (51) that a considerable amplitude can be expected at the output frequency 

2/33 LF ωω = , because the system could transfer input energy from the driving frequency 

2/Lω  to frequency 2/3 Lω  in the output. These observations lead to a novel 

interpretation regarding when significant energy transfer phenomena may take place with 

a bilinear oscillator subjected to a harmonic input. The interpretation is based on the 

concept of resonant frequencies of NOFRFs, and concludes that significant energy 

transfer phenomena may occur with a bilinear oscillator when the driving frequency of 

the harmonic input happens to be one of the resonances of the NOFRFs.  
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This conclusion is likely to be significant in many aspects including both system design 

and fault diagnosis. Simulation studies will be conducted in the following section to 

demonstrate and justify this analysis. 

4.2 Simulation Studies 

The objective of the simulation studies is to demonstrate the effect of the resonances of 

the NOFRFs on the energy transfer phenomena of a bilinear oscillator when subjected to 

harmonic inputs. The analysis is important for system design. In addition, the effect of 

the stiffness ratio Į, which defines the oscillator nonlinearity, will also be investigated to 

show how the NOFRFs change with the stiffness ratio. These results will form the basis 

of the use of a new system fault diagnosis method based on the NOFRFs.  

Consider the bilinear oscillator equation (1) with parameters 

m = 1kg,  k = 41055.3 × N s/m,  c = 23.5619 N/m. 

and the stiffness ratio changing between 1.0 and 0.8. The external force f(t) considered 

was a sinusoidal type force with unit amplitude and frequency Fω  within the range  

02.10 ωω ≤≤ F . The simulation studies were conducted by integrating equation (1) using 

a fourth-order Runge–Kutta method to obtain the forced response of the system. The 

analysis in the previous sections indicates that when the system nonlinearity up to fourth 

order is taken into account, the spectrum of the forced system response can be described 

by equations (50)~(52). 

From these relationships, it is known that the NOFRFs )3(3 F
H jG ω and )4(4 F

H jG ω can be 

determined using the algorithm in [19] with only one level of input excitation. Two levels 

input of excitations are required to determine the NOFRFs )(1 F
H jG ω , )(3 F

H jG ω , 

)2(2 F
H jG ω  and )2(4 F

H jG ω . Therefore, for each stiffness ratio Į and at each frequency 

Fω  of the applied input, two forced responses were obtained with the magnitude of the 

sinusoidal input taken as 1N and 2N respectively, and, from the obtained responses, 

)(1 F
H jG ω , )(3 F

H jG ω , )2(2 F
H jG ω , )2(4 F

H jG ω , )3(3 F
H jG ω and )4(4 F

H jG ω  were then 

determined using the algorithm in [19].   

Figures 6~11 show the amplitudes of these NOFRFs at five different stiffness ratios of 

0.8, 0.85, 0.9, 0.95 and 1.0 and over the range of frequencies of 2.1/0 0 ≤≤ ωωF . From 

these figures, the resonances of the NOFRFs can be determined, and the results are given 

in Table 3~8. According to the analysis in Section 4.1, the resonances of  )2(2 F
H jG ω , 

)2(4 F
H jG ω , )3(3 F

H jG ω and )4(4 F
H jG ω  given in Table 5~8 imply that 
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(1) A significant second order harmonic could be observed when the driving frequency 

Fω  is about 02

1ω , the dominant resonance of )2(2 F
H jG ω  and )2(4 F

H jG ω . 

(2) A significant third order harmonic may appear when the driving frequency Fω  is 

about 03

1ω , the dominant resonance of )3(3 F
H jG ω . 

(3) A significant fourth order harmonic may appear when the driving frequency Fω  is 

about 04

1ω , the dominant resonance of )4(4 F
H jG ω . 

In order to justify these conclusions from the general NOFRF based analysis, the output 

spectra of the bilinear oscillator subjected to harmonic inputs at the frequencies of 

06/1 ωω =F , 03/1 ωω =F  and 02/1 ωω =F , respectively, were determined, the results 

are shown in Figure 12. It can be seen from Figure 12(a) that at 06/1 ωω =F , all higher 

order harmonics, including the second harmonic, are very weak, especially the third 

order harmonic which can hardly be seen. This is simply because in this case 

06/1 ωω =F  is not a resonant frequency of any of the NOFRF involved in the 

expression for the system output spectrum. From Figure 12(b) where 03/1 ωω =F , the 

dominant resonance of )3(3 F
H jG ω , it is known that the third order harmonic becomes 

manifest. This can be explained by equation (51) which indicates that a significant third 

order harmonic could be observed in the system output response. From Figure 12(c) 

where 02/1 ωω =F , the dominant resonances of )2(2 F
H jG ω  and )2(4 F

H jG ω , it can be 

observed that although the third order harmonic is visible, its amplitude is smaller than 

that in Figure 12(b).  This is because, as shown in Figure 10, although 02/1 ωω =F  is a 

resonant frequency of )3(3 F
H jG ω , it is not the dominant resonant frequency. However, 

Figure 12(c) shows that, the second order harmonic is significant. This result is 

completely consistent with the analysis one can achieve from equation (50) which 

shows the effects of the 2nd harmonic can be extremely important when Fω  happens to 

be the dominant resonances of )2(2 F
H jG ω  and )2(4 F

H jG ω .    

In mechanical engineering studies [28], the appearance of superharmonic components in 

the output spectrum is considered to be a significant nonlinear effect. From the 

perspective of the energy transfer, it is the linear FRF which transfers the input energy 

to the fundamental harmonic component in the output spectrum, and it is the NOFRFs 

which transfer the input energy to the superharmonic components. Therefore, to a 

certain extent, one can think that if the superharmonic components contain more energy 

in the output spectrum, then the nonlinear effect of the bilinear oscillator is stronger. 

Figure 13 shows the percentage of the whole energy that the superharmonic components 
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contain at different frequencies for different stiffness ratios. It can be seen that around 

the frequency of 021 ω , the superharmonic components have the biggest percentage of 

the total energy. This implies that, when a bilinear oscillator works around half the 

natural frequency, more energy will be transferred to the superharmonic frequency 

locations, and the bilinear oscillator will thus render the strongest nonlinear 

phenomenon. This result again confirms the analysis result that can be obtained from 

equation (50) about the effects of the resonances of )2(2 F
H jG ω  and )2(4 F

H jG ω  on the 

system frequency domain energy transfer phenomenon. In addition, two weak peaks 

appear in Figure 13 around the frequencies of 03/1 ωω =F  and 04/1 ωω =F , which is 

especially obvious in the case of stiffness ratio Į = 0.8. This is due to the effect of the 

dominant resonance of )3(3 F
H jG ω  and )4(4 F

H jG ω  as indicated by equations (51) and 

(52). 

In engineering practice and laboratory research activities [13][29][30], people have 

observed that, when the excitation frequency passes through the half eigenfrequency of a 

cracked object, the vibration becomes more severe. This phenomenon is known as 

secondary resonance. As a cracked element can often be modelled as a spring with a 

bilinear stiffness, it is known now that the secondary resonance is actually produced by 

the dominant resonances of two NOFRFs )2(2 F
H jG ω  and )2(4 F

H jG ω . Therefore the 

NOFRF based analysis in the present study provides an alternative and more general 

interpretation for the well-known phenomenon of the secondary resonance in cracked 

objects. Furthermore, it can be expected that there would exist 3rd, and 4th, etc. resonances. 

However, compared with )2(2 F
H jG ω  and )2(4 F

H jG ω , the amplitudes of the dominant 

resonances of )3(3 F
H jG ω  and )4(4 F

H jG ω  are relatively small, moreover, the amplitudes 

of Ai(jȦ), i=1,…,4 decrease with the order number i, therefore the effects from the 3rd and 

4th, etc. resonances are often not so manifest.  

All the above analysis results verify the general analysis given in Section 4.1, and reveal 

the significant effect of the resonances of NOFRFs on the energy transfer phenomena of 

bilinear oscillators. These NOFRFs’ resonance based analysis for the energy transfer 

phenomenon of bilinear oscillators can be directly used in system design. Given the 

driving frequencies of possible harmonic loadings with a bilinear oscillator, if the 

objective for the oscillator design is to reduce the energy of higher order harmonic 

components, then the analysis implies that the natural frequency of the linear part of the 

oscillator 0011 / ωωω ≈== cmkcL  has to be designed such that no frequencies of 

possible harmonic loadings may happen to be resonances of associated NOFRFs, which, 

for the specific cases above, are 0ω , 02/1 ω , 03/1 ω  and 04/1 ω . 
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In addition to the resonances of the NOFRFs, from Figures 6~11, the relationship 

between the stiffness ratio and the NOFRFs can also be observed; the dependence of the 

NOFRFs on the stiffness ratio is more clearly manifest by the magnitudes of NOFRFs at 

the resonant frequencies. Because many cracked rotors and beams can be modelled as a 

bilinear oscillator and the stiffness ratio in the oscillator model represents the size of 

cracks, the NOFRFs of the rotors and beams at resonances are a significant indicator. 

Therefore, there is considerable potential to use the NOFRFs evaluated at their 

resonances to conduct fault diagnosis and estimation for these mechanical systems and 

structures. 

5 Conclusion 

This paper presents an analysis of the energy transfer phenomenon of bilinear oscillators 

in the frequency domain using the NOFRF concept recently developed by the authors. It 

is verified that a bilinear oscillator can be approximated by a fourth-order polynomial-

type nonlinear model, which can easily be analyzed using the Volterra series theory of 

nonlinear systems. The NOFRF concept is then used to analyze the forced response of a 

bilinear oscillator subjected to a sinusoidal excitation. The results of the analysis reveal, 

for the first time, that when the frequency Fω  of the input force is close to the resonances 

of the associated NOFRFs, such as 02/1 ω , 03/1 ω  and 04/1 ω , etc, considerable input 

energy will  be transferred to the superharmonic locations of Fω2 , Fω3  and Fω4 , etc. 

This is an important conclusion regarding when the phenomenon of new frequency 

generation may occur with bilinear oscillators, and is of practical significance for the 

system design. In addition, it is demonstrated that the magnitudes of the NOFRFs at the 

resonances are a significant indicator of the value of the stiffness ratio in the bilinear 

oscillator model. Because the stiffness ratio is directly related to the crack size of cracked 

mechanical systems and structures which can be modelled by a bilinear oscillator, the 

NOFRF based analysis has a great potential in mechanical system fault diagnosis. 
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Figure 6 NOFRFs HG1 (j Fω ) at different stiffness ratios  

Figure 7 NOFRFs HG3 (j Fω ) at different stiffness ratios  
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Figure 9  NOFRFs HG4 (j2 Fω ) at different stiffness ratios  
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Figure 11 NOFRFs HG4 (j4 Fω ) at different stiffness ratios  
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           (a) 06/1 ωω =F                              (b) 03/1 ωω =F                           (c) 02/1 ωω =F  

Figure 12 The spectra of the output at different frequencies (Į = 0.8) 
 

Table 3 Resonance of )(1 F
H jG ω  

Stiffness 
Ratio 

First Resonance 

Frequency 
(×Ȧ0) 

Amplitude 

0.80 0.94667 2.6748e-4 

0.85 0.95333 2.5509e-4 

0.90 0.96667 2.4450e-4 

0.95 0.98667 2.3423e-4 

1.00 1.00000 2.2545e-4 

 
Table 4 Resonance of  )(3 F

H jG ω  

Stiffness 
Ratio 

First Resonance 

Frequency 
(×Ȧ0) 

Amplitude 

0.80 0.9400 4.3827e-19 

0.85 0.9533 4.1928e-19 

0.90 0.9667 1.5892e-19 

0.95 0.9867 1.7522e-19 

1.00 1.0000 0.0000e-19 
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Table 5 Resonances of )2(2 F
H jG ω  

Stiffness 
Ratio 

First Resonance Second Resonance 

Frequency 
(×Ȧ0) 

Amplitude 
Frequency 

(×Ȧ0) 
Amplitude 

0.80 0.9467 1.0290e-5 0.4733 3.8824e-5 

0.85 0.9533 7.1957e-6 0.4800 2.7317e-5 

0.90 0.9667 4.4698e-6 0.4867 1.7116e-5 

0.95 0.9867 2.0882e-6 0.4933 8.0414e-6 

1.00 NaN NaN NaN NaN 

 
Table 6 Resonances of )2(4 F

H jG ω  

Stiffness 
Ratio 

First Resonance Second Resonance 

Frequency 
(×Ȧ0) 

Amplitude 
Frequency 

(×Ȧ0) 
Amplitude 

0.80 0.9467 1.4701e-6 0.4733 5.5466e-6 

0.85 0.9533 1.0280e-6 0.4800 3.9027e-6 

0.90 0.9667 6.3856e-7 0.4867 2.4453e-6 

0.95 0.9867 2.9832e-7 0.4933 1.1488e-6 

1.00 NaN NaN NaN NaN 

 
Table 7 Resonances of )3(3 F

H jG ω   

Stiffness 
Ratio 

First Resonance Second Resonance Third Resonance 

Frequency 
(×Ȧ0) 

Amplitude 
Frequency 

(×Ȧ0) 
Amplitude 

Frequency 
(×Ȧ0) 

Amplitude 

0.80 0.9467 7.0983e-7 0.4733 3.2564e-6 0.3133 5.3510e-6 

0.85 0.9533 3.5522e-7 0.4800 1.6534e-6 0.3200 2.7400e-6 

0.90 0.9667 1.6106e-7 0.4667 6.7182e-7 0.3267 1.1055e-6 

0.95 0.9867 3.8108e-8 0.4933 1.5098e-7 0.3333 2.4882e-7 

1.00 NaN NaN NaN NaN NaN NaN 
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Table 8 Resonances of )4(4 F
H jG ω  

Stiffness 
Ratio 

First Resonance Second Resonance 

Frequency 
(×Ȧ0) 

Amplitude 
Frequency 

(×Ȧ0) 
Amplitude 

0.80 0.9467 1.4182e-6 0.2333 1.9339e-5 

0.85 0.9533 1.0412e-6 0.2400 1.4268e-5 

0.90 0.9667 6.6331e-7 0.2400 8.9509e-6 

0.95 0.9867 3.1042e-7 0.2467 4.2988e-6 

1.00 NaN NaN NaN NaN 
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Figure 13  The percentage of the whole energy that the superharmonic components 

contain at different frequencies for different stiffness ratios 
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