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Abstract—A new unsupervised forward orthogonal search (FOS) algorithm is introduced for
feature selection and ranking. timee new algorithm, features aselected in a stepwise way,
one at a time, by estimatingethcapability of each specified candidate feature subset to
represent the overall features in the mearment space. A squared correlation function is
employed as the criterion to measure the ddpecy between features and this makes the
new algorithm easy to implement. The fordiarthogonalization strategy, which combines
good effectiveness with high efficiency, elembthe new algorithm to produce efficient
feature subsets with a clgatnysical interpretation.

Index Terms—Dimensionality reduction, featuselection, high-dimensional data.

1. Introduction

In the literature many approaches have bgeposed for dimensionality reduction [1]-[3].
The existing dimensionality reduction methods camghly be categorised into two classes:
feature extraction anceéture selection. In feature extian problems [3][4], the original
features in the measurement space are imitteéinsformed into a new dimension-reduced
space via some specified transformation. Signitiéaatures are then determined in the new
space. Although the significant vables determined in the new space are related to the
original variables, the physical interpretation in terms of the original variables may be lost. In
addition, although the dimensionality may be tJyeeeduced using some feature extraction
methods, such as principal component analfa3A) [5], the transformed variables usually
involve all the original vadbles. Often the original viables may be redundant when

forming the transformed variables. In manyse&s it is desirabléo reduce not only the
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dimensionality in the transforrdespace, but also the number\@iriables that need to be
considered or measured [6][7].

Unlike feature extraction, feature selection atmseek optimal or suboptimal subsets of
the original features [7]-[15], by preservitige main information carried by the collected
complete data, to facilitate future analy®s high-dimensional problesa In fact, in many
cases the inclusion of insignificant variablgdl inevitably complicate data inspection and
modelling without providing any extra informatidmecause the insignificamariables are, in
a sense, irrelative or redundaauhd thus can be ignored [1@)etailed discussions on various
feature selection algorithnesin be found in [3][8][11].

It is worth mentioning that dimensionalitydction is not necesshr always the best
solution to all high-dimensional problems [17]. Consider the following scenario: assume that
there are hundreds or even thousands of featand each feature pateily carries a small
amount of information. The problem is how éatract and integrate these little pieces of
information. Instead of reducing the dimensidgaBreiman [17] suggested an attractive and
almost opposite approach to handle this probiaorease the dimensionality by adding many
functions of the predictor variables. Two outgteng examples of work in this direction are
the Amit-Geman method [18][19] arsdipport vector machines [20].

This study introduces a new unsupervisedttdire selection and ranking method, which
belongs to the second class aforementioned. Thisfasward orthogonal search (FOS)
algorithm bymaximizing the overall dependency (MOD), to detect significant variables and
select a subset from a library consisting oftad original variablesThe main idea behind the
new method is that the overall featuresthe original measurement space should be
sufficiently represented, using the selectetdset. The new feature selection method, which
will be referred to as the FOS-MOD algorithprovides a ranked list of selected features

ordered according to theercentage contribution (the capdp for representing the overall



features). The new unsupervidedrning algorithm is differerftom other selection methods
in that it subtly combines the forward lmogonalization scheme withe maximisation of the
overall dependency. The mechanism of the RGP algorithm is simple and quite easy to

implement, and can produce efficient subsets witlrect link back to the underlying system.

2. The new unsupervised learning algorithm
2.1 The basic idea

Let S={x,,x,,:-,x,} be the collected full data set formed by a totalNbfobservations
(instances) anah attributes in the measeement space, where thh instance vector is
[x,(K),x,(K),--,x,(k)]and the observation vector for tith attribute isx; =[x; @),x; (2),---,
x;(N)]" . The objective of feature lgetion is to find a subs&} ={z,,z,, -z} ={x; ",
x; }, which can be used to represent the original features, where i, {12, n}, m=1,

2,...d withd <n(generallyd << n if the measurement space is of large dimension). The basic
requirement is that the overdiatures in the measurement space should be sufficiently

represented usir§y by ensuring that the variation in tbeerall features can be explained by
the elements 08, with an acceptable degree of acgufdis means that any data vecior
in the measurement space should be well approximated3jsinghe sense that

X, = (2,2, --,24) + ¢ 1)
wheref. is an unknown function describirie relationship between tligh variable and the
selected variablesg, is an unobservable error representing the discrepancy in the

approximation. In the present study, the commasigd linear model will be considered

d
X; :Z:¢§?i'mzm+ei (2)
m=1
The performance of the selected suljatan be evaluated by inspecting the approximation

capability ofS,in reproducing individual features (i=1,2, ... ,n) in the measurement space,



for example, what percentage of the variation;ican be accounted for by the elements;in
Assume that the percentage that the variatiox) @an be accounted for by the elements;in

isp (d), the average percentage that #agiation in the overall features,x,,---,x,can be
accounted for byg, can then be defined a8d) = 1/ n)zi”:l p.(d). If the percentage(d)is

larger than a given threshol8, can then be determined as the final subset; otherwise, new

significant variables need to be added Bto

2.2 Feature detection and ranking
The objective of feature ketion is to seek a number of sifigant features to form a feature
subset, which is representative and can cherae the main property of all the original

features. Feature selection sdafrom a given full data s8t={x,,x,,---,x,}, and significant

features are selected in @&pvise way, one featerat a time. Many criteria [8] can be
employed to measure the similarity betwdeatures. In the prest study, the squared-
correlation coefficient [21]-[22] will be used iaterfere with the selection procedure. The

squared-correlation coefficiebétween two random vectarsandy of size N x1is given below

(x'y)? _ (Z:il)(iYi)z 3)
COGTY) ST eI g2

At the first step, let

sc(x,y) =

Cli, jA] =sc(x;,x;) ,i,j=1,2,...,n, (4)
CLit == Cli, )
f, =argmax q j1} (6)

The first significant variable can then be selected,ax, , and the associated orthogonal
variable can be chosen gs=z,. Notice that the first selected featare x, explains the

variation in the overall featuresgith the highest percentagegmpared with any other single



feature in the candidate st In other wordsz, =x, is the most relevant feature #ito

represent all the other features.
Assume that a feature subSgt,, consisting of ifr-1) significant variablesz,,- -,z ,,

has been determined at stepX), and the 1) selected variables have been transformed

into a new group of orthogonalized variablgsq,,-:-,q,,; via some orthogonal
transformation. Themth significant feature,will be chosen in such a manner: the subset
Sna+{z,} should be the most ‘representativeidathus the most ‘informative’ subset
compared with any other subsets formed by adding a candidate feeiyre o select the

mth significant variable,,, let a; e S-S, ;. Orthogonalizeu; with q,,q,,*,q,,, as below

m_ . ojg 0idna (7)

q; a; m-1
: J qI‘h qrn—lq m-1

The squared-correlation coefficient betwegand q'™ is

Cli, j; ml = so(x;q{™) (8)
Let
CLjsmil = Cli. sl ©)
! =argmax C[ j; mj} (10)
1<j<n

The mth significant variable can then be chosen,asx, , and the associated orthogonal
variable can be chosengs= qj,:) . The 1) features,,---,z,, ,(respectively the associated
orthogonalized variableg,q,, :-,q,, 1), by including themth featurer, =x, (respectively the

A =q§:)) , can explain the variatian the overall features wita higher percentage than by

including any other candidate feature.
Subsequent significant variables can be seteat the same way step by step. At each

step, the ‘best’ variable that accounts for theaten of the overalléatures with the highest



percentage is selected. The FOS-MOD algorithm is thus quite easy to implement and can
often produce sparse feature subsets for gesetaction problems. T& algorithm, as a
greedy non-exhaustive search method, howeway, not always produce an optimal feature
subset. In fact, for any non-exhaustive sealgorithm, there is no a guarantee that the

algorithm can produce an optimal feature subset [23].

2.3 Monitoring the search procedure
Assume that a subs&t={z,,---,z} ={x, ,--,x; } =S has been obtained, where each element
of S, is considered to be ‘impori# for representing the overall features. In the linear case,

each data vector, (j=1,2, ... ,n) in the measurement spacan be approximated using a

linear combination of,,---,z,, as below

m

k=1
or in a compact matrix form
where the matri® =[z,,---,z,] is of full column rank,0, =[6,,,---.6,,]" is a parameter
vector, and; is an approximation error. From the abdeature selection procedure, the full
rank matrixP can be orthogonally decomposed as

P=QR (13)

whereR is anmxmunit upper triangular matrix anQ is an Nxmmatrix with orthogonal
columns q,,q,, --,q,,- Substituting (13) into (12), yields

where g, =[g;,,-,9;,,]' =RO; is an auxiliary parametevector. Using the orthogonal

property ofQ, g;,can be directly calculated from; andQ using g, :(ijqk)/(qlqk)



for k=1,2, ...m. The unknown parameter vectér can then be easily calculated from
g; andR by substitution using thspecial structure &.
From (14), the total sum of sqes of the independent variaklg, with respect to

q:,.9,," ", q,, (or equivalently with respect tg,---,z,,,), can be expressed as

X[X; =) OF akdy +eje; (15)

k=1

Following [21]-[22], thekth error reduction ratio (ER) introduced by including, (or

equally by including, ) in to the subset, is defined as

2 /T T 32
gj,k(quqk)Xlocp/O: (quk)

ERR j; K] =
XX (x]x;)(azq)

x100%, k=1,2, ...,m, (16)
The sum of error reduction ratio (SERR) due tq,,q,,---,q,, (or equally due te,,---,z,,) are

defined as [24]

SERHA j;m| =) ERR j;K] (17)
k=1
The percentage of the variation in the overaltdiees that can be accounted for by the subset

S, can then be calculated as
SERR M =%ZSERRU; m| (18)
j=1

The criterionSERR can be used to measure thef@enance of the selected subSetand to

monitor the search procedure. 3ERR is larger than a given threshold, the associated
subseg, can then be considered to be sufficientdpresent the overdiatures; otherwise,
more significant variables need to be included.

The time required to implement the FOS-M@Igorithm is mainly determined by two
parts: the orthogonalization procedure (7) and the calculation of the correlation matrix (8).

The orthogonalization procedure (7) is of the comple&{ym-1)N) withm<<n, and the

calculation of the correlation matrix (8) is of the compleXyn®N ), wheren is the number



of candidate features and is the number of observations. The overall computational

complexity of the FOS-MOD algorithm for each search step is thus of the@(afa ).

3. Experiments

3.1 Example 1- the Alate Adelges data

The Alate Adelges data set comprises 19aldeis measured on each of 40 winged aphids
(alate adelges) that had besaught in a light trapThis data set was studied in [25] using
principal component analysis. The full 409 data matrix is available in [7], where a very
efficient procrustes analysis method has bpesposed to select variables that preserve
multivariate data structure.

The original data were standardizeddathe following analysis was based on the

normalized data. Denote tH&® variables (attributes) by x,,---,x4. By applying the new

FOS-MOD algorithm to the data set, the sigiafice of the 19 variables has been detected
and the detection results are shown in Tabkalere variables are ranked according to the
percentage contribution to the unigeng overall characteristics. N that the first 3 features,

X3, %7, %, Selected by the FOS-MOD algorithm adentical to those selected by the B4

method in [26]. The B4 method is a PCA baapg@roach, which involvethe use of the first
p components themselves. Candidate varg@aldee associated with each of the fipst
components in some specified manner gndariables are retained and the remaining

variables are rejected (see [16] and the refage therein for details about the B4 method).

If the threshold foBERR is set to be 0.95, a subset of 9 features should then be
considered. To evaluate how well the 9-featubset captures the structure of the complete
data, a further principal component analysis wane on both the complete data and the data
formed by the selected 9 features. Fig.ljfe¢sents the two-dimensional graph of the
complete data matrix while Fig.1(b) presetite two-dimensional representation of the 9-

feature subset. Clearly, the 9-feature sulpetvides a satisfactory peesentation for the



complete data providing that capturing the ddtacture is the prime objective. In Fig.1(a),
both of the first two principal components (PCas® functions of allhe 19 variables, whilst
in Fig.1(b) the first two PC’s ownlinvolve the nine selected nables. Table 1 clearly shows
which of these individual varidds contribute most and providaganked list of these. This
aids interpretation because PC'’s in general casefinctions of all the original variables but
FOS-MOD shows individual contributions.

Notice that Fig.1 only graphically presenit® performance of the FOS-MOD algorithm
by qualitatively comparing the structure formeyg the first two associated PC’s. From this
visual illustration, however, it is difficult to adin a quantitive measure about how efficient
the subsets selected by the FOS-MOD algorithm are. In the following the FOS-MOD
algorithm was thus applied to pattern classifaa by analysing several real data sets, to

guantitively inspect the efficiey of the new algorithm.

TABLE 1
FEATURE DETECTION AND RANKING RESULTS FOR THE
ALATE ADELGESDATA

2
RS
Step | Feature | ERR (%) | SERR(%) 15| oo @ o
No. 1 _:T-h— + =B
1 13 69.4245 69.4245 os| Bl o
ol + +
2 17 11.2188 80.6433 S osl
3 11 4.4604 85.1037 R . g’o
4 5 3.5045 88.6082 15| e S
5 19 24312 91.0394 - o ©
6 18 1.6673 92.7067 3 il
-8 -5 -4 -2 [+] 2 4 (=3 a8
7 9 1.1296 93.8363 po1
8 6 1.0512 94.8875 (a)
9 10 0.9699 95.8574 2 =
10 15 0.7766 96.6340 e oo .
1) +f aEr
11 1 0.7318 97.3658 os| v
12 14 0.7041 98.0699 a ©° # . =
% 08 (SN
13 16 05112 98.5811
| B
14 8 0.3926 98.9737 a5 5
| *
15 2 0.2947 99.2684 v, ° o
25 . : .
16 2 0.2802 99.5487 D S 2 02 8 0s
7 3 02115 99.7602 (b)
18 12 0.1233 99.8835 Fig. 1 Alate Adelges data plottexgainst the first two principal
19 7 0.1165 100.000 components. (a) cpmputed from aI_I the _19 vgriables; (b)
computed from the first 9 selected variables listed in Table 1.
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3.2 Example 2—data sets from UCI Machine Learning Repository
Five real datasets, taken from the UCI maeHearning repository2[7], are considered. The
objective is to select a subset for eachaset using the FOS-MOD algorithm, and the

selected subset is then used to replace the associated complete data for designed pattern

classification. The threshold f@ERR in the FOS-MOD algorithm was set to be 0.95 for all
the five datasets. Details about the five dataged associate experiments are given below.

o Wisconsin Breast Cancer (WBC). The Wisconsibreast cancer data contains 699 samples,
where 458 are benign samples (65.52%) and 241 are malignant samples (34.48%). Each
instance is characterized by niattributes. The objective t® predict dignosis results
that are either benign or malignant.

o Wisconsin Diagnostic Breast Cancer (WDBC). This dataset casins 569 samples, where
357 are benign samples (62.74%) and 212 areggnaait samples (37.26%). Each instance
is characterized by 30 real-valued attrésuitThe objective is as in the WBC data.

e Johns Hopkins University lonosphere. This dataset contains 351 samples and 34 real-
valued attributes. Thidataset involves a binagjassification task.

e Cardiac Arrhythmia. This dataset contains 452 instanard 279 attributes. The task is to
classify a patient into one of the 16 classes of cardiac arrhythmia. This dataset was pre-
processed as below. Some values assimg for the attributes numbered by 11,12,13 and
15, and the missing values were filled with some values chosen randomly according to
the distribution of the known vads for the three attributes. toof the values for the 14
attribute are missing and thadtribute was not included iour experiment. Among the
279 attributes, 17 are trivial because all the ntz®ns for these athutes are zero. The
17 zero-valued attributes wemet used in our experiment.

e Forest Cover Type. This dataset represents the forest cover types in a region. There are 54

attributes, 581,012 instances and seven classes of cover types. The first 11340 instances

11



were used as the training data and the B&80 instances were used as the test data.

Following [8], only the first 10 numericalalued attributes were considered.

To inspect the performance of the new FOS-MOD algorithmk-thearest-neighbouk{
NN) algorithm was applied to evalte the classification ac@ay calculated by performing
the following random cross-validation procedure. KN algorithm was performed 20
times over the training and validation data defims below: at each time, about 10% of the
samples were randomly selected and left amgl these were used as the test data; the
remaining 90% samples were used as the traithing. The average cifcation accuracy of
the 20 runs of th&NN algorithm, over the test data, was then calculated. The valyerof

thek-NN rule, was chosen by performing magwperiments for different values kf where
1<k<./N, andN, is the number of the samples in the training set,kands chosen as the

one that gives the bestskification performance.

A feature subset for each of the fivetatets, WBC, WDBC, Forest, lonosphere and
Arrhythmia, was selected. The number of featimegbe selected subsets for the five datasets
was 4, 13, 5, 19, and 96, respectively. kH¢N algorithm was applied to both the original
complete data and the associated feature stitasefich of the five datasets. A comparison
between the classification accuracy based on thelste data and the associated subset for
the five datasets is reported in Table 2.evehthe associated algbms are implemented
using Matlab (R14) on a Sundle-2500 workstation (1.28GHz ).

It can be seen from Table 2 that the clasaiion accuracy based on the selected subsets
is comparable with those based on the complete data. This means that the selected feature
subsets are representative and informative tlamsl can be used to replace the complete data
for pattern classification. Tab only presents the classification accuracy at some specific
value ofk, where thek-NN rule provides the best clasation performance. It may be

informative to compare the overall cldgsition accuracy for different values &f with

12



respect to both the selected subset and the associated complete data. As a benchmark, Fig. 2
depicts such a comparison for theotdatasets Forest and Arrhythmia.

For the dataset WBC, the classification accuracy based on the selected subset is 97.42%,
which is very near to the best result (97.58b)en in [28], where many classifiers were
compared. For the dataset WDBC, the clasgiicaaccuracy based dhe selected subset
here is near to the result [[b5], where the number of features involved in selédubsets is
much more than the 13 used here. In themse, the subs@roduced by the proposed
algorithm for the dataset WDBC is more compa®thile for the dataset Forest, the result
produced by the FOS-MOD algorithm is comparakith those in [8], where several feature
selection algorithms were compared, for theaslets lonosphere and Arrhythmia, the results
here are slightly better than those in [8]. The mechanism of the FOS-MOD algorithm,
however, is quite easy and the implementatiothisf algorithm onlynvolves the calculation
of the squared-correlation mix and the maximization of the overall dependency. The
results of the analysis of these data setsguseveral methods are already given in [8].
Comparing the results of the FOS-MOD algorittuith those in [8] therefore provides a full

comparison of the various methods.

4. Conclusions

A new unsupervised learning algorithm hbheen proposed for feature selection and
dimensionality reduction. The main advantage of the new algorithm is that the
implementation only involves the calculation thfe designed correlation matrix and the
forward orthogonalization prodare. The new algorithm, which combines good effectiveness
with high efficiency, often produces efficiergature subsets, and thus provides an effective
solution to the dimensionality reductionoptem. The algorithm assumes that a linear
relationship exists between sample featutasmany cases, where features are linked by

some nonlinear relationship, this assumption may become unreasonable. In such cases, more

13



variables may need to be included in theafisubset to achieve a satisfactory recognition
result. This is a disadvantage of this typepproach. Future work Winvolve adapting the
present method to accommodate nonlinear relationships and to seek more powerful

dependence measurement criteria.

TABLE 2

A COMPARISON OF THECLASSIFICATION ACCURACY OVER THEORIGINAL COMPLETE DATA AND THE ASSOCIATED
SELECTED SUBSETS USING THE K-NN ALGORITHM

Dataset No. Attributes Accuracy (%) CPU Time for
Complete | Selected Subset Search

Data Subset Complete Dataset Selected Subset (sec)

WBC 9 4 98.16% 2.03 (5-NN) 97.42t 2.16 (15-NN) 0.06

WDBCI[N] 30 13 97.94% 1.67 (5-NN) 97.04F 1.65 (7-NN) 0.64

Forest [N] 10 5 66.07% 2.48 (1-NN) 64.45% 2.23 (9-NN) 0.78
64.391 1.81 {5-NN} 63.181 2.38 {5-NN}

lonosphere 34 19 87.551 3.20 (1-NN) 86.391 5.51 (3-NN) 0.93
84.22+ 4.38 {11-NN} 81.08% 5.63 {11-NN}

Arrhythmia 261 96 65.38% 7.20 (7-NN) 63.65F 4.39 (5-NN) 179
56.92%F 7.70 {95-NN} 56.92% 7.70 {95-NN}

[N]: the original data were normalized in the experiments. { }: the vallkarok-NN rule was suggested by [8].

8651
—E— Complete Data 66

—¥— Selected Subset

—&— Complete Data
—#— Selected Subset

8 8

Accuracy (%)
Accuracy (%)

"5 10 15 20 25 30 35 40 45 50 55 60 65
k
(b)
Fig. 2. A compassion of the classification accuracy based on the complete data and the associatesimybset,
thek-NN algorithm with diferent values ok. (a) for the Forest data; (b) for the Arrhythmia data.

References

[1] M. A. Carreira-Perpinan, “Continuolagent variable models for dimensionality
reduction and sequential data reconstawctiPh.D. dissertation, Dept Computer
Science, Univ. Sheffield, Sheffield, U.K., 2001.

I. K. Fodor, “A survey of dimensn reduction techniques,” LLNL technical report,

[2]

14



UCRL-ID-148494, June 2002.

[3] A.K.Jain, R. P. W. Duin, andNlao, “Statistical patterrecognition: a review,/[EEE
Trans. Pattern Anal. Machine Intell., vol. 22, no. 1, pp. 4-37, Jan. 2000.

[4] A.R.WebbSatistical Pattern Recognition (2" ed.). New York: Wiley, 2002.

[5] 1. T. Jolliffe, Principal Component Analysis (2" ed.). New York: Springer, 2002.

[6] G. P.McCabéPrincipal variables,Technometrics, vol. 26, pp. 137-144, May1984.

[7] W. J. Krzanowski, “Selection of vari@s to preserve multivariate data structure using
principal components Appl. Satist., vol. 36, no. 1, pp. 22-33, 1987.

[8] P. Mitra, C. A. Murthy, and S. K. R4Unsupervised feature selection using feature
similarity,” |EEE Trans. Pattern Anal. Machine Intell., vol.24, pp.301-312, Mar 2002.

[9] B. Krishnapuram, A. J. Hartemink, Carin, and M. A. T. Figueiredo, “A Bayesian
approach to joint feature seteon and classifier designlEEE Trans. Pattern Anal.
Machine Intell., vol. 26, no. 9, pp.1105-1111, Sep. 2004.

[10] M. H. C. Law, M. A. T. Figueiredand A. K. Jain, “Simultaneous feature selection
and clustering using mixture model$ZEE Trans. Pattern Anal. Machine Intell., vol.
26, no. 9, pp. 1154-1166, Sep. 2004.

[11] R. Kohavi and G. H. John, “Mppers for feature subset selectiortif. Intell., vol. 97,
no.1-2, pp. 273-324, Dec 1997.

[12] A. J. Miller,Subset Selection in Regression. London: Chapmen and Hall, 1990.

[13] P. Pudil, J. Novovicovand J. Kittler, “Floating searahethods in feature selection,”
Pattern Recognition Letters, vol.15, no.11, pp. 1119-1125, Nov 1994.

[14] S. K. Pal, R. K. De, and J. BasdWnsupervised feature evaluation: A neuro-fuzzy

approach,1EEE Trans. Neural Networks, vol. 11, no. 2, pp. 366-376, Mar. 2000.

[15] K. Z. Mao, “Identifyng critical variables of prinpal components for unsupervised
feature selection /EEE Trans. Syst., Man, Cybern., Part B, vol. 35, pp.339-344, 2005.

[16] 1. T. Jolliffe, “Discardingvariables in a principal componeamalysis-I: artificial data,”
Appl. Satist., vol. 21, no. 2, pp. 160-173, 1972.

[17] L. Breiman, “Statistial modeling: the two culturesQatistical Science, vol. 16, no. 3,
pp. 199-215, Aug. 2001.

[18] Y. Amit and D. GemarifShape quantization and recagon with randomized trees,”
Neural Computation, vol. 9, no. 7, pp. 1545-1588, Oct. 1997.

[19] Y.Amit, D.Geman, K. Wder, “Joint induction of shapieatures and tree classifiers,”
|EEE Trans. Pattern Anal. Machine Intell., vol.19, no.11, pp.1300-1305, Nov.1997.

[20] I. Guyon, J. Weston, S. Barnhill, Vapnik, “Gene selection for cancer classification

15



[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

using support vector machinesfachine Learning, vol. 46, pp. 389-422, 2002.
M. Korenberg,S.A. Billings,Y.P. LilR. J. Mcllroy, “Orthogonal parameter estimation
algorithm for non-lineastochastic systemslit. J. Control, vol. 48, pp.193-210,1988.
S.A. Billings, S. Chen, M. J. Kanberg, “ldentification oMIMO non-linear systems
suing a forward regression orthogonal estimatot,”J. Control, vol. 49, pp.2157-
2189, June 1989.

T. M. Cover, J. M. Van Campenhot@n the possible orderings in the measurement
selection problem.TEEE Trans Systems Man and Cybernetics, vol. 7, no. 9, pp. 657-
661, Sep. 1977.
H. L. Weli, S. A. Billings, and J. LidTerm and variable selection for nonlinear system
identification,”Int. J. Control, vol. 77, no. 1, pp.86-110, Jan. 2004.
J. N. R. Jeffers, “Two case studiesghia application of pringial component analysis,”
Appl. Satist., vol. 16, no. 3, pp. 225-236, 1967.
l. T. Jolliffe, “Discardng variables in a principal component analysis. II: real data.”
Appl. Satist., vol. 22, no. 1, pp. 21-31, 1973.
D. J., Newman, S. Hettich, C. L. Blake, and C. J. Merz, UCI Repository of Machine

Learning Databasebttp://www.ics.uci.edu/~mlearn/MLRepository.html

http://www.phys.uni.torun.pl/kmfrojects/datasets.htnffaculty of Physics, Dept.

Informatics, Nicolaus Copernicus Univ., Torun, Poland.

16


http://www.ics.uci.edu/%7Emlearn/MLRepository.html
http://www.phys.uni.torun.pl/kmk/projects/datasets.html

