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Abstract�A new unsupervised forward orthogonal search (FOS) algorithm is introduced for 

feature selection and ranking. In the new algorithm, features are selected in a stepwise way, 

one at a time, by estimating the capability of each specified candidate feature subset to 

represent the overall features in the measurement space. A squared correlation function is 

employed as the criterion to measure the dependency between features and this makes the 

new algorithm easy to implement. The forward orthogonalization strategy, which combines 

good effectiveness with high efficiency, enables the new algorithm to produce efficient 

feature subsets with a clear physical interpretation. 

Index Terms�Dimensionality reduction, feature selection, high-dimensional data. 

1.     Introduction 

In the literature many approaches have been proposed for dimensionality reduction [1]-[3]. 

The existing dimensionality reduction methods can roughly be categorised into two classes: 

feature extraction and feature selection. In feature extraction problems [3][4], the original 

features in the measurement space are initially transformed into a new dimension-reduced 

space via some specified transformation. Significant features are then determined in the new 

space. Although the significant variables determined in the new space are related to the 

original variables, the physical interpretation in terms of the original variables may be lost. In 

addition, although the dimensionality may be greatly reduced using some feature extraction 

methods, such as principal component analysis (PCA) [5], the transformed variables usually 

involve all the original variables. Often the original variables may be redundant when 

forming the transformed variables. In many cases it is desirable to reduce not only the 
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dimensionality in the transformed space, but also the number of variables that need to be 

considered or measured [6][7].  

Unlike feature extraction, feature selection aims to seek optimal or suboptimal subsets of 

the original features [7]-[15], by preserving the main information carried by the collected 

complete data, to facilitate future analysis for high-dimensional problems. In fact, in many 

cases the inclusion of insignificant variables will inevitably complicate data inspection and 

modelling without providing any extra information, because the insignificant variables are, in 

a sense, irrelative or redundant, and thus can be ignored [16]. Detailed discussions on various 

feature selection algorithms can be found in [3][8][11]. 

It is worth mentioning that dimensionality reduction is not necessarily always the best 

solution to all high-dimensional problems [17]. Consider the following scenario: assume that 

there are hundreds or even thousands of features, and each feature potentially carries a small 

amount of information. The problem is how to extract and integrate these little pieces of 

information. Instead of reducing the dimensionality, Breiman [17] suggested an attractive and 

almost opposite approach to handle this problem: increase the dimensionality by adding many 

functions of the predictor variables. Two outstanding examples of work in this direction are 

the Amit-Geman method [18][19] and support vector machines [20].  

This study introduces a new unsupervised feature selection and ranking method, which 

belongs to the second class aforementioned. This is a forward orthogonal search (FOS) 

algorithm by maximizing the overall dependency (MOD), to detect significant variables and 

select a subset from a library consisting of all the original variables. The main idea behind the 

new method is that the overall features in the original measurement space should be 

sufficiently represented, using the selected subset. The new feature selection method, which 

will be referred to as the FOS-MOD algorithm, provides a ranked list of selected features 

ordered according to the percentage contribution (the capability for representing the overall 
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features). The new unsupervised learning algorithm is different from other selection methods 

in that it subtly combines the forward orthogonalization scheme with the maximisation of the 

overall dependency. The mechanism of the FOS-MOD algorithm is simple and quite easy to 

implement, and can produce efficient subsets with a direct link back to the underlying system. 

2.     The new unsupervised learning algorithm  

2.1   The basic idea 

Let  be the collected full data set formed by a total of N observations 

(instances) and n attributes in the measurement space, where the kth instance vector is 

and the observation vector for the jth attribute is  

. The objective of feature selection is to find a subset
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2,…,d with (generally  if the measurement space is of large dimension). The basic 

requirement is that the overall features in the measurement space should be sufficiently 

represented using  by ensuring that the variation in the overall features can be explained by 

the elements of with an acceptable degree of accuracy. This means that any data vector  

in the measurement space should be well approximated using in the sense that  
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where is an unknown function describing the relationship between the ith variable and the 

selected variables, is an unobservable error representing the discrepancy in the 

approximation. In the present study, the commonly used linear model will be considered 
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The performance of the selected subset can be evaluated by inspecting the approximation 

capability of in reproducing individual features  (i=1,2, … , n) in the measurement space, 
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for example, what percentage of the variation in can be accounted for by the elements in. 

Assume that the percentage that the variation in can be accounted for by the elements in 

is , the average percentage that the variation in the overall features can be 

accounted for by  can then be defined as

ix dS
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1

)()/1()( .  If the percentage is 

larger than a given threshold,  can then be determined as the final subset; otherwise, new 

significant variables need to be added into.  

)(dp
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2.2   Feature detection and ranking 

The objective of feature selection is to seek a number of significant features to form a feature 

subset, which is representative and can characterize the main property of all the original 

features. Feature selection starts from a given full data set },,,{ 21 nS xxx L= , and significant 

features are selected in a stepwise way, one feature at a time. Many criteria [8] can be 

employed to measure the similarity between features. In the present study, the squared-

correlation coefficient [21]-[22] will be used to interfere with the selection procedure. The 

squared-correlation coefficient between two random vectors x and y of size is given below 1×N
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At the first step, let  
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The first significant variable can then be selected as 
11 lxz = , and the associated orthogonal 

variable can be chosen as . Notice that the first selected feature explains the 

variation in the overall features with the highest percentage, compared with any other single 

11 zq =
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feature in the candidate set S. In other words, 
11 lxz = is the most relevant feature in S to 

represent all the other features.  

Assume that a feature subset , consisting of (m-1) significant variables, , 

has been determined at step (m-1), and the (m-1) selected variables have been transformed 

into a new group of orthogonalized variables via some orthogonal 

transformation. The mth significant feature will be chosen in such a manner: the subset 

 should be the most ‘representative’ and thus the most ‘informative’ subset 

compared with any other subsets formed by adding a candidate feature to. To select the 

mth significant variable , let 
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The mth significant variable can then be chosen as
mm lxz = , and the associated orthogonal 

variable can be chosen as . The (m-1) features (respectively the associated 

orthogonalized variables ), by including the mth feature

)(m
m ml

qq = 11 ,, −mzz L

121 ,,, −mqqq L
mm lxz = (respectively the 

) , can explain the variation in the overall features with a higher percentage than by 

including any other candidate feature.  

)(m
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Subsequent significant variables can be selected in the same way step by step. At each 

step, the ‘best’ variable that accounts for the variation of the overall features with the highest 
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percentage is selected. The FOS-MOD algorithm is thus quite easy to implement and can 

often produce sparse feature subsets for general selection problems. This algorithm, as a 

greedy non-exhaustive search method, however, may not always produce an optimal feature 

subset. In fact, for any non-exhaustive search algorithm, there is no a guarantee that the 

algorithm can produce an optimal feature subset [23].  

2.3   Monitoring the search procedure 

Assume that a subset SS
miimm ⊆== },,{},,{

11 xxzz LL  has been obtained, where each element 

of  is considered to be ‘important’ for representing the overall features. In the linear case, 

each data vector (j=1,2, … , n) in the measurement space can be approximated using a 

linear combination of  as below 
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or in a compact matrix form 
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where the matrix  is of full column rank,  is a parameter 

vector, and  is an approximation error. From the above feature selection procedure, the full 

rank matrix can be orthogonally decomposed as 
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for k=1,2, …,m. The unknown parameter vector can then be easily calculated from 

and

jș

jg R by substitution using the special structure ofR . 

From (14), the total sum of squares of the independent variable, with respect to 

 (or equivalently with respect to ), can be expressed as 
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Following [21]-[22], the kth error reduction ratio (ERR) introduced by including  (or 

equally by including ) in to the subset, is defined as 
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The sum of error reduction ratio (SERR) due to  (or equally due to ) are 

defined as [24] 
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The percentage of the variation in the overall features that can be accounted for by the subset 

can then be calculated as mS

∑
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The criterion SERR can be used to measure the performance of the selected subset and to 

monitor the search procedure. If 

mS

SERR  is larger than a given threshold, the associated 

subset can then be considered to be sufficient to represent the overall features; otherwise, 

more significant variables need to be included. 

mS

The time required to implement the FOS-MOD algorithm is mainly determined by two 

parts: the orthogonalization procedure (7) and the calculation of the correlation matrix (8). 

The orthogonalization procedure (7) is of the complexity O((m-1)N) with , and the 

calculation of the correlation matrix (8) is of the complexity O( ), where n is the number 

nm <<

Nn2
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of candidate features and N is the number of observations. The overall computational 

complexity of the FOS-MOD algorithm for each search step is thus of the order O( ).  Nn2

3.     Experiments 

3.1   Example 1� the Alate Adelges data 

The Alate Adelges data set comprises 19 variables measured on each of 40 winged aphids 

(alate adelges) that had been caught in a light trap. This data set was studied in [25] using 

principal component analysis. The full 40×19 data matrix is available in [7], where a very 

efficient procrustes analysis method has been proposed to select variables that preserve 

multivariate data structure. 

The original data were standardized and the following analysis was based on the 

normalized data. Denote the 19 variables (attributes) by . By applying the new 

FOS-MOD algorithm to the data set, the significance of the 19 variables has been detected 

and the detection results are shown in Table1, where variables are ranked according to the 

percentage contribution to the underlying overall characteristics. Note that the first 3 features, 

, selected by the FOS-MOD algorithm are identical to those selected by the B4 

method in [26]. The B4 method is a PCA based approach, which involves the use of the first 

p components themselves. Candidate variables are associated with each of the first p 

components in some specified manner and p variables are retained and the remaining 

variables are rejected (see [16] and the references therein for details about the B4 method). 

1921 ,,, xxx L

111713 ,, xxx

If the threshold forSERR  is set to be 0.95, a subset of 9 features should then be 

considered. To evaluate how well the 9-feature subset captures the structure of the complete 

data, a further principal component analysis was done on both the complete data and the data 

formed by the selected 9 features. Fig.1(a) presents the two-dimensional graph of the 

complete data matrix while Fig.1(b) presents the two-dimensional representation of the 9-

feature subset. Clearly, the 9-feature subset provides a satisfactory representation for the 
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complete data providing that capturing the data structure is the prime objective. In Fig.1(a), 

both of the first two principal components (PC’s) are functions of all the 19 variables, whilst 

in Fig.1(b) the first two PC’s only involve the nine selected variables. Table 1 clearly shows 

which of these individual variables contribute most and provides a ranked list of these. This 

aids interpretation because PC’s in general cases are functions of all the original variables but 

FOS-MOD shows individual contributions.  

Notice that Fig.1 only graphically presents the performance of the FOS-MOD algorithm 

by qualitatively comparing the structure formed by the first two associated PC’s. From this 

visual illustration, however, it is difficult to obtain a quantitive measure about how efficient 

the subsets selected by the FOS-MOD algorithm are. In the following the FOS-MOD 

algorithm was thus applied to pattern classification by analysing several real data sets, to 

quantitively inspect the efficiency of the new algorithm.  

 
TABLE  1 

FEATURE  DETECTION AND RANKING RESULTS FOR THE 

ALATE ADELGES DATA  

Step Feature 
No. 

ERR (%) SERR(%)

1 13 69.4245 69.4245 

2 17 11.2188 80.6433 

3 11 4.4604 85.1037 

4 5 3.5045 88.6082 

5 19 2.4312 91.0394 

6 18 1.6673 92.7067 

 
(b) 

Fig. 1 Alate Adelges data plotted against the first two principal 
components. (a) computed from all the 19 variables; (b) 
computed from the first 9 selected variables listed in Table 1. 

 
(a) 

7 9 1.1296 93.8363 

8 6 1.0512 94.8875 

9 10 0.9699 95.8574 

10 15 0.7766 96.6340 

11 1 0.7318 97.3658 

12 14 0.7041 98.0699 

13 16 0.5112 98.5811 

14 8 0.3926 98.9737 

15 2 0.2947 99.2684 

16 4 0.2802 99.5487 

 17 3 0.2115 99.7602 

18 12 0.1233 99.8835 

 19 7 0.1165 100.000 
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3.2   Example 2�data sets from UCI Machine Learning Repository 

Five real datasets, taken from the UCI machine learning repository [27], are considered. The 

objective is to select a subset for each dataset using the FOS-MOD algorithm, and the 

selected subset is then used to replace the associated complete data for designed pattern 

classification. The threshold for SERR in the FOS-MOD algorithm was set to be 0.95 for all 

the five datasets. Details about the five datasets and associate experiments are given below. 

•  Wisconsin Breast Cancer (WBC). The Wisconsin breast cancer data contains 699 samples, 

where 458 are benign samples (65.52%) and 241 are malignant samples (34.48%). Each 

instance is characterized by nine attributes. The objective is to predict diagnosis results 

that are either benign or malignant. 

•  Wisconsin Diagnostic Breast Cancer (WDBC). This dataset contains 569 samples, where 

357 are benign samples (62.74%) and 212 are malignant samples (37.26%). Each instance 

is characterized by 30 real-valued attributes. The objective is as in the WBC data. 

•  Johns Hopkins University Ionosphere. This dataset contains 351 samples and 34 real-

valued attributes. This dataset involves a binary classification task.  

•  Cardiac Arrhythmia. This dataset contains 452 instances and 279 attributes. The task is to 

classify a patient into one of the 16 classes of cardiac arrhythmia. This dataset was pre-

processed as below. Some values are missing for the attributes numbered by 11,12,13 and 

15, and the missing values were filled with some values chosen randomly according to 

the distribution of the known values for the three attributes. Most of the values for the 14th 

attribute are missing and this attribute was not included in our experiment. Among the 

279 attributes, 17 are trivial because all the observations for these attributes are zero. The 

17 zero-valued attributes were not used in our experiment. 

•  Forest Cover Type. This dataset represents the forest cover types in a region. There are 54 

attributes, 581,012 instances and seven classes of cover types. The first 11340 instances 
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were used as the training data and the next 3780 instances were used as the test data. 

Following [8], only the first 10 numerical-valued attributes were considered.  

To inspect the performance of the new FOS-MOD algorithm, the k-nearest-neighbour (k-

NN) algorithm was applied to evaluate the classification accuracy calculated by performing 

the following random cross-validation procedure. The k-NN algorithm was performed 20 

times over the training and validation data defined as below: at each time, about 10% of the 

samples were randomly selected and left out, and these were used as the test data; the 

remaining 90% samples were used as the training data. The average classification accuracy of 

the 20 runs of the k-NN algorithm, over the test data, was then calculated. The value of k, in 

the k-NN rule, was chosen by performing many experiments for different values of k, where 

trNk ≤≤1  and is the number of the samples in the training set, and k was chosen as the 

one that gives the best classification performance. 

trN

A feature subset for each of the five datasets, WBC, WDBC, Forest, Ionosphere and 

Arrhythmia, was selected. The number of features in the selected subsets for the five datasets 

was 4, 13, 5, 19, and 96, respectively. The k-NN algorithm was applied to both the original 

complete data and the associated feature subset for each of the five datasets. A comparison 

between the classification accuracy based on the complete data and the associated subset for 

the five datasets is reported in Table 2, where the associated algorithms are implemented 

using Matlab (R14) on a Sun-Blade-2500 workstation (1.28GHz ). 

It can be seen from Table 2 that the classification accuracy based on the selected subsets 

is comparable with those based on the complete data. This means that the selected feature 

subsets are representative and informative, and thus can be used to replace the complete data 

for pattern classification. Table 2 only presents the classification accuracy at some specific 

value of k, where the k-NN rule provides the best classification performance. It may be 

informative to compare the overall classification accuracy for different values of k, with 
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respect to both the selected subset and the associated complete data. As a benchmark, Fig. 2 

depicts such a comparison for the two datasets Forest and Arrhythmia. 

For the dataset WBC, the classification accuracy based on the selected subset is 97.42%, 

which is very near to the best result (97.5%) given in [28], where many classifiers were 

compared. For the dataset WDBC, the classification accuracy based on the selected subset 

here is near to the result in [15], where the number of features involved in selected subsets is 

much more than the 13 used here. In this sense, the subset produced by the proposed 

algorithm for the dataset WDBC is more compact. While for the dataset Forest, the result 

produced by the FOS-MOD algorithm is comparable with those in [8], where several feature 

selection algorithms were compared, for the datasets Ionosphere and Arrhythmia, the results 

here are slightly better than those in [8]. The mechanism of the FOS-MOD algorithm, 

however, is quite easy and the implementation of this algorithm only involves the calculation 

of the squared-correlation matrix and the maximization of the overall dependency. The 

results of the analysis of these data sets using several methods are already given in [8]. 

Comparing the results of the FOS-MOD algorithm with those in [8] therefore provides a full 

comparison of the various methods.  

4.     Conclusions 

A new unsupervised learning algorithm has been proposed for feature selection and 

dimensionality reduction. The main advantage of the new algorithm is that the 

implementation only involves the calculation of the designed correlation matrix and the 

forward orthogonalization procedure. The new algorithm, which combines good effectiveness 

with high efficiency, often produces efficient feature subsets, and thus provides an effective 

solution to the dimensionality reduction problem. The algorithm assumes that a linear 

relationship exists between sample features. In many cases, where features are linked by 

some nonlinear relationship, this assumption may become unreasonable. In such cases, more 
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variables may need to be included in the final subset to achieve a satisfactory recognition 

result. This is a disadvantage of this type of approach. Future work will involve adapting the 

present method to accommodate nonlinear relationships and to seek more powerful 

dependence measurement criteria. 

 

 TABLE  2 
A COMPARISON OF THE CLASSIFICATION ACCURACY OVER THE ORIGINAL COMPLETE DATA AND THE ASSOCIATED 

SELECTED SUBSETS, USING THE K-NN ALGORITHM 
No. Attributes Accuracy (%) 

 
Dataset Complete 

Data 
Selected 
Subset Complete Dataset Selected Subset 

CPU Time for 
Subset Search 

(sec)  
± ±WBC 9 4 98.16 2.03 (5-NN) 97.42 2.16 (15-NN) 0.06 

 ± ±WDBC[N] 30 13 97.94 1.67 (5-NN) 97.04 1.65 (7-NN) 0.64 

± ±Forest [N] 10 5 66.07 2.48 (1-NN) 

64.39 1.81 {5-NN} 

64.45 2.23 (9-NN) 

63.18 2.38 {5-NN} 
0.78 

± ± 
± ±Ionosphere 34 19 87.55 3.20 (1-NN) 

84.22 4.38 {11-NN} 

86.39 5.51 (3-NN) 

81.08 5.63 {11-NN} 
0.93 

± ± 
± ±Arrhythmia 261 96 65.38 7.20 (7-NN) 

56.92 7.70 {95-NN} 

63.65 4.39 (5-NN) 

56.92 7.70 {95-NN} 
179 

± ± 
[N]: the original data were normalized in the experiments. { }:  the value of k in k-NN rule was suggested by [8]. 

  

 

 

 

 

 

  
(a) 

 
(b) 

Fig. 2. A compassion of the classification accuracy based on the complete data and the associated subset, using 
the k-NN algorithm with different values of k. (a) for the Forest data; (b) for the Arrhythmia data. 
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