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Abstract

We prove a decomposition theorem for even-hole-free graphs. The decompositions
used are 2-joins and star, double-star and triple-star cutsets. This theorem is used in the
second part of this paper to obtain a polytime recognition algorithm for even-hole-free
graphs.

1 Introduction

In this paper, all graphs are simple. A cycle is even if it contains an even number of nodes,
and is odd otherwise. A hole is a chordless cycle with at least four nodes. We say that a
graph G contains a graph H if H is an induced subgraph of G, and a graph is H -free if it does
not contain H. In this paper we study even-hole-free graphs. The main result is a structural
characterization of even-hole-free graphs in terms of a decomposition theorem. It is used in
Part IT [5] to construct a polytime recognition algorithm for this class of graphs.

1.1 Related Results

Bienstock [1] shows that it is NP-complete to recognize whether a graph contains an even hole
containing a specified node. Porto [13] gives a linear time recognition algorithm for planar
even-hole-free graphs and Markossian, Gasparian and Reed [12] show how to recognize in
polynomial time even-hole-free graphs that are diamond-and-cap-free. A diamond is a cycle
of length four with a single chord. A cap is a cycle of length greater than four with a
single chord that forms a triangle with two edges of the cycle. In [6], we decompose every
cap-free graph into triangle-free graphs and hole-free graphs (triangulated graphs). This
decomposition is obtained using l-amalgams, a well-studied structure [2]. It reduces the
problem of recognizing cap-free graphs that are even-hole-free to recognizing triangle-free
graphs that are even-hole-free. This question is solved in [7].

In [12], Markossian, Gasparian and Reed introduce -perfect graphs. 5(G) = max{dg+1 :
H is an induced subgraph of G}, where 0y is the minimum vertex degree in H. Consider the
following ordering of the vertices of a graph G: order the vertices by repeatedly removing a
vertex of minimum degree in the subgraph of vertices not yet chosen and placing it after all
the remaining vertices but before all the vertices already removed. Coloring greedily on this
order gives an upper bound for the chromatic number of G: x(G) < B(G). A graph is -
perfect if, for every induced subgraph H of G, x(H) = B(H). B-perfect graphs are a subclass
of even-hole-free graphs. The complexity of their recognition remains open. Markossian,
Gasparian and Reed [12] show that both G and its complement are S-perfect if and only
if both G and its complement are even-hole-free. In [12], it is also shown that if G is an
even-hole-free graph then x(G) > @ + 1. Thus, if G is an even-hole-free graph, then the
greedy algorithm can be used to color G using at most 2(x(G) — 1) colors.

Another motivation for this research is indirect. Odd-hole-free graphs are interesting
because of the strong perfect graph conjecture due to Berge, stating that “a graph is perfect
if and only if the graph and its complement are odd-hole-free”. Odd-hole-free graphs contain
the class of perfect graphs and one suspects that understanding their structure will lead to
insight that may help settle the strong perfect graph conjecture. So, part of the motivation
for this research is to develop techniques that may then be used to study odd-hole-free graphs.



It is also worth pointing out that decompositions similar to the ones used here led to the
recognition algorithm for balanced matrices [8], [4].

1.2 Notation and Background

In this paper we use standard graph theory notation (see for example [15]).

Given a node set S and a graph G, G'\ S denotes the subgraph of G obtained by removing
the node set S and the edges with at least one node in S. S C V(G) is a node cutset of a
connected graph G if the graph G\ S is disconnected. Similarly a subset S of the edges of a
connected graph G is an edge cutset if the graph obtained from G by removing the edges of S
is disconnected. Let H be an induced subgraph of G. We say that a cutset S of G separates
H if there are nodes of H in different components of G \ S.

Where clear from context we write H to mean V(H). To denote the singleton set {z}
we sometimes write z. Also we write H U x to mean the graph induced by the nodes of H
together with node z.

A path P is a sequence of distinct nodes x1, z2, ..., %y, n > 1, such that z;z;41 is an edge,
for all 1 < ¢ < n. These are called the edges of the path P. If n > 1 then nodes z; and x,, are
the endnodes of the path. The nodes of V(P) that are not endnodes are called intermediate
nodes of P. Let z; and x; be two nodes of P, where [ > i. The path z;, z;11,...,z; is called
the z;z;-subpath of P and is denoted by P,;,. We write P = z1,..., %1, Pr,a;, Ti41,- -, Tn
or P=uwx1,...,24 Pgz,, 21, ..., Tp. A cycle C is a sequence of nodes x1,%2,...,%,, 1, n > 3,
such that the nodes z1,x2,...,z, form a path and z;z, is an edge. The edges of the path
Z1,...,Ty together with the edge x1x, are called the edges of the cycle C. The length of a
path P is the number of edges in P and is denoted by |P|. Similarly the length of a cycle C
is the number of edges in C and is denoted by |C].

Given a path or a cycle ) in a graph G, any edge of G between nodes of () that is not an
edge of Q is called a chord of Q. Q is chordless if no edge of G is a chord of (). As mentioned
before a chordless cycle of length at least four is called a hole. It is called a k-hole if it has k
edges. A hole is even if k is even and odd otherwise.

Let A, B be two disjoint node sets such that no node of A is adjacent to a node of B. A
path P = z1,x9,...,%, connects A and B if either n = 1 and z; has neighbors in A and B
or n > 1 and one of the two endnodes of P is adjacent to at least one node in A and the
other is adjacent to at least one node in B. The path P is a direct connection between A and
B if, in the subgraph induced by the node set V(P)U AU B, no path connecting A and B is
shorter than P. The direct connection P is said to be from A to B if 1 is adjacent to some
node in A and z, to some node in B.

For z € V(G), N(z) denotes the set of nodes adjacent to z. A node v ¢ V(H) is strongly
adjacent to H, if |[N(v) NV (H)| > 2. We say that a node v is a twin of a node z € V(H)
with respect to H, if N(v) NV (H) = N(z) NV (H) and vz is an edge.

For S C V(G), N(S) denotes the set of nodes in V(G) \ S that are adjacent to at least
one node in S.

In figures, a solid line represents an edge and a dotted line represents a chordless path of
length at least 1.



1.3 The Decomposition Theorem

The cutsets we use to decompose even-hole-free graphs are an edge cutset called 2-join and
node cutsets called star, double-star and triple-star cutsets.

A k-star is a graph comprised of a clique C' of size k and a subset of the nodes having at
least one neighbor in C. Note that a k-star may have edges not incident with C'. We refer
to l-star as a star, to 2-star as a double-star and to 3-star as a triple-star. In a connected
graph G, a k-star cutset is a node set S C V(G) that induces a k-star and whose removal
disconnects G.

A connected graph G has a 2-join, denoted by H|H2, with special sets A, B,C, D that
are nonempty and disjoint, if the nodes of G can be partitioned into sets H; and Hs so that
A,C C Hy, B,D C Hy, all nodes of A are adjacent to all nodes of B, all nodes of C are
adjacent to all nodes of D and these are the only adjacencies between H; and Hs. Also, for
i=1,2, |[H;| > 2 and if A and C (resp. B and D) are both of cardinality 1, then the graph
induced by H; (resp. Hj) is not a chordless path.

Figure 1: 2-join

Star cutsets were introduced by Chvétal [3] and 2-joins by Cornuéjols and Cunningham
[10]. In [8] and [4], 2-joins, star and double-star cutsets are used for recognizing balanced 0, 1
matrices and, together with another edge cutset, the 6-join, for recognizing balanced 0, +1
matrices.

We now introduce two classes of graphs that have no 2-join and no star, double-star or
triple-star cutset.

Given a triangle {z1,x2,z3} and a node y adjacent to at most one node in {x1,x9,z3},
a 3PC(z1x213,y) is a graph induced by three chordless paths Py = z1,...,y, Po = z9,...,y
and Py = z3,...,y, having no common nodes other than y and such that the only adjacencies
between the nodes of Py \ y, P> \ y and Ps \ y are the edges of the triangle {z,z9,z3}. A
3PC(z1m23,y) is also referred to as a 3PC(A, ).

Another class of graphs, which we call nontrivial basic graphs, can be built as follows:
Let L be the line graph of a tree. Note that every edge of L belongs to exactly one maximal
clique and that every node of L belongs to at most two maximal cliques. The nodes of L that
belong to exactly one maximal clique are called leaf nodes. A clique of L is big if it has size
at least 3. In the graph obtained from L by removing all edges in big cliques, the connected



components are chordless paths (possibly of length 0). Such a path P is an internal segment
if it has its endnodes in distinct big cliques (when P is of length 0, it is called an internal
segment when the node of P belongs to two big cliques). The other paths P are called leaf
segments. Note that one of the endnodes of a leaf segment is a leaf node.

Figure 2: Nontrivial basic graph

Define now a nontrivial basic graph R as follows: R contains two adjacent nodes z and
y, called the special nodes. The graph L induced by R\ {z,y} is the line graph of a tree and
contains at least two big cliques. In R, each leaf node of L is adjacent to exactly one of the
two special nodes, and no other node of L is adjacent to special nodes. The last condition
for R is that no two leaf segments of L with leaf nodes adjacent to the same special node
have their other endnode in the same big clique. The internal segments of R are the internal
segment of L, and the leaf segments of R are the leaf segments of L together with the node
in {z,y} to which the leaf segment is adjacent to.

We define a basic graph to be either a 3PC(A,-) or a nontrivial basic graph.

We now state the decomposition theorem for even-hole-free graphs.

Theorem 1.1 A connected even-hole-free graph is either basic or cap-free, or it has a 2-join,
or a star, double-star or triple-star cutset.

1.4 Odd-Signable Graphs

We sign a graph by assigning 0,1 weights to its edges in such a way that, for every triangle
in the graph, the sum of the weights of its edges is odd. A graph G is odd-signable if there is
a signing of its edges so that, for every hole in GG, the sum of the weights of its edges is odd.
Every even-hole-free graph is odd-signable, since we can get a correct signing by assigning a
weight of 1 to every edge of the graph.

So Theorem 1.1 is implied by the following result, which we find more convenient to prove.

Theorem 1.2 (Main Theorem) Let G be a connected odd-signable graph that does not contain
a 4-hole. Then either G is basic or cap-free, or it has a 2-join or a star, double-star or triple-
star cutset.
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Figure 3: An even wheel, a 3PC(-,-) and a 3PC(A, A)

Now we introduce some graphs that are not odd-signable.

A wheel, denoted by (H,z), is a graph induced by a hole H and a node = ¢ V(H) having
at least three neighbors in H, say z1,...,z,. Node z is the center of the wheel. The hole H
is called the rim of the wheel. A subpath of H connecting x; and z; is a sector if it contains
no intermediate node z;, 1 <1 < n. A short sector is a sector of length 1 (i.e. it consists of
one edge), and a long sector is a sector of length at least 2. A wheel is even if it contains an
even number of sectors. A wheel with k sectors is called a k-wheel.

Given nonadjacent nodes x and y, a 3PC(x,y) is a graph induced by three chordless paths
with endnodes  and y, having no common or adjacent intermediate nodes. A 3PC(zx,y) is
also referred to as a 3PC(-,-).

Given node disjoint triangles {x1,z9,z3} and {y1,y2,y3}, a 3PC(z1z2x3,y1Y2Y3), IS a
graph induced by three chordless paths, P, = z1,...,y1, Po = x2,...,y2 and Py = x3,...,ys3,
having no common nodes and such that the only adjacencies between the nodes of distinct
paths are the edges of the two triangles. A 3PC(zix2z3,y1y2y3) is also referred to as a
3PC(A,A).

Let P, P, and P3 be the three paths of a 3PC(-,-). Every pair of these paths induces a
hole. No matter how we sign the edges of the three paths, two of them will have the sum
of the weights of their edges congruent modulo 2, so one of the holes will have even weight.
Therefore 3PC(+,-)’s are not odd-signable. Similarly, it can be shown that even wheels and
3PC(A,A)’s are not odd-signable. So graphs that are odd-signable do not contain even
wheels, 3PC(-,-)’s and 3PC(A,A)’s. The following theorem is an easy consequence of a
theorem of Truemper [14], see also [9], and states that the converse is also true.

Theorem 1.3 A graph is odd-signable if and only if it does not contain an even wheel, a
3PC(-,-) or a 3PC(A,A).

The fact that odd-signable graphs do not contain even wheels, 3PC(+,-)’s and 3PC(A, A)’s



will be used throughout the paper.

2 Proof of the Main Theorem

The first step of the proof is to show that when G contains one of three structures called
gem, Mickey Mouse and proper wheel, then G has a star, double-star or triple-star cutset.

In the second step of the proof, we assume that G does not have a star, double-star or
triple-star cutset (and therefore G does not contain a gem, a Mickey Mouse or a proper wheel).
We show that, if G contains any of three structures called connected diamond, decomposable
3PC(A,-) and decomposable connected triangles, then G has a 2-join.

In the last step, we show that if G contains a cap but no 2-join, star, double-star or
triple-star cutset, then G must be basic.

To help readability, some of the intermediate results are stated without proof in this
section. The missing proofs are provided in later sections.

2.1 Node Cutset Decompositions

A gem is a graph on five nodes, such that four of the nodes induce a chordless path of length
three and the fifth node is adjacent to all of the nodes of this path.

Theorem 2.1 If an odd-signable graph G contains a gem, then G has a triple-star cutset.

Proof: Suppose that the node set {z1,...,25} induces a gem, such that P = x,z2, z3, 24 is
a chordless path. Let S = (N(z2) UN(z3) UN(z5)) \ {z1,z4}. If S is not a triple-star cutset
separating 1 from x4, then there is a chordless path P’ that connects z; to 24 in G\ S,
and the node set V(P) UV (P') U {z5} induces a 4-wheel with center x5, contradicting the
assumption that G is odd-signable. a

The following theorems are proved in Section 3.

Definition 2.2 A Mickey Mouse, denoted by M (zyz, H1, Hs), is a graph induced by the node
set V(Hy) UV (Hz2) that satisfies the following:

e the node set {x,y,z} induces a clique,
e H, is a hole that contains edge xy but does not contain node z,
e Hy is a hole that contains edge xz but does not contain node y, and

e the node set V(Hy) UV (Hz) induces a cycle with exactly 2 chords, xy and zz.

Theorem 2.3 Let G be an odd-signable graph containing no 4-hole. If G contains a Mickey
Mouse, then G has a triple-star cutset.

A bug is a 3-wheel with exactly two long sectors.

Theorem 2.4 Let G be an odd-signable graph containing no 4-hole. If G contains a bug,
then G has a double-star cutset.
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Figure 4: A gem, a Mickey Mouse, a bug and a twin wheel

A twin wheel is a 3-wheel with exactly two short sectors. A wheel is said to be proper if
it is not a twin wheel.

Theorem 2.5 Let G be an odd-signable graph that does not contain a 4-hole, a gem, a Mickey
Mouse or a bug. If G contains a proper wheel, then G has a star cutset.

2.2 Nodes Adjacent to a 3PC(A,-) and their Attachments

Throughout this section, we assume that G is an odd-signable graph that does not contain a
4-hole, and does not have a star, double-star or triple-star cutset. Consequently, by Theorems
2.1, 2.3, 2.4 and 2.5, G does not contain a gem, a Mickey Mouse or a proper wheel.

Lemma 2.6 If H is a hole of G, then any node u ¢ V(H) has at most three neighbors in
H. Furthermore, they are consecutive nodes of H.

Proof: Let u have exactly two neighbors in H, say a and b. If ab is not an edge, the node set
V(H)U{u} induces a 3PC(a,b). If u has more than two neighbors in H and it is not a twin
of a node in H, then (H,u) is a proper wheel. |

Throughout the rest of the section, ¥ denotes a 3PC/(ajazas,aq). The three paths of 3
are denoted by P, 4,, Paya, and Pyyq, (where P, ,, is the path that contains a;). Note that
all three paths of X are of length greater than one, since G does not contain a proper wheel



Figure 5 X = 3PC(a1a2a3, a4)

and a twin wheel is not a 3PC(A,-). For i = 1,2, 3, we denote the neighbor of a; in P,,,, by
ai. Also, ajt4 is the neighbor of a4 in P,,,,. See Figure 5.
Applying Lemma 2.6 to the three holes of 3, we get the following result. See Figure 6.

Lemma 2.7 If u is a strongly adjacent node to 3, then u is one of the following types:
Type 1: u is a twin of a1,a9 or az.
Type 2: u is a twin of ay.
Type 3: u is adjacent to a1, a2, a3 and to no other node of X.
Type 4: u has exactly three neighbors in X, it is adjacent to as and two of the nodes in {as, ag,ar}.
Type 5: u is a twin of a node of 32, that is distinct from a1, a2, a3 and ayg.

Type 6: u has exactly two neighbors in 3, they are adjacent and they do not both belong to the
set {a1,az2,as3}.

Type 7: u has ezactly two neighbors in ¥ and they belong to the set {ai,as,as3}.

Proof: Let u be a strongly adjacent node to . Suppose that u is not one of the Types 1
through 7. It is easy to check that by applying Lemma 2.6 to the three holes induced by the
nodes of ¥, w.l.o.g. u is adjacent to ag,a3 and a}. But then the node set {ai,as,as,as, u}
induces a gem. a

Nodes adjacent to X are further classified as follows.
Type 5a: A Type 5 node that is not adjacent to ag,

Type 5b: A Type 5 node adjacent to aq,
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Type 6a: A Type 6 node that is not adjacent to ag,
Type 6b: A Type 6 node adjacent to aq,

Type 8: A node that is adjacent to 3, but not strongly adjacent,
Type 8a: A Type 8 node that is not adjacent to a4, and

Type 8b: A Type 8 node adjacent to ay.

Lemma 2.8 Let u be a Type 3 node w.r.t. . Let S = N(a1)UN (a2)UN (a3)\{u,a},ah,a}.
Then, in every direct connection P = uy,...,uy from u to ¥\ S in G\ S, the node u, is of
Type 2, 5 or 8 w.r.t. 3. Furthermore, for some i € {1,2,3}, there exists R C P4, such that
the graph induced by V(X \ R) UV (P) U {u} is a 3PC(A,-).

Proof: Since u,, € S, it cannot be of Type 1, 3 or 7 w.r.t. X. If u,, is of Type 4 w.r.t. X, say
adjacent to ay, as and a7, then there exists a 3PC(a1a2u, asasuy). If u, is of Type 6 w.r.t. 3,
say with neighbors r and s in path F,,4,, with r contained in the a;s-subpath of P, 4,, then
since r cannot be coincident with a1, there exists a 3PC/(ajasu, rsuy,). So uy, is of Type 2, 5
or 8 w.r.t. ¥ and the lemma, follows. O

Lemma 2.9 Let u be a Type 7 node w.r.t. ¥, adjacent to say a1 and ag. Let S = N(ay) U
N(a2) U N(a3) \ {u,a},a),as}. Then, in every direct connection P = uy,...,u, from u to
X\ S in G\ S, the node u, is either of Type 4 w.r.t. ¥, adjacent to ay,as and az, or it is of
Type 6 w.r.t. ¥, with both neighbors in Pg,q, \ az. Furthermore, there exists R C Py,q, such
that the graph induced by V(X \ R) UV (P)U{u} is a 3PC(A,").

Proof: First we show that u, must be strongly adjacent to 3. Suppose not and assume that
the unique neighbor of u,, in ¥ is node s. If node s is not contained in V(P,,,,) \ {a4}, then
if s # al, there exists a 3PC(a1, s) and otherwise there exists an even wheel with center a;.
Similarly, if s € V(P,34,) \ {a4}, then if s # af there exists a 3PC(as, s) and otherwise there
exists an even wheel with center a3. Hence w,, must be strongly adjacent to X.

Node uy, cannot be of Type 1, 3 or 7 w.r.t. 3. Suppose u,, is of Type 2 or 5 w.r.t. 3, and
let X' be a 3PC(ajazas,-) obtained from X by substituting w,, for its twin in X. If n = 1,
then u and ¥’ contradict Lemma 2.7. Otherwise, uq,...,u,_1 is a direct connection from u
to X'\ S'in G\ S, contradicting the first paragraph of the proof, since u,—_1 is not strongly
adjacent to ¥'. Therefore, u,, cannot be of Type 2 or 5 w.r.t. ¥. Hence u,, is of Type 4 or 6
w.r.t. 2.

Suppose that u, is of Type 4 w.r.t. 3, but is not adjacent to both as and a7. W.lLo.g.
assume that wu, is not adjacent to a7. Then there is a 3PC(uy,a1). Hence, if u, is of Type
4 w.r.t. X then it is adjacent to a4, a5 and a7. Finally suppose that u, is of Type 6 w.r.t.
¥, but its neighbors in ¥ are not contained in P,,,,. Let r and s be the neighbors of u, in
3 and w.l.o.g. assume they are contained in P, ,,. Let r be contained in the a;s-subpath
of P, q,. Since r cannot be coincident with aq, there is a 3PC(a1a3u,rsu,). This completes
the proof of the lemma. a
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Lemma 2.10 Let u be a node of Type 4 w.r.t. X, adjacent to as and a7. Let S = (N(aq) U
ag)\u. Then, in every direct connection P = uy, ... ,u, from u to X\ S in G\ S, the node u,
is a twin of az, or it is of Type Sa or 8a with neighbors in Py,,, or of Type 7 adjacent to a; and
as. Furthermore, there exists R C P,,q, such that the graph induced by V (X\ R)UV (P)U{u}
is a 3PC(A,").

Proof: If there exists one, let u; be the node of lowest index adjacent to as,ag or a7. If u; is
adjacent to more than one node in as, ag and a7 then u; contradicts Lemma 2.7 since it is not
adjacent to a4. First assume that i < n. If u; is adjacent to as or a7, then either there exists
a Mickey Mouse (when ¢ > 1), or there exists a gem (when ¢ = 1). If u; is adjacent to ag there
is a proper wheel with center a4. Now we consider the case when w,, is the only node in P
that may have a neighbor in {as, ag, a7}. Note that u, cannot be of Type 2, 4, 5b, 6b or 8b
since it is not adjacent to as. Let u,, be of Type 5a, 6a or 8a, with N (u,)NE C P, 4, or Pyyqa,.
Assume w.l.o.g. that N(u,) N3 C P, ,,. Now there exists a 3PC(uasar,ajazas). If u, is
adjacent to a; and ag and no other node of P, 4, U Py,q, there exists a 3PC(uaqas, upazar).
By symmetry u, cannot be adjacent to a3 and a2 and no other node of Py,4, U Pyy0,. SO Uy,
must be of Type 7 adjacent to a; and a3, or u, is a twin of node ag, or N(u,) NX C Py, q,-
In the last case, if u, is of Type 6a there exists a 3PC(uaqas,u,rs) where r and s are the
neighbors of u,, in F,,,, with r contained in the sa4-subpath of P,,,,. O

Lemma 2.11 Let u be a Type 6b node w.r.t. %, say adjacent to aq and as. Let S =
(N(as4) U N(as)) \ {u,as,a7,al}, where al is the neighbor of as in Py e, distinct from ayg.
Then, in every direct connection P = uy,...,u, from u to £\ S in G\ S, the node uy, is one
of the following types:

(i) a Type 8a node w.r.t. ¥, with a neighbor in V(Py,qa,) \ {a4,as,al},
(11) a Type 5a node w.r.t. ¥, with neighbors in Py q,,
(11i) a Type 1 node w.r.t. X, that is a twin of a1,

(iv) a Type 7 node w.r.t. &, that is adjacent to as and as.

Furthermore, there ezists R C P, 4, such that the graph induced by V(X \ R) UV (P) U {u}
is a 3PC(A,").

Proof: Node u,, is not of Type 2, 4, bb, 6b or 8b w.r.t. 3. If u, is of Type ba, 6a or 8a w.r.t.
¥, with a neighbor in V(Py,a,) \{a4,a6} or in V(Py,a,) \ {a4, a7}, assume w.l.o.g. the former,
then there is a 3PC(aia2a3, asuay). If u, is of Type 8a w.r.t. ¥ and it is adjacent to node
ag then there exists a proper wheel with center a4. Similarly if w, is of Type 8a and adjacent
to af there exists a proper wheel with center az. So if u, is of Type 8a it satisfies (i). If uy, is
of Type ba w.r.t. X, it satisfies (ii). If u, is of Type 6a w.r.t. X, with neighbors r and s in 3
that are contained in P, ,, with r contained in the sa4-subpath of P, ,,, then since r cannot
be coincident with as there is a 3PC(sruy,, asasu). Hence u, cannot be of Type 6 w.r.t. X.
If w, is adjacent to a; and ag but not to any other node of V(P,,4,) U V(Ps;4,), then there
is a 3PC(ajupas, asuayg). So uy, cannot be of Type 3. In addition, if u, is of Type 1, then
it must be a twin of a;, and if u,, is of Type 7, then it must be adjacent to as and a3. This
completes the proof of the lemma. O
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Lemma 2.12 Let u be a Type 8b node w.r.t. ¥. Let S = (N(as) Uas) \ u. Then, in every
direct connection P = uy,...,u, from u to X\ S in G\ S, the node u,, is of Type 3 or 6a
w.r.t. X. Furthermore, for some i € {1,2,3}, there exists R C P4, such that the graph
induced by V(X \ R)UV(P)U{u} is a 3PC(A,-).

Proof: Let P = wy,...,u, be a direct connection from v to £\ S in G\ S. P may have
neighbors in {as,as,a7}. No node of P is adjacent to more than one node in {as,as, a7}
since otherwise by Lemma 2.6 it is adjacent to a4 contradicting the assumption that P avoids
nodes in S. If it contains neighbors of all three, P contains a path u;,...,u;, j # n, with u;
adjacent to say as, u; adjacent to ag and no intermediate node adjacent to as,ag or a7. But
then there exists a 3PC/(as, ag). If exactly two of as, ag, a7 have a neighbor in P, say as and
ag, then there exists a 3PC(as,as) unless the unique neighbor of say as, in P is u, and wu,
is strongly adjacent to ¥ with another neighbor in P, ,,. In this case, if ag has more than
one neighbor in P there exists a proper wheel with center ag, and otherwise there exists a
3PC(a4,u;) where u; is the unique neighbor of ag in P. If exactly one of as,ag, a7, say as,
has a neighbor in P then, if a5 has more than one neighbor in P, there exists a proper wheel
with center a5. Let as have exactly one neighbor in P, say u;. Either there exists a proper
wheel with center as, or there exists a 3PC(aq,u;). So P does not contain a neighbor of
as,ag Or ary.

First we show that u, must be strongly adjacent to ¥. Suppose not and let r be the
unique neighbor of w, in 3. Note that r € {a4, as,a6,a7}. W.lo.g. assume that r does not
belong to P,,,,. But then the node set V(P)UV (Py,4,) UV (Pyya,)U{u} induces a 3PC(r, a4).

Node u,, cannot be of Type 2, 4, 5b or 6b w.r.t. X. If u, is of Type 7 w.r.t. 3, say adjacent
to a1 and ag, then the node set V(P) UV (P 0,) UV (Pasa,) U{u} induces a 3PC(ay,a4). If
uy, is of Type 1 or ba w.r.t. X, then there is a 3PC(uy, a4). a

Definition 2.13 For any node w and path P described in Lemmas 2.8-2.12, we say that the
path P is an attachment of node u to .

Corollary 2.14 Let ¥ be a 3PC(ayazas3,a4). Every node u of Type 3, 4, 6b, 7 and 8b w.r.1.
Y has an attachment @Q to X. Furthermore, for some i € {1,2,3}, there exists R C Py,q,
such that the graph induced by V(X \ R) UV (Q) U{u} is a 3PC(A,-) ¥'.

Proof: Since G contains no k-star cutset, k = 1,2, 3, the graphs G'\ S defined in Lemmas 2.8-
2.12 contain a direct connection from u to ¥\ S. By definition, these direct connections are
attachments of u to X and, in each case, ' exists. O

Definition 2.15 A graph X' as described in Corollary 2.1/ is said to be a 3PC(A, ) obtained
from X by substituting u and its attachment Q in 3.

2.3 Crosspaths

Throughout this section we assume that G is an odd-signable graph that does not contain a
4-hole, and does not have a star, double-star or triple-star cutset. Consequently, by Theorems
2.1, 2.3, 2.4 and 2.5, G does not contain a gem, Mickey Mouse or a proper wheel.

In this section we study certain paths that connect nodes in different paths Py a4, Pojays
i # j of a 3PC(a1a2a3,ay).
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Figure 7: Crosspath

Definition 2.16 Let P = wuy,...,u,, n > 2, be a chordless path in G \ ¥ such that uy is
of Type 8a w.r.t. ¥ adjacent to as, uy, is of Type 6a w.r.t. X with neighbors in Py, or
Pyya,, and no node u;, for 2 < ¢ < n —1, is adjacent to a node of ¥. Such a path P is
called an ags-crosspath w.r.t. 3. Similarly we define ag-crosspaths and ar7-crosspaths. For
i € {5,6,7}, if there exists an a;-crosspath we say that a; has a crosspath. If P = uy, ..., upy
is an a;-crosspath such that u, has neighbors in Py,q,, j € {1,2,3}\{i —4}, then we say that
P is a crosspath from a; to Pajm.

Lemma 2.17 Let P = uy,...,uy,, n > 2, be a chordless path in G\ X with N(ux) N X =0,
for all k € {2,...,n — 1}, N(u1) N ¥ C Pyay, N(u1) N X # a4, and N(up) NS C Pyjay,
N(up) NX # aq, where i # j. Then either P is a crosspath w.r.t. ¥ or one of uy or u, is of
Type 5b w.r.t. X, say ui, and usg, ..., u, is a crosspath w.r.t. X' obtained by substituting u,
for its twin in .

Proof: Let ¥ and P be a counterexample to the lemma, chosen to minimize |P|. By Lemma
2.7, nodes u; and u, must be of Type 5, 6 or 8a w.r.t. 3. If one of u; or u,, say uy, is of
Type 5 we substitute it for its twin in 3 to obtain X' and a path P’ = P\ u, that has one
less node than P. If n = 2, i.e. P’ contains only node u,, by Lemma 2.7, u,, is of Type 6b
in ¥ and of Type 4 in ¥'. Now nodes u,, u; and the neighbors of u; in ¥ induce a gem. So
n > 3, P’ contains at least two nodes, so P’ is a crosspath for ¥'. But then P and X satisfy
the lemma as well. Thus w.l.o.g. we only need to counsider the case where neither u; nor u,
is of Type 5.

If both u; and wu, are of Type 8a, let their neighbors in ¥ be r and s respectively. If
rs is not an edge, then there exists a 3PC(r,s). Hence rs is an edge. Since r and s are
not contained in any one path of 3, this implies 7 = a; and s = a;. But now there exists
a Mickey Mouse in G. If both u; and wu, are of Type 6, then if they are both adjacent to
a4 there exists a proper wheel with center a4 and otherwise there exists a 3PC(A,A). So,
w.l.o.g., node w; is of Type 8a and wu,, is of Type 6. If u; is not adjacent to a; 4, there exists
a 3PC(ajasas3, T) where T is the triangle induced by wu, and its neighbors in X, or a proper
wheel with center a;. So u; is of Type 8a adjacent to a;y4. If u,, is of Type 6b, there exists
a proper wheel with center a4. Therefore P is a crosspath from a;i4 to Py, q,- O
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Lemma 2.18 At most one node in {as, as, a7} has a crosspath.

Proof: Suppose not and let P = uy,...,u, be an as-crosspath and Q) = vy,...,v, an ag-
crosspath. Let r; and 5 be the neighbors of u, in X, and let s; and ss be the neighbors of vy,
in ¥. If paths P and @ do not have adjacent nodes (note that in that case, they also cannot
have coincident nodes), then it is straightforward to check that there is a 3PC/(as, ag) or a
proper wheel. So P and @ have adjacent nodes. Then a subset of PUQ U {as,ag} induces a
chordless path P’ from as to ag. Nodes 71, 72, s1, s2 cannot all be contained in P,,,,, since
otherwise the node set S = Py 4, U Pyyq, U P’ induces a 3PC(as,a6). We now show that
u, cannot have a neighbor in Q. Note that w, is not adjacent to a4 (by the definition of a
crosspath) and it is not adjacent to ag (since otherwise ¥ U P contains a bug). Let ¥; and
Yy denote, respectively, the 3PC (v, $152,a4) and 3PC (v, 8152, a¢) contained in ¥ U Q. For
some i € {1,2}, uy has neighbors in ¥; \ Q. By Lemma 2.7 applied to u, and ¥;, it follows
that u, cannot have a neighbor in (). Similarly, v,, cannot have a neighbor in P. Hence, P’
does not contain u, and v,,, so the node set S induces a 3PC(as, ag). O

2.4 2-Join Decompositions

a1 C1

~ - C2

Figure 8: A connected diamond

Definition 2.19 A connected diamond is a 3PC(d1dscy,y) together with a Type 7 node co
adjacent to dy,ds and an attachment of cs.

In Section 5.1, we prove the following theorem.

Theorem 2.20 Let G be an odd-signable graph that does not contain a 4-hole, and does not
have a star, double-star or triple-star cutset. If G contains a connected diamond, then G has
a 2-join.

Lemma 2.21 Let G be an odd-signable graph that does not contain o 4-hole, and does not
have a star, double-star or triple-star cutset. If G does not contain a connected diamond,
then G does not contain a wheel.

15



Proof: Assume that G does not contain a connected diamond. Then, by Lemma 2.10, G
cannot contain a 3PC(A,-) with a Type 4 node.

Suppose that G contains a wheel (H,u). By the assumption that G contains no proper
wheel, (H,u) is a twin wheel. Let v be the common endnode of the two short sectors of
(H,u). Let S=vUN(v) \ v and let P =y,...,yn, be a direct connection in G \ S from u
to H\ S. Let v; and vy be the neighbors of v in H. If P contains no node adjacent to v or
ve, then the neighbors of y,, in H are two adjacent nodes of H, since otherwise G contains a
proper wheel or a 3PC(-,-). But then H U P Uw induces a 3PC(A,-) with a Type 4 node v.

Node y; is adjacent to neither v; nor vs, since otherwise there exists a gem or a 4-hole.
Let y; be a node with lowest index that is adjacent to v; or vo. W.l.o.g. y; is adjacent to v;.
Let H' be a hole in the graph induced by P U H U u that contains ¥, u and vs. Node vy is
adjacent to at least two nodes in H' (u and y;). However, v; is not adjacent to vy and y;.
This contradicts Lemma 2.6. a

Lemma 2.22 Let G be an odd-signable graph that does not contain a 4-hole, and does not
have a star, double-star or triple-star cutset. If G does not contain a connected diamond,
then the only strongly adjacent nodes to a 3PC(A,-) are of Type 3 or Type 6.

Proof: Assume that G does not contain a connected diamond. Then, G cannot contain a
3PC(A,-) with a Type 1, 2, 4 or 5 node else G contains a twin wheel, a contradiction to
Lemma 2.21. If a Type 7 node exists, it must be attached, contradicting the assumption that
G contains no connected diamond. a

Definition 2.23 Let ¥ be a 3PC(ayasby,c1), with the neighbors of ¢1 on the paths Py, ,
P,,c, and Py, ., being node ey, ex and dy respectively. ¥ is a decomposable 3PC(A,-) if the
following two properties hold:

1. If G contains a 3PC(A,-) with a crosspath, then ¥ has an ey-crosspath and all cross-
paths of ¥ are from ey to Py, .

2. One of the following holds:

(i) There exists a node uy of Type 3 w.r.t. X such that every attachment of uy to 3
ends in Py, .

(1) There ezxists a node ug of Type 8a or 6 w.r.t. ¥ adjacent to a node in Py, .

Let Hy = Py ¢, U Poyeyy Hy = Py g, Uug and H = X Uuy. H is called an extension of the
decomposable 3PC(ayazbi, c1). Let A = {a1,a2} and C = {c1}. If (i) holds, let B = {b1,up}
and D = {dy}. If (ii) holds, let B = {b1} and let set D contain node dy and possibly node
ug, if ug is of Type 6b. The 2-join of H induced by the partition Hi|Hy has special sets
A,B,C,D.

In Section 5.2 we prove the following theorem.

Theorem 2.24 Let G be an odd-signable graph that does not contain a 4-hole, and does not
have a star, double-star or triple-star cutset. If G contains a decomposable 3PC(A,-), then
G has a 2-join.
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a® & 0y

Figure 9: Connected triangles

Definition 2.25 Connected triangles T'(aya2b, ci1cody, u,v) consist of a 3PC(ayazby,u), 31,
with node v € P,,,, adjacent to node u, together with a v-crosspath P with endnode c; of
Type 6 w.r.t. X; adjacent to cp,dy € Py, where d; lies on the bycy-subpath of Py . The
3PC(ayasby,v) is denoted by Yo, the 3PC(cicadi,u) is denoted X3 and 3PC(cicady,v) is
denoted Y4. Note that by = dy is allowed in this definition. All other nodes must be distinct.
When by = dy, we say that the connected triangles are degenerate.

In Section 5.3, we prove the following two theorems.

Theorem 2.26 Let G be an odd-signable graph that does not contain a 4-hole, and does not
have a star, double-star or triple-star cutset. Let T be a degenerate connected triangles. Then
there exists no node w € T such that by = dy is the unique neighbor of w in T.

Definition 2.27 Connected triangles T(ajasby,cicody, u,v) are decomposable if they are
nondegenerate, there exists no v-crosspath w.r.t. i (nor u-crosspath w.r.t. Yy) P’ =
Yy - Ym With Yy, adjacent to an intermediate node of Py, q,. Furthermore, there exists
w & T whose neighbors in T are two adjacent nodes of Py q, or w is not strongly adjacent
to T' and its unique neighbor in T is in Py 4,. The graph H =T U w is an extension of T
Let Hy = Py, q, Yw and Hy = H \ Hy. The 2-join of H with partition Hi|Hy has special sets
A, B,C, D containing the correspondingly labeled nodes.

Theorem 2.28 Let G be an odd-signable graph that does not contain a 4-hole, and does
not have a star, double-star or triple-star cutset. If G contains a decomposable connected
triangles, then G has a 2-join.

2.5 Basic Graphs

Lemma 2.29 Let K be a big clique of a nontrivial basic graph R with special nodes x, y and
u,v two distinct nodes of K. Then R contains a hole H, that contains nodes u,v,z and y
and no other node of K.

17



Proof: By the definition of nontrivial basic graph, R contains two node disjoint paths, say
P,, P,, between u, v and z, y such that the only edges between P,, P, are uv and zy. So H
is induced by the nodes of these two paths. a

A nontrivial basic graph that plays an important role in the proof is connected triangles.
Let T'(ajagby,crcady, u,v) be connected triangles. The path Py, 4, is the internal segment of
T and paths Py, y, Pyyu, Peyy and P, are the leaf segments of T'.

Lemma 2.30 Ewvery leaf (internal) segment of a nontrivial basic graph R is the leaf (internal)
segment of connected triangles T(A, A, x,y) contained in R.

Proof: Let P be an internal segment of R and K, Ko be the big cliques that contain the
endnodes of P, say uj,us. Let vj,w; € K; \ u;, i = 1,2. For i = 1,2, by Lemma 2.29, R
contains a hole H; that contains v;, w;,z and y and no other node of K;. Since R is basic
Hy U Hy U P induces the desired connected triangles T'(A, A, x,y).

Now let P be a leaf segment of R and K; be the big clique containing the endnode of P,
say wy, distinct from z,y. Let u; € K; \ wy where u; is an endnode of an internal segment
(. (Such a node u; exists since, from the definition of nontrivial basic graphs, R contains at
least two big cliques.) Let the other endnode of @ be uy € V(K3). By the previous argument,
Q@ belongs to a connected triangles containing w; and therefore P. Furthermore P is a leaf
segment of this connected triangles. a

Lemma 2.31 For any pair of segments P and Q of a nontrivial basic graph R, R contains
a 3PC(A, z), for some z € {x,y}, that contains PUQ U {z,y} such that P and Q belong to
distinct paths of ¥. Furthermore, R contains a z'-crosspath w.r.t. ¥, where z' = {z,y} \ 2.

Proof: First we show that R contains a ¥ = 3PC(A, z), for some z € {z,y}, that contains
PU QU {z,y} such that paths P and @ belong to distinct paths of ¥. In R\ {z,y}, there
exists a chordless path from an endnode of P to an endnode of @), that does not contain any
intermediate node of P or (). Let u be the endnode of P contained in this chordless path, let
v be the neighbor of w in this path. Let K be the big clique of R that contains v and v, and
let w € K\ {u,v}. By Lemma 2.29, R contains a hole H that contains nodes u,w,z and y
and no other node of K. Note that P must be contained in H. In R\ (K \ v) there is a path
P, from v to z or y, that contains (). Since R is basic, no node of ) is adjacent to a node of
H\ {z,y}. Then H U P, induces the desired ¥ = 3PC(A, z).

W.Lo.g. assume that z = . Now we show that R contains a y-crosspath w.r.t. . Since
R is nontrivial, the two paths of ¥ that do not contain y cannot both be leaf segments. Let
P, be a path of 3 that does not contain y and is not a leaf segment of R. Let s be the node
of P, closest to x that belongs to a big clique K'. Note that P, is a leaf segment of R. The
neighbor s’ of s in Py also belongs to K'. Let r € K'\ {s,s'}. By Lemma 2.29, R contains a
hole H' that contains 7, s,z and y and no other node of K’. Note that P,, must be contained
in H'. Since R is basic no node of H'\ Ps; can be adjacent to a node of X\ {5, s,y}. Hence
H'\ Py, is the desired y-crosspath of X. O

A graph R contained in G is a mazimum basic graph of G, if it is basic and G does not
contain a basic graph that has a larger number of segments than R.
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Lemma 2.32 Let G be an odd-signable graph that does not contain a 4-hole and does not
have a 2-join, a star, double-star or triple-star cutset. Let R be a mazimum basic graph of
G. Assume R is nontrivial and has special nodes x and y.

(1) If P is a leaf segment of R containing x, then R contains a ¥ = 3PC(A,x) in which
P is one of the paths and y is contained in one of the other two paths. Furthermore, R
contains a y-crosspath w.r.t. X and all crosspaths of ¥ in G are y-crosspaths that do
not end in P.

(2) If P is an internal segment of R, then R contains connected triangles T'(a1a2b1, c1cady, x,y)
such that P is the internal segment of T and there is neither a y-crosspath in G w.r.t.
the 3PC(ayagby,x) contained in T nor an x-crosspath in G w.r.t. the 3PC(a1a2b1,y)
contained in T, that is adjacent to an intermediate node of P.

Proof: Since G' contains no 2-join, by Theorem 2.20, G contains no connected diamonds.

We first prove (1). Let P be a leaf segment of R containing z. By Lemma 2.30, R
contains a connected triangles T(A, A, z,y) with P being a leaf segment of T'. So T' contains
a X = 3PC(A,z) in which P is one of the paths and y is contained in one of the other two
paths. Also T contains a y-crosspath w.r.t. 3. By Lemma 2.18, all crosspaths of X are
y-crosspaths. Suppose there exists a y-crosspath P’ = yq,..., v, such that y,, has neighbors
r and s in P. Note that since P is a segment of R, y,, ¢ R. If no node of P’ is adjacent
to or coincident with a node of R\ {r,s,y}, then R’ = RU P’ is a basic graph. (Note that
in this case, R' \ {z,y} is a line graph of a tree in which P’ is a leaf segment and it is easy
to check that all conditions for R’ to be basic are satisfied.) Since this would contradict the
maximality of R, we may assume that some node of P’ is adjacent to or coincident with a
node of R\ {r,s,y}. Let y; be the node of P’ with highest index that is adjacent to a node,
say u, of R\ {r,s,y}. Node u belongs to some segment @) (# P) of R. By Lemma 2.31, R
contains a X' = 3PC(A, z), where z = x or y, that contains both z and y and such that P
and @ belong to distinct paths of ¥'. So by Lemma 2.22, j < n. Furthermore, R contains
a z'-crosspath w.r.t. X', where 2/ = {z,y} \ z. Node y; cannot be of Type 3 w.r.t. X',
since otherwise path y;, ...,y contradicts Lemma 2.8. So by Lemma 2.17 and Lemma 2.22,
Yjs---Ym is a u-crosspath w.r.t. ¥'. By Lemma 2.18, u = 2’ and hence j = 1 and u =y,
which contradicts our choice of u.

We now prove (2). Let P be an internal segment of R. By Lemma 2.30, R contains a
connected triangles T'(ajagby, cicody, x,y) such that P is the internal segment of T'. Suppose
w.lo.g. that there is a y-crosspath w.r.t. the 3PC/(ajagby,x) contained in T', P! =y, ..., ym
such that y,, has neighbors r and s in P. A contradiction is now obtained as in proof of (1).
O

Proof of the Main Theorem: Assume G contains a cap but no 2-join, star, double-star or
triple-star cutset. By Theorem 2.20, G contains no connected diamonds and by Lemma, 2.21,
G contains no wheel. We will show that G is a basic graph.

Claim 1: G contains a basic graph.

Proof of Claim 1: Let H be a hole that together with node w induces a cap. Let the neighbors
of w in H be u and v. Let u’ (resp. v') be the neighbor of u (resp. v) in H that is distinct
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from v (resp. u). Since S = (N(u) UN(v)) \ {v',v',w} is not a cutset separating w from H,
in G\ S there exists a direct connection P = zy,...,z, from w to H \ S. Since G contains
no wheel, z,, is either not strongly adjacent to H or has exactly two neighbors in H. In the
latter case either H U P Uw induces a 3PC(A,A) (if the neighbors of z,, in H are adjacent)
or H Uz, induces a 3PC(-,-) (if the neighbors of z, in H are not adjacent). Hence z,, is
not strongly adjacent to H, so H U P Uw induces a 3PC(A,-). This completes the proof of
Claim 1.

Case 1: Every maximum basic graph of G is a 3PC(A,-).

Then no 3PC(A,-) has a crosspath. Let R be any 3PC(A,-) in G. If there exists no
node w ¢ R adjacent to a node in R then G = R, proving the theorem. So let w € G\ R be
adjacent to R. By Lemma 2.22, w is of Type 3, 6 or 8 w.r.t.R. If w is of Type 6 or 8a, R is
a decomposable 3PC/(A,-) satisfying Condition (ii) of Definition 2.23. If all adjacent nodes
to R are of Type 3 or 8b, then by Lemma 2.12, there is a node w of Type 3 w.r.t. R. By
Lemma 2.8, all attachments of w to R end in a Type 8b node. Hence R is a decomposable
3PC(A,-) satisfying Condition (i) of Definition 2.23. So by Theorem 2.24, G has a 2-join,
contradicting our assumption.

Case 2: ¢ contains a nontrivial maximum basic graph R.
Let z, y be the special nodes of R and suppose that G # R. Then there exists a node
w € G\ R that is adjacent to a node of R.

Claim 2: If w is strongly adjacent to R, then the neighbors of w in R are either a big clique,
or a pair of adjacent nodes in a segment of R.

Proof of Claim 2: If N(w) N R C P, where P is a segment of R, then by Lemma 2.31 and
Lemma 2.22, the neighbors of w in P are a pair of adjacent nodes. So assume that w has
neighbors in distinct segments of R.

We first show that N(w) N R C K, for some big clique K of R. Assume not and let w
have neighbors in segments P and ) of R such that the node set N(w) N (P U Q) is not
contained in a big clique of R. By Lemma 2.31, R contains a ¥ = 3PC(ajagas,x) that
contains PUQ U {z,y} and such that P and @ belong to distinct paths of ¥. Now it follows
from Lemma 2.22 that w is of Type 3 w.r.t. ¥ or that N(w) N R = {z,y}. The case where
w is of Type 3 w.r.t. ¥ cannot occur since, by assumption, N(w) N (P U Q) is not contained
in a big clique of R. We show next that N(w) N R = {z,y} cannot occur either. Assume
otherwise. W.l.o.g. y is contained in P,,;. By Lemmas 2.11 and 2.22, node w is attached
by a path W = wy, ..., w,, where wy, has a unique neighbor in P,,, \ {y,y'} where ¢/ is the
neighbor of y distinct from x in 3. Also ¥ contains a y-crosspath Y =gy, ..., y, where y, is
adjacent to r, s in, say, P,,,. Let X' be the 3PC(y,rs,y) in X UY. By Lemma 2.22, w is of
Type 6b w.r.t. ¥’ and has a direct connection to ¥’ ending with node a3 which is of Type 6
in Y, a contradiction to Lemma 2.11.

Hence N(w)NR C K, for some big clique K of R. Suppose that there is a node ¢t € K that
w is not adjacent to. Let r and s be distinct nodes of K that w is adjacent to. By Lemma
2.29, R contains a hole H that contains r, s, z,y and no other node of K. If ¢ is an endnode of
a leaf segment P, then H U P induces a 3PC(rst,-). Otherwise, by Lemma 2.29, R contains
a chordless path P from ¢ to x that does not contain any node of K as an intermediate node.
Since R is basic no node of P is adjacent to a node of H \ {z,y}, and hence H U P induces a
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3PC(rst,-). But then w and ¥ contradict Lemma 2.22. So N(w) N R = K. This completes
the proof of Claim 2.

By Claim 2 and symmetry, we need only consider the following four cases.

Case 2.1: N(w) N R C P, where P is an internal segment of R.

By Lemma 2.32, R contains connected triangles T'(aja2by, cicody, z,y) such that P is the
internal segment of 7" and there is neither a y-crosspath w.r.t. the 3PC(ajazb;, ) contained
in 7" nor an z-crosspath w.r.t. the 3PC(aya2b1,y) contained in T', adjacent to an intermediate
node of P. By Theorem 2.26, T' is not degenerate. Hence 7" is decomposable with extension
T Uw. So by Theorem 2.28, G has a 2-join, contradicting our assumption.

Case 2.2: N(w) N R C P, where P is a leaf segment of R and N(w) "R Z {z,y}.

W.lo.g. P contains z. By Lemma 2.32 R contains a ¥ = 3PC(A, z) in which P is one
of the paths and y is contained in one of the other two paths. Also 3 has a y-crosspath and
all crosspaths of X are y-crosspaths that do not end in P. Hence Y is decomposable with
extension X U w. So by Theorem 2.24, GG has a 2-join, contradicting our assumption.

Case 2.3: N(w)NR==z.

Let S = (N(z) UN(y)) \ (R\ {z,y}) Uw) and let P = uy,...,u, be a direct connection
from w to R\ S in G\ S. By Claim 2 and Cases 2.1 and 2.2 (with w, playing the role of w),
N(un) N R = K where K is a big clique of R.

If K does not contain an endnode of a leaf segment whose other endnode is z, then RU P
is a basic graph, contradicting the assumption that R is a maximum basic graph of G. So
there exists a leaf segment ) of R with endnodes z and r € K. By Lemma 2.32, R contains
a X = 3PC(A,z) in which one of the paths is () and y is contained in one of the other two
paths. Also ¥ has a y-crosspath and all crosspaths of X are y-crosspaths that do not end in
Q. Note that, by Lemma 2.22, u,, is of Type 3 w.r.t. ¥. By Lemma 2.8 and Lemma 2.22,
all attachments of u, to % end in Type 8 node w.r.t. X. If all attachments of u, to X end
in Type 8 nodes with a neighbor in @), then ¥ is decomposable, and by Theorem 2.24 G has
a 2-join, contradicting our assumption. So there is an attachment P’ = x1,...,z of u, to
¥ such that zj is of Type 8a w.r.t. ¥ with a neighbor in ¥\ Q. Since zj, is not strongly
adjacent to X, N(zx) N R is not a big clique, so by Claim 2 and Cases 2.1 and 2.2, x; must
be adjacent to y.

Next we show that no node of P’ is adjacent to or coincident with a node in R\y. Suppose
not and let z; be the node of P’ with lowest index that is adjacent to or coincident with a
node of R\ y and let such a node be u. Node u is contained in some segment Q' (# Q) of R.
By Lemma 2.31, R contains a X" = 3PC(A,-) that contains z and y and such that @ and
Q' belong to different paths of ¥”. Note that by the choice of P', u ¢ K. Then u,, is of Type
3 w.r.t. ¥ and z,...,s; is an attachment of u, to ¥”. By Lemma 2.8 and Lemma 2.22, z;
is of Type 8 w.r.t. X". Since z; is not strongly adjacent to X", N(z;) N R cannot be a big
clique, so by Claim 2 and Cases 2.1 and 2.2, v must be z or y. Since no node of P’ can be
adjacent to x, u = y which contradicts our choice of u.

If no node of PUw \ u, is adjacent to or coincident with a node of P’, then the node
set PUQU P U{w,z,y} induces a 3PC(up,z). So let z; be the node of P’ with highest
index that is adjacent to a node of P Uw \ u,. Let ¥’ be a 3PC(A, z) obtained from ¥ by
substituting P,w,z for Q. Then by Lemma 2.17, z;,...,z) is a y-crosspath w.r.t. X', and
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hence z; is adjacent to two adjacent nodes of P,w say r and s. Let R’ be a graph obtained
from R by replacing Q with the path z,w,uy,...,u,. It is easy to see that R’ is basic. But
then so is R' U {xzj,...,zx}, which contradicts the choice of R.

Case 2.4: N(w) N R = K, where K is a big clique of R.

By Cases 2.1, 2.2 and 2.3, we may assume w.l.o.g. that all nodes u € G \ R that have a
neighbor in R have the property that N(u) N R is a big clique of R. Let @ and Q' be distinct
segments of R with endnodes in K. By Lemma 2.31, R contains a X = 3PC(A, ) such that
Q and Q' belong to different paths of X. The triangle of ¥ consists of nodes of K, and hence
w is of Type 3 w.r.t. 3. By Corollary 2.14 there is an attachment uy,...,u, of w to X. By
Lemma 2.8 and Lemma 2.22, u,, is of Type 8 w.r.t. 3. Since u, is not strongly adjacent to
Y, up € R and N(uy,) N R is not a big clique, a contradiction. O

3 Node Cutset Decompositions

3.1 Mickey Mouse

In this section we prove Theorem 2.3, stating that if G' is an odd-signable graph containing
a a Mickey Mouse but no 4-hole, then G has a triple-star cutset.

Given a Mickey Mouse M (zyz, Hi, Hs), we let 21 and x5 be the neighbors of z in H; and
Hj that are distinct from y and z. We also let y; and 22 be the neighbors of y and z in H;
and H> that are distinct from x.

Remark 3.1 If we add to a Mickey Mouse M (xyz, Hy,Hy) an arbitrary nonempty set of
edges connecting a node u in V(Hi) \ N(z) and nodes in V(Ha2) \ {z, z}, the resulting graph
s not odd-signable.

Proof: Indeed such a graph contains a 3PC'(u, z). O

Lemma 3.2 Let G be a graph obtained from a Mickey Mouse M (xyz, Hy, Hy) by adding a
direct connection P = pi,...,p, (possibly n = 1), between V(Hiy) \ {y,z,z1} and V(Hs) \
{z,z,z2} avoiding (N (z) UN(y) UN(z)) \ {y1,22}. Then either G contains a 4-hole or G is
not odd-signable.

Proof: Let G be a counterexample to the above lemma, with a minimal number of nodes.
Note that an intermediate node of P may be adjacent to z1, x5 and no other node of M.

Claim 1: Node p; is of one of the following types:
-Type 1: Node p; has a unique neighbor in M, say p, and p} is in V(Hy) \ {y, z,z1}.
-Type 2: Node p; has exactly two neighbors in M, say p}, pf, and p}, p{ are adjacent
nodes of Hj.
-Type 3: Node p; has exactly three neighbors in M, namely x2 in Hs and two adjacent

nodes, say p}, p{ in Hy. Furthermore p; is not adjacent to z.

Proof of Claim 1: If p; has neighbors in H; that are nonadjacent and p; also has at least
one neighbor in Hg, then by Remark 3.1, the graph induced by V(M) U {p1} is not odd-
signable. If p; has neighbors in H; that are nonadjacent and p; has no neighbor in Hs, then
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the minimality of G is contradicted. So p; has either a unique neighbor or two adjacent
neighbors in H;. If p; has a unique neighbor in Hy, say p), then p} is in V(H;) \ {y,z,z1}
and p; has no neighbor in Hy, else we have a 3PC(p], ), so py is of Type 1. If p; has exactly
two neighbors in Hi, say p}, p, then p; has no neighbor in V(Hz) \ {z2}, else there is a
3PC(p1pipY, zyz). If G contains no 4-hole, p; cannot be adjacent to both 21 and z2. So p;
is of Type 2 or 3.

Claim 2: At least one of py, p, is of Type 1 or 2.

Proof of Claim 2: Assume both py, p, are of Type 3. So p; is not adjacent to x; and has
exactly three neighbors in M, namely z5 in Hs and two adjacent nodes p!, p} in H;. Node
pp, is not adjacent to z2 and has exactly three neighbors in M, namely x; in H; and two
adjacent nodes p/,, pll in Hy. Now if p1, p, are nonadjacent, there is a 3PC (p1ppY, pnpl,plh)
and if they are adjacent, there is a 3PC(py,, z2).

Claim 3: At least one of 1, z2 has no neighbor in V(P) \ {p1,pn}

Proof of Claim 3: Assume not and let p;, p; in V(P) \ {p1,pn} adjacent to z; and zg, such
that the subpath P’ of P between them is shortest. Then V(M) U V(P’) induces an even
wheel with center x.

By Claim 2 and symmetry, we can assume that p; is of Type 1 or 2. Assume z2 has
no neighbors in V(P) \ {p1,pn}. If p, has two neighbors in Hj, say pl, p!!, we have a
3PC(xyz, pppl,pl) and if p, has a unique neighbor in Hs, say p!, we have a 3PC(z,pl,).

Assume finally that x9 is adjacent to some node in V(P) \ {p1,pn}. By Claim 3, z; has
no neighbor in V(P) \ {p1,pn}. Now by symmetry, the above argument shows that p, is of
Type 3 and we have a 3PC(py, x2). O

Proof of Theorem 2.3 Assume G is an odd-signable graph that contains no 4-hole but
contains a Mickey Mouse M (zyz, Hy, Hz). It is enough to show that (N(z) U N(y) UN(z)) \
{y1, 22} is a cutset of G, separating V (H1) \ {y,z,z1} and V(H2) \ {z,z, z2}.

Assume not: Then G contains a subgraph G’ that is obtained from M (zyz, Hy, Hs) by
adding a direct connection P = py,...,p, between V(H) \ {y,z,z1} and V(Hs2) \ {7, z,z2}
avoiding (N (z) UN(y) UN(2))\{y1,22}. Since G’ contains no 4-hole, by Lemma 3.2, G’ (and
hence G) is not odd-signable. O

3.2 Bugs

In this section we prove Theorem 2.4 which states that if G is an odd-signable graph that
contains a bug but no 4-hole, then G contains a double-star cutset.

Given a bug (H,z), let y, x1 and x5 be the neighbors of x in H where 21 and zo are
adjacent, while y is not adjacent to x; or z9. Let Hy, Ho be the holes containing x1,z,y and
To, %,y respectively. Finally let y;, yo be the neighbors of y in Hy, Hs, distinct from z.

Remark 3.3 If we add to a bug (H,x) an arbitrary nonempty set of edges connecting a
node u in V(Hi) \ (N(z) U N(y)) and nodes in V(H3) \ {x,y}, the resulting graph is not
odd-signable.
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Proof: Indeed this graph contains a 3PC(u,y) or a 3PC(x2,y). a

Lemma 3.4 Let G be a graph obtained from a bug (H,z) by adding a direct connection

P = pi1,...,pn (possibly n = 1), between V(Hy) \ {y1,y,z,z1} and V(H2) \ {y2,y,2, 22}
avoiding N(z) U N(y). Then either G contains a 4-hole or G is not odd-signable.

Proof: Let G be a counterexample to the above lemma with minimal number of nodes. Note
that intermediate nodes of P may be adjacent to x1, 2, y1, y2 but to no other node of (H, ).

Claim 1: Node p; is of one of the following types:

-Type 1: Node p; has a unique neighbor in (H, x), say p} and p} is in V(H1)\{z1,z,y,y1}.

-Type 2: Node p; has exactly two neighbors in (H, z), say p}, p| and p!, p} are adjacent
nodes of Hj.

-Type 3: Node p; has exactly three neighbors in (H, z), namely y2 in He and two adjacent
nodes, say p}, p{ in H;. Furthermore p; is not adjacent to y;.

Proof of Claim 1: Assume that p; has a unique neighbor, say p}, in H;. If p; has zy as
unique neighbor in Hy, we have a 3PC(p), z2) and if p; has a neighbor in V(Hz) \ {22} we
have a 3PC(p},y). So p;1 is of Type 1 in this case.

Assume that p; has exactly two neighbors, say p| and p{, in Hy and p}, p{ are adjacent.
If p; has a neighbor in V(Hz) \ {y2}, we have a 3PC (p1p)p!, zz122) if p1 is not adjacent to
z1, and an even wheel with center z; otherwise. So y» is the only node of Hs that may be
adjacent to p;. Since G contains no 4-hole, p; cannot be adjacent to both y; and y2. So p;
is of Type 2 or 3 in this case.

Assume finally that p; has two nonadjacent neighbors in Hy. If p; has no neighbor in Ho,
the minimality of G is contradicted. If p; has a neighbor in Ho, by Remark 3.3 the graph
induced by V(H) U {z,p1} is not odd-signable and this completes the proof of Claim 1.

Claim 2: No node in V(P) \ {p1,pn} is adjacent to z1, z2, y1 or ys.

Proof of Claim 2: We first show that no node in V(P) \ {p1,pn} is adjacent to z; or zs.

Assume that p;, 2 < i <n —1, is the node of highest index adjacent to z1. Let p; be the
node of lowest index j > 4 adjacent to a node in {y;} UV (H>) \ {z2}. If p; is adjacent to y,
there is a 3PC(x1,y1) and if p; is not adjacent to y; there is a 3PC(z1,y). By symmetry,
this shows that no node in V(P) \ {p1,pn} is adjacent to z; or zs.

If both y1, yo have a neighbor in V(P) \ {p1,pn}, there is a 3PC(y1,y2).

Assume that y2 has a neighbor in V/(P) \ {p1,pn} but that y; does not. If p; is of Type
1, there is a 3PC(y,p}) and if p; is of Type 2 or 3, there is a 3PC(z1z9x, p1piph) when p; is
not adjacent to x; and an even wheel with center z; otherwise. By symmetry, this completes
the proof of Claim 2.

Now if both p1, p, are of Type 3, there is a 3PC(p1,y1). So assume w.l.o.g. that p, is
not of Type 3. Now if p; is of Type 2 or 3 there is a 3PC(z1zox, p1p|p}) or an even wheel
with center x1, and if p; is of Type 1 there is a 3PC(p},y). O

Proof of Theorem 2.4 Assume G is an odd-signable graph containing a bug (H, z) but no
4-hole. If N(z) U N(y) is not a cutset of G, separating V(H1) \ {y1,y,z,z1} and V(Ha) \
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{y2,y,x,z2}, then G contains an induced subgraph G’ that satisfies the conditions of Lemma
3.4. Since G’ contains no 4-hole, by Lemma 3.4, G’ (and hence G) is not odd-signable. O

3.3 Wheels

In this section we prove Theorem 2.5, which states that if G is an odd-signable graph that
contains a proper wheel but no 4-hole, gem, Mickey Mouse or bug, then G has a star cutset.

Remark 3.5 Let (H,xz) be an odd-signable proper wheel that is not a bug and let u be an
intermediate node in some long sector S, of (H,x). Let x1, x4 be the endnodes of S, and let
vy, vo be the neighbors of x1, xo in H that are not in Sy. The only way of adding to (H,x)
a nonempty set of edges connecting u and nodes of V(H) \ V(Sy) to obtain an odd-signable
graph is to add both edges uvy and uvs.

Proof: Let G be an odd-signable graph obtained from an odd-signable proper wheel (H,x)
by adding a nonempty set of edges connecting v and nodes of V(H) \ V(S,). Since (H,z)
is proper and is neither a bug nor an even wheel, x has a neighbor on H distinct from
x1,%9,v1,v9. Since G contains no 3PC(u,z), {x1,x2,v1,v2} is a cutset of G, separating the
intermediate nodes of .S, from the rest of the wheel. So the only possible edges are uv; and
uvy. If only one of them exists and (H,x) has more that three spokes, there is an even wheel,
otherwise if (H, x) has three spokes, all the three sectors must be long and there is a 3PC(-, -).
O

Theorem 3.6 Let (H,x) be a proper wheel with the smallest number of spokes in an odd-
signable graph G. If G contains no gem, Mickey Mouse or bug as induced subgraph, then
(H,x) contains at least three long sectors and no connected component of G\ N(x) contains
the intermediate nodes of two distinct long sectors.

Proof: In an odd-signable graph G containing no gem, Mickey Mouse or bug as induced
subgraph, each short sector of a wheel (C,u) is adjacent to exactly one other short sector.
Since (C,u) is not an even wheel, this shows that the number of long sectors of (C,u) is odd
and greater than 1.

Now assume that the theorem is false. Then G contains a direct connection P = py,...,p,
(possibly n = 1), between two long sectors of (H,z) and avoiding N ().

Claim 1: Every long sector of (H,z) contains an intermediate node that is adjacent to p;
or pp.

Proof of Claim 1: Let S be a long sector of (H,z) that does not contain an intermediate node
adjacent to p; or p,. Let z;, z;11 be the endnodes of S and let () be a shortest x;z;1-path
in P U H that misses z, all intermediate nodes of S and at least one neighbor of z in H. If
no intermediate node of ) is adjacent to x, we have a 3PC(x;,z;+1). Otherwise we have a
proper wheel that has less spokes that (H,z), a contradiction to your choice.

Note that Claim 1 and the fact that (H,z) contains at least 3 long sectors implies that
n =1
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Assume first that some long sector, say S with endnodes z;, z; 11 has a unique node, say
p}, that is adjacent to p;. By Claim 1, p} is intermediate in S. Let v;, v;4+; be the neighbors
of z;, zj41 in H \ S. Then all the neighbors of p; in H are contained in V(S) U {v;, viy1},
else there is a 3PC(p),z). Now p; is adjacent to both v;, v;1; by Claim 1 and the fact that
(H,z) has at least three long sectors. Since G contains no 4-hole, we can assume w.l.o.g.
that p} and z; are nonadjacent and we have a 3PC(p!, ;).

So every long sector of (H,z) has at least two neighbors of p;. Since G has no 4-hole,
p1 is adjacent to at most one neighbor of  on H and therefore there is some long sector S
with endnodes z;, ;11 such that p; is adjacent to neither z; nor x;11. Since short sectors
of (H,p;) come in pairs, p; has nonadjacent neighbors in S. By Remark 3.5 applied to the
graph obtained from (H,z) by adding p; and removing the intermediate nodes of S,p, ., ,, we
have that p; is adjacent to v;, v;11 and no other node of H \ S. But now some long sector of
(H,z) has at most one neighbor of p;, a contradiction. O

Proof of Theorem 2.5: This now follows immediately from Theorem 3.6 by considering a
wheel (H,z) in G with a minimum number of spokes. O

4 2-Joins and Blocking Sequences

In this section, we consider an induced subgraph H of G that contains a 2-join H;|Hs. We
say that a 2-join Hi|Hy extends to G if there exists a 2-join of G, H{|H} with H; C H| and
H, C H). We characterize the situation in which the 2-join of H does not extend to a 2-join
of G.

Definition 4.1 A blocking sequence for a 2-join H1|H2 of a subgraph H of G is a sequence
of distinct nodes x1,...,zy, in G\ H with the following properties:

1. i) Hi|Hy Uz is not a 2-join of H U z1,
i1) Hy Uxzy|Hy is not a 2-join of H Uz, and
i) if n > 1 then, fori=1,...,n—1, HiUz;|HyUz;}1 is not a 2-join of HU{x;, zjy1}.

2. T1,...,Ty is minimal with respect to Property 1, in the sense that no sequence xj,, ..., T;
with {xj,,...,z;,} C{z1,...,2,}, satisfies Property 1.

k

Blocking sequences were introduced and studied by Geelen in [11]. Many of the results
we show here were first proved in a different setting in [11].

Let H be an induced subgraph of G with 2-join H;|Hj and special sets A, B,C, D.

In the following remarks and lemmas, we let S = z1,...,x, be a blocking sequence for
the 2-join Hy|H2 of a subgraph H of G.

Remark 4.2 Hi|HyUw is a 2-join in H Uu if and only if N(u)NHy =0, A or C. Similarly
Hy Uu|Hy is a 2-join in H U if and only if N(u) N Hy =0,B or D.

Proof: Follows from the definition of a 2-join. i
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Lemma 4.3 Ifn > 1 then, for every node z;, j € {1,...,n—1}, N(zj) N Hy =0,B or D,
and for every node z;, j € {2,...,n}, N(z;) NHy =0,A or C.

Proof: If for some j = 1,...,n — 1, Hy U z;|Hy is not a 2-join then zi,...,z; satisfies
Property 1 of Definition 4.1 and contradicts the minimality of x1,...,x,. Similarly if for
some j = 2,...,n, Hi|Hy Ux; is not a 2-join then z;,...,z, contradicts the minimality of
Z1,...,ZTy. S0 the result follows from Remark 4.2. a

Lemma 4.4 Assume n > 1. Nodes z;, ziy1, 1 <i <n—1, are not adjacent if and only if
N(z;) N"Hy = B and N(zjy1) NHy = A, or N(z;) N He = D and N(zj+1) N H; =C.

Proof: By Lemma 4.3, N(z;) NHy =0, B or D, and N(z;+1) NHy =0, A or C. Since z;z;41
is not an edge, and Hy U z;|Ha U x4 is not a 2-join in H U {z;,z;11}, the lemma follows. O

Theorem 4.5 Let H be an induced subgraph of graph G that contains a 2-join Hi|Hs. The
2-join Hi|Hy of H extends to a 2-join of G if and only if there exists no blocking sequence
for Hi|Hy in G.

Proof: If a blocking sequence exists it is clearly not possible to extend the 2-join H;|Hs to
a 2-join of G. To prove the converse, assume that there is no blocking sequence for H;|H,
in G. Let the directed graph G’ be constructed as follows. G’ contains two special nodes h;
and hg, together with all nodes in G\ H. If for a node v € G\ H, H1|Hz U is not a 2-join
in H Uu, then add directed edge hyu. Similarly, if H; U u|H; is not a 2-join in H U u, add
directed edge uhg. For every pair of nodes u,v in G \ H, if H; U u|H2 Uv is not a 2-join in
H U{u,v}, add directed edge uv. By construction, since G contains no blocking sequence for
H,|H3, G' contains no directed path from hy to he. We now prove the following:

Let X be the set of nodes reachable from hy by directed paths in G'. Then Hy U X|G \
(HyUX) is a 2-join in G.

Claim 1: For every node u € G\ (H U X), N(u) NH; =0,A or C.

Proof of Claim 1: The claim is certainly true for every node u € Hy. For all other nodes in
G\ (H1UX) if the claim were false there would exist an edge from node h; to u, contradicting
the maximality of X.

Claim 2: For every node v € Hi U X, N(u) N Hy = (), B or D.

Proof of Claim 2: If uw € Hy, then the claim clearly holds. Assume u € X. Since there is no
direct path in G’ from h; to hg, there is no edge from u to hy. Hence, Hy U u|H; is a 2-join
and so the claim follows.

Let Hl = HiUX and Hy = G\ H]. Let A’ (resp. C') be the set of nodes u € H{ such
that N(u) N Hy = B (resp. D). Let B’ (resp. D') be the set of nodes u € H) such that
N(u) N Hy; = A (resp. C). Note that, by definition, A’NC" =) and B'N D" = 0.

Claim 3: H{|H) is a 2-join of G.

Proof of Claim 3: Let v € H{ and v € H). We show that wv is an edge if and only if either
uc A andve B, orueC andve D
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First, assume that uv is an edge. If u ¢ A’ U C' then, by Claim 2, N(u) N Hy = () and
consequently v € Hy. If u € Hy, then by Claim 1, N(v)NH; = A or C and hence u € A’UC’,
which contradicts the assumption. So, u ¢ H; and v ¢ He. But H; U u|Hz U v is not a
2-join, hence uv is a directed edge in G, contradicting the assumption that v € H). Hence
u € A UC'. W.lo.g. assume that u € A’. Suppose that v ¢ B’. Since N(u) N Hy = B,
node v € Hy. Also u ¢ Hy, since otherwise, by Claim 1, N(v) N H; = A and hence v € B’,
a contradiction. So u ¢ Hy and v ¢ He. But H; Uu|Hz Uv is not a 2-join, hence uv is a
directed edge in G’, contradicting the assumption that v € H).

To prove the converse, suppose that uv is not an edge and, w.l.o.g., u € A" and v € B'.
Then N(u) NHy = B and N(v) N Hy = A, sou & Hy and v € Hy. But Hy Uu|Hy Uw is not
a 2-join, so uv is a directed edge in G’ which contradicts the assumption that v € H). O

Lemma 4.6 For 1 <i<n, H U{z1,...,zi—1}|HoU{Zit1,...,2,} is a 2-join in HU (S \

{zi}).

Proof: By the minimality of S, the set S\{xz;} does not contain a blocking sequence for H;|Hy.
So it follows from Properties 1. i) and ii) of Definition 4.1 that H; U {z1,...,z;—1}|H2 U
{Zit1,...,2n} is the only possible extension of H;|Hj. O

Lemma 4.7 If x;x,, n > k > i+ 1 > 2, is an edge then either N(x;) N Hy = B and
N(zg)NHy =A, or N(z;) N H2 =D and N(zx) NH; =C.

Proof: By Lemma 4.6, Hy U{z1,...,z;}|Ho U{xito,...,zp} is a 2-join in H U S\ z;41. Let
the 2-join have special sets A’, B',C', D'. Since z;zj is an edge, either z; € A" and z; € B’,
orz; € C' and z € D'. Since AC A', BC B', C CC’" and D C D', the lemma follows. O

Lemma 4.8 Let x; be the node of lowest index adjacent to a node in Hy. Then x1,...,x; is
a chordless path.

Proof: If j = 1 then the claim holds. Suppose now j > 1. If z;z;41, ¢ € {1,...,5 — 1} is not
an edge, then by Lemma 4.4, x; is adjacent to a node in H», contradicting the choice of z;.
If z;xp is an edge, 2 < ¢+ 1 < k < 7 then by Lemma 4.7, z; must be universal for B or D,
contradicting the choice of ;. Thus x1,...,z; is a chordless path. O

Theorem 4.9 Let G be a graph and H an induced subgraph of G with 2-join Hi|Hy and
special sets A, B,C,D. Let H' be an induced subgraph of G with 2-join H{|Hs2 and special
sets A, B,C", D such that ANA#0D and C'"NC £ (. If S is a blocking sequence for Hy|Hy
and H{ NS # 0, then a proper subset of S is a blocking sequence for H{|Hs.

Proof: Let S = z1, ...,z be a blocking sequence for Hi|Hy such that H{NS # 0. Let z; € S
be the node of highest index that belongs to H'. Note that j # n since otherwise by Remark
4.2 N(z,) N Hy # 0, B or D, and consequently H}|Hz is not a 2-join with special sets B and
D in Hs. The proof of the theorem follows from the following two claims.

Claim 1: H{|H; Uz is not a 2-join in the graph H' Uz; ;.
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Proof of Claim 1: Assume the contrary. By the definition of a blocking sequence Hy Uxj|HyU
Zj4+1 18 not a 2-join in H U {xj, 41}

If 2241 is not an edge then, by Lemma 4.4, N(z;)NHy = B (or D) and N(z;41)NH; = A
(or C resp.). Thus z; € A" or C', assume w.l.o.g. z; € A’. Since ANA' # 0, x4 is adjacent
to anode in A’ C H{ but not universal for A’, contradicting the assumption that H{|HoUz ;41
is a 2-join.

If zjxj41 is an edge, our assumption that H{|HaUzj41 is a 2-join implies that z; € A’ (or
C")and N(zj41)NH] = A’ (or C' resp.). Assume w.l.o.g. that z; € A’ and N(z;41)NH] = A'.
Since A'N A # 0, zj41 is adjacent to a node in A. By Lemma 4.3, N(z;11) N H; = A. But
now HyUz;|HyUxjyq is a 2-join in H U {z;,zj41}, contradicting the definition of a blocking
sequence. This completes the proof of Claim 1.

Claim 2: Let z; be the node of highest index such that H{|Hy U z; is not a 2-join in H' Uz

(note that by Claim 1 such an x; must exist). Then x;,..., 2, contains a blocking sequence
for HHHQ
Proof of Claim 2: To show that z,...,z, contains a blocking sequence for Hj|Hs it is

sufficient to show that it satisfies the properties 1. i), ii) and iii) of Definition 4.1. By
assumption H]|Hy U z; is not a 2-join in H' U z;, giving 1. i). We next show 1. ii). Assume
H{Ux,|H; is a 2-join in H' Ux,,. Then N(z,) N Hs =0 or B or D. But since Hy Uz, |H; is
not a 2-join this is not possible.

We now show 1. iii). For all [ < i < n, N(z;) " H] = 0, A" or C’, since otherwise x;
contradicts the choice of z;. Since ANA"# 0 and CNC' #0 and N(z;)NH; =0, Aor C
(by Lemma 4.3), we have that N(z;) N H] = 0 (resp. A" or C") if and only if N(z;) N H; =0
(resp. A or C). But then H{ U z; 1|H2 Ux; is a 2-join in H' U {z; 1,z;} if and only if
H,Uz;_1|HyUz; is a 2-join in H U {z;_1,x;}. So 1. iii) holds. This completes the proof of
Claim 2. a

5 2-Join Decompositions

In this section, we decompose connected diamonds, decomposable 3PC(A,-)’s and decom-
posable connected triangles by 2-joins. Throughout the section, we assume that G is an
odd-signable graph that does not contain a 4-hole and does not have a star, double-star or
triple-star cutset (and therefore does not contain a gem, a Mickey Mouse or a proper wheel).

5.1 Connected Diamond

Recall (Definition 2.19) that a connected diamond is a ¥ = 3PC(didscy,y) together with a
Type 7 node ¢y adjacent to di, do and an attachment Y = y1,...,y,. By Lemma 2.9, y,, is of
Type 4 or 6 with respect to . We introduce some additional notation. Let a2 = y,,, and let
a1 be the closest neighbor of ay to ¢; in P, y. Now let A = {a1,a2}, B =V (E)NN(az)\{a1},
C = {c1,¢2}, D = {di,d2}. The connected diamond ¥ UY is denoted by H(A, B,C,D).
When y,, is of Type 4, B has cardinality 2 and we let B = {by, b2}, whereas when y,, is of
Type 6, B has cardinality 1 and we let by = by denote its unique node. Let H1 = Py ¢, U Py,
and Hy = H(A,B,C,D) \ Hi. When |B| = 2, Hy consists of two node-disjoint paths, say
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Py 4, and Ppy,q,. When |B| = 1, these two paths are identical between b; = by and y. Note
that since G does not contain proper wheels, P, 4, and Fy,4, have length greater than 1 and,
if |B| =2, both P, ¢,, Ps,c, have length greater than 1.

We denote by 21 the 3PC(a1a2b1, dl) induced by H1U.Pb1d1 and by 22 the 3PC(a1a2b2, dg)
induced by Hy U P, 4,. X' denotes the 3PC/(dydac2,y) when |B| =1 and the 3PC(didac2, az)
when |B| = 2. We denote by a} the neighbor of a1 in P,,.,, and we define ab, b}, b, |, ¢,
dy and df similarly. Finally, when |B| = 1, we let ¥, y5 be the neighbors of y in Py, and
Py,y respectively and, if y # b1, we let 4 denote the neighbor of y in P, ,.

Lemma 5.1 A node u strongly adjacent to a connected diamond H(A, B,C, D) is one of the
following types:

Type a: N(uyNH =A

Type b: N(u)NH=AUB

uw)NH=D

N (u)
N (u)
Type ¢: N(uyNH=CUD
Type d: N(u)
N (u)

Type e: u) N H consists of two adjacent nodes of Py ¢, or Pyye, 07 Py g, 0 Pyyq,-

Type f: Node u is a twin of a node in H.

Type g: Node u has three neighbors in H, either the two nodes of D and one node in C' or, if
|B| = 2, the two nodes of A and one node in B.

Type h: |B| =1 and u has two neighbors in H, the node of B and one node of A.

Type i: |B| =1 and u has three neighbors in H: y and two nodes among yi, vy and y'. If u is
adjacent to 1y, then y # by.

Type j: |B| =1, y = by, and u has four neighbors in H: a1, ag, by and either y} or yb,.

Proof: Let u be a node that is strongly adjacent to H(A, B,C, D). Assume first that u is
not strongly adjacent to ¥ or 3'. Then u has exactly one neighbor in P,,., and one in P,,.,.
By Lemma 2.7 applied to %1, u is of Type 7 for 31 and therefore u is of Type a in H. By
symmetry between X and Y', we now assume w.l.o.g. that u is strongly adjacent to X. We
examine all the possibilities of Lemma, 2.7.

Assume u is of Type 1 in . If w is a twin of dy or do in 3, then by Lemma 2.7 applied
to X', u is adjacent to ¢z and no other node of H. So w is of Type f in this case. If u is a
twin of ¢ in 3, then u must be of Type 5 relative to 31, so u is a twin of ¢; in H, i.e. u is
of Type f.

Assume w is of Type 2 in 3. If |[B| =2 or if |B| = 1 and b; = y, by Lemma 2.7 applied to
¥, u is adjacent to ay and to no other node of H and w is of Type f. If |B| =1 and b; # y
by Lemma 2.7 applied to ¥', u has no other neighbor in H and u is of Type f.

Assume u is of Type 3 in . By Lemma 2.7 applied to 31, we have that u is of Type ¢ or
gin H.
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Assume u is of Type 4. If |B| = 2 then, by Lemma 2.7 applied to X1, u is adjacent to
az and therefore by Lemma 2.7 applied to 39, u is not adjacent to a}. So u is adjacent to
a1,b1,by and, by Lemma 2.7 applied to ¥/, u is also adjacent to as. So u is of Type b or
f. If |B| = 1 and y # by, by Lemma 2.7 applied to ¥, u has no other neighbor in H and u
is of Type i. If |B| = 1 and y = by, we distinguish two cases. First, if u is adjacent to v}
and yh, then by Lemma 2.7 applied to ¥, u has no other neighbor in H and v is of Type i.
Now consider the case where u is adjacent to ¢} and a;. Then w is also adjacent to ag, since
otherwise there is a gem. By Lemma 2.7 applied to X', u has no other neighbor in H and u
is of Type j.

Assume u is of Type 5 in X. If u is not a twin of a; or b; or by then, by Lemma 2.7
applied to X1, u has no other neighbor in H, and if u is a twin of a1, by or by, then u must
also be adjacent to as and no other node. So u is of Type f.

Assume u is of Type 6 in X. If |[B| = 2, by Lemma 2.7 applied to X', ¥; and X3, u has
no other neighbor in H (and u is of Type e), except when u is adjacent to a1 and either by
or by. Now u must be adjacent to ay (else there is a gem) and to no other node. So u is of
Type g. If |[B| = 1, by Lemma 2.7 applied to ¥/, ¥; and X3, u has no other neighbor in H,
except when v is adjacent to a; and b;. Then u may be adjacent to only ay (and u is of Type
b) or to a2 and y,,—1 (and u is of Type f). If u has no other neighbors in H, u is of Type h.

Assume wu is of Type 7 in X. Since G has no gem, by Lemma 2.7 applied to X', ¥; and
Yo, u is of Type d, g or fin H. a

Lemma 5.2 If a node u is of Type g or h w.r.t. a connected diamond H, then there exists a
connected diamond H' with Hy C H' and w € H] = H'\ Hy. Furthermore, H{|Hz is a 2-join
of H' with special sets A', B,C", D such that ANA"#( and CNC' # ).

Proof: First assume that u is of Type g, w.l.o.g. adjacent to dy, do and ¢;. Then u is of
Type 6b w.r.t. both ¥; and Xy. Let S = (N(c1) UN(dy) UN(d2)) \ {u,c},co,dq,ds} and let
P =pi,...,pi be a direct connection from v to H\ S in G\ S. W.l.o.g. p; has a neighbor
in ¥;. By Lemma 2.11, pg is of Type 7 (adjacent to ay and b;), Type 1 (with a neighbor
in Py ¢, \ a1), Type 5a or 8a (with neighbors in P, ;) w.r.t. £;. By substituting u, P for a
subpath of P,,.,, we obtain the desired H'.

Now assume that u is of Type h, w.l.o.g. adjacent to a; and by. Then u is of Type 7 w.r.t.
both ¥; and ¥g. Let S = (N(a1) U N(az) UN (b)) \ {u,dl,as,b),b5} and let P =pq,...,pg
be a direct connection from u to H\ S in G\ S. W.lLo.g. p; has a neighbor in ¥;. By
Lemma 2.9, pg is of Type 4 or 6 w.r.t. X.

By Lemma 5.1, if py is of Type 4 w.r.t. 3 (i.e. pi is adjacent to ¢1, co and dy), then Py
is of Type c in H (i.e. py is also adjacent to dz). If py is of Type 6 w.r.t. 3; adjacent to dy
and cg, then py is of Type g w.r.t. H. So py is of Type 6 with both neighbors in P,,., \ a2.
In both cases, by substituting u, P into X, we obtain the desired H'. O

Lemma 5.3 If a node u is of Type a, b, ¢, d with respect to a connected diamond H with
|B| = 2, then there exist a connected diamond H' with H; C H' for some i € {1,2}, and
uwe€ H' \ Hy. Wlo.g. assume i =1 and let Hy = H'\ Hy,. Then Hy|HY is a 2-join in H'
with special sets A, B',C, D" where |B'| =2, BN B #( and DN D" #0.

Proof: We consider the following cases:
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Case 1: u is of Type a or d.

By symmetry, we assume w.l.o.g. that u is of Type a. Node u is of Type 7 w.r.t. both >;
and 9. By Corollary 2.14, u has an attachment to both ¥; and ¥5. Amongst all attachments
of u to 31 or g, let P = pq,...,pk be the shortest. Assume w.l.o.g. that P is an attachment
to 31. By Lemma 2.9, p is of Type 4 (adjacent to ¢1, c2 and dy) or of Type 6 (with neighbors
in Py g4,) wr.t. X;.

If pg is of Type 4 w.r.t. ¥, then by Lemma 5.1, py is either of Type ¢ w.r.t. H or is a
twin of do. But then by replacing Py, 4, with u, P we obtain the desired H'.

So we may assume that pg is of Type 6 w.r.t. ;. Then by Lemma 5.1, p; is of Type
e w.r.t. H, and so pi is not adjacent to any node of F,q,. Let C be the hole contained in
Py g, UPU{u,a1}. If by has a neighbor in P, then C' U by induces either a proper wheel (if
by has at least two neighbors in P) or a 3PC(ay,-). So by does not have a neighbor in P. If
a node of P is adjacent to or coincident with a node of P, 4,, then a proper subpath of P is
an attachment of u to s, contradicting our choice of P. Hence no node of P is adjacent to
or coincident with a node of P, 4,. But then by substituting u, P into 3; and keeping ¥, the
same, we obtain the desired H'.

Case 2: u is of Type b or c.

By symmetry, we assume w.l.o.g. that u is of Type c¢. Then u is of Type 4 w.r.t. both
Y1 and Xy. Let S = (N(d1) UN(dz2)) \ v and let P, = p1,...,p; be a direct connection from
uto H\ Sin G\ S. W.lo.g. p; has a neighbor in ¥;. By Lemma 2.10 and Lemma 5.1, pj, is
either of Type 7 w.r.t. both ; and ¥, or py is of Type ba or 8a w.r.t. %; with all neighbors
of p; in H contained in Py 4,. So by substituting u, P for an appropriate subpath of P, 4,
we obtain the desired H'. O

Proof of Theorem 2.20: We prove that for some a connected diamond H, the 2-join Hy|H; of
H extends to a 2-join of G. Assume not. Then, by Theorem 4.5, every connected diamond
H has a blocking sequence for H;|H,. Consider all H such that P 4, and Pj,4, have as few
common nodes as possible, and amongst them choose an H with a shortest blocking sequence
S = Tly---5Tp for H1|H2.

First note that, if node z; is of Type f w.r.t. H, then |B| =1 and z; is a twin of by, since
otherwise by substituting z; into H we obtain a connected diamond H’ that satisfies the
conditions of Theorem 4.9, and hence our choice of H is contradicted. Similarly, by Lemma
5.2, Theorem 4.9 and our choice of H, no node of S is of Type g or h.

By Lemma 5.1 and Remark 4.2, n > 1. Since H1|H2 U z; is not a 2-join, node z; cannot
be of Type a, b, ¢, d, i or a twin of b;. So, by Lemma, 5.1, since 1 has a neighbor in Hy, it
is either not strongly adjacent to H or is of Type e. Similarly, «, has a neighbor in Hy and
is either not strongly adjacent to H or of Type e or, in case |B| = 1, z, could be a twin of
b1 or of Type i or j.

Claim 1: An intermediate node of S has a neighbor in H.

Proof of Claim 1: Assume not. Then, by Lemmas 4.4 and 4.7, S is a chordless path. W.l.o.g.
assume that x; is adjacent to a node in P, ., x, is adjacent to a node in P, 4,, and if z,, is
of Type j it is adjacent to b].

First, assume that 7 is the unique neighbor of z; in H. Node z, is not a twin of by or
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of Type j, since otherwise if r # a; then there is a 3PC(r,z,) that contains P, ., and S,
and else either S U H; Ud; induces a Mickey Mouse (if n > 2) or {z1,zn, a1, b1, b} } induces
a gem (if n = 2). Also, d; cannot be the unique neighbor of z, in H, since otherwise there
in a Mickey Mouse when r = ¢; and a 3PC(r,d;) when r # ¢;. Hence, by Lemma 2.17, S is
a crosspath w.r.t. ;. Hence by Lemma 2.17, r = ¢; and z, has two neighbors in P, 4, that
are adjacent. So if |B| =2 or if |B| =1 and x,, has two adjacent neighbors in the d;dz-path
of Hy, then S U Hy U {a1,c1} induces a 3PC(A,A). So either x, has two neighbors in P, ,
or z,, is of Type i, adjacent to y, ¥} and y5. In both cases, the choice of H is contradicted.

Now, assume that z; is of Type e. If x,, is a twin of by or of Type j, then H; U S U d;
induces either a 3PC(A, A) or an even wheel with center a;. If d; is the unique neighbor of
Zn in H, then Py ., U Py,q, US induces either a 3PC(A, A) or an even wheel with center ¢;.
Hence, by Lemma 2.17, S is a crosspath w.r.t. ;. So d} is the unique neighbor of z,, in H.
If |B| = 2, then dy,d},zp, ...,z contradicts Lemma 2.10 applied to X5. Otherwise, S and
a subpath of Py 4, \ di contradict Lemma 2.17 applied to ¥3. This completes the proof of
Claim 1.

By Claim 1, let z; be the node of lowest index in S\ {z1,z,} that is adjacent to a node
in H. By Lemmas 4.3 and 5.1, z; is either of Type a, b, c or d w.r.t. H, or |B| =1 and b;
is the unique neighbor of z; in H. Then, by Lemma 5.3 and Theorem 4.9, the case |B| = 2
cannot occur. By Lemmas 4.4 and 4.7, x1,...,x; is a chordless path. We assume w.l.o.g.
that z; is adjacent to a node in Py, .

Case 1: z; is of Type a.

Then z; is of Type 7 w.r.t. 3. If a; is the unique neighbor of x; in H, then either
Hy U {dy,z1,...,z;} induces a Mickey Mouse (if i # 2) or {ai,a2,b1,z1,z;} induces a gem
(if 4 = 2). Otherwise, 31, x; and the path z;_1,...,z; contradict Lemma 2.9.

Case 2: z; is of Type b.

Node ap is the unique neighbor of z; in H, since otherwise, by substituting zi,...,xz;
into H for an appropriate subpath of P, .,, we obtain a connected diamond that satisfies the
conditions of Theorem 4.9, contradicting our choice of H. If ¢ > 2, then Hy U {dy,z1,...,z;}
is a Mickey Mouse. Hence, i = 2. Let S = (N(a1)UN (a2) UN (b1))\{z1, a},dh, b}, b5} and let
P =pi,...,px be a direct connection from z; to H\ S in G\ S. W.l.o.g. p; has a neighbor
in ¥;. Then z1, P or a subpath of it (in case z; has a neighbor in P) is an attachment of
z; to X1. By Lemma 2.8, p is of Type 2, 5 or 8 w.r.t. Xy. If pg is of Type 2 w.r.t. g,
then Py e, U (Pyg, \ d1) U P Uz is a 3PC(a1,pg). If pr has a neighbor in P, 4, \ di or
Py,¢,, then z1, P contradicts Lemma 2.17 applied to ;. Hence, the neighbors of p; in ¥
are contained in P, . Ud;. If p; is of Type 5 w.r.t. ¥y, then T' = P, ., U Py q, UP Uz
contains a 3PC(a1,pg). So let r be the unique neighbor of py in X;. If r # a} then T is a
3PC(ay,r), and otherwise T'U x; contains a proper wheel with center a;.

Case 3: z; is of Type c.

Then z; is of Type 4 w.r.t. both ¥; and ¥,. If z; has a neighbor in P, ., \ c¢1, then
Lemma 2.10 is contradicted. So ¢; is the unique neighbor of z; in H. But then either
Pyc, UPy g U{z1,...,z;} is a Mickey Mouse (if ¢ > 2) or {c1, 2, d2,z1,z;} induces a gem
(if i = 2).
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Case 4: z; is of Type d.

Let X' be the 3PC(c1d1ds,y) induced by Hy U P,,,. Then z; is of Type 7 w.r.t. 3. Let
S = (N(c1) UN(d1) UN(dg)) \ {zs,¢},d},d,} and let P = pq,...,pg be a direct connection
from z; to H\ S in G \ S. First suppose that all the neighbors of p; in H are contained in
P,,c,. Then H' obtained from H by substituting x;, P for an appropriate subpath of P,
satisfies the conditions of Theorem 4.9, and hence contradicts our choice of H. So p; has a
neighbor in ¥'. By Lemma 2.9, py, is either of Type 6 w.r.t. ¥’ with neighbors in P, , path of
¥ or it is of Type 4 w.r.t. X' adjacent to y and the neighbors of y in Py, and Py,, paths of
Y. If the neighbors of p; in H are contained in Hs, then ¥’ U P U z; is a connected diamond
that contradicts our choice of H. So p; has a neighbor in P, .,, and hence it is of Type 6
w.r.t. X', If py is adjacent to a; and by, then ¥’U PUx; is a connected diamond that satisfies
the conditions of Theorem 4.9, and hence contradicts our choice of H. So the neighbors of
pr in H are contained in F,,.,. Let r be the neighbor of py in P,,., that is closest to a;, and
let P’ be the raj-subpath of P, ¢, . If ¢y has a neighbor in P, then P' U P U P, 4, U ¢z either
induces a proper wheel (if ¢ has at least two neighbors in P) or a 3PC(dz,-). Otherwise,
Hy U P,,., UP U P"Uu; satisfies the conditions of Theorem 4.9, and hence our choice of H
is contradicted.

Case 5: by is the unique neighbor of z; in H.
Then z1,...,z; contradicts Lemma 2.17 applied to ;. O

5.2 Decomposable 3PC(A,")

In this section we assume that G does not contain a connected diamond. So by Lemma 2.22,
the only strongly adjacent nodes to a 3PC(A,-) are of Type 3 or 6.

Lemma 5.4 Let u be a node of Type 3 w.r.t. ¥ = 3PC(ayaz2as3,a4) and let P = uy, ..., uy,
be an attachment of u to ¥ such that uy is of Type 8a w.r.t. ¥ adjacent to a node in Py, q,.
Let X' be the 3PC(uagasz,aq) contained in (XU P Uwu)\ a;. Then Q is a crosspath for ¥ if
and only if Q is a crosspath for ¥'.

Proof: Let Q = qi1,...,q, be a crosspath for ¥. First assume that Q) is an as-crosspath.
If Q is not an as-crosspath for ¥', then some node of @ is adjacent to or coincident with a
node in P U u. Let ¢g; be the node of highest index adjacent to a node in P U u. Since the
only strongly adjacent nodes to 3 are of Type 3 and 6, ¢ # m. But then g;g,-subpath of Q
contradicts Lemma 2.17 applied to X'

Now assume w.l.o.g. that ) is an ag-crosspath. Let r; and ry be the neighbors of ¢,
in ¥. Node w cannot be adjacent to (), since otherwise Py 4, U Pyy0, U Q U u contains a
3PC(uayas, qnrire) or an even wheel. Suppose that a node of P is adjacent to or coincident
with a node of (). Let ¢; be the node of ) with lowest index adjacent to a node of P
and let u; be the node of P with highest index adjacent to g;. If ¢ # m, then the path
q1s- -5 Gi»Uj, - - ., Up contradicts Lemma 2.17 applied to X. So ¢ = m. But then r and ro are
contained in P, ,,, since otherwise g, violates Lemma 2.7 in ¥'. Hence, @ is an ag-crosspath
w.r.t. ¥'. So we may assume that no node of P is adjacent to or coincident with a node of
Q. If Q is not an ag-crosspath for ¥/, then ¢, has a neighbor in ¥\ ¥'. But then @) and an
appropriate subpath of P, 4, contradict Lemma 2.17 applied to X'.
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The converse holds by symmetry since a; is of Type 3 w.r.t. X' attached to X' by the
path ¥\ X O

Lemma 5.5 Let ¥ = 3PC(a1a2a3,a4) and let P = x1,..., 2, be an az-crosspath to Py, .
Let u be a node of Type 8b w.r.t. X with an attachment Q) = y1,...,ym such that the neighbors
of ym in X are contained in P, q,. Let X' be the 3PC(ajaz2as3,a4) obtained by substituting
u, @ into X2. Then X' has no crosspath.

Proof: By Lemma 2.12, node y,, is of Type 6a in X. Let 3" be the 3PC(A,-) induced by
Puyay U Py 0, UQUu. We first show that no node of Q Uwu is adjacent to or coincident with a
node of P. Node u is not adjacent to a node of P, since otherwise PU P’ U{u, a5}, where P’
is an 2'a4-subpath of P,,,, where 2’ is the neighbor of x,, in P,,,, that is closer to a4, induces
a proper wheel with center u or a 3PC(+,-). Now suppose that a node of @) is adjacent to or
coincident with a node of P. Let x; be a node of P with highest index adjacent to a node of
@ and let y; be the node of () with highest index adjacent to z;. 7 # 1, since otherwise x;
violates Lemma 2.7 in X". But then the path y,,...,y;, %, ..., &, contradicts Lemma 2.17
applied to .

Hence, P is an as-crosspath w.r.t. ¥”. By Lemma 2.18, ¥" has neither an u-crosspath
nor an ag-crosspath, and X has neither an ag-crosspath nor an a7-crosspath. Let y be the
neighbor of y,,, in P, ,, that is closer to a4 and let P" be the yas-subpath of P, ,,. Suppose
that R =rq,...,r; is a crosspath for X'

First assume that R is a u-crosspath w.r.t. ¥'. No node of P” is adjacent to or coincident
with a node of R, since otherwise by Lemma 2.17, a subpath of R is a u-crosspath w.r.t. ¥".
Since R cannot be a u-crosspath w.r.t. X", the neighbors of r in ¥’ are contained in Py, .
But then R together with an appropriate subpath of P4, is a u-crosspath w.r.t. ¥".

Now assume that R is an ag-crosspath or an az-crosspath w.r.t. ¥'. No node of P” is
adjacent to or coincident with a node of R, since otherwise, by Lemma 2.17, a subpath of
R is an ag-crosspath or an ar-crosspath w.r.t. 3. Since R cannot be an ag-crosspath or an
arz-crosspath w.r.t. 3, and R cannot be an ag-crosspath w.r.t. X", R is an ar-crosspath w.r.t.
¥" and the neighbors of 7, in ¥’ are contained in Q. But then R together with an appropriate
subpath of () is an ay-crosspath w.r.t. 3. a

Lemma 5.6 Let ¥ be a 3PC(aja2a3,a4) and let P = x1,...,2, be a chordless path with
one endnode adjacent to a node in P, q, \ {as}, the other to a node in P,,,, \ {as} and no
intermediate node adjacent to any node in ¥\ {as}. If node a4 has a neighbor in P then a4
has exactly one neighbor in P, the two endnodes of P are of Type 6a w.r.t. X, and X has no
crosspath.

Proof: Note that n > 1, since otherwise there exists a wheel with center .
Claim 1: Node a4 has at most one neighbor in P.

Proof of Claim 1: If node a4 is adjacent to more than two nodes in P, then there exists a
wheel with center a4, a contradiction. So assume that a4 has two neighbors in P, say =, and
zq with p < ¢. Note that z, and z, must be adjacent, otherwise there exists a 3PC(zp, z,).
If z; is of Type 8a w.r.t. X, adjacent to a node r in P, ,,, then r is adjacent to a4 since
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otherwise there exists a 3PC(r,a4). But then P together with the P, , subpath of P, ,,
and the FP,,; subpath of P,,,,, where ¢ is the neighbor of z,, in F,,,, closest to az, and path
P makes a the rim of a wheel with center a4. Similarly if z; is of Type 6b there exists a
wheel with center a4. Thus z; is of Type 6a and by symmetry x, is also of Type 6a. Let
r and s be the neighbors of z; in P, ,, with s closer to a4 than r. Now either there exists
a 3PC(xirs,zpxqaq), or , = 1 in which case there exists a wheel with center z,. This
completes the proof of Claim 1.

By Claim 1, a4 has a unique neighbor in P. Let this be node z,.
Claim 2: Nodes z; and z, are of Type 6a w.r.t. 3

Proof of Claim 2: If ¢ # 1 and q # n, then if z1 and x,, are not of Type 6a, they are of Type
8a. Assume node z; is of Type 8a and let r be the neighbor of z; in F,,,,. Now either there
exists a 3PC(z4,7), or z, is of Type 8a, adjacent to the neighbor of a4 in P,,,,. But then
there exists a wheel with center a4. So we may assume w.l.o.g. that ¢ = 1 and z; is of Type
6b. Let x, be of Type 8a with neighbor s in P,,,,. If s is not adjacent to a4 there exists a
3PC(s,as4), induced by P,,q, U Pysa, U P, otherwise there exists a wheel with center a4. If
zy is of Type 6a w.r.t. X with neighors r and s, s closer to a4 than r, then there exists a
3PC(zpsr,x1a4a5), where as is the neighbor of a4 in path P, ,,. This completes the proof
of Claim 2.

By Claim 2, z; and z,, are of Type 6a w.r.t. X. Let ¥’ be the 3PC(A,-) obtained by
substituting z,, ..., z; for the appropriate subpath of P, ,,. X’ has an z-crosspath. Node a5
is of Type 8b w.r.t. ¥’ and the path induced by 3\ ¥’ consists of node a5 and its attachment
to ¥/, that satisfies the conditions of Lemma 5.5. Note that in applying the lemma the roles
of ¥ and ¥’ are interchanged, with a5 being a node of Type 8b attached to ¥’. Thus ¥ has
no crosspath. a

Lemma 5.7 Let X be a decomposable 3PC(aya9by,c1) that has an ey-crosspath to P,,.,. Let
u be a Type 3 node w.r.t. ¥ and let P = x1,...,x, be its attachment to 3 such that x, is of
Type 8b w.r.t. X. Let X' be a 3PC(A,-) obtained from ¥ by substituting v and P for Py, .
Then Y does not have an x,-crosspath.

Proof: Let @ be an ej-crosspath w.r.t. 3. If no node of @ is adjacent to a node of P U wu,
then @) is an ej-crosspath w.r.t. ¥’ and hence the result follows from Lemma 2.18. If a node
of Q is adjacent to a node of P U u, then by Lemma 2.17, a subpath of @) is an e;-crosspath
w.r.t. ¥’ and hence the result follows from Lemma 2.18. O

The following theorem implies Theorem 2.24.

Theorem 5.8 Let X be a decomposable 3PC(A,-) and H = X Uuy its extension. The 2-join
H,|H, of H extends to a 2-join of G.

Proof: Assume that the 2-join Hi|Hy of H does not extend to a 2-join of G. By Theorem
4.5, there exists a blocking sequence S = z1,...,z,. W.Lo.g. we assume that H and S are
chosen so that the size of S is minimized. Let z; be the node of S with lowest index that is
adjacent to a node in Hs.
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Case 1: Node z; is of Type 3 w.r.t. X.

By Corollary 2.14, x; is attached to ¥. By Lemma 2.8 and Lemma, 2.22, every attachment
of z; to X ends in a Type 8 node.

Suppose that z; has an attachment that ends in a Type 8a node w.r.t. ¥, adjacent to
a node in Hy. Let @ = y1,...,yn be such an attachment, with y; adjacent to x; and yp,
w.lo.g. adjacent to a node in P, \ c1. Let X' be the 3PC(A, -) obtained by substituting z;
and @ into X. By Lemma 2.22, uy is of the same type w.r.t. X' as it is w.r.t. X. If uy is of
Type 3 w.r.t. X (and ¥') and it has an attachment to X' that ends in a Type 8a node w.r.t.
¥" adjacent to a node in @, then it also has an attachment to ¥ that ends in a Type 8a node
w.r.t. ¥ adjacent to a node in P, ., \ ¢;. Hence every attachment of ug to X' ends in Py, ., .
Now, by Lemma 5.4, ¥’ is decomposable, since any crosspath w.r.t. ¥’ is also a crosspath
wr.t. X. Let H' = X' Uug and H{ = H'\ Hy. H' has a 2-join with partition H||H, with
special sets A’ = {as,z;}, B'=B, C' = C and D' = D. By Theorem 4.9 the set S contains
a blocking sequence for the 2-join H{|Hy of H'. But this contradicts our choice of H.

Hence no attachment of ; ends in a Type 8a node w.r.t. ¥ adjacent to a node in H; \ ¢;.
But then H' = ¥ Uz, is an extension of a decomposable 3PC(A, ). Let Hy = H'\ H;. Then
Hi|H) is a 2-join of H' with special sets A’ = A, B' = {b1,z;}, C' = C and D' = {d;}. By
Theorem 4.9, the set S contains a blocking sequence for the 2-join H;|H of H', contradicting
our choice of H.

Case 2: Node z; is not of Type 3 w.r.t. X.

By Lemma 4.8 x1,...,z; is a chordless path. By Lemma 2.22 and the definition of a
blocking sequence, z; is either of Type 8a w.r.t. ¥ with neighbors in H; \ ¢; or of Type 6
with both neighbors in H;. By Lemma 4.3 nodes xa,...,z;_1 are either not adjacent to any
node of H or are of Type 8b w.r.t. 3.

First suppose that z; is adjacent to a node of 3. By Lemma 2.22 and the assumption
that z; is not of Type 3 w.r.t. X, all of the neighbors of z; in ¥ are contained in P, ., and
z; is either of Type 8a or 6 w.r.t. X. Let Hy = Py, Uz; and H = X Uwz;. Then H|H)
is a 2-join of H' with special sets A’ = A, B' = B, C' = C and D’ containing node d; and
possibly x;, if x; is of Type 6b w.r.t. X. By Theorem 4.9, the set S contains a blocking
sequence for the 2-join Hy|H} of H', contradicting our choice of H.

Hence z; is not adjacent to a node of ¥, so it must be adjacent to uy. Assume that uy is
of Type 8a or 6 w.r.t. . Node ¢; must be adjacent to a node of z»,...,z;, since otherwise
by Lemma 2.17, x1,...,2;,uy is a crosspath w.r.t. 3, contradicting the assumption that
is decomposable. If ¢; has a neighbor in z3,...,z;, then by Lemma 5.6, ¢; has exactly one
neighbor in x»,...,z;, nodes z; and upg are of Type 6a w.r.t. ¥ and ¥ has no crosspath.
But this contradicts the assumption that 3 is decomposable since the graph induced by
Y U{z1,...,zj,un} contains a 3PC(A,-) with a crosspath.

Hence ug is of Type 3 w.r.t. ¥. First assume that no node of z,...,z; is adjacent to
c1. Node z; must be adjacent to a; or as, since otherwise x1,...,z; is an attachment of
ug to ¥ that ends in H; \ ¢; which contradicts the assumption that ¥ U uy is an extension
of a decomposble 3PC(A,-). So assume w.l.o.g. that z; is adjacent to a;. Then the node
set Hy U{z1,...,2z;,un} induces either a Mickey Mouse (if z; is of Type 8 w.r.t. X) or a
proper wheel with center a; (if z; is of Type 6 w.r.t. X). So ¢; must be adjacent to a node
of z9,...,zj. First suppose that x; has a neighbor in P, .,. Let z} be the neighbor of z;
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in P, that is closest to a; and let P, be the ajzj-subpath of P, .,. Let H' be the hole
induced by the node set P, ,» U {z1,...,zj,un}. Node ¢; has at most two neighbors in H’,
since otherwise (H', ¢1) is a wheel, contradicting Lemma 2.21. In particular, 2 is not of Type
6b w.r.t. X. If ¢; has two nonadjacent neighbors in H', then H' U ¢; induces a 3PC(-,").
If ¢; has two adjacent neighbors in H', then the node set Pp,., U Ppyoy U {z1,...,zj,un}
induces a 3PC(A,A). Hence c¢; has a unique neighbor z;, ¢+ > 1, in x1,...,2;. By an
analogous argument the same conclusion holds if 21 has a neighbor in P,,.,. Let ¥’ be a
3PC(aiasup,c1) obtained from ¥ by substituting z;, ..., z;,ug for Py . Then z1,...,z;
is an z;-crosspath w.r.t. ¥/, contradicting Lemma, 5.7. a

5.3 Decomposable Connected Triangles

In this section, we assume that G does not contain a connected diamond.

Lemma 5.9 Strongly adjacent nodes to a connected triangles T (ayazby,cicody,u,v) are of
the following types:

Type a: Adjacent to ay,as and by.
Type b: Adjacent to c1,co and dy.

Type c: Adjacent to two adjacent nodes in T that belong to a segment of T

Proof: Strongly adjacent nodes to T' are strongly adjacent to at least on of X, 3o, 33, 3y.
By Lemma 2.22 the only strongly adjacent nodes to ¥; are of Type 3 and Type 6. As a
consequence, if w is strongly adjacent to T, all its neighbors must be in 3J; for some ¢ = 1,2, 3
or 4. Suppose that w is not of Type a, b or c. Then N(w) NT = {u,v}. By Lemma 2.14, w
is attached to ;. Let W = wy,...,w, be an attachment of w to ¥;. By Lemma 2.11 and
Lemma 2.22, w,, is not strongly adjacent to X1, with a neighbor in P, , \ {u,v,v'}, where v/
is the neighbor of v in ¥; distinct from u. A node of P,,, must be adjacent to a node of W,
since otherwise there is a 3PC/(ajazby, wuv) contained in 7'U W U w. But then a subpath of
P, contradicts Lemma 2.17 applied to a 3PC/(aja2b1,u) obtained from ¥; by substituting
w and its attachment W into Y. O

Proof of Theorem 2.26: Assume otherwise. Let w ¢ T be adjacent to by = dy but no other
node of T and let @) be a chordless path from w to T in the graph obtained from G by removing
the star by U N(by) \ w. By Lemma 5.9, each intermediate node of ) can be adjacent to at
most one node in the set {a1,az2,c1,c2}. But, if such an adjacency exists, the closest such
node in () creates a Mickey Mouse. On the other hand, when no such adjacency exists, there
is a 3PC(by,u) or 3PC(by,v). O

The following theorem implies Theorem 2.28.

Theorem 5.10 Let H be an extension of a decomposable connected triangles T, with 2-join
H,|Hs. The 2-join Hi|Hy of H extends to a 2-join of G.

38



Proof: Suppose not and let H be chosen so that the size of the blocking sequence S =
Z1,...,%, for the 2-join Hj|Hy is minimized. By Remark 4.2 and Lemma 5.9, z; has a
neighbor in H;, z, has a neighbor in H, 1 and x, are either not strongly adjacent to T" or
of Type ¢ w.r.t. T (Lemma 5.9) or z,, is adjacent to node w and no other node of H. By
Lemma 4.3 and Lemma 5.9, z;, 1 < i < n, is either of Type a or b w.r.t. 7' (Lemma 5.9), or
does not have a neighbor in H, or the unique neighbor of x; in H is by or d;. Let z; be the
node of lowest index adjacent to a node in H with j > 1. Note that z; has a neighbor in H».
By Lemma 4.8, @ = x1,...,z; induces a chordless path. If w is the unique neighbor of z; in
H, then let P = z1,...,zj,w and otherwise let P = Q.

Case 1: w is the unique neighbor of z; in H, or z; is adjacent to a node of T" but is not
strongly adjacent to T', or z; is of Type ¢ w.r.t. T (Lemma 5.9).

By Lemma 2.17, P is contained in a v-crosspath w.r.t. X; or a w-crosspath w.r.t. .
But this contradicts the assumption that 7" is decomposable.

Case 2: z; is of Type a or b w.r.t. 7' (Lemma 5.9).

Note that P = (). We assume w.l.o.g. that z; is of Type a. If z; is adjacent to a; only
in T, we must have j = 2, otherwise there is a Mickey Mouse. By Corollary 2.14, xo has
an attachment R = yi,...yy, to X;. By Lemma 2.8 and Lemma 2.22, y,, is not strongly
adjacent to ¥;. Let y be the unique neighbor of y,, in ¥;. If y is a node of Py, or Py,
let 3’ be obtained by sustituting z3 and R into X. Otherwise let ¥ be a 3PC(z2a1b1,y)
that is induced by the node set Py, U P, U RU xo. Then z7 is of Type 7 w.r.t. ', which
contradicts Lemma 2.22. Hence a; cannot be the unique neighbor of z; in 7" and similarly
az cannot be the unique neighbor of z; in T

Let a} be the neighbor of a; on P,, , and let a5 be the neighbor of ay on P,,,. Node z;
cannot be adjacent to a} only (or af only) or {ai,a}} (or {as,d)}) in T since, in each case,
there is a proper wheel. Now, by Lemma 2.8, the path P is an attachment of z; to ¥; or ¥s.
The node z; is not strongly adjacent to T'. If z; is adjacent to P, , \ v or P.,, \ u, say x; has
a neighbor z in P, , \ v, then there is a 3PC(z,u). So z; is adjacent to some node in P, , or
Py,u, say Py . But now substituting z; and P for a; and the appropriate subpath of P, ,,
we obtain connected triangles 7" that are decomposable by Lemma 5.4, and by Theorem 4.9
S contains a shorter blocking sequence for H' = T'" U w contradicting the choice of H. ad
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