UNIVERSITY OF LEEDS

This is a repository copy of Even-hole-free graphs that do not contain diamonds: A structure theorem and its consequences.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/74350/

Article:

Kloks, T, Muller, H and Vuskovic, K (2009) Even-hole-free graphs that do not contain diamonds: A structure theorem and its consequences. Journal of Combinatorial Theory: Series B, 99 (5). 733-800 . ISSN 0095-8956
https://doi.org/10.1016/j.jctb.2008.12.005

Reuse

See Attached

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Even-hole-free graphs that do not contain diamonds: a structure theorem and its consequences

Ton Kloks Haiko Müller Kristina Vušković*
School of Computing, University of Leeds, Leeds LS2 9JT, UK
\{kloks|hm|vuskovi\}@comp.leeds.ac.uk

October 20, 2008

Abstract

In this paper we consider the class of simple graphs defined by excluding, as induced subgraphs, even holes (i.e., chordless cycles of even length) and diamonds (i.e., a graph obtained from a clique of size 4 by removing an edge). We say that such graphs are (evenhole, diamond)-free. For this class of graphs we first obtain a decomposition theorem, using clique cutsets, bisimplicial cutsets (which is a special type of a star cutset) and 2 -joins. This decomposition theorem is then used to prove that every graph that is (evenhole, diamond)-free contains a simplicial extreme (i.e., a vertex that is either of degree 2 or whose neighborhood induces a clique). This characterization implies that for every (evenhole, diamond)-free graph $G, \chi(G) \leq \omega(G)+1$ (where χ denotes the chromatic number and ω the size of a largest clique). In other words, the class of (even-hole, diamond)-free graphs is a χ-bounded family of graphs with the Vizing bound for the chromatic number.

The existence of simplicial extremes also shows that (even-hole, diamond)-free graphs are β-perfect, which implies a polynomial time coloring algorithm, by coloring greedily on a particular, easily constructable, ordering of vertices. Note that the class of (even-hole, diamond)-free graphs can also be recognized in polynomial time.

Keywords: Even-hole-free graphs; decomposition; χ-bounded families; β-perfect graphs; greedy coloring algorithm.

1 Introduction

All graphs in this paper are finite, simple and undirected. We say that a graph G contains a graph F, if F is isomorphic to an induced subgraph of G. A graph G is F-free if it does not contain F. Let \mathcal{F} be a (possibly infinite) family of graphs. A graph G is \mathcal{F}-free if it is F-free, for every $F \in \mathcal{F}$.

Many interesting classes of graphs can be characterized as being \mathcal{F}-free for some family \mathcal{F}. Most famous such example is the class of perfect graphs. A graph G is perfect if for every induced subgraph H of $G, \chi(H)=\omega(H)$, where $\chi(H)$ denotes the chromatic number of H, i.e., the minimum number of colors needed to color the vertices of H so that no two vertices receive the same color, and $\omega(H)$ denotes the size of a largest clique in H (where a clique is a graph in which every pair of vertices are adjacent). The famous Strong Perfect

[^0]Graph Theorem (conjectured by Berge [3] and proved by Chudnovsky, Robertson, Seymour and Thomas [4]) states that a graph is perfect if and only if it does not contain an odd hole nor an odd antihole (where a hole is a chordless cycle of length at least four, it is odd or even if it contains an odd or even number of nodes, and an antihole is a complement of a hole).

In the last 15 years a number of other classes of graphs defined by excluding a family of induced subgraphs have been studied, perhaps originally motivated by the study of perfect graphs. The kinds of questions this line of research was focused on were whether excluding induced subgraphs affects the global structure of the particular class in a way that can be exploited for putting bounds on parameters such as χ and ω, constructing optimization algorithms (problems such as finding the size of a largest clique or a minimum coloring) and recognition algorithms. A number of these questions were answered by obtaining a structural characterization of a class through their decomposition (as was the case with the proof of the Strong Perfect Graph Theorem).

The structure of even-hole-free graphs was first studied by Conforti, Cornuéjols, Kapoor and Vušković in [7], where a decomposition theorem is obtained for this class, that was then used in [8] for constructing a polynomial time recognition algorithm. One can find a maximum weight clique of an even-hole-free graph in polynomial time, since as observed by Farber [11] 4-hole-free graphs (where a 4-hole is a hole of length 4) have $\mathcal{O}\left(n^{2}\right)$ maximal cliques and hence one can list them all in polynomial time. In [18] da Silva and Vušković show that every even-hole-free graph contains a vertex whose neighborhood is triangulated (i.e., does not contain a hole), and in fact they prove this result for a larger class of graphs that contains even-hole-free graphs (for the class of 4-hole-free odd-signable graphs, to be defined later). This characterization leads to a faster algorithm for computing a maximum weight clique in even-hole-free graphs (and in fact in 4-hole-free odd-signable graphs). More recently, Addario-Berry, Chudnovsky, Havet, Reed and Seymour [1], settle a conjecture of Reed, by proving that every even-hole-free graph contains a bisimplicial vertex (a vertex whose set of neighbors induces a graph that is the union of two cliques). This immediately implies that if G is a non-null even-hole-free graph, then $\chi(G) \leq 2 \omega(G)-1$ (observe that if v is a bisimplicial vertex of G, then its degree is at most $2 \omega(G)-2$, and hence G can be colored with at most $2 \omega(G)-1$ colors).

The study of even-hole-free graphs is motivated by their connection to β-perfect graphs introduced by Markossian, Gasparian and Reed [16]. For a graph G, let $\delta(G)$ be the minimum degree of a vertex in G. Consider the following total order on $V(G)$: order the vertices by repeatedly removing a vertex of minimum degree in the subgraph of vertices not yet chosen and placing it after all the remaining vertices but before all the vertices already removed. Coloring greedily on this order gives the upper bound: $\chi(G) \leq \beta(G)$, where $\beta(G)=\max \left\{\delta\left(G^{\prime}\right)+1: G^{\prime}\right.$ is an induced subgraph of G \}. A graph is β-perfect if for each induced subgraph H of G, $\chi(H)=\beta(H)$.

It is easy to see that β-perfect graphs belong to the class of even-hole-free graphs. A diamond is a cycle of length 4 that has exactly one chord. A cap is a cycle of length greater than four that has exactly one chord, and this chord forms a triangle with two edges of the cycle (i.e., it is a short chord).

Markossian, Gasparian and Reed [16] show that (even-hole, diamond, cap)-free graphs are β-perfect. They show that a minimal β-imperfect graph that is not an even hole contains no simplicial extreme (where a vertex is simplicial if its neighborhood set induces a clique, and it is a simplicial extreme if it is either simplicial or of degree 2). They then prove that (even-hole, diamond, cap)-free graphs must always have a simplicial extreme.

This result was then generalized by de Figuiredo and Vušković [12], who show that (evenhole, diamond, cap-on-6-vertices)-free graphs contain a simplicial extreme, and hence are β-perfect. In the same paper they conjecture that in fact (even-hole, diamond)-free graphs are β-perfect, which we prove here.

In this paper we obtain a decomposition theorem for (even-hole, diamond)-free graphs that uses clique cutsets, bisimplicial cutsets (which is a special type of a star cutset) and 2joins. This decomposition theorem is then used to prove that every graph that is (even-hole, diamond)-free contains a simplicial extreme, implying that they are β-perfect. We note that there are (even-hole, cap)-free graphs that are not β-perfect, see Figure 1. Total characterization of β-perfect graphs remains open, as well as their recognition. Clearly, since even-holefree graphs can be recognized in polynomial time [8], so can (even-hole, diamond)-free graphs. Our result shows that (even-hole, diamond)-free graphs can be colored in polynomial time, by coloring greedily on a particular easily constructable ordering of vertices. (We note that for every graph G, there exists an ordering of its vertices on which the greedy coloring will give a $\chi(G)$-coloring of G, the difficulty being in finding this ordering). Whether even-hole-free graphs can be colored in polynomial time remains open.

Figure 1: An (even-hole, cap)-free graph that is not β-perfect.
The fact that (even-hole, diamond)-free graphs have simplicial extremes implies that for such a graph $G, \chi(G) \leq \omega(G)+1$ (observe that if v is a simplicial extreme of G, then its degree is at most $\omega(G)$, and hence G can be colored with at most $\omega(G)+1$ colors). So this class of graphs belongs to the family of χ-bounded graphs, introduced by Gyárfás [13] as a natural extension of the family of perfect graphs: a family of graphs \mathcal{G} is χ-bounded with χ-binding function f if, for every induced subgraph G^{\prime} of $G \in \mathcal{G}, \chi\left(G^{\prime}\right) \leq f\left(\omega\left(G^{\prime}\right)\right)$. Note that perfect graphs are a χ-bounded family of graphs with the χ-binding function $f(x)=x$. So a natural question to ask is: what choices of forbidden induced subgraphs guarantee that a family of graphs is χ-bounded. Much research has been done in this area, for a survey see [17]. We note that most of that research has been done on classes of graphs obtained by forbidding a finite number of graphs. Since there are graphs with arbitrarily large chromatic number and girth [10], in order for a family of graphs defined by forbidding a finite number of graphs (as induced subgraphs) to be χ-bounded, at least one of these forbidden graphs needs to be acyclic. Vizing's Theorem [21] states that for a simple graph $G, \Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$ (where $\Delta(G)$ denotes the maximum vertex degree of G, and $\chi^{\prime}(G)$ denotes the chromatic index of G, i.e., the minimum number of colors needed to color the edges of G so that no two adjacent edges receive the same color). This implies that the class of line graphs of simple graphs is a χ-bounded family with χ-binding function $f(x)=x+1$. This special upper bound for the chromatic number is called the Vizing bound. There is a list of nine forbidden induced subgraphs, called the Beineke graphs, that characterizes the class of line graphs of simple graphs [2]. It turns out that by excluding only two of the Beineke graphs, namely claws and $K_{5}-e$'s (where a claw is a graph that has 4 nodes and 3 edges whose one vertex is adjacent to all the others, and $K_{5}-e$ is the graph obtained from a clique on 5 nodes by removing an
edge), one gets a family of graphs with the Vizing bound [15]. We obtain the Vizing bound for the chromatic number by forbidding a family of graphs none of which is acyclic.

The essence of even-hole-free graphs is actually captured by their generalization to signed graphs, called the odd-signable graphs, and in fact the decomposition theorem that we prove in this paper is for the class of graphs that generalizes (even-hole, diamond)-free graphs in this way. Odd-signable graphs are introduced in Section 1.1, and the decomposition theorem is described in Section 1.2. In Section 1.3 we give an idea why a very strong decomposition theorem was required to prove the existence of simplicial extremes in (even-hole, diamond)free graphs. In Section 1.4, using a technique of Keijsper and Tewes [14], we extend the β perfection of (even-hole, diamond)-free graphs to a class that now includes all of the previously known classes of β-perfect graphs. In Section 1.5 we introduce the terminology and notation that will be used throughout the paper.

1.1 Odd-signable graphs

We sign a graph by assigning 0,1 weights to its edges. A graph is odd-signable if there exists a signing that makes every triangle odd weight and every hole odd weight. We now characterize odd-signable graphs in terms of forbidden induced subgraphs, that are two types of 3-path configurations (3PC's) and even wheels.

Let x, y be two distinct nodes of G. A $3 \mathrm{PC}(x, y)$ is a graph induced by three chordless x, y-paths, such that any two of them induce a hole. We say that a graph G contains a $3 \mathrm{PC}(\cdot, \cdot)$ if it contains a $3 \mathrm{PC}(x, y)$ for some $x, y \in V(G) .3 \mathrm{PC}(\cdot, \cdot)$'s are also known as thetas in [5].

Let $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ be six distinct nodes of G such that $\left\{x_{1}, x_{2}, x_{3}\right\}$ and $\left\{y_{1}, y_{2}, y_{3}\right\}$ induce triangles. A $3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y_{1} y_{2} y_{3}\right)$ is a graph induced by three chordless paths $P_{1}=$ $x_{1}, \ldots, y_{1}, P_{2}=x_{2}, \ldots, y_{2}$ and $P_{3}=x_{3}, \ldots, y_{3}$, such that any two of them induce a hole. We say that a graph G contains a $3 \mathrm{PC}(\triangle, \triangle)$ if it contains a $3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y_{1} y_{2} y_{3}\right)$ for some $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3} \in V(G) .3 \mathrm{PC}(\triangle, \triangle)$'s are also known as prisms in [4] and stretchers in [9].

A wheel, denoted by (H, x), is a graph induced by a hole H and a node $x \notin V(H)$ having at least three neighbors in H, say x_{1}, \ldots, x_{n}. Node x is the center of the wheel. Edges $x x_{i}$, for $i \in\{1, \ldots, n\}$, are called spokes of the wheel. A subpath of H connecting x_{i} and x_{j} is a sector if it contains no intermediate node $x_{l}, 1 \leq l \leq n$. A short sector is a sector of length 1 , and a long sector is a sector of length greater than 1 . Wheel (H, x) is even if it has an even number of sectors. If a wheel (H, x) has n spokes, the it is also referred to as an n-wheel.

Figure 2: $3 \mathrm{PC}(\cdot, \cdot), 3 \mathrm{PC}(\triangle, \triangle)$ and an even wheel.
Figure 2 depicts a $3 \mathrm{PC}(\cdot, \cdot), 3 \mathrm{PC}(\triangle, \triangle)$ and an even wheel. In this and other figures
throughout the paper, solid lines represent edges and dotted lines represent paths of length at least one.

It is easy to see that $3 \mathrm{PC}(\cdot, \cdot)$'s, $3 \mathrm{PC}(\triangle, \triangle)$'s and even wheels cannot be contained in even-hole-free graphs. In fact they cannot be contained in odd-signable graphs. The following characterization of odd-signable graphs states that the converse also holds, and it is an easy consequence of a theorem of Truemper [20].

Theorem 1.1 ([6])
A graph is odd-signable if and only if it is (even-wheel, 3PC($\cdot, \cdot), 3 \mathrm{PC}(\triangle, \triangle)$)-free.
This characterization of odd-signable graphs will be used throughout the paper.

1.2 Decomposition theorem

For $x \in V(G), N(x)$ denotes the set of nodes of G that are adjacent to x, and $N[x]=$ $N(x) \cup\{x\}$. For $V^{\prime} \subseteq V(G), G\left[V^{\prime}\right]$ denotes the subgraph of G induced by V^{\prime}. For $x \in V(G)$, the graph $G[N(x)]$ is called the neighborhood of x. For $S \subseteq V(G), N[S]$ is defined to be S together with the set of all nodes of $V(G) \backslash S$ that have a neighbor in S. For an induced subgraph H of $G, N[H]=N[V(H)]$.

Let G be a connected graph. We first introduce three types of cutsets that will be used in our decomposition theorem.

A node set $S \subseteq V(G)$ is a clique cutset of G if S induces a clique and $G \backslash S$ is disconnected.
A node set S is a bisimplicial cutset of G with center x if for some wheel (H, x) of G and for some long sector S_{1} of (H, x) with endnodes x_{1} and x_{2}, the following hold.
(i) $S=X_{1} \cup X_{2} \cup\{x\}$, where $X_{1}=N\left[x_{1}\right] \cap N(x)$ and $X_{2}=N\left[x_{2}\right] \cap N(x)$.
(ii) $G \backslash S$ contains connected components C_{1} and C_{2} such that $V\left(S_{1}\right) \backslash\left\{x_{1}, x_{2}\right\} \subseteq V\left(C_{1}\right)$ and $V(H) \backslash\left(V\left(S_{1}\right) \cup S\right) \subseteq V\left(C_{2}\right)$.

Note that in a diamond-free graph the following hold:
(i) $X_{1} \cap X_{2}=\varnothing$,
(ii) both X_{1} and X_{2} induce cliques, and
(iii) for every $u \in X_{1}$ (resp. $u \in X_{2}$) $X_{1}=N[u] \cap N(x)$ (resp. $\left.X_{2}=N[u] \cap N(x)\right)$.

We say that S is a bisimplicial cutset that separates S_{1} from $H \backslash S_{1}$.
G has a 2-join, denoted by $V_{1} \mid V_{2}$, with special sets $\left(A_{1}, A_{2}, B_{1}, B_{2}\right)$ that are nonempty and disjoint, if the nodes of G can be partitioned into sets V_{1} and V_{2} so that the following hold.
(i) For $i=1,2, A_{i} \cup B_{i} \subseteq V_{i}$.
(ii) Every node of A_{1} is adjacent to every node of A_{2}, every node of B_{1} is adjacent to every node of B_{2}, and these are the only adjacencies between V_{1} and V_{2}.
(iii) For $i=1,2$, the graph induced by $V_{i}, G\left[V_{i}\right]$, contains a path with one endnode in A_{i} and the other in B_{i}. Furthermore, if $\left|A_{i}\right|=\left|B_{i}\right|=1$, then $G\left[V_{i}\right]$ is not a chordless path.

We now introduce two classes of graphs that have no clique cutset, bisimplicial cutset nor a 2-join, namely the long $3 \mathrm{PC}(\triangle, \cdot)$'s and the extended nontrivial basic graphs.

Let x_{1}, x_{2}, x_{3}, y be four distinct nodes of G such that x_{1}, x_{2}, x_{3} induce a triangle. A $3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$ is a graph induced by three chordless paths $P_{x_{1} y}=x_{1}, \ldots, y, P_{x_{2} y}=x_{2}, \ldots, y$ and $P_{x_{3} y}=x_{3}, \ldots, y$, such that any two of them induce a hole. We say that a graph G contains a $3 \mathrm{PC}(\triangle, \cdot)$ if it contains a $3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$ for some $x_{1}, x_{2}, x_{3}, y \in V(G)$. Note that in a $\Sigma=3 \mathrm{PC}(\triangle, \cdot)$ at most one of the paths may be of length one. If one of the paths of Σ is of length 1 , then Σ is also a wheel that is called a bug. If all of the paths of Σ are of length greater than 1 , then Σ is a long $3 \mathrm{PC}(\triangle, \cdot)$, see Figure 3. $3 \mathrm{PC}(\triangle, \cdot)$'s are also known as pyramids in [4].

Figure 3: A long $3 \mathrm{PC}(\triangle, \cdot)$ and a bug.
We now define nontrivial basic graphs. Let L be the line graph of a tree. Note that every edge of L belongs to exactly one maximal clique, and every node of L belongs to at most two maximal cliques. The nodes of L that belong to exactly one maximal clique are called leaf nodes. A clique of L is big if it is of size at least 3 . In the graph obtained from L by removing all edges in big cliques, the connected components are chordless paths (possibly of length 0). Such a path P is an internal segment if it has its endnodes in distinct big cliques (when P is of length 0 , it is called an internal segment when the node of P belongs to two big cliques). The other paths P are called leaf segments. Note that one of the endnodes of a leaf segment is a leaf node.

A nontrivial basic graph R is defined as follows: R contains two adjacent nodes x and y, called the special nodes. The graph L induced by $R \backslash\{x, y\}$ is the line graph of a tree and contains at least two big cliques. In R, each leaf node of L is adjacent to exactly one of the two special nodes, and no other node of L is adjacent to special nodes. The last condition for R is that no two leaf segments of L with leaf nodes adjacent to the same special node have their other endnode in the same big clique. The internal segments of R are the internal segments of L, and the leaf segments of R are the leaf segments of L together with the node in $\{x, y\}$ to which the leaf segment is adjacent to.

Let G be a graph that contains a nontrivial basic graph R with special nodes x and $y . R^{*}$ is an extended nontrivial basic graph of G if R^{*} consists of R and all nodes $u \in V(G) \backslash V(R)$ such that for some big clique K of R and for some $z \in\{x, y\}, N(u) \cap V(R)=V(K) \cup\{z\}$. We also say that R^{*} is an extension of R. See Figure 4.

A graph is basic if it is one of the following graphs:
(1) a clique,
(2) a hole,
(3) a long $3 \mathrm{PC}(\triangle, \cdot)$, or
(4) an extended nontrivial basic graph.

Figure 4: An extended nontrivial basic graph.

Theorem 1.2 A connected (diamond, 4-hole)-free odd-signable graph is either basic, or it has a clique cutset, a bisimplicial cutset or a 2-join.

The two key structures in the proof of this decomposition theorem are wheels and $3 \mathrm{PC}(\triangle, \cdot)$'s. A proper wheel is a wheel that is not a bug. Proper wheels are decomposed with bisimplicial cutsets in Section 3. Once the proper wheels are decomposed for the rest of the proof we assume that the graph does not contain a proper wheel. In fact, the proof of the decomposition theorem consists of a sequence of structures that are decomposed (when present in the graph) in that particular order. Once one structure is decomposed for the rest of the proof it is assumed that the graph does not contain that structure. Finding this sequence is the key to any decomposition theorem, and is the most difficult part of it.

The rest of the structures that are decomposed will arise from $3 \mathrm{PC}(\triangle, \cdot)$. The key is to use either bisimplicial cutsets or 2-joins to separate different paths of a $3 \mathrm{PC}(\triangle, \cdot)$. But this will not be possible if there exist paths P, as in Figure 5, called the crosspaths (to be defined formally in Section 4). On the other hand, not all of the $3 \mathrm{PC}(\triangle, \cdot)$'s need to be decomposed because they could be a part of a basic graph.

Figure 5: A crosspath P that prevents, in the first case, $N[x]$ from being a bisimplicial cutset separating different sectors of the bug, and in the second case, the existence of a 2 -join that separates path P_{3} from the other two path of the $3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$.

The proof of Theorem 1.2 follows from the following three lemmas, proved in Sections 3, 8 and 10 respectively.

Lemma 1.3 Let G be a connected (diamond, 4-hole)-free odd-signable graph. If G does not contain a $3 \mathrm{PC}(\triangle, \cdot)$, then G is either a clique or a hole, or it has a clique cutset or a bisimplicial cutset.

Lemma 1.4 Let G be a connected (diamond, 4-hole)-free odd-signable graph. If G contains a $3 \mathrm{PC}(\triangle, \cdot)$ but does not contain a $3 \mathrm{PC}(\triangle, \cdot)$ with a crosspath, then either G is a long $3 \mathrm{PC}(\triangle, \cdot)$ or it has a clique cutset, a bisimplicial cutset or a 2-join.

Lemma 1.5 Let G be a connected (diamond, 4-hole)-free odd-signable graph. If G contains a $3 \mathrm{PC}(\triangle, \cdot)$ with a crosspath, then either G is an extended nontrivial basic graph or G has a clique cutset, a bisimplicial cutset or a 2-join.

In a connected graph G, a node set S is a k-star cutset if $G \backslash S$ is disconnected, and for some clique C in S of size $k, S \backslash C \subseteq N[C]$. A 1-star cutset is also known as a star cutset, a 2 -star cutset is also known as a double star cutset, and a 3 -star cutset is also known as a triple star cutset. In [7] Conforti, Cornuéjols, Kapoor and Vušković decompose even-hole-free graphs (in fact 4 -hole-free odd-signable graphs) using 2 -joins and star, double star and triple star cutsets. This decomposition theorem was strong enough to obtain a decomposition based recognition algorithm for even-hole-free graphs [8], but even at the time it was clear that it was not the strongest possible decomposition theorem for even-hole-free graphs. In [19] da Silva and Vušković are working on obtaining a decomposition theorem for even-hole-free graphs (in fact for 4 -hole-free odd-signable graphs) that uses just 2 -joins and star cutsets. The approach is to first reduce the problem to the diamond-free case and then use Theorem 1.2.

1.3 Simplicial extremes

Recall that a vertex v is a simplicial extreme of a graph G, if it is either a simplicial vertex (i.e., a vertex whose neighborhood induces a clique) or a vertex of degree 2. In Section 11 we use Theorem 1.2 to prove the following property of (even-hole, diamond)-free graphs.

Theorem 1.6 Every (even-hole, diamond)-free graph contains a simplicial extreme.
This property and the following property of minimal β-imperfect graphs, imply that (evenhole, diamond)-free graphs are β-perfect.

Lemma 1.7 ([16]) A minimal β-imperfect graph that is not an even hole, contains no simplicial extreme.

Theorem 1.8 Every (even-hole, diamond)-free graph is β-perfect.
Proof: Follows from Theorem 1.6 and Lemma 1.7.
Theorems 1.6 and 1.8 were actually conjectured to be true by de Figueiredo and Vušković [12]. In [12] they prove that every (even-hole, diamond, cap-on-6-vertices)-free is β-perfect by showing the following property of this class of graphs.

Theorem 1.9 ([12]) If G is an (even-hole, diamond, cap-on-6-vertices)-free graph, then one of the following holds.
(1) G is triangulated.
(2) For every edge $x y, G$ has a simplicial extreme in $G \backslash N[\{x, y\}]$.

Similar property was used in [1] to prove that every even-hole-free graph has a bisimplicial vertex.

Theorem 1.10 ([1]) If G is even-hole-free then the following hold.
(1) If K is a clique of G of size at most 2 such that $N[K] \neq V(G)$, then G has a bisimplicial vertex in $G \backslash N[K]$.
(2) If H is a hole of G such that $N[H] \neq V(G)$, then G has a bisimplicial vertex in $G \backslash N[H]$.

Such characterizations allowed for certain types of double star cutsets to be used in the inductive proofs of Theorem 1.9 and Theorem 1.10. For assume that Theorem 1.9 (resp. Theorem 1.10) holds for all graphs with fewer vertices than G, and suppose that for an edge $x y, N[\{x, y\}]$ is a double star cutset of G. Then we can conclude that for every connected component C of $G \backslash N[\{x, y\}]$, there exists a simplicial extreme (resp. bisimplicial vertex) of G in C.

For the class of (even-hole, diamond)-free graphs it is not even the case that for every vertex there is a simplicial extreme outside the neighborhood of that vertex. The graph in Figure 6 is (even-hole, diamond)-free, and its only simplicial extremes are in the neighborhood of vertex x. Note that this graph contains a cap on 6 vertices. Also, all the vertices of this graph, except x, are bisimplicial vertices, so for any edge there is a bisimplicial vertex outside of the neighborhood of that edge.

Figure 6: An (even-hole, diamond)-free graph whose only simplicial extremes are in the neighborhood of x.

Figure 7: An (even-hole, diamond)-free graph G, bold edges denote a hole H such that no vertex of $G-N[H]$ is a simplicial extreme of G.
(2) of Theorem 1.10 is used to help prove (1). Figure 7 shows that an analogous property does not hold in our case: bold edges denote a hole H such that no vertex of $G \backslash N[H]$ is a simplicial extreme of G.

We prove Theorem 1.6 by proving the following property of (even-hole, diamond)-free graphs.

Theorem 1.11 If G is an (even-hole, diamond)-free graph, then one of the following holds.
(1) G is a clique.
(2) G contains two nonadjacent simplicial extremes.

This property does not allow us to use double star cutset decompositions in our proof, not even star cutset decompositions. We really had to strengthen our decomposition theorem as much as we could, in order to make it useful for proving Theorem 1.11.

1.4 Enlarging the class of $\boldsymbol{\beta}$-perfect graphs obtained

All the β-perfect graphs obtained so far have simplicial extremes, and hence have the following special property: for every induced subgraph H of G, either $\chi(H)=\omega(H)$ or $\chi(H)=3>$ $2=\omega(H)$. In [14] Keijsper and Tewes introduce a more general type of β-perfect graphs by proving the following extension of the result in [12].

D_{1}

D_{4}

D_{5}

Figure 8: Forbidden subgraphs for β-perfect graphs.

Theorem 1.12 ([14]) If G is an even-hole-free graph that contains none of the graphs in Figure 8, then G is β-perfect.

Figure 9: The complete 5-wheel.
Note that, as evidenced by the graph in Figure 9, the graphs satisfying the condition of Theorem 1.12 need not have simplicial extremes and in general do not have the special property described above.

We now extend Theorem 1.8 using the technique used by Keijsper and Tewes to prove Theorem 1.12.

Lemma 1.13 ([14]) Let H be a minimal induced subgraph of G that satisfies $\beta(G)=\delta(H)+$ 1. If H is (4-hole, 6-hole)-free, then H contains a diamond if and only if H contains $D_{1}, D_{2}, D_{3}, D_{4}, D_{5}$ or D_{6}.

Lemma 1.14 ([14]) Let H be a minimal induced subgraph of G that satisfies $\beta(G)=\delta(H)+$ 1, and assume that H is 4 -hole-free. If H contains a D_{3}, then H contains D_{1}, D_{2}, D_{4} or D_{6} or $\chi(H)=\beta(H)$.

Lemma 1.15 ([14]) Let G be an even-hole-free graph and let H be an induced subgraph of G such that $\beta(G)=\delta(H)+1$. If H contains a simplicial extreme then $\chi(G)=\beta(G)$.

Corollary 1.16 Every (even-hole, $D_{1}, D_{2}, D_{4}, D_{5}, D_{6}$)-free graph is β-perfect.
Proof: Let G be an (even-hole, $D_{1}, D_{2}, D_{4}, D_{5}, D_{6}$)-free graph. It suffices to prove that $\chi(G)=\beta(G)$. Let H be a minimal induced subgraph of G satisfying $\beta(G)=\delta(H)+1$. If H is diamond-free, then by Theorem 1.6, H contains a simplicial extreme, and hence by Lemma 1.15, $\chi(G)=\beta(G)$. If H contains a diamond, then by Lemma $1.13, H$ contains a D_{3}, and hence Lemma 1.14 gives $\chi(G) \leq \beta(G)=\delta(H)+1=\beta(H)=\chi(H) \leq \chi(G)$.

This class of graphs now includes all of the previously known classes of β-perfect graphs.

1.5 Terminology and notation

A path P is a sequence of distinct nodes $x_{1}, \ldots, x_{n}, n \geq 1$, such that $x_{i} x_{i+1}$ is an edge, for all $1 \leq i<n$. These are called the edges of the path P. Nodes x_{1} and x_{n} are the endnodes of the path. The nodes of $V(P)$ that are not endnodes are called the intermediate nodes of P. Let x_{i} and x_{l} be two nodes of P, such that $l \geq i$. The path $x_{i}, x_{i+1}, \ldots, x_{l}$ is called the $x_{i} x_{l}$-subpath of P. Let Q be the $x_{i} x_{l}$-subpath of P. We write $P=x_{1}, \ldots, x_{i-1}, Q, x_{l+1}, \ldots, x_{n}$. A cycle C is a sequence of nodes $x_{1}, \ldots, x_{n}, x_{1}, n \geq 3$, such that the nodes x_{1}, \ldots, x_{n} form a path and $x_{1} x_{n}$ is an edge. The edges of the path x_{1}, \ldots, x_{n} together with the edge $x_{1} x_{n}$ are called the edges of cycle C. The length of a path P (resp. cycle C) is the number of edges in P (resp. $C)$.

Given a path or a cycle Q in a graph G, any edge of G between nodes of Q that is not an edge of Q is called a chord of $Q . Q$ is chordless if no edge of G is a chord of Q. As mentioned earlier a hole is a chordless cycle of length at least 4. It is called a k-hole if it has k edges. A k-hole is even if k is even, and it is odd otherwise.

Let A, B be two disjoint node sets such that no node of A is adjacent to a node of B. A path $P=x_{1}, \ldots, x_{n}$ connects A and B if either $n=1$ and x_{1} has a neighbor in A and B, or $n>1$ and one of the two endnodes of P is adjacent to at least one node in A and the other is adjacent to at least one node in B. The path P is a direct connection between A and B if in $G[V(P) \cup A \cup B]$ no path connecting A and B is shorter than P. The direct connection P is said to be from A to B if x_{1} is adjacent to a node in A and x_{n} is adjacent to a node in B.

A note on notation: For a graph G, let $V(G)$ denote its node set. For simplicity of notation we will sometimes write G instead of $V(G)$, when it is clear from the context that we want to refer to the node set of G. We will not distinguish between a node set and the graph induced by that node set. Also a singleton set $\{x\}$ will sometimes be denoted with just x. For example, instead of " $u \in V(G) \backslash\{x\}$ ", we will write " $u \in G \backslash x$ ". These simplifications of notation will take place in the proofs, whereas the statements of results will use proper notation.

2 Appendices to a hole

In our decomposition theorem we use bisimplicial cutsets and 2-joins to break apart holes of the graph. We begin by analyzing particular types of paths, called the appendices, that connect nodes of a hole. Throughout this section we assume that G is a (diamond, 4-hole)-free odd-signable graph.

Definition 2.1 Let H be a hole. A chordless path $P=p_{1}, \ldots, p_{k}$ in $G \backslash H$ is an appendix of H if no node of $P \backslash\left\{p_{1}, p_{k}\right\}$ has a neighbor in H, and one of the following holds:
(i) $k=1$ and $\left(H, p_{1}\right)$ is a bug $\left(N\left(p_{1}\right) \cap V(H)=\left\{u_{1}, u_{2}, u\right\}\right.$, such that $u_{1} u_{2}$ is an edge), or
(ii) $k>1$, p_{1} has exactly two neighbors u_{1} and u_{2} in $H, u_{1} u_{2}$ is an edge, p_{k} has a single neighbor u in H, and $u \notin\left\{u_{1}, u_{2}\right\}$.

Nodes u_{1}, u_{2}, u are called the attachments of appendix P to H. We say that $u_{1} u_{2}$ is the edge-attachment and u is the node-attachment.

Let H_{P}^{\prime} (resp. $H_{P}^{\prime \prime}$) be the $u_{1} u$-subpath (resp. $u_{2} u$-subpath) of H that does not contain u_{2} (resp. u_{1}). H_{P}^{\prime} and $H_{P}^{\prime \prime}$ are called the sectors of H w.r.t. P.

Let Q be another appendix of H, with edge attachment $v_{1} v_{2}$ and node-attachment v. Appendices P and Q are said to be crossing if one sector of H w.r.t. P contains v_{1} and v_{2}, say H_{P}^{\prime} does, and $v \in V\left(H_{P}^{\prime \prime}\right) \backslash\{u\}$, see Figure 10.

Figure 10: Crossing appendices P and Q of a hole H.

Lemma 2.2 Let P be an appendix of a hole H, with edge-attachment $u_{1} u_{2}$ and node-attachment u. Let H_{P}^{\prime} (resp. $H_{P}^{\prime \prime}$) be the sector of H w.r.t. P that contains u_{1} (resp. u_{2}). Let $Q=q_{1}, \ldots, q_{l}$ be a chordless path in $G \backslash H$ such that q_{1} has a neighbor in H_{P}^{\prime}, q_{l} has a neighbor in $H_{P}^{\prime \prime}$, no node of $Q \backslash\left\{q_{1}, q_{l}\right\}$ is adjacent to a node of H and one of the following holds:
(i) $l=1, q_{1}$ is not adjacent to u, and if $u_{1}\left(\right.$ resp. $\left.u_{2}\right)$ is the unique neighbor of q_{1} in H_{P}^{\prime} (resp. $H_{P}^{\prime \prime}$), then u_{2} (resp. u_{1}) is not adjacent to q_{1}, or
(ii) $l>1, N\left(q_{1}\right) \cap V(H) \subseteq V\left(H_{P}^{\prime}\right) \backslash\{u\}, N\left(q_{l}\right) \cap V(H) \subseteq V\left(H_{P}^{\prime \prime}\right) \backslash\{u\}$, q_{1} has a neighbor in $H_{P}^{\prime} \backslash\left\{u_{1}\right\}$, and q_{l} has a neighbor in $H_{P}^{\prime \prime} \backslash\left\{u_{2}\right\}$.

Then Q is also an appendix of H and its node-attachment is adjacent to u. Furthermore, no node of P is adjacent to or coincident with a node of Q.

Proof: Let $P=p_{1}, \ldots, p_{k}$ and assume that p_{1} is adjacent to u_{1} and u_{2}. Let u_{1}^{\prime} (resp. u_{2}^{\prime}) be the neighbor of q_{1} in H_{P}^{\prime} that is closest to u (resp. u_{1}). Let $u_{1}^{\prime \prime}$ (resp. $u_{2}^{\prime \prime}$) be the neighbor of q_{l} in $H_{P}^{\prime \prime}$ that is closest to u (resp. u_{2}). Note that either $u_{1}^{\prime} \neq u_{1}$ or $u_{1}^{\prime \prime} \neq u_{2}$. Let S_{1}^{\prime} (resp. S_{2}^{\prime}) be the $u_{1}^{\prime} u$-subpath (resp. $u_{2}^{\prime} u_{1}$-subpath) of H_{P}^{\prime}, and let $S_{1}^{\prime \prime}$ (resp. $S_{2}^{\prime \prime}$) be the $u_{1}^{\prime \prime} u$-subpath (resp. $u_{2}^{\prime \prime} u_{2}$-subpath) of $H_{P}^{\prime \prime}$. Let H^{\prime} (resp. $H^{\prime \prime}$) be the hole induced by $H_{P}^{\prime} \cup P$ (resp. $H_{P}^{\prime \prime} \cup P$).

First suppose that $l=1$. Note that q_{1} cannot be coincident with a node of P. Suppose q_{1} has a neighbor in P. Note that if q_{1} is adjacent to p_{1}, then since there is no diamond, $u_{1}^{\prime} \neq u_{1}$ and $u_{1}^{\prime \prime} \neq u_{2}$. But then $P \cup S_{1}^{\prime} \cup S_{1}^{\prime \prime} \cup q_{1}$ contains a $3 \operatorname{PC}\left(q_{1}, u\right)$. So q_{1} has no neighbor in P. Since $H \cup q_{1}$ cannot induce a $3 \mathrm{PC}\left(u_{1}^{\prime}, u_{1}^{\prime \prime}\right), q_{1}$ has at least three neighbors in H. Since (H, q_{1}) cannot be an even wheel, without loss of generality q_{1} has an odd number of neighbors in H_{P}^{\prime} and an even number of neighbors in $H_{P}^{\prime \prime}$. Since $H^{\prime \prime} \cup q_{1}$ cannot induce a $3 \mathrm{PC}\left(u_{1}^{\prime \prime}, u_{2}^{\prime \prime}\right)$ nor an even wheel with center $q_{1}, u_{1}^{\prime \prime} u_{2}^{\prime \prime}$ is an edge. If u_{2}^{\prime} is not adjacent to u, then $H^{\prime \prime} \cup S_{2}^{\prime} \cup q_{1}$ induces either an even wheel with center u_{2} (when $u_{2}=u_{2}^{\prime \prime}$) or a $3 \mathrm{PC}\left(p_{1} u_{1} u_{2}, q_{1} u_{1}^{\prime \prime} u_{2}^{\prime \prime}\right)$ (when $\left.u_{2} \neq u_{2}^{\prime \prime}\right)$. So u_{2}^{\prime} is adjacent to u, and the lemma holds.

Now suppose that $l>1$. So $u_{1}^{\prime} \neq u_{1}$ and $u_{1}^{\prime \prime} \neq u_{2}$. Not both q_{1} and q_{l} can have a single neighbor in H, since otherwise $H \cup Q$ induces a $3 \mathrm{PC}\left(u_{1}^{\prime}, u_{1}^{\prime \prime}\right)$. Without loss of generality $u_{1}^{\prime \prime} \neq u_{2}^{\prime \prime}$.

Suppose that $u_{1}^{\prime \prime} u_{2}^{\prime \prime}$ is not an edge. A node of P must be adjacent to or coincident with a node of Q, else $H^{\prime \prime} \cup Q \cup S_{1}^{\prime}$ contains a $3 \mathrm{PC}\left(q_{l}, u\right)$. Note that no node of $\left\{q_{1}, q_{l}\right\}$ is coincident with a node of $\left\{p_{1}, p_{k}\right\}$, and if a node of Q is coincident with a node of P, then a node of Q is also adjacent to a node of P. Let q_{i} be the node of Q with highest index that has a neighbor in P. (Note that q_{i} is not coincident with a node of P). Let p_{j} be the node of P with highest index adjacent to q_{i}. If $j>1$ and $i>1$, then $H \cup\left\{p_{j}, \ldots, p_{k}, q_{i}, \ldots, q_{l}\right\}$ contains a $3 \mathrm{PC}\left(q_{l}, u\right)$. If $i=1$, then $S_{1}^{\prime} \cup S_{1}^{\prime \prime} \cup Q \cup\left\{p_{j}, \ldots, p_{k}\right\}$ induces a $3 \mathrm{PC}\left(q_{1}, u\right)$. So $i>1$, and hence $j=1$. If $i<l$, then $S_{1}^{\prime \prime} \cup S_{2}^{\prime \prime} \cup P \cup\left\{q_{i}, \ldots, q_{l}\right\}$ induces a $3 \mathrm{PC}\left(p_{1}, q_{l}\right)$. So $i=l$. Since $H \cup q_{l}$ cannot induce a $3 \mathrm{PC}\left(u_{1}^{\prime \prime}, u_{2}^{\prime \prime}\right),\left(H, q_{l}\right)$ is a wheel. But then one of the wheels $\left(H, q_{l}\right)$ or $\left(H^{\prime \prime}, q_{l}\right)$ must be even.

Therefore $u_{1}^{\prime \prime} u_{2}^{\prime \prime}$ is an edge. Suppose that $u_{1}^{\prime} \neq u_{2}^{\prime}$. Then by symmetry, $u_{1}^{\prime} u_{2}^{\prime}$ is an edge, and hence $H \cup Q$ induces a $3 \mathrm{PC}\left(q_{1} u_{1}^{\prime} u_{2}^{\prime}, q_{l} u_{1}^{\prime \prime} u_{2}^{\prime \prime}\right)$. Therefore $u_{1}^{\prime}=u_{2}^{\prime}$, i.e., Q is an appendix of H.

Suppose that a node of P is adjacent to or coincident with a node of Q. Let q_{i} be the node of Q with highest index adjacent to a node of P, and let p_{j} be the node of P with lowest index adjacent to q_{i}. If $i>1$ and $j<k$, then $H \cup\left\{p_{1}, \ldots, p_{j}, q_{i}, \ldots, q_{l}\right\}$ induces an even wheel with center u_{2} or a $3 \mathrm{PC}\left(p_{1} u_{1} u_{2}, q_{l} u_{1}^{\prime \prime} u_{2}^{\prime \prime}\right)$. If $i=1$, then $P \cup Q \cup S_{1}^{\prime} \cup S_{1}^{\prime \prime}$ contains a $3 \mathrm{PC}\left(q_{1}, u\right)$. So $i>1$, and hence $j=k$.

If p_{k} has a unique neighbor in Q, then $Q \cup S_{1}^{\prime} \cup S_{1}^{\prime \prime} \cup p_{k}$ induces a $3 \mathrm{PC}\left(q_{i}, u\right)$. So p_{k} has more than one neighbor in Q.

Suppose that $k=1$. Then either $S_{2}^{\prime} \cup S_{2}^{\prime \prime} \cup Q \cup p_{1}$ or $S_{1}^{\prime} \cup S_{1}^{\prime \prime} \cup Q \cup p_{1}$ induces an even wheel with center p_{1}. So $k>1$.

Let $T^{\prime}\left(\right.$ resp. $\left.T^{\prime \prime}\right)$ be the hole induced by $S_{1}^{\prime} \cup S_{1}^{\prime \prime} \cup Q$ (resp. $\left.S_{2}^{\prime} \cup S_{2}^{\prime \prime} \cup Q\right)$. If both $\left(T^{\prime}, p_{k}\right)$ and ($T^{\prime \prime}, p_{k}$) are wheels, then one of them is even. So p_{k} has exactly two neighbors in Q. Since $T^{\prime \prime} \cup p_{k}$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot), N\left(p_{k}\right) \cap Q=\left\{q_{i}, q_{i-1}\right\}$. (Note that q_{i-1} is not coincident with a node of P, since $j=k$). If no node of $P \backslash p_{k}$ has a neighbor in Q, then $\left(H \backslash\left(\left(S_{1}^{\prime} \cup S_{1}^{\prime \prime}\right) \backslash u_{1}^{\prime}\right)\right) \cup P \cup Q$ induces a $3 \mathrm{PC}\left(p_{1} u_{1} u_{2}, p_{k} q_{i} q_{i-1}\right)$. So a node of $P \backslash p_{k}$ has
a neighbor in Q. Let p_{t} be such a node with lowest index. Let q_{s} be the node of Q with highest index adjacent to p_{t}. Note that by the choice of i and $j, s \leq i-1$. If $t \neq k-1$ then $H_{P}^{\prime \prime} \cup\left\{p_{1}, \ldots, p_{t}, p_{k}, q_{s}, \ldots, q_{l}\right\}$ induces an even wheel with center q_{l} or a $3 \mathrm{PC}\left(q_{l} u_{1}^{\prime \prime} u_{2}^{\prime \prime}, p_{k} q_{i} q_{i-1}\right)$. So $t=k-1$, i.e., p_{k} and p_{k-1} are the only nodes of P that have a neighbor in Q. If $s \neq 1$ then $\left(H \backslash S_{2}^{\prime \prime}\right) \cup P \cup\left\{q_{s}, \ldots, q_{l}\right\}$ induces an even wheel with center p_{k}. So $s=1$. If $i-1=1$ then $\left\{q_{i-1}, q_{i}, p_{k}, p_{k-1}\right\}$ induces a diamond. So $i-1>1$, i.e., p_{k} is not adjacent to q_{1}. But then $S_{1}^{\prime} \cup\left\{q_{1}, \ldots, q_{i-1}, p_{k-1}, p_{k}\right\}$ induces a $3 \mathrm{PC}\left(q_{1}, p_{k}\right)$.

Therefore, no node of P is adjacent to or coincident with a node of Q. If $u_{1}^{\prime} u$ is not an edge, then $\left(H \backslash S_{2}^{\prime \prime}\right) \cup P \cup Q$ induces a $3 \mathrm{PC}\left(u_{1}^{\prime}, u\right)$. Therefore $u_{1}^{\prime} u$ is an edge.

Lemma 2.3 Let $P=p_{1}, \ldots, p_{k}$ be an appendix of a hole H, with edge-attachment $u_{1} u_{2}$ and node-attachment u, with p_{1} adjacent to u_{1}, u_{2}. Let $Q=q_{1}, \ldots, q_{l}$ be another appendix of H, with edge-attachment $v_{1} v_{2}$ and node-attachment v, with q_{1} adjacent to v_{1}, v_{2}. If P and Q are crossing, then one of the following holds:
(i) $u v$ is an edge,
(ii) $l=1, u \in\left\{v_{1}, v_{2}\right\}$ and q_{1} has a neighbor in $P \backslash\left\{p_{k}\right\}$, or
(iii) $k=1, v \in\left\{u_{1}, u_{2}\right\}$ and p_{1} has a neighbor in $Q \backslash\left\{q_{l}\right\}$.

Proof: Let H_{P}^{\prime} (resp. $H_{P}^{\prime \prime}$) be the sector of H w.r.t. P that contains u_{1} (resp. u_{2}). Without loss of generality $\left\{v_{1}, v_{2}\right\} \subseteq H_{P}^{\prime}$ and v_{1} is the neighbor of q_{1} in H_{P}^{\prime} that is closer to u_{1}. Assume $u v$ is not an edge.

Since $u v$ is not an edge, it follows that neither (i) nor (ii) of Lemma 2.2 can hold. So either $v_{2}=u$ or $u_{2}=v$. Without loss of generality assume that $v_{2}=u$. Let S_{1} (resp. S_{2}) be the $u v$-subpath (resp. $u_{2} v$-subpath) of $H_{P}^{\prime \prime}$. A node of P must be coincident with or adjacent to a node of Q, else $H_{P}^{\prime} \cup S_{2} \cup P \cup Q$ induces a $3 \mathrm{PC}\left(p_{1} u_{1} u_{2}, q_{1} v_{1} u\right)$ or an even wheel with center u_{1}. Note that no node of $\left\{q_{1}, q_{l}\right\}$ is coincident with a node of $\left\{p_{1}, p_{k}\right\}$. Let q_{i} be the node of Q with lowest index adjacent to P. (So q_{i} is not coincident with a node of P). Let p_{j} be the node of P with lowest index adjacent to q_{i}.

If $j<k$ and $i<l$, then $H \cup\left\{p_{1}, \ldots, p_{j}, q_{1}, \ldots, q_{i}\right\}$ induces a $3 \mathrm{PC}\left(p_{1} u_{1} u_{2}, q_{1} v_{1} u\right)$ or an even wheel with center u_{1}.

Suppose $j=k$. Note that since there is no diamond, p_{k} is not adjacent to q_{1}. If $N\left(p_{k}\right) \cap Q=$ q_{i}, then $S_{1} \cup Q \cup p_{k}$ induces a $3 \mathrm{PC}\left(u, q_{i}\right)$. So p_{k} has more than one neighbor in Q. Let T^{\prime} (resp. $T^{\prime \prime}$) be the hole induced by $S_{1} \cup Q$ (resp. $\left(H \backslash\left(S_{1} \backslash v\right)\right) \cup Q$). Note that $\left(T^{\prime}, p_{k}\right)$ is a wheel. If $\left(T^{\prime \prime}, p_{k}\right)$ is also a wheel, then one of these two wheels must be even. So $\left(T^{\prime \prime}, p_{k}\right)$ is not a wheel, and hence $k>1$ and p_{k} has exactly two neighbors in $Q . N\left(p_{k}\right) \cap Q=\left\{q_{i}, q_{i+1}\right\}$, else $T^{\prime \prime} \cup p_{k}$ induces a $3 \mathrm{PC}(\cdot, \cdot)$. But then $H_{P}^{\prime} \cup S_{2} \cup Q \cup p_{k}$ induces a $3 \mathrm{PC}\left(q_{1} v_{1} u, p_{k} q_{i} q_{i+1}\right)$.

So $j<k$, and hence $i=l$. In particular, q_{l} is the only node of Q that has a neighbor in P. If $l>1$ then $S_{1} \cup Q \cup\left\{p_{j}, \ldots, p_{k}\right\}$ contains a $3 \mathrm{PC}\left(u, q_{l}\right)$. So $l=1$.

3 Proper wheels

Definition 3.1 A bug is a wheel with three sectors, exactly one of which is short. A proper wheel is a wheel that is not a bug.

In this section we prove the following theorem. Lemma 1.3 will follow from it.

Theorem 3.2 Let G be a (diamond, 4-hole)-free odd-signable graph. If G contains a proper wheel (H, x), then for some two distinct long sectors S_{i} and S_{j} of $(H, x), G$ has a bisimplicial cutset with center x that separates S_{i} from $H \backslash S_{i}$, and G has a bisimplicial cutset with center x that separates S_{j} from $H \backslash S_{j}$.

Throughout this section we assume that G is a (diamond, 4-hole)-free odd-signable graph, and (H, x) is a proper wheel of G with fewest number of spokes, and among all proper wheels with the same number of spokes as $(H, x), H$ has the shortest length. Let x_{1}, \ldots, x_{n} be the neighbors of x in H, appearing in this order when traversing H. For $i=1, \ldots, n$, let X_{i} be the set of nodes comprised of x_{i} and all nodes of G that are adjacent to both x and x_{i}. Since G has no diamond, for every $i=1, \ldots, n, X_{i}$ induces a clique. Furthermore, for $i, j \in\{1, \ldots, n\}, i \neq j$, if $x_{i} x_{j}$ is an edge then $X_{i}=X_{j}$, and otherwise $X_{i} \cap X_{j}=\varnothing$. Let $X=X_{1} \cup \ldots \cup X_{n} \cup\{x\}$. For $i=1, \ldots, n$, let S_{i} be the sector of (H, x) whose endnodes are x_{i} and x_{i+1} (here and throughout this section we assume that indices are taken modulo n).

Lemma 3.3 Let u be a node of $G \backslash(V(H) \cup\{x\})$ that has a neighbor in H. Then u is one of the following types.

Type 1: Node u is not adjacent to x and it has exactly one neighbor in H.
Type 2: Node u is not adjacent to x and it has exactly two neighbors in H. These two neighbors are furthermore adjacent and belong to a long sector of (H, x).

Type b: (H, x) is a 5-wheel, u is not adjacent to $x,(H, u)$ is a bug, for some sector S_{i}, u has two adjacent neighbors in $V\left(S_{i}\right) \backslash\left\{x_{i}, x_{i+1}\right\}$, and its third neighbor in H is x_{i+3}.

Type bx: Node u is adjacent to x, for some sector $S_{i}, N(u) \cap V(H) \subseteq V\left(S_{i}\right) \backslash\left\{x_{i}, x_{i+1}\right\}$, and $V\left(S_{i}\right) \cup\{u, x\}$ induces a bug.

Type x: $N(u) \cap(V(H) \cup\{x\})=\{x\}$.
Type x1: For some $i \in\{1, \ldots, n\}, N(u) \cap(V(H) \cup\{x\})=\left\{x, x_{i}\right\}$, and sectors S_{i} and S_{i-1} are long.

Type x2: For some $i \in\{1, \ldots, n\}, N(u) \cap(V(H) \cup\{x\})=\left\{x, x_{i}, x_{i+1}\right\}$, and $x_{i} x_{i+1}$ is an edge.

Type wx1: For some $i \in\{1, \ldots, n\}, N(u) \cap\left\{x, x_{1}, \ldots, x_{n}\right\}=\left\{x, x_{i}\right\}$, sectors S_{i} and S_{i-1} are long, u has a neighbor in every long sector of (H, x), and either u has a neighbor in both $S_{i-1} \backslash\left\{x_{i}\right\}$ and $S_{i} \backslash\left\{x_{i}\right\}$, or in neither $S_{i-1} \backslash\left\{x_{i}\right\}$ nor $S_{i} \backslash\left\{x_{i}\right\}$.

Type wx2: For some $i \in\{1, \ldots, n\}, N(u) \cap\left\{x, x_{1}, \ldots, x_{n}\right\}=\left\{x, x_{i}, x_{i+1}\right\}, x_{i} x_{i+1}$ is an edge, u has a neighbor in every long sector of (H, x), and u has a neighbor in exactly one of $S_{i-1} \backslash\left\{x_{i}\right\}$ or $S_{i+1} \backslash\left\{x_{i+1}\right\}$.

Proof: We consider the following cases.
Case 1: u is not adjacent to x.
If u has a neighbor in $\left\{x_{1}, \ldots, x_{n}\right\}$, then since G has no diamond nor a 4-hole, $\mid N(u) \cap$ $\left\{x_{1}, \ldots, x_{n}\right\} \mid \leq 1$. Therefore, if u has no neighbor in an interior of some long sector, then u

Figure 11: Different types of adjacencies between a vertex u and a proper wheel (H, x).
is of type 1 . So assume that u has a neighbor in the interior of without loss of generality S_{1}. Let v_{1} (resp. v_{2}) be the neighbor of x_{1} (resp. x_{2}) in $H \backslash S_{1}$.

Suppose that $N(u) \cap H \subseteq S_{1}$. Let u_{1} (resp. u_{2}) be the neighbor of u in S_{1} that is closest to x_{1} (resp. x_{2}). If $u_{1}=u_{2}$, then u is of type 1. If $u_{1} u_{2}$ is an edge, then u is of type 2 . So assume that $u_{1} \neq u_{2}$ and $u_{1} u_{2}$ is not an edge. Let S_{1}^{\prime} be the $u_{1} u_{2}$-subpath of S_{1}. Since G has no 4 -hole nor a diamond, S_{1}^{\prime} is of length greater than two. But then $\left(H \backslash\left(S_{1}^{\prime} \backslash\left\{u_{1}, u_{2}\right\}\right)\right) \cup\{u, x\}$ induces a proper wheel with center x, that contradicts the choice of (H, x).

So assume that u has a neighbor in $H \backslash S_{1}$.
Case 1.1: u has a unique neighbor u^{\prime} in S_{1}.
$N(u) \cap H \subseteq S_{1} \cup\left\{v_{1}, v_{2}\right\}$, else $\left(H \backslash\left\{v_{1}, v_{2}\right\}\right) \cup\{u, x\}$ contains a $3 \mathrm{PC}\left(x, u^{\prime}\right)$. Node u must be adjacent to both v_{1} and v_{2}, else $H \cup u$ induces a $3 \mathrm{PC}\left(u^{\prime}, \cdot\right)$.

Suppose that x is not adjacent to v_{2}. If $u^{\prime} x_{2}$ is not an edge, then $S_{1} \cup\left\{u, x, v_{2}\right\}$ induces a $3 \mathrm{PC}\left(x_{2}, u^{\prime}\right)$. So $u^{\prime} x_{2}$ is an edge. But then $\left\{u^{\prime}, x_{2}, v_{2}, u\right\}$ induces a 4 -hole. So x is adjacent to v_{2}, and by symmetry it is also adjacent to v_{1}.

Let H^{\prime} be the hole induced by $\left(H \backslash S_{1}\right) \cup u$. Since G has no diamond, $\left(H^{\prime}, x\right)$ is a proper wheel, and it has fewer spokes than (H, x), a contradiction.

Case 1.2: u has two nonadjacent neighbors in S_{1}.
$N(u) \cap H \subseteq S_{1} \cup\left\{v_{1}, v_{2}\right\}$, else $\left(H \backslash\left\{v_{1}, v_{2}\right\}\right) \cup\{u, x\}$ contains a $3 \mathrm{PC}(x, u)$. Node u must have an odd number of neighbors in S_{1}, since otherwise $S_{1} \cup\{u, x\}$ induces a $3 \mathrm{PC}(\cdot, \cdot)$ or an even wheel with center u. Since (H, u) cannot be an even wheel, u must be adjacent to both v_{1} and v_{2}. Since $\left|N(u) \cap\left\{x_{1}, \ldots x_{n}\right\}\right| \leq 1$, without loss of generality u is not adjacent to x_{2}. If x is not adjacent to v_{2}, then $S_{1} \cup\left\{u, x, v_{2}\right\}$ contains a $3 \mathrm{PC}\left(u, x_{2}\right)$. So x is adjacent to v_{2}. But then u cannot be adjacent to x_{1}, and by symmetry x is adjacent to v_{1}, contradicting the fact that $\left|N(u) \cap\left\{x_{1}, \ldots, x_{n}\right\}\right| \leq 1$.

Case 1.3: u has exactly two neighbors in S_{1}, and they are adjacent.
By Cases 1.1 and 1.2 , for every sector $S_{j}, j \in\{1, \ldots, n\}$, if u has a neighbor in the interior of S_{j}, u has exactly two neighbors in S_{j}, and these two neighbors are adjacent. We now show that u is not adjacent to x_{1} nor x_{2}. Suppose u is adjacent to x_{1}. Then $N(u) \cap\left\{x_{1}, \ldots, x_{n}\right\}=\left\{x_{1}\right\}$. If u has a neighbor in $S_{n} \backslash x_{1}$, then (by the first sentence of this paragraph) u is adjacent to v_{1}, and hence there is a diamond. So u has no neighbor in $S_{n} \backslash x_{1}$. Since x_{1} is the unique neighbor of u in $\left\{x_{1}, \ldots, x_{n}\right\}$, it follows that for every $2 \leq j \leq n-1$, $N(u) \cap S_{j} \subseteq S_{j} \backslash\left\{x_{j}, x_{j+1}\right\}$, and hence u has an even number of neighbors in S_{j}. Recall that by our assumption u has a neighbor in $H \backslash S_{1}$, and hence (H, u) is an even wheel, a contradiction. Therefore, u is not adjacent to x_{1}, and by symmetry it is also not adjacent to x_{2}.

Suppose that u has exactly three neighbors in H, i.e., (H, u) is a bug. Let H^{\prime} and $H^{\prime \prime}$ be the two holes, distinct from H, contained in $H \cup u$. W.l.o.g. H^{\prime} contains x_{1}. Note that since u has exactly three neighbors in H, it follows that u is adjacent to x_{i} for some $2<i \leq n$. Suppose that i is odd. Then u has an even number of neighbors in H^{\prime} and in $H^{\prime \prime}$. Since neither of $\left(H^{\prime}, x\right)$ nor $\left(H^{\prime \prime}, x\right)$ can be an even wheel, it follows that $n=i=3$. Since (H, x) is a proper wheel, $x_{1} x_{3}$ is not an edge, and hence $H^{\prime} \cup\{x\}$ induces a $3 P C\left(x_{1}, x_{3}\right)$. Therefore, i is even. In particular, $\left(H^{\prime}, x\right)$ and $\left(H^{\prime \prime}, x\right)$ are both wheels. So by minimality of (H, x), both $\left(H^{\prime}, x\right)$ and $\left(H^{\prime \prime}, x\right)$ must be bugs, and hence (H, x) is a 5 -wheel and u is of type b .

Now we may assume that u has more than three neighbors in H. In fact, since (H, u)
cannot be an even wheel, u has at least five neighbors in H. If $x_{i}=v_{2}$ then $S_{1} \cup\left\{u, x, v_{2}\right\}$ induces a $3 \mathrm{PC}(\triangle, \triangle)$. So $x_{i} \neq v_{2}$, and by symmetry $x_{i} \neq v_{1}$. Let x_{i}^{\prime} be the neighbor of x_{i} in S_{i}. Let H^{\prime} be the subpath of H from x_{1} to x_{i}^{\prime}, that contains x_{2}. By symmetry we may assume that u has a neighbor in $H \backslash H^{\prime}$. Note that this implies that $i \neq n$. If $x_{i}^{\prime} \neq x_{n}$ then $\left(H \backslash H^{\prime}\right) \cup\left(S_{1} \backslash x_{1}\right) \cup\left\{u, x, x_{i}\right\}$ contains a $3 \mathrm{PC}(x, u)$. So $x_{i}^{\prime}=x_{n}$. Then u has a neighbor in the interior of S_{n}, and hence it has exactly two neighbors in S_{n}, say u_{1} and u_{2}, and $u_{1} u_{2}$ is an edge. But then $S_{n} \cup\left\{u, x, x_{i}\right\}$ induces a $3 \mathrm{PC}\left(x x_{i} x_{i}^{\prime}, u u_{1} u_{2}\right)$.

Case 2: u is adjacent to x.
Case 2.1: $N(u) \cap\left\{x_{1}, \ldots, x_{n}\right\}=\varnothing$.
Assume u is not of type x . Then without loss of generality u has a neighbor in the interior of long sector S_{1}. If u has a unique neighbor u^{\prime} in S_{1}, then $S_{1} \cup\{u, x\}$ induces a $3 \mathrm{PC}\left(x, u^{\prime}\right)$. Since $S_{1} \cup\{u, x\}$ cannot induce an even wheel with center u, node u must have an even number of neighbors in S_{1}. So if u has a neighbor in a sector of (H, x), it has an even number of neighbors in that sector, and hence u has an even number of neighbors in H. Since $H \cup u$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$ nor an even wheel, u has exactly two neighbors in H, and these two neighbors are adjacent. Therefore, u is of type bx.

Case 2.2: $N(u) \cap\left\{x_{1}, \ldots, x_{n}\right\} \neq \varnothing$.
Since G has no diamond, $\left|N(u) \cap\left\{x_{1}, \ldots, x_{n}\right\}\right| \leq 2$. Then without loss of generality either $N(u) \cap\left\{x_{1}, \ldots, x_{n}\right\}=\left\{x_{2}\right\}$ and sectors S_{1} and S_{2} are long, or $N(u) \cap\left\{x_{1}, \ldots, x_{n}\right\}=\left\{x_{2}, x_{3}\right\}$ and $x_{2} x_{3}$ is an edge. So if u has no neighbor in the interior of some long sector of ($\left.H, x\right)$, then u is of type x 1 or x 2 . Assume that u does have a neighbor in the interior of some long sector of (H, x).

Case 2.2.1: $N(u) \cap\left\{x_{1}, \ldots, x_{n}\right\}=\left\{x_{2}\right\}$.
Suppose that u has no neighbor in sectors S_{3}, \ldots, S_{n}. Then without loss of generality u has a neighbor in $S_{1} \backslash x_{2}$. Let u_{1} be such a neighbor that is closest to x_{1}, and let S_{1}^{\prime} be the $u_{1} x_{2}$-subpath of S_{1}. Since G has no 4 -hole nor a diamond, S_{1}^{\prime} is of length greater than two. If u has no neighbor in $S_{2} \backslash x_{2}$, then $\left(H \backslash\left(S_{1}^{\prime} \backslash\left\{u_{1}, x_{2}\right\}\right)\right) \cup\{u, x\}$ induces an even wheel with center x. So u has a neighbor in $S_{2} \backslash x_{2}$. Let u_{2} be such a neighbor that is closest to x_{3}, and let S_{2}^{\prime} be the $u_{2} x_{2}$-subpath of S_{2}. Let H^{\prime} be the hole induced by $\left(H \backslash\left(\left(S_{1}^{\prime} \cup S_{2}^{\prime}\right) \backslash\left\{u_{1}, u_{2}\right\}\right)\right) \cup u$. Then $\left(H^{\prime}, x\right)$ is a proper wheel with the same number of spokes as (H, x), but H^{\prime} is shorter than H, contradicting our choice of (H, x). Therefore u must have a neighbor in $S_{3} \cup \ldots \cup S_{n}$.

If u has exactly two neighbors in H, then $H \cup u$ induces a $3 \mathrm{PC}(\cdot, \cdot)$. So (H, u) must be a wheel. Suppose that for some long sector $S_{i}, 3 \leq i \leq n, u$ has no neighbor in S_{i}. Let S be a sector of (H, u) that contains S_{i}. Then $S \cup\{u, x\}$ induces a wheel with center x that has at least three long sectors, and hence it is a proper wheel with fewer spokes than (H, x), a contradiction. So u has a neighbor in every long sector of (H, x).

Suppose u is not of type wx1. Then without loss of generality u has a neighbor in $S_{1} \backslash x_{2}$ and no neighbor in $S_{2} \backslash x_{2}$. Let S be a sector of (H, u) that does not contain x_{2}. Since $S \cup\{u, x\}$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$ nor an even wheel with center x, node x has an even number of neighbors in S. Now let S be a sector of (H, u) that contains x_{2} and x_{3}. Then x has an even number of neighbors in S, else $S \cup\{u, x\}$ induces an even wheel. But then x has an even number of neighbors in H, a contradiction.

Case 2.2.2: $N(u) \cap\left\{x_{1}, \ldots, x_{n}\right\}=\left\{x_{2}, x_{3}\right\}$.

Suppose that u has no neighbors in sectors S_{4}, \ldots, S_{n}. Then without loss of generality u has a neighbor in $S_{1} \backslash x_{2}$. Let u_{1} be such a neighbor that is closest to x_{1}, and let S_{1}^{\prime} be the $u_{1} x_{2}$-subpath of S_{1}. Since G has no 4 -hole nor a diamond, S_{1}^{\prime} is of length greater than two. If u has no neighbor in $S_{3} \backslash x_{3}$, then $\left(H \backslash\left(S_{1}^{\prime} \backslash\left\{u_{1}, x_{2}\right\}\right)\right) \cup\{u, x\}$ induces a proper wheel with center x, that contradicts our choice of (H, x). So u has a neighbor in $S_{3} \backslash x_{3}$. Let u_{2} be such a neighbor that is closest to x_{4}. Let H^{\prime} be the hole induced by u and the $u_{1} u_{2}$-subpath of H that does not contain x_{2}. Then $\left(H^{\prime}, x\right)$ is an even wheel. Therefore, u must have a neighbor in $S_{4} \cup \ldots \cup S_{n}$.

Note that (H, u) is a wheel. Suppose that for some long sector $S_{i}, 4 \leq i \leq n, u$ has no neighbor in S_{i}. Let S be a sector of (H, u) that contains S_{i}. Then $S \cup\{u, x\}$ induces a wheel with center x that has at least three long sectors, and hence it is a proper wheel with fewer spokes than (H, x), a contradiction. So u has a neighbor in every long sector of (H, x).

Let S be a sector of (H, u) that does not contain x_{2}, x_{3}. Since $S \cup\{u, x\}$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$ nor an even wheel with center x, node x has an even number of neighbors in S. This implies that if u has no neighbor in $\left(S_{1} \cup S_{3}\right) \backslash\left\{x_{2}, x_{3}\right\}$, then x has an even number of neighbors in H, a contradiction. So without loss of generality u has a neighbor in $S_{1} \backslash x_{2}$. Suppose u is not of type wx2. Then u has a neighbor in $S_{3} \backslash x_{3}$. But then x has an even number of neighbors in H, a contradiction.

Lemma 3.4 If u and v are type wx1 or wx2 nodes w.r.t. (H, x) such that for some $i, j \in$ $\{1, \ldots, n\}, i \neq j, u \in X_{i}$ and $v \in X_{j}$, then $x_{i} x_{j}$ is an edge.

In particular, (H, x) cannot have both a type wx1 and a type wx2 node; if there is a type wx1 node, then all type wx1 nodes are adjacent to the same node of $\left\{x_{1}, \ldots, x_{n}\right\}$; if there is a type wx2 node, then all type wx2 nodes are adjacent to the same two node of $\left\{x_{1}, \ldots, x_{n}\right\}$.

Proof: Assume $x_{i} x_{j}$ is not an edge. Then u and v are not adjacent, else the graph induced by the node set $\left\{x, x_{i}, x_{j}, u, v\right\}$ contains a diamond. Suppose there exist two distinct sectors S_{l} and S_{k} of (H, x), such that both u and v have a neighbor in both $S_{l} \backslash\left\{x_{l}, x_{l+1}\right\}$ and $S_{k} \backslash\left\{x_{k}, x_{k+1}\right\}$. Then $\left(S_{l} \backslash\left\{x_{l}, x_{l+1}\right\}\right) \cup\left(S_{k} \backslash\left\{x_{k}, x_{k+1}\right\}\right) \cup\{u, v, x\}$ contains a $3 \mathrm{PC}(u, v)$. So
(1) there cannot exist two distinct long sectors such that both u and v have a neighbor in the interior of both of the sectors.

We now consider the following two cases.
Case 1: u is of type wx1.
Without loss of generality $i=2$. Then by Lemma 3.3, S_{1} and S_{2} are long sectors, and u either has neighbors in both $S_{1} \backslash x_{2}$ and $S_{2} \backslash x_{2}$, or in none of them. If v is not adjacent to x_{1} nor x_{3}, then by Lemma 3.3, v has neighbors in the interior of both S_{1} and S_{2}, and hence $\left(\left(S_{1} \cup S_{2}\right) \backslash\left\{x_{1}, x_{3}\right\}\right) \cup\{v, x\}$ contains a 3PC $\left(x_{2}, v\right)$. Therefore, without loss of generality v is adjacent to x_{3}.

Suppose v is of type wx1. Then S_{3} is also a long sector, and v has a neighbor in the interior of S_{1}. If v has a neighbor in $S_{2} \backslash x_{3}$, then $S_{1} \cup\left(S_{2} \backslash x_{3}\right) \cup\{v, x\}$ contains a $3 \mathrm{PC}\left(x_{2}, v\right)$. So v has no neighbor in $S_{2} \backslash x_{3}$, and by Lemma 3.3, it has no neighbor in $S_{3} \backslash x_{3}$. By symmetry, u has no neighbor in $\left(S_{1} \cup S_{2}\right) \backslash x_{2}$. But then $\left(\left(S_{1} \cup S_{3}\right) \backslash x_{1}\right) \cup\{u, v, x\}$ contains an even wheel with center x.

So v must be if type wx2. Then S_{3} is a short sector and S_{4} is long, and v has a neighbor in either the interior of S_{2} or the interior of S_{4} (but not both). Suppose that v has a neighbor in the interior of S_{4}. By (1), u cannot have a neighbor in $\left(S_{1} \cup S_{2}\right) \backslash x_{2}$. But then
$S_{2} \cup\left(S_{4} \backslash\left\{x_{4}, x_{5}\right\}\right) \cup\{u, v, x\}$ contains an even wheel with center x. So v has no neighbor in the interior of S_{4}, and hence it has a neighbor in the interior of S_{2}. By (1), u cannot have a neighbor in $\left(S_{1} \cup S_{2}\right) \backslash x_{2}$. But then $\left(S_{2} \backslash x_{3}\right) \cup\left(S_{4} \backslash x_{5}\right) \cup\{u, v, x\}$ contains an even wheel with center x.
Case 2: u is of type wx2.
By Case 1 and symmetry, v is also of type wx 2 . We may assume without loss of generality that u is adjacent to x_{2} and x_{3}, and that u has no neighbor in $S_{3} \backslash x_{3}$. By the choice of u and v, v is not adjacent to x_{2} nor x_{3}. Suppose that v is not adjacent to x_{1} nor x_{4}. Without loss of generality $N(v) \cap\left\{x_{1}, \ldots, x_{n}\right\}=\left\{x_{j}, x_{j+1}\right\}$ and v has a neighbor in $S_{j+1} \backslash x_{j+1}$. But then both u and v have a neighbor in the interior of S_{j+1}, contradicting (1). Therefore v must be adjacent to either x_{1} or x_{4}.

Suppose that v is adjacent to x_{1}. Then sectors S_{1} and S_{n-1} are long, and by Lemma 3.3 at least one of them contains neighbors of both u and v in its interior. So by (1), $n=5$. If v has a neighbor in interior of S_{1}, then $\left(H \backslash\left\{x_{1}, x_{2}, x_{4}\right\}\right) \cup\{u, v\}$ contains a $3 \mathrm{PC}(u, v)$. Otherwise, v has a neighbor in interior of S_{4}, and hence $\left(H \backslash\left\{x_{2}, x_{4}, x_{5}\right\}\right) \cup\{u, v\}$ contains a $3 \mathrm{PC}(u, v)$.

So v is adjacent to x_{4}. By (1), $n=5$ and v has a neighbor in the interior of S_{3}. But then $\left(H \backslash\left\{x_{1}, x_{2}, x_{4}\right\}\right) \cup\{u, v\}$ contains a $3 \mathrm{PC}(u, v)$.

Definition 3.5 Let S_{i} be a long sector of (H, x). A chordless path $P=p_{1}, \ldots, p_{k}$ in $G \backslash$ $(V(H) \cup\{x\})$ is an appendix of the wheel (H, x), if no node of $P \backslash\left\{p_{1}, p_{k}\right\}$ has a neighbor in H, and one of the following holds:
(i) $k=1$ and p_{1} is of type b with two neighbors in sector S_{i} and the third neighbor being x_{l}, or
(ii) $k>1, p_{1}$ is of type 2 or $b x$ with neighbors in sector S_{i}, p_{k} is adjacent to $x_{l}, l \in$ $\{1, \ldots, n\} \backslash\{i, i+1\}$, and it is of type 1 or $x 1$, and $x_{l} x_{i}$ and $x_{l} x_{i+1}$ are not edges.

We say that P is an appendix of S_{i} to x_{l}. Note that if P is an appendix of (H, x), then it is also an appendix of H, so all the terminology introduced in Definition 2.1 applies.

Lemma 3.6 If S_{1} is a long sector of (H, x) such that there exists a type wx1 or wx2 node adjacent to an endnode of S_{1}, then S_{1} has no appendix.

Proof: Let u be a type wx 1 or wx 2 node adjacent to say x_{1}. If u is of type wx2, then it is adjacent to x_{n} and $x_{1} x_{n}$ is an edge. Suppose that $P=p_{1}, \ldots, p_{k}$ is an appendix of S_{1} to x_{l}.

If u has a neighbor in P, let p_{i} be such a neighbor with highest index. Let S_{1}^{\prime} be a subpath of S_{1} whose one endnode is adjacent to u, the other endnode is adjacent to p_{1}, and no intermediate node of S_{1}^{\prime} has a neighbor in $\left\{u, p_{1}\right\}$. If u has no neighbor in the interior of S_{1}, then $x_{1} \in S_{1}^{\prime}$, and if it does, then we choose S_{1}^{\prime} so that $x_{1} \notin S_{1}^{\prime}$. Let S be the sector of (H, u) that contains x_{l}. Note that S is a long sector of (H, u), and hence, since G does not contain a diamond, x may be adjacent to at most one endnode of S.

We first show that x is adjacent to an endnode of S. Assume it is not. If x_{1} is adjacent to an endnode of S, say s, then since x is not adjacent to $s,\left\{s, x_{1}, x, u\right\}$ induces a diamond, a contradiction. So x_{1} is not adjacent to any endnode of S. Since $S \cup\{u, x\}$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$, it must induce a wheel with center x. Since this wheel cannot be a proper wheel that has fewer spokes than (H, x), it must be a bug. Without loss of generality $x_{l} x_{l+1}$ is an edge. So $N(x) \cap S=\left\{x_{l}, x_{l+1}\right\}$.

Let S^{\prime} (resp. $S^{\prime \prime}$) be the component of $S \backslash x_{l}$ (resp. $S \backslash x_{l+1}$) that contains x_{l+1} (resp. x_{l}). If u has a neighbor in P, then let H^{\prime} (resp. $H^{\prime \prime}$) be the hole induced by $S^{\prime} \cup\left\{u, x_{l}, p_{i}, \ldots, p_{k}\right\}$ (resp. $S^{\prime \prime} \cup\left\{u, p_{i}, \ldots, p_{k}\right\}$). Otherwise let H^{\prime} (resp. $H^{\prime \prime}$) be the hole induced by $S^{\prime} \cup S_{1}^{\prime} \cup P \cup\left\{u, x_{l}\right\}$ (resp. $S^{\prime \prime} \cup S_{1}^{\prime} \cup P \cup u$).

Since $H^{\prime \prime} \cup x$ cannot induce a $3 \operatorname{PC}\left(x_{l}, u\right),\left(H^{\prime \prime}, x\right)$ is a wheel. But then $\left(H^{\prime}, x\right)$ or $\left(H^{\prime \prime}, x\right)$ is an even wheel.

Therefore, x must be adjacent to an endnode of S. We now consider the following two cases.

Case 1: u is of type wx1.
Since x must be adjacent to an endnode of S, G does not contain a diamond, and S_{1} and S_{n} are long sectors, it follows that x_{1} is an endnode of S. Since u is of type wx1 w.r.t. (H, x), either u has neighbors in both $S_{1} \backslash x_{1}$ and $S_{n} \backslash x_{1}$, or in neither of them. Since x_{l} belongs to S, and x_{1} is an endnode of S, it follows that u has no neighbor in $\left(S_{1} \cup S_{n}\right) \backslash x_{1}$. So S contains x_{2} or x_{n}. Since u is of type wx1 w.r.t. (H, x), it has a neighbor in every long sector of ($H, x)$. Since, by definition of an appendix of a wheel (Definition 3.5), $l \neq 2$ and $x_{l} x_{2}$ is not an edge, it follows that u has a neighbor distinct from x_{1} in the x_{1}, \ldots, x_{l} subpath of H that contains x_{2}. So S cannot contain x_{2}, and hence it contains x_{n}. Since $S \cup\{u, x\}$ cannot induce a proper wheel with center x that has fewer spokes than (H, x), it induces a bug. In particular, $N(x) \cap S=\left\{x_{1}, x_{n}\right\}$ and $l=n$.

If u has a neighbor in P, then let H^{\prime} (resp. $H^{\prime \prime}$) be the hole induced by $S_{n} \cup\left\{u, p_{i}, \ldots, p_{k}\right\}$ (resp. $\left(S \backslash S_{n}\right) \cup\left\{x_{n}, u, p_{i}, \ldots, p_{k}\right\}$). Otherwise, let H^{\prime} (resp. $H^{\prime \prime}$) be the hole induced by $S_{n} \cup S_{1}^{\prime} \cup P\left(\operatorname{resp} .\left(S \backslash S_{n}\right) \cup S_{1}^{\prime} \cup P \cup\left\{x_{n}, u\right\}\right)$. Since neither $H^{\prime} \cup x$ nor $H^{\prime \prime} \cup x$ can induce a $3 \mathrm{PC}(\cdot, \cdot)$, both $\left(H^{\prime}, x\right)$ and $\left(H^{\prime \prime}, x\right)$ are wheels, and hence one of them must be even.

Case 2: u is of type wx2.
Then by Lemma 3.3, x_{n} is an endnode of S, and u has a neighbor in the interior of S_{1}. Since $S \cup\{u, x\}$ cannot induce an even wheel, $N(x) \cap S=\left\{x_{n}, x_{l}\right\}$, i.e., $l=n-1$. Note that by definition of $S_{1}^{\prime}, x_{1} \notin S_{1}^{\prime}$.

If u has a neighbor in P, then let H^{\prime} (resp. $H^{\prime \prime}$) be the hole induced by $S_{n-1} \cup\left\{u, p_{i}, \ldots, p_{k}\right\}$ (resp. $\left(S \backslash S_{n-1}\right) \cup\left\{x_{n-1}, u, p_{i}, \ldots, p_{k}\right\}$). Otherwise, let H^{\prime} (resp. $H^{\prime \prime}$) be the hole induced by $S_{n-1} \cup S_{1}^{\prime} \cup P \cup u$ (resp. $\left(S \backslash S_{n-1}\right) \cup S_{1}^{\prime} \cup P \cup\left\{x_{n-1}, u\right\}$). Since $H^{\prime \prime} \cup x$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$, both $\left(H^{\prime}, x\right)$ and $\left(H^{\prime \prime}, x\right)$ are wheels, and hence one of them must be even.

Lemma 3.7 There exist at least two long sectors of (H, x) that have no appendix.
Proof: Since there is no diamond, (H, x) has at least two long sectors. So we may assume that some long sector S_{t} has an appendix R. Note that R is also an appendix w.r.t. H. Let H_{R}^{\prime} and $H_{R}^{\prime \prime}$ be the two sectors of H w.r.t. R (Definition 2.1). Note that both H_{R}^{\prime} and $H_{R}^{\prime \prime}$ contain a long sector of (H, x). We now show that each of them must in fact contain a long sector of (H, x) that has no appendix.

Consider all long sectors S_{i} and their appendices P that have an associated sector H_{P} of H w.r.t. P, such that $H_{P} \subseteq H_{R}^{\prime}$. Choose such a sector S_{i} and its appendix $P=p_{1}, \ldots, p_{k}$ so that H_{P} is shortest possible. Let $u_{1} u_{2}$ be the edge-attachment of P, and x_{m} its nodeattachment. Without loss of generality assume that H_{P} contains sector S_{m}. Note that H_{P} contains at least one long sector of (H, x). Let S_{j} be such a long sector with lowest index (i.e., it is such a long sector that is closest to x_{m} on H_{P}). Suppose that S_{j} contains an appendix
$Q=q_{1}, \ldots, q_{l}$ with node-attachment $x_{m^{\prime}}$ and edge-attachment $v_{1} v_{2}$. If P and Q are not crossing, then the choice of P is contradicted. So P and Q are crossing.

Suppose that $x_{m} x_{m^{\prime}}$ is an edge. Then, since there is no diamond, S_{m} is a long sector, but by definition of an appendix of a wheel (Definition 3.5), $x_{m^{\prime}}$ cannot be adjacent to x_{j}, and hence $j>m$, contradicting our choice of j. So $x_{m} x_{m^{\prime}}$ is not an edge. Then by Lemma 2.3, without loss of generality $l=1$ and $x_{m} \in\left\{v_{1}, v_{2}\right\}$. Since $l=1, q_{1}$ is of type b w.r.t. (H, x). But then by Lemma 3.3, neither v_{1} nor v_{2} coincides with an endnode of S_{j}, and hence it is not possible that $x_{m} \in\left\{v_{1}, v_{2}\right\}$.

Therefore S_{j} cannot have an appendix. So some long sector of (H, x) contained in H_{R}^{\prime} does not have an appendix, and by symmetry some long sector of (H, x) contained in $H_{R}^{\prime \prime}$ does not have an appendix.

Lemma 3.8 The intermediate nodes of the long sectors of (H, x) are contained in different connected components of $G \backslash X$.

Proof: Assume not and let $P=p_{1}, \ldots, p_{k}$ be a direct connection in $G \backslash X$ from one long sector to another long sector of (H, x). We may assume that (H, x) and P are chosen so that (H, x) has a minimum number of spokes among all proper wheels, and among all such wheels we may assume that $|H|$ is minimum, and among all such wheels, we may choose $|P|$ minimum. By definition of P, no node of P is of type x1, x2, wx1 nor wx2 w.r.t. ($H, x)$. Also, the only nodes of (H, x) that may have a neighbor in the interior of P are the nodes of $\left\{x, x_{1}, \ldots, x_{n}\right\}$. By Lemma 3.3 and the definition of P, if some $p_{i}, 1<i<k$, has a neighbor in (H, x), then it has a unique neighbor in (H, x).

Claim 1: At most two nodes of $\left\{x_{1}, \ldots, x_{n}\right\}$ may have a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, and if x_{i} and $x_{j}, i \neq j$, both have a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, then $x_{i} x_{j}$ is an edge.

Proof of Claim 1: Let P^{\prime} be a subpath of $P \backslash\left\{p_{1}, p_{k}\right\}$ whose one endnode is adjacent to x_{i}, the other to $x_{j}, i \neq j$, and no intermediate node of P^{\prime} is adjacent to a node of $\left\{x_{1}, \ldots, x_{n}\right\}$. Then $x_{i} x_{j}$ is an edge, else $H \cup P^{\prime}$ induces a $3 \mathrm{PC}\left(x_{i}, x_{j}\right)$.

If at least three nodes of $\left\{x_{1}, \ldots, x_{n}\right\}$ have a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, then since G has no diamond (and hence (H, x) has no consecutive short sectors), there would exist a subpath P^{\prime} of $P \backslash\left\{p_{1}, p_{k}\right\}$ whose one endnode is adjacent to x_{i}, the other to $x_{j}, i \neq j$, no intermediate node of P^{\prime} is adjacent to a node of $\left\{x_{1}, \ldots, x_{n}\right\}$, and $x_{i} x_{j}$ is not an edge. This completes the proof of Claim 1.

Without loss of generality p_{1} has a neighbor in the interior of a long sector S_{1} and p_{k} has a neighbor in the interior of a long sector S_{l}. Let u_{1} (resp. u_{2}) be the neighbor of p_{1} in S_{1} that is closest to x_{1} (resp. x_{2}). Let S_{1}^{\prime} (resp. $S_{1}^{\prime \prime}$) be the $x_{1} u_{1}$-subpath (resp. $x_{2} u_{2}$-subpath) of S_{1}. Let v_{1} (resp. v_{2}) be the neighbor of p_{k} in S_{l} that is closest to x_{l} (resp. x_{l+1}). Let S_{l}^{\prime} (resp. $S_{l}^{\prime \prime}$) be the $x_{l} v_{1}$-subpath (resp. $x_{l+1} v_{2}$-subpath) of S_{l}. If x has a neighbor in P, then let p_{i} (resp. p_{j}) be the node of P with lowest (resp. highest) index adjacent to x.

Claim 2: If x has a neighbor in P, then x_{m}, for every $m \in\{1, \ldots, n\}$, has an even number of neighbors in p_{i}, \ldots, p_{j}.

Proof of Claim 2: Let P^{\prime} be a subpath of P such that the endnodes of P^{\prime} are adjacent to x, and no intermediate node of P^{\prime} is adjacent to x. If node x_{m} has an odd number of neighbors in P^{\prime}, then $P^{\prime} \cup\left\{x, x_{m}\right\}$ induces a $3 \mathrm{PC}(\cdot, \cdot)$ or an even wheel with center x_{m}. So x_{m} has an
even number of neighbors in P^{\prime}, and hence it has an even number of neighbors in p_{i}, \ldots, p_{j}. This completes the proof of Claim 2.

By Lemma 3.3 it suffices to consider the following three cases.
Case 1: p_{1} is of type b.
Then (H, x) is a 5 -wheel, p_{1} is adjacent to x_{4}, and it has two adjacent neighbors in $S_{1} \backslash\left\{x_{1}, x_{2}\right\}$. Let $H^{\prime}\left(\right.$ resp. $\left.H^{\prime \prime}\right)$ be the hole induced by $S_{1}^{\prime \prime} \cup S_{2} \cup S_{3} \cup p_{1}$ (resp. $\left.S_{1}^{\prime} \cup S_{4} \cup S_{5} \cup p_{1}\right)$. Since (H, x) is chosen to be a proper wheel in G with fewest number of spokes, both $\left(H^{\prime}, x\right)$ and $\left(H^{\prime \prime}, x\right)$ must be bugs. Since G does not contain a diamond, not both $x_{3} x_{4}$ and $x_{4} x_{5}$ can be edges. So without loss of generality we may assume that S_{2} is a short sector and S_{3} is a long sector.

We first show that p_{k} cannot be of type b. Assume it is. Note that p_{k} has a neighbor in interior of some long sector of (H, x), distinct from S_{1}. If S_{4} is a long sector, then by symmetry we may assume that p_{k} has a neighbor in interior of S_{3}, and hence is adjacent to x_{1}. If S_{5} is a long sector and p_{k} has neighbors in interior of S_{5}, then p_{k} is adjacent to x_{3}. Hence p_{k} is adjacent to either x_{1} or x_{3}. If p_{k} is adjacent to x_{1} and $k>2$, then $\left(H \backslash\left\{x_{2}, x_{3}, x_{5}\right\}\right) \cup\left\{x, p_{1}, p_{k}\right\}$ contains a $3 \mathrm{PC}\left(x_{1}, x_{4}\right)$. If p_{k} is adjacent to x_{1} and $k=2$, then $S_{1}^{\prime} \cup\left\{x, x_{1}, x_{4}, p_{1}, p_{2}\right\}$ induces a $3 \mathrm{PC}\left(x_{1}, p_{1}\right)$. So p_{k} is adjacent to x_{3} and S_{5} is a long sector. If $k>2$, then $S_{1}^{\prime \prime} \cup S_{5}^{\prime} \cup\left\{x, x_{3}, x_{4}, p_{1}, p_{k}\right\}$ induces an even wheel with center x. If $k=2$, then $S_{3} \cup\left\{x, p_{1}, p_{2}\right\}$ induces a $3 \mathrm{PC}\left(x_{3}, x_{4}\right)$. Therefore, p_{k} cannot be of type b .

Case 1.1: x has a neighbor in P.
Suppose that x_{4} does not have a neighbor in p_{2}, \ldots, p_{i-1}. By Claim $1, x_{1}$ or x_{2} does not have a neighbor in the interior of P. Without loss of generality x_{1} does not. Then $S_{1}^{\prime} \cup\left\{x, x_{4}, p_{1}, \ldots, p_{i}\right\}$ induces a $3 \mathrm{PC}\left(x, p_{1}\right)$. So x_{4} has a neighbor in p_{2}, \ldots, p_{i-1}. Then by Claim 1, x_{1}, x_{2} and x_{3} do not have neighbors in $P \backslash\left\{p_{1}, p_{k}\right\}$. Node x_{4} must have an even number of neighbors in $p_{1}, \ldots p_{i}$, since otherwise $S_{1}^{\prime \prime} \cup\left\{x, x_{4}, p_{1}, \ldots, p_{i}\right\}$ induces an even wheel with center x_{4}. So by Claim $2, x_{4}$ has an even number of neighbors in p_{1}, \ldots, p_{j}.

Suppose that p_{k} is of type bx. Then $j=k$. Suppose $l=3$. If $N\left(x_{4}\right) \cap P \neq\left\{p_{1}, p_{2}\right\}$, then $S_{1}^{\prime \prime} \cup S_{3}^{\prime} \cup P \cup x_{4}$ induces a $3 \mathrm{PC}(\cdot, \cdot)$ or an even wheel with center x_{4}. So $N\left(x_{4}\right) \cap P=\left\{p_{1}, p_{2}\right\}$, and hence $S_{1}^{\prime \prime} \cup S_{3} \cup P$ induces a $3 \mathrm{PC}\left(x_{4} p_{1} p_{2}, p_{k} v_{1} v_{2}\right)$. Therefore $l=5$. If $N\left(x_{4}\right) \cap P \neq\left\{p_{1}, p_{2}\right\}$, then $S_{1}^{\prime} \cup S_{5}^{\prime \prime} \cup P \cup x_{4}$ induces a $3 \mathrm{PC}(\cdot, \cdot)$ or an even wheel with center x_{4}. So $N\left(x_{4}\right) \cap P=\left\{p_{1}, p_{2}\right\}$, and hence $\left(H \backslash S_{5}^{\prime}\right) \cup P$ induces an even wheel with center p_{1}. Therefore p_{k} is not of type bx. So by Lemma $3.3, p_{k}$ is of type 1 or 2 w.r.t. (H, x).

Suppose $l=3$. Let H^{\prime} (resp. $H^{\prime \prime}$) be the hole induced by $S_{1}^{\prime \prime} \cup S_{3}^{\prime} \cup P$ (resp. $S_{3}^{\prime} \cup$ $\left.\left\{x, p_{j}, \ldots, p_{k}\right\}\right)$. Suppose that x_{4} has a neighbor in p_{j}, \ldots, p_{k}. Recall that x_{4} has an even number of neighbors in p_{1}, \ldots, p_{j}, and that x_{4} cannot be adjacent to p_{j} (since x is adjacent to $\left.p_{j}\right)$. So $\left(H^{\prime}, x_{4}\right)$ is a wheel. If $\left(H^{\prime \prime}, x_{4}\right)$ is also a wheel, then one of $\left(H^{\prime}, x_{4}\right)$ or $\left(H^{\prime \prime}, x_{4}\right)$ is an even wheel. So $\left(H^{\prime \prime}, x_{4}\right)$ is not a wheel. In particular, x_{4} has a unique neighbor in p_{j}, \ldots, p_{k} and $v_{1} x_{4}$ is not an edge. But then $H^{\prime \prime} \cup x_{4}$ induces a $3 \mathrm{PC}(\cdot, \cdot)$. So x_{4} has no neighbor in p_{j}, \ldots, p_{k}, and hence it has an even number of neighbors in P. If $v_{1} x_{4}$ is an edge, then $H^{\prime \prime} \cup x_{4}$ induces a $3 \mathrm{PC}\left(x, v_{1}\right)$. So $v_{1} x_{4}$ is not an edge. Since $H^{\prime} \cup x_{4}$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$ nor an even wheel with center $x_{4}, N\left(x_{4}\right) \cap P=\left\{p_{1}, p_{2}\right\}$. Since $\left(H^{\prime}, x\right)$ cannot be an even wheel, x has an odd number of neighbors in P. But then $S_{3}^{\prime \prime} \cup\left(P \backslash p_{1}\right) \cup x$ induces a $3 \mathrm{PC}(\cdot, \cdot)$ or an even wheel with center x. Therefore $l \neq 3$.

By symmetry we may assume that $l=5$. Let $H^{\prime}\left(\right.$ resp. $\left.H^{\prime \prime}\right)$ be the hole induced by $S_{1}^{\prime} \cup S_{5}^{\prime \prime} \cup$
P (resp. $S_{5}^{\prime \prime} \cup\left\{x, p_{j}, \ldots, p_{k}\right\}$). If x_{4} has a neighbor in p_{j}, \ldots, p_{k}, then either $\left(H^{\prime}, x_{4}\right)$ is an even wheel, or $H^{\prime \prime} \cup x_{4}$ induces a $3 \mathrm{PC}(\cdot, \cdot)$ or an even wheel with center x_{4}. So x_{4} has no neighbor in p_{j}, \ldots, p_{k}, and hence it has an even number of neighbors in P. If $N\left(x_{4}\right) \cap P \neq\left\{p_{1}, p_{2}\right\}$, then $H^{\prime} \cup x_{4}$ induces a $3 \mathrm{PC}(\cdot, \cdot)$ or an even wheel with center x_{4}. So $N\left(x_{4}\right) \cap P=\left\{p_{1}, p_{2}\right\}$, and hence $\left(H \backslash x_{5}\right) \cup P$ contains an even wheel with center p_{1}.

Case 1.2: x has no neighbor in P.
In particular, p_{k} is not of type bx, and hence it must be of type 1 or 2 .
If x_{1} has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, then by Claim $1, x_{4}$ does not, and hence $S_{1}^{\prime} \cup(P \backslash$ $\left.p_{k}\right) \cup\left\{x, x_{4}\right\}$ contains a $3 \mathrm{PC}\left(x_{1}, p_{1}\right)$. So x_{1} does not have a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$.

If x_{2} has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, then by Claim $1, x_{1}$ and x_{4} do not, and hence $S_{1}^{\prime} \cup\left(P \backslash p_{k}\right) \cup\left\{x, x_{2}, x_{4}\right\}$ contains a $3 \mathrm{PC}\left(x, p_{1}\right)$. So x_{2} does not have a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, and by analogous argument neither does x_{3}.

If $l=3$, then $S_{1} \cup S_{3}^{\prime} \cup P \cup x$ induces a $3 \mathrm{PC}\left(p_{1} u_{1} u_{2}, x x_{2} x_{3}\right)$. So $l \neq 3$, and by symmetry we may assume that $l=5$.

If x_{4} has no neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, then $S_{1}^{\prime \prime} \cup S_{5}^{\prime \prime} \cup P \cup\left\{x, x_{4}\right\}$ induces a $3 \mathrm{PC}\left(x, p_{1}\right)$. So x_{4} has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$. If x_{4} has a neighbor in $P \backslash\left\{p_{1}, p_{2}\right\}$, then $S_{1}^{\prime} \cup S_{5}^{\prime \prime} \cup\left(P \backslash p_{2}\right) \cup\left\{x, x_{4}\right\}$ contains a $3 \mathrm{PC}\left(x_{1}, x_{4}\right)$. So $N\left(x_{4}\right) \cap P=\left\{p_{1}, p_{2}\right\}$. But then $\left(H \backslash x_{5}\right) \cup P$ contains an even wheel with center p_{1}.

Case 2: p_{1} is of type 1 .
By Case 1 and symmetry, p_{k} is not of type b.
Case 2.1: x has a neighbor in P.
If neither x_{1} nor x_{2} has a neighbor in p_{2}, \ldots, p_{i-1}, then $S_{1} \cup\left\{x, p_{1}, \ldots, p_{i}\right\}$ induces a $3 \mathrm{PC}\left(u_{1}, x\right)$. So without loss of generality x_{1} has a neighbor in p_{2}, \ldots, p_{i-1}. By Claim 1, $x_{2}, \ldots x_{l}$ do not have neighbors in $P \backslash\left\{p_{1}, p_{k}\right\}$. Then $x_{1} u_{1}$ is an edge, else $S_{1} \cup\left\{x, p_{1}, \ldots, p_{i-1}\right\}$ contains a $3 \mathrm{PC}\left(u_{1}, x_{1}\right)$. So $u_{1} x_{2}$ cannot be an edge, else there is a 4 -hole. Node x_{1} has an odd number of neighbors in p_{1}, \ldots, p_{i}, else $S_{1} \cup\left\{x, p_{1}, \ldots, p_{i}\right\}$ induces an even wheel. By Claim $2, x_{1}$ has an odd number of neighbors in p_{1}, \ldots, p_{j}.

Suppose that $x_{1} v_{1}$ is an edge. Then $l=n$, and p_{k} is either of type 1 or 2 (adjacent to x_{1} and v_{1}). Since $S_{n} \cup\left\{x, p_{j}, \ldots, p_{k}\right\}$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$ nor an even wheel with center x_{1}, node x_{1} has an odd number of neighbors in p_{j}, \ldots, p_{k}. Recall that no node of $P \backslash\left\{p_{1}, p_{k}\right\}$ can be adjacent to more than one node of $\left\{x, x_{1}, \ldots, x_{n}\right\}$. In particular, p_{j} is not adjacent to x_{1}. So x_{1} has an even number of neighbors in P, and hence $H \cup P$ induces an even wheel with center x_{1}. Therefore $x_{1} v_{1}$ is not an edge.

Since $S_{l}^{\prime} \cup\left\{x, x_{1}, p_{j}, \ldots, p_{k}\right\}$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$ nor an even wheel with center x_{1}, node x_{1} has an even number of neighbors in p_{j}, \ldots, p_{k}. Recall that $x_{1} u_{1}$ is an edge. So x_{1} has an odd number of neighbors in P, and hence $S_{1} \cup \ldots \cup S_{l-1} \cup S_{l}^{\prime} \cup P$ induces a $3 \mathrm{PC}(\cdot, \cdot)$ or an even wheel with center x_{1}.

Case 2.2: x does not have a neighbor in P.
In particular, p_{k} is not of type bx.
We first show that neither x_{1} nor x_{2} has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$. Assume x_{1} does. Then by Claim 1, x_{2}, \ldots, x_{l} do not have neighbors in P. If $x_{1} u_{1}$ is not an edge, then $S_{1} \cup$ $\left(P \backslash p_{k}\right) \cup x$ contains a $3 \mathrm{PC}\left(x_{1}, u_{1}\right)$. So $x_{1} u_{1}$ is an edge, and hence $x_{2} u_{1}$ is not. If $l=2$, then $\left(P \backslash p_{1}\right) \cup S_{1} \cup S_{2}^{\prime} \cup x$ contains a 3 PC $\left(x_{1}, x_{2}\right)$. So $l>2$. If $l=n$, then $\left(H \backslash x_{1}\right) \cup P \cup x$ contains an even wheel with center x. So $2<l<n$. Since $S_{1} \cup \ldots \cup S_{l-1} \cup S_{l}^{\prime} \cup P$ cannot induce a
$3 \mathrm{PC}(\cdot, \cdot)$ nor an even wheel with center x_{1}, node x_{1} has an even number of neighbors in P. But then $S_{1} \cup S_{l}^{\prime \prime} \cup P \cup x$ induces an even wheel with center x_{1}. Therefore x_{1} does not have a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, and by symmetry neither does x_{2}.

If some $x_{t}, t \in\{3, \ldots, n\}$ has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, then $H \cup\left(P \backslash p_{k}\right)$ contains a 3PC $\left(u_{1}, x_{t}\right)$. So no node of x_{1}, \ldots, x_{n} has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$. If $2<l<n$, then $S_{1} \cup S_{l}^{\prime} \cup P \cup x$ or $S_{1} \cup S_{l}^{\prime \prime} \cup P \cup x$ induces a $3 \mathrm{PC}\left(u_{1}, x\right)$. So without loss of generality $l=n$. But then $\left(H \backslash x_{1}\right) \cup P \cup x$ contains an even wheel with center x or a $3 \mathrm{PC}(\cdot, \cdot)$.

Case 3: p_{1} is of type 2 or bx .
By Lemma 3.3, Cases 1 and 2, and the symmetry, p_{k} is also of type 2 or bx. A node of x_{1}, \ldots, x_{n} must have a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, since otherwise $H \cup P$ induces a $3 \mathrm{PC}(\triangle, \triangle)$ or an even wheel. Let x_{t} be the node of $\left\{x_{1}, \ldots, x_{n}\right\}$ with smallest index that has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$.

Case 3.1: x has a neighbor in P.
First suppose that x_{2} has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$. Recall that no node of $P \backslash\left\{p_{1}, p_{k}\right\}$ can be adjacent to more than one node of $\left\{x, x_{1}, \ldots, x_{n}\right\}$. In particular, x_{2} is not adjacent to p_{i}. By Claim $1, x_{4}, \ldots, x_{n}, x_{1}$ cannot have neighbors in $P \backslash\left\{p_{1}, p_{k}\right\}$. If $i>1$ then x_{2} must have an even number of neighbors in p_{2}, \ldots, p_{i}, else $S_{1}^{\prime} \cup\left\{x, x_{2}, p_{1}, \ldots, p_{i}\right\}$ contains a $3 \mathrm{PC}(\cdot, \cdot)$ or an even wheel with center x_{2}. Similarly, x_{2} has an even number of neighbors in p_{j}, \ldots, p_{k}. So by Claim $2, x_{2}$ has an even number of neighbors in p_{2}, \ldots, p_{k}. But then since $S_{1}^{\prime} \cup S_{l}^{\prime \prime} \cup S_{l+1} \cup \ldots \cup S_{n} \cup P \cup\left\{x, x_{2}\right\}$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$ nor an even wheel with center $x_{2}, u_{2} \neq x_{2}$ and x_{2} has exactly two neighbors in P, that are furthermore adjacent. But then $S_{1} \cup S_{l}^{\prime \prime} \cup S_{l+1} \cup \ldots \cup S_{n} \cup P$ induces a $3 \mathrm{PC}\left(p_{1} u_{1} u_{2}, \triangle\right)$. So x_{2} does not have a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, and by symmetry neither do x_{1}, x_{l}, x_{l+1}.

Node x_{t} must have an even number of neighbors in p_{2}, \ldots, p_{i}, else either $S_{1}^{\prime} \cup\left\{x, x_{t}, p_{1}, \ldots, p_{i}\right\}$ (if $t=3$) or $S_{1}^{\prime \prime} \cup\left\{x, x_{t}, p_{1}, \ldots, p_{i}\right\}$ (otherwise) induces a $3 \mathrm{PC}(\cdot, \cdot)$ or an even wheel with center x_{t}. By symmetry x_{t} has an even number of neighbors in p_{j+1}, \ldots, p_{k}. So by Claim 2, x_{t} has an even number of neighbors in P.

By symmetry we may assume that $t>l+1$. Then since $S_{1}^{\prime \prime} \cup S_{2} \cup \ldots \cup S_{l}^{\prime} \cup P \cup x_{t}$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$ nor an even wheel with center x_{t}, node x_{t} has exactly two neighbors in P that are furthermore adjacent. But then $S_{1}^{\prime \prime} \cup S_{2} \cup \ldots S_{t-1} \cup P$ induces a $3 \mathrm{PC}\left(p_{k} v_{1} v_{2}, \triangle\right)$.

Case 3.2: x does not have a neighbor in P.
Then p_{1} and p_{k} are both of type 2 .
Suppose that x_{2} has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$. By Claim 1, nodes $x_{4}, \ldots, x_{n}, x_{1}$ cannot have neighbors in $P \backslash\left\{p_{1}, p_{k}\right\}$. If x_{3} has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, then $\left(H \backslash x_{2}\right) \cup\left(P \backslash p_{k}\right) \cup x$ contains a $3 \mathrm{PC}(\cdot, \cdot)$ or an even wheel with center x. So x_{3} does not have a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$.

If $l=2$ then $\left(H \backslash x_{2}\right) \cup P \cup x$ contains a $3 \mathrm{PC}(\cdot, \cdot)$ or an even wheel with center x. If $l=n$ then $\left(H \backslash x_{1}\right) \cup\left(P \backslash p_{1}\right) \cup x$ contains a $3 \mathrm{PC}(\cdot, \cdot)$ or an even wheel with center x. So $2<l<n$.

Let H^{\prime} be the hole contained in $\left(H \backslash\left(S_{1}^{\prime \prime} \cup S_{l}^{\prime}\right)\right) \cup P$. If $x_{l+1} x_{1}$ is an edge, then $H^{\prime} \cup S_{l}^{\prime} \cup x$ induces a $3 \mathrm{PC}\left(x x_{1} x_{n}, p_{k} v_{1} v_{2}\right)$ or a 4 -wheel with center $x_{n}=v_{2}$. So $x_{l+1} x_{1}$ is not an edge. Let $H^{\prime \prime}$ be the hole induced by $S_{1}^{\prime} \cup S_{l}^{\prime \prime} \cup P \cup x$.

Suppose that p_{1} is not adjacent to x_{2}. Since $H^{\prime \prime} \cup x_{2}$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$ nor an even wheel with center x_{2}, it follows that x_{2} has an even number (≥ 2) of neighbors in P. Since $H^{\prime} \cup x_{2}$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$ nor an even wheel with center x_{2}, it follows that x_{2}
has exactly two neighbors in P and they are furthermore adjacent. But then $H^{\prime} \cup S_{1}^{\prime \prime}$ induces a $3 \mathrm{PC}\left(p_{1} u_{1} u_{2}, \triangle\right)$. So p_{1} must be adjacent to x_{2}.

Since (H^{\prime}, x_{2}) cannot be an even wheel, x_{2} has an even number of neighbors in P. But then $\left(H^{\prime \prime}, x_{2}\right)$ is an even wheel.

Therefore x_{2} cannot have a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$. By symmetry neither can x_{1}, x_{l}, x_{l+1}.
Suppose that $l=2$. Let H^{\prime} be the hole induced by $S_{1}^{\prime \prime} \cup S_{2}^{\prime} \cup P$. If x_{t} has a unique neighbor in P, then $H^{\prime} \cup P \cup\left\{x, x_{t}\right\}$ induces a $3 \mathrm{PC}\left(x_{2}, \cdot\right)$. If x_{t} has two nonadjacent neighbors in P, then $H^{\prime} \cup P \cup\left\{x, x_{t}\right\}$ contains a $3 \mathrm{PC}\left(x_{2}, x_{t}\right)$. So x_{t} has exactly two neighbors in P, that are furthermore adjacent. But then $H^{\prime} \cup S_{2} \cup S_{3} \cup \ldots \cup S_{t-1}$ induces a $3 \mathrm{PC}(\triangle, \triangle)$. Therefore $l>2$, and by symmetry $l<n$.

Let x_{t} be a node of $\left\{x_{1}, \ldots, x_{n}\right\}$ that has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$. Without loss of generality $2<t<l$. Since G has no diamond, x_{t} cannot be adjacent to both x_{2} and x_{l}. Without loss of generality x_{t} is not adjacent to x_{l}. Let H^{\prime} (resp. $H^{\prime \prime}$) be the hole induced by $S_{1}^{\prime} \cup S_{l}^{\prime} \cup P \cup x\left(\right.$ resp. $\left.S_{1}^{\prime} \cup S_{l}^{\prime \prime} \cup S_{l+1} \cup \ldots \cup S_{n} \cup P\right)$. Since $H^{\prime} \cup x_{t}$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$ nor an even wheel with center x_{t}, node x_{t} has an even number of neighbors in P. If x_{t} has more than two neighbors in P, then $\left(H^{\prime \prime}, x_{t}\right)$ is an even wheel. So x_{t} has exactly two neighbors in P. If these two neighbors are not adjacent, then $H^{\prime \prime} \cup x_{t}$ induces a $3 \mathrm{PC}(\cdot, \cdot)$. So the two neighbors of x_{t} in P are adjacent. By Claim 1 and the choice of x_{t}, the only other node of $\left\{x_{1}, \ldots, x_{n}\right\}$ that may have a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$ is x_{t+1}. But then $\left(H \backslash x_{l}\right) \cup P$ contains a $3 \mathrm{PC}\left(p_{1} u_{1} u_{2}, \triangle\right)$.

Lemma 3.9 Suppose that S_{1} is a long sector of (H, x) such that the following hold.
(i) If there exists a type wx1 or wx2 node w.r.t. (H, x), then such a node is adjacent to x_{1} or x_{2}.
(ii) S_{1} has no appendix.

Then $S=X_{1} \cup X_{2} \cup\{x\}$ is a bisimplicial cutset separating S_{1} from $H \backslash S_{1}$.
Proof: Note that if $x_{1} x_{n}$ is an edge then $x_{n} \in X_{1}$, and if $x_{2} x_{3}$ is an edge then $x_{3} \in X_{2}$. Assume S is not a cutset, and let $P=p_{1}, \ldots, p_{k}$ be a direct connection from S_{1} to $H \backslash S_{1}$ in $G \backslash S$. By (i) and Lemma 3.4, no node of P is of type wx1 or wx2. By (ii), $k>1$, i.e., p_{1} is not of type b. By Lemma 3.3 and the definition of P, p_{1} has a neighbor in the interior of S_{1} and it is of type 1,2 or bx w.r.t. (H, x). By Lemma 3.8, either $p_{k} \in X \backslash S$ or p_{k} has a unique neighbor in $H \cup x$ that is a node of $\left\{x_{3}, \ldots, x_{n}\right\}$ that is not adjacent to neither x_{1} nor x_{2}. So p_{k} is adjacent to some $x_{l}, l \neq 1,2$ and $x_{l} x_{1}$ and $x_{l} x_{2}$ are not edges. So p_{k} is of type 1 , x 1 or x 2 . Without loss of generality we assume that if p_{k} is of type x 2 , then it is adjacent to x_{l+1}. Note that if p_{k} is of type x 2 then, since G has no diamond, $x_{l+1} x_{1}$ is not an edge. By definition of P and Lemma 3.3, no node of $H \backslash S$ has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, and no node of $P \backslash\left\{p_{1}, p_{k}\right\}$ is adjacent to more than one node of $H \cup x$.

Claim 1: If a node of $X_{1} \cap H$ (resp. $X_{2} \cap H$) has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, then no node of $X_{2} \cap H$ (resp. $X_{1} \cap H$) has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$.

Proof of Claim 1: Assume not. Then there is a subpath P^{\prime} of P whose one endnode is adjacent to a node of $X_{1} \cap H$, the other endnode is adjacent to a node of $X_{2} \cap H$ and no intermediate node of P^{\prime} has a neighbor in H. But then $H \cup P^{\prime}$ induces a $3 \mathrm{PC}(\cdot, \cdot)$. This completes the proof of Claim 1.

Let u_{1} (resp. u_{2}) be the neighbor of p_{1} in S_{1} that is closest to x_{1} (resp. x_{2}). Let S_{1}^{\prime} (resp. $S_{1}^{\prime \prime}$) be the $x_{1} u_{1}$-subpath (resp. $u_{2} x_{2}$-subpath) of S_{1}.

First suppose that x_{1} has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$. Then by Claim 1, no node of $X_{2} \cap H$ has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$. Let p_{i} (resp. p_{j}) be the neighbor of x_{1} in $P \backslash\left\{p_{1}, p_{k}\right\}$ with lowest (resp. highest) index.

We now show that x has an even number of neighbors in p_{1}, \ldots, p_{j}. Let P^{\prime} be a subpath of p_{1}, \ldots, p_{j} whose endnodes are both adjacent to x_{1} and no intermediate node is adjacent to x_{1}. Since $P^{\prime} \cup\left\{x_{1}, x\right\}$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$ nor an even wheel with center x, node x has an even number of neighbors in P^{\prime}. If p_{1} is not adjacent to x_{1}, then x has an even number of neighbors in p_{1}, \ldots, p_{i}, else $S_{1}^{\prime} \cup\left\{x, p_{1}, \ldots, p_{i}\right\}$ induces a $3 \mathrm{PC}(\cdot, \cdot)$ or an even wheel with center x. So x has an even number of neighbors in p_{1}, \ldots, p_{j}.

This implies that the parity of the number of neighbors of x in P and in p_{j}, \ldots, p_{k} are the same. Let $H^{\prime}\left(\right.$ resp. $\left.H^{\prime \prime}\right)$ be the hole induced by $S_{1}^{\prime \prime} \cup S_{2} \cup \ldots \cup S_{l-1} \cup P$ (resp. $\left.S_{1} \cup S_{2} \cup \ldots \cup S_{l-1} \cup\left\{p_{j}, \ldots, p_{k}\right\}\right)$. Then either $H^{\prime} \cup x$ induces a $3 \mathrm{PC}(\cdot, \cdot)$ or one of $\left(H^{\prime} x\right)$, ($H^{\prime \prime}, x$) is an even wheel.

Therefore x_{1} does not have a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, and by symmetry neither does x_{2}.
Node p_{1} must be of type 2 or bx, else $S_{1} \cup P \cup\left\{x, x_{l}\right\}$ contains a $3 \mathrm{PC}\left(u_{1}, x\right)$.
Now suppose that x_{n} has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$. Then $x_{n} \in S$ and hence $x_{n} x_{1}$ is an edge. By Claim 1, x_{n} is the only node of H that has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$. Let p_{i} (resp. p_{j}) be the node of $P \backslash\left\{p_{1}, p_{k}\right\}$ with lowest (resp. highest) index adjacent to x_{n}.

We now show that x has an odd number of neighbors in p_{1}, \ldots, p_{j}. Let P^{\prime} be a subpath of p_{1}, \ldots, p_{j} whose endnodes are both adjacent to x_{n}, and no intermediate node of P^{\prime} is adjacent to x_{n}. Since $P^{\prime} \cup\left\{x_{n}, x\right\}$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$ nor an even wheel with center x, node x has an even number of neighbors in P^{\prime}. Node x must have a neighbor in p_{1}, \ldots, p_{i}, else $S_{1} \cup\left\{x_{n}, x, p_{1}, \ldots, p_{i}\right\}$ induces a $3 \mathrm{PC}\left(p_{1} u_{1} u_{2}, x_{1} x_{n} x\right)$ or an even wheel with center x_{1}. Since $S_{1}^{\prime} \cup\left\{x_{n}, x, p_{1}, \ldots, p_{i}\right\}$ cannot induce an even wheel, node x has an odd number of neighbors in p_{1}, \ldots, p_{i}. Therefore, x has an odd number of neighbors in p_{1}, \ldots, p_{j}.

This implies that the parities of the number of neighbors of x in P and in p_{j}, \ldots, p_{k} are different. Let $H^{\prime}\left(\operatorname{resp} H^{\prime \prime}\right)$ be the hole induced by $S_{1}^{\prime \prime} \cup S_{2} \cup \ldots \cup S_{l-1} \cup P$ (resp. $\left.S_{1} \cup S_{2} \cup \ldots \cup S_{l-1} \cup\left\{x_{n}, p_{j}, \ldots, p_{k}\right\}\right)$. Then either $\left(H^{\prime}, x\right)$ or $\left(H^{\prime \prime}, x\right)$ is an even wheel.

Therefore, x_{n} has no neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, and by symmetry neither does x_{3}, i.e., no node of H has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$.

Since P is not an appendix of $(H, x), p_{k}$ is of type $x 2$. But then $P \cup H$ induces a $3 \mathrm{PC}\left(p_{1} u_{1} u_{2}, p_{k} x_{l} x_{l+1}\right)$.

Proof of Theorem 3.2: Let (H, x) be a proper wheel of G. If there is no node of type wx1 or wx2 w.r.t. (H, x), then the result follows from Lemma 3.7 and Lemma 3.9.

Suppose there exists a node u that is of type wx1 w.r.t. (H, x). Then for some $i \in$ $\{1, \ldots, n\}, N(u) \cap\left\{x, x_{1}, \ldots, x_{n}\right\}=\left\{x, x_{i}\right\}$, and sectors S_{i} and S_{i-1} are both long. By Lemma 3.6, S_{i} and S_{i-1} have no appendices, and hence the result follows from Lemma 3.9.

Finally suppose there exists a node u that is of type wx2 w.r.t. (H, x). Then for some $i \in\{1, \ldots, n\}, N(u) \cap\left\{x, x_{1}, \ldots, x_{n}\right\}=\left\{x, x_{i}, x_{i+1}\right\}$, So sectors S_{i-1} and S_{i+1} are both long, and u is adjacent to an endnode of both of them. By Lemma 3.6, S_{i-1} and S_{i+1} have no appendices, and hence the result follows from Lemma 3.9.

Proof of Lemma 1.3: Assume G does not have a $3 \mathrm{PC}(\triangle, \cdot)$. If G does not contain a hole, then G is triangulated, and it is a well known result that a triangulated graph is either a clique or
has a clique cutset. So assume G contains a hole H, but does not contain a clique cutset nor a bisimplicial cutset. Then by Theorem $3.2 G$ does not contain a proper wheel, and by our first assumption G does not contain a bug. So G does not contain a wheel.

Note that a node $x \notin V(H)$ cannot have two nonadjacent neighbors in H, else there is a $3 \mathrm{PC}(\cdot, \cdot)$ or a wheel. Let C be a connected component of $G \backslash H$. Then $N(C) \cap H$ contains two nonadjacent nodes, else there is a clique cutset. Then there exists a path P in C such that the endnodes of P have nonadjacent neighbors in H. Let P be shortest such path. Then for some two nonadjacent nodes u and v of H, one endnode of P is adjacent to u, and the other one is adjacent to v. If no node of H has a neighbor in the interior of P, then $P \cup H$ induces an even wheel, a $3 \mathrm{PC}(\triangle, \Delta)$, a $3 \mathrm{PC}(\cdot, \cdot)$ or a $3 \mathrm{PC}(\triangle, \cdot)$, contradicting our assumptions. So a node w of H has a neighbor in the interior of P. By the choice of P, w must be adjacent to both u and v. In fact $N(P) \cap H=\{u, v, w\}$. But then $H \cup P$ induces a wheel, a contradiction.

4 Nodes adjacent to a $3 \mathrm{PC}(\triangle, \cdot)$ and crossings

In light of Lemma 1.3, for the rest of the decomposition we focus on the case when the graph has a $3 \mathrm{PC}(\triangle, \cdot)$. In this section we examine paths that connect different paths of a $3 \mathrm{PC}(\triangle, \cdot)$. Throughout this section Σ denotes a $3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$. The three paths of Σ are denoted $P_{x_{1} y}, P_{x_{2} y}$ and $P_{x_{3} y}$ (where $P_{x_{i} y}$ is the path that contains x_{i}). Note that at most one of the paths of Σ is of length 1 , and if one of the paths of Σ is of length 1 , then Σ is a bug. For $i=1,2,3$, we denote the neighbor of y in $P_{x_{i} y}$ by y_{i}.

Lemma 4.1 Let G be a (diamond, 4-hole)-free odd-signable graph that does not contain a proper wheel. If $u \in V(G) \backslash V(\Sigma)$ has a neighbor in Σ, then u is one of the following types.

Type p1: $|N(u) \cap V(\Sigma)|=1$.
Type p2: $|N(u) \cap V(\Sigma)|=2$ and the two neighbors of u in Σ form an edge of one of the paths of Σ.

Type pb: For some $i \in\{1,2,3\}, N(u) \cap V(\Sigma) \subseteq V\left(P_{x_{i} y}\right)$, and for $j \in\{1,2,3\} \backslash\{i\}$, $V\left(P_{x_{i} y}\right) \cup V\left(P_{x_{j} y}\right) \cup\{u\}$ induces a bug with center u.

Type t3: $N(u) \cap V(\Sigma)=\left\{x_{1}, x_{2}, x_{3}\right\}$.
Type t3b: Node u is adjacent to x_{1}, x_{2} and x_{3}, and it has one more neighbor in Σ, say in $P_{x_{i} y} \backslash\left\{x_{i}\right\}$. Furthermore, for some $j \in\{1,2,3\} \backslash\{i\}, V\left(P_{x_{i} y}\right) \cup V\left(P_{x_{j} y}\right) \cup\{u\}$ induces a bug with center u.

Type b: Node u has exactly three neighbors in Σ. For some $i \in\{1,2,3\}, u$ is adjacent to y_{i}, and the other two neighbors of u in Σ are contained in say in $P_{x_{j} y}$, for some $j \in\{1,2,3\} \backslash\{i\}$. Furthermore, $V\left(P_{x_{i} y}\right) \cup V\left(P_{x_{j} y}\right) \cup\{u\}$ induces a bug with center u.

Proof: If for some $i \in\{1,2,3\}, N(u) \cap \Sigma \subseteq P_{x_{i} y}$, then u is of type p1, p2 or pb, else there is a diamond, $3 \mathrm{PC}(\cdot, \cdot)$ or a proper wheel.

So assume without loss of generality that u has neighbors in both $P_{x_{1} y} \backslash y$ and $P_{x_{2} y} \backslash y$. Let H be the hole induced by $P_{x_{1} y} \cup P_{x_{2} y}$. Then $P_{x_{3} y}$ is an appendix of H.

First suppose that u is not adjacent to all of x_{1}, x_{2}, x_{3}. Then, since there is no diamond, u is adjacent to at most one node of $\left\{x_{1}, x_{2}, x_{3}\right\}$. Suppose u is not adjacent to y. Then by Lemma 2.2 applied to $H, P_{x_{3} y}$ and u, node u is also an appendix of H and its nodeattachment is without loss of generality y_{1}. Furthermore, no node of $P_{x_{3} y}$ is adjacent to u, and hence u is of type b. So u is adjacent to y. Then (H, u) must be a bug. Without loss of generality $N(u) \cap P_{x_{1} y}=\left\{y, y_{1}\right\}$ and $N(u) \cap P_{x_{2} y}=\left\{y, u_{1}\right\}$, where $y u_{1}$ is not an edge. If u has no neighbor in $P_{x_{3} y} \backslash y$, then $P_{x_{2} y} \cup P_{x_{3} y} \cup u$ induces a $3 \mathrm{PC}\left(y, u_{1}\right)$. So u has a neighbor in $P_{x_{3} y} \backslash y$. Node u cannot be adjacent to y_{3}, else $\left\{y_{1}, y, u, y_{3}\right\}$ induces a diamond. But then $P_{x_{2} y} \cup P_{x_{3} y} \cup u$ induces a proper wheel with center u.

Now assume that u is adjacent to all of x_{1}, x_{2}, x_{3}. Suppose u is not of type t3. Without loss of generality u has a neighbor in $P_{x_{1} y} \backslash x_{1} . P_{x_{1} y} \cup P_{x_{2} y} \cup u$ must induce a bug with center u, and similarly so must $P_{x_{1} y} \cup P_{x_{3} y} \cup u$. Hence u is of type t3b.

Nodes adjacent to Σ are further classified as follows.
Type p: A node that is of type $\mathrm{p} 1, \mathrm{p} 2$ or pb w.r.t. Σ.
Type t: A node that is of type t 3 or t 3 b w.r.t. Σ.

Figure 12: Different types of nodes adjacent to a $3 \mathrm{PC}(\triangle, \cdot)$.

Definition 4.2 A crossing of Σ is a chordless path $P=p_{1}, \ldots, p_{k}$ in $G \backslash \Sigma$ such that either $k=1$ and p_{1} is of type b w.r.t. Σ, or $k>1$ and for some $i, j \in\{1,2,3\}, i \neq j, N\left(p_{1}\right) \cap V(\Sigma) \subseteq$ $V\left(P_{x_{i} y}\right), N\left(p_{k}\right) \cap V(\Sigma) \subseteq V\left(P_{x_{j} y}\right)$, p_{1} has a neighbor in $V\left(P_{x_{i} y}\right) \backslash\{y\}$, p_{k} has a neighbor in $V\left(P_{x_{j} y}\right) \backslash\{y\}$, and no node of $P \backslash\left\{p_{1}, p_{k}\right\}$ has a neighbor in Σ.

Definition 4.3 A crossing $P=p_{1}, \ldots, p_{k}$ of Σ is called a hat if $k>1, p_{1}$ and p_{k} are both of type p1 w.r.t. Σ adjacent to different nodes of $\left\{x_{1}, x_{2}, x_{3}\right\}$.

Definition 4.4 Let $P=p_{1}, \ldots, p_{k}$ be a crossing of Σ such that one of the following holds:
(i) $k=1$ and p_{1} is of type b w.r.t. Σ, say p_{1} is adjacent to y_{i} for some $i \in\{1,2,3\}$, and it has two more neighbors in $P_{x_{j} y} \backslash\{y\}$, for some $j \in\{1,2,3\} \backslash\{i\}$.
(ii) $k>1, p_{1}$ is of type $p 1$ and p_{k} is of type $p 2$ w.r.t. Σ, for some $i \in\{1,2,3\}, p_{1}$ is adjacent to y_{i}, and for some $j \in\{1,2,3\} \backslash\{i\}, N\left(p_{k}\right) \cap V(\Sigma) \subseteq V\left(P_{x_{j} y}\right) \backslash\{y\}$.

Such a path P is called a y_{i}-crosspath of Σ. We also say that P is a crosspath from y_{i} to $P_{x_{j} y}$.

If say $x_{3} y$ is an edge, then Σ induces a bug (H, x), where $x=x_{3}=y_{3}$. In this case, the y_{3}-crosspath (or x-crosspath) of Σ, is also called the center-crosspath of the bug (H, x).

Lemma 4.5 Let G be a (diamond, 4-hole)-free odd-signable graph that does not contain a proper wheel. If P and Q are crossing appendices of a hole H of G, then their nodeattachments are adjacent.

Proof: Assume not. Then without loss of generality (ii) of Lemma 2.3 holds. Let H_{P}^{\prime} be the $u_{1} u$-subpath of H that does not contain u_{2}. Without loss of generality v belongs to H_{P}^{\prime}. Note that since G is diamond-free, it is not possible that q_{1} is adjacent to both p_{1} and u_{1}. Hence $H_{P}^{\prime} \cup P \cup q_{1}$ induces a proper wheel with center q_{1}.

Lemma 4.6 Let G be a (diamond, 4-hole)-free odd-signable graph that does not contain a proper wheel. $\Sigma=3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$ of G can have a crosspath from at most one of the nodes y_{1}, y_{2}, y_{3}.

Proof: Suppose not and let $P=u_{1}, \ldots, u_{n}$ be a y_{1}-crosspath and $Q=v_{1}, \ldots, v_{m}$ a $y_{2^{-}}$ crosspath. Let $u^{\prime}, u^{\prime \prime}$ (resp. $v^{\prime}, v^{\prime \prime}$) be adjacent neighbors of u_{n} (resp. v_{m}) in Σ. Note that by definition of a crosspath, y does not coincide with any of the nodes $u^{\prime}, u^{\prime \prime}, v^{\prime}, v^{\prime \prime}$.

First suppose that $u^{\prime}, u^{\prime \prime}$ belong to $P_{x_{2} y}$, and $v^{\prime}, v^{\prime \prime}$ belong to $P_{x_{1} y}$. Let H be the hole induced by $P_{x_{1} y} \cup P_{x_{2} y}$. Then P and Q are crossing appendices of H, which contradicts Lemma 4.5.

So without loss of generality we may assume that $u^{\prime}, u^{\prime \prime}$ belong to $P_{x_{3} y}$.
Suppose that $v^{\prime}, v^{\prime \prime}$ also belong to $P_{x_{3} y}$. Since there is no diamond, $\left(P_{x_{3} y} \backslash\left\{x_{3}, y, y_{3}\right\}\right) \cup$ $P \cup Q \cup\left\{y_{1}, y_{2}\right\}$ contains a chordless path P^{\prime} from y_{1} to y_{2}. But then $P^{\prime} \cup P_{x_{1} y} \cup P_{x_{2} y}$ induces a $3 \mathrm{PC}\left(y_{1}, y_{2}\right)$.

So $v^{\prime}, v^{\prime \prime}$ belong to $P_{x_{1} y}$. Let H be the hole induced by $P_{x_{1 y} y} \cup P_{x_{2} y}$. Let P^{\prime} be the chordless path from u_{1} to x_{3} in $P \cup\left(P_{x_{3} y} \backslash\left\{y, y_{3}\right\}\right)$. Then P^{\prime} and Q are crossing appendices of H, contradicting Lemma 4.5.

Figure 13: Different crossings of a $3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$.

Lemma 4.7 Let G be a (diamond, 4-hole)-free odd-signable graph that does not contain a proper wheel. If $P=p_{1}, \ldots, p_{k}$ is a crossing of $a \Sigma=3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$ of G, then one of the following holds.
(i) P is a crosspath of Σ.
(ii) P is a hat of Σ.
(iii) One of p_{1}, p_{k} is of type $p b$ w.r.t. Σ and furthermore adjacent to y, and the other is of type p2 w.r.t. Σ.
(iv) One of p_{1}, p_{k} is of type p1 w.r.t. Σ, and the other is of type p2 w.r.t. Σ, say p_{1} is of type $p 1$ and p_{k} is of type p2. Furthermore, p_{1} is adjacent to a node of $\left\{y_{1}, y_{2}, y_{3}\right\}$ and p_{k} is adjacent to y.

Proof: If $k=1$ then p_{1} is of type b w.r.t. Σ, and hence it is a crosspath. So assume $k>1$, and without loss of generality $N\left(p_{1}\right) \cap \Sigma \subseteq P_{x_{1} y}, N\left(p_{k}\right) \cap \Sigma \subseteq P_{x_{2} y}$, p_{1} has a neighbor in $P_{x_{1} y} \backslash y$ and p_{k} has a neighbor in $P_{x_{2} y} \backslash y$. Let u_{1} (resp. u_{2}) be the neighbor of p_{1} in $P_{x_{1} y}$ that is closest to x_{1} (resp. y). Let v_{1} (resp. v_{2}) be the neighbor of p_{k} in $P_{x_{2} y}$ that is closest to x_{2} (resp. y). By Lemma 4.1, p_{1} and p_{k} are of type p w.r.t. Σ. Let H be the hole induced by $P_{x_{1} y} \cup P_{x_{2} y}$.

First suppose that p_{1} is of type pb . Then $\left(H, p_{1}\right)$ is a bug. If p_{k} is of type p 1 , then $v_{1} \neq y$ and hence $H \cup P$ contains a $3 \mathrm{PC}\left(p_{1}, v_{1}\right)$. Suppose p_{k} is of type pb. If $k>2$ then $H \cup P$ contains a $3 \mathrm{PC}\left(p_{1}, p_{k}\right)$. So $k=2$. But then $\left(H, p_{1}\right)$ and p_{k} contradict Lemma 4.1. So p_{k} is of type p2. Assume (iii) does not hold, i.e., p_{1} is not adjacent to y. Then $P_{x_{3} y} \cup P$ together with the $v_{2} y$-subpath of $P_{x_{2} y}$, the $x_{1} u_{1}$-subpath of $P_{x_{1} y}$ and the $u_{2} y$-subpath of $P_{x_{1} y}$ induces a $3 \mathrm{PC}\left(p_{1}, y\right)$. So by symmetry we may assume that neither p_{1} nor p_{k} is of type pb .

Suppose that p_{1} and p_{k} are both of type p1. Then $u_{1}, v_{1} \neq y$. If $u_{1}=x_{1}$ and $v_{1}=x_{2}$, then P is a hat of Σ. Otherwise $H \cup P$ induces a $3 \mathrm{PC}\left(u_{1}, v_{1}\right)$.

Suppose p_{1} and p_{k} are both of type p 2 . Then $H \cup P$ induces either a $3 \mathrm{PC}\left(p_{1} u_{1} u_{2}, p_{k} v_{1} v_{2}\right)$ or an even wheel with center y.

Therefore we may assume that P is an appendix of H. Without loss of generality u_{1} is the node-attachment of $P . P$ and $P_{x_{3} y}$ are crossing appendices of H, and hence by Lemma 4.5,
$u_{1}=y_{1}$. If p_{k} is not adjacent to y, then P is a y_{1}-crosspath of Σ. If p_{k} is adjacent to y, then (iv) holds.

5 Bugs

For a bug (H, x) we use the following notation in this section. Let x_{1}, x_{2}, y be the neighbors of x in H, such that $x_{1} x_{2}$ is an edge. Let H_{1} (resp. H_{2}) be the sector of (H, x) that contains y and x_{1} (resp. x_{2}). Let y_{1} (resp. y_{2}) be the neighbor of y in H_{1} (resp. H_{2}).

Definition 5.1 An ear of a bug (H, x) is a chordless path $P=p_{1}, \ldots, p_{k}$ in $G \backslash(V(H) \cup\{x\})$ such that $k>1, p_{1}$ is of type $p 1$ w.r.t. (H, x) adjacent to x, p_{k} is of type p2 w.r.t. (H, x) adjacent to y and a node of $\left\{y_{1}, y_{2}\right\}$, and no intermediate node of P has a neighbor in (H, x).

Figure 14: A center-crosspath of a bug (H, x).

Figure 15: An ear of a bug (H, x).

In this section we decompose bugs with center-crosspaths (Theorem 5.2, see Figure 14), $3 \mathrm{PC}(\triangle, \cdot)$'s with a hat (Corollary 5.4, see Figure 13) and bugs with ears (Lemma 5.5, see Figure 15). The order in which these decompositions are performed is of the key importance. As a consequence of these decompositions, in a graph that has no clique cutset nor a bisimplicial cutset, the only crossings of a $3 \operatorname{PC}(\triangle, \cdot)$ are the crosspaths. We note that a bug with a center-crosspath is not a nontrivial basic graph, whereas any $3 \mathrm{PC}(\triangle, \cdot)$ with a crosspath, that is not a bug with a center-crosspath, is a nontrivial basic graph.

Theorem 5.2 Let G be a (diamond, 4-hole)-free odd-signable graph. If G contains a bug with a center-crosspath, or G contains a bug but does not contain a $3 \mathrm{PC}(\triangle, \cdot)$ with a crosspath, then G has a bisimplicial cutset.

Proof: By Theorem 3.2 we may assume that G does not contain a proper wheel.
If G has a bug (H, x) with a center-crosspath P, we choose (H, x) and P so that $|H \cup P|$ is minimized. Otherwise, G does not have a $3 \mathrm{PC}(\triangle, \cdot)$ with a crosspath, and we choose a bug (H, x) so that $|H|$ is minimized.

Suppose (H, x) has a center-crosspath $P=p_{1}, \ldots, p_{k}$. Then p_{1} is adjacent to x, and let u_{1}, u_{2} be the neighbors of p_{k} in H. Without loss of generality $u_{1}, u_{2} \in H_{2} \backslash y$, and u_{1} is the neighbor of p_{k} in H_{2} that is closer to y.

Let X be the node set consisting of x_{1}, x_{2} and all type t nodes w.r.t. (H, x). Let Y be the node set consisting of y and all type p2 nodes w.r.t. (H, x) that are adjacent to x and y. Since there is no diamond, both of the sets X and Y induce a clique. We now show that $S=X \cup Y \cup x$ is a bisimplicial cutset separating H_{1} from H_{2}.

Assume not and let $Q=q_{1}, \ldots, q_{l}$ be a direct connection from H_{1} to H_{2} in $G \backslash S$. By Lemma $4.1 q_{1}$ and q_{l} are of type p or b w.r.t. (H, x). Suppose $l=1$. Then q_{1} is of type b w.r.t. (H, x) and it is not adjacent to x. In particular, Q is a crosspath of (H, x), and so
by our assumption (H, x) has a center-crosspath P, and hence $(H, x), P$ and Q contradict Lemma 4.6. So $l>1$, and in particular, if q_{1} or q_{l} is of type b w.r.t. (H, x), then it is adjacent to x. Furthermore, q_{1} has a neighbor in $H_{1} \backslash\left\{x_{1}, y\right\}$ and q_{l} has a neighbor in $H_{2} \backslash\left\{x_{2}, y\right\}$. Also, the only nodes of H that may have a neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$ are x_{1}, x_{2}, y. Since there is no 4 -hole nor a diamond, and by definition of S, no node of $Q \backslash\left\{q_{1}, q_{l}\right\}$ is adjacent to more than one node of $\left\{x, x_{1}, x_{2}, y\right\}$.

Let H_{1}^{\prime} (resp. H_{2}^{\prime}) be the subpath of H_{1} (resp. H_{2}) whose one endnode is x_{1} (resp. x_{2}), the other endnode is adjacent to q_{1} (resp. q_{l}), and no intermediate node of H_{1}^{\prime} (resp. H_{2}^{\prime}) is adjacent to q_{1} (resp. q_{l}).

Claim 1: At most one of the sets $\left\{x_{1}, x_{2}\right\}$ or $\{y\}$ may have a neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$.
Proof of Claim 1: Assume not. Then there is a subpath Q^{\prime} of $Q \backslash\left\{q_{1}, q_{l}\right\}$ such that one endnode of Q^{\prime} is adjacent to y, the other is adjacent to a node of $\left\{x_{1}, x_{2}\right\}$, say to x_{1}, and no intermediate node of Q^{\prime} has a neighbor in H. Then $H \cup Q^{\prime}$ induces a $3 \mathrm{PC}\left(x_{1}, y\right)$. This completes the proof of Claim 1.

Claim 2: q_{1} cannot be of type $p b$.
Proof of Claim 2: Assume q_{1} is of type pb, and let H^{\prime} be the hole of $H \cup q_{1}$ that contains q_{1}, x_{1}, x_{2}, y. Then $\left(H^{\prime}, x\right)$ is a bug.

First assume that P exists. If q_{1} is not adjacent to a node of P, then $\left(H^{\prime}, x\right)$ and P contradict the minimality of $|H \cup P|$. So q_{1} is adjacent to a node of P. Let p_{i} be the node of P with lowest index adjacent to q_{1}. Then $H_{1} \cup\left\{x, q_{1}, p_{1}, \ldots, p_{i}\right\}$ contains a $3 \mathrm{PC}\left(q_{1}, x\right)$.

Now assume that P does not exist, i.e., G does not contain a $3 \mathrm{PC}(\triangle, \cdot)$ with a crosspath. Since $\left|H^{\prime}\right|<|H|$, bug $\left(H^{\prime}, x\right)$ contradicts our choice of (H, x). This completes the proof of Claim 2.

Let v_{1} (resp. v_{2}) be the neighbor of q_{1} in H_{1} that is closest to x_{1} (resp. y). By Claim 2, either $v_{1}=v_{2}$ or $v_{1} v_{2}$ is an edge.

Suppose that y does not have a neighbor in Q and no node of $\left\{x_{1}, x_{2}\right\}$ has a neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$. Then by Lemma 2.2, Q is an appendix of H whose node-attachment is adjacent to y, and x is not adjacent to nor coincident with a node of Q. In particular, Q is a crosspath of (H, x). But then $(H, x), P$ and Q contradict Lemma 4.6. Therefore, either y has a neighbor in Q, or a node of $\left\{x_{1}, x_{2}\right\}$ has a neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$. We now consider the following two cases.

Case 1: No node of $\left\{x_{1}, x_{2}\right\}$ has a neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$.
Then y has a neighbor in Q. Let q_{t} be the node of Q with lowest index adjacent to y.
We first show that x cannot have a neighbor in Q. Assume it does. Let H^{\prime} be the hole induced by $H_{1}^{\prime} \cup H_{2}^{\prime} \cup Q$. Then $\left(H^{\prime}, x\right)$ must be a bug, and hence x has a unique neighbor q_{s} in Q. Note that q_{s} is not adjacent to y. If $t<s$, then $\left(H_{2} \backslash x_{2}\right) \cup\left\{x, q_{t}, \ldots, q_{l}\right\}$ contains a $3 \mathrm{PC}\left(q_{s}, y\right)$. So $t>s$. But then $\left(H_{1} \backslash x_{1}\right) \cup\left\{x, q_{1}, \ldots, q_{t}\right\}$ contains a $3 \mathrm{PC}\left(q_{s}, y\right)$.

Therefore x does not have a neighbor in Q. In particular, q_{1} and q_{l} are not of type b. By Claim $2, q_{1}$ is of type p 1 or p 2 . We now consider the following two cases.

Case 1.1: Either P does not exist, or it does exist but no node of P is adjacent to or coincident with a node of Q.

If P does exist, let R be the chordless path from q_{l} to x in $\left(H_{2} \backslash\left\{x_{2}, y\right\}\right) \cup P \cup\left\{x, q_{l}\right\}$.

First suppose that q_{1} is of type p1. Node v_{1} is adjacent to y, else $H_{1} \cup\left\{x, q_{1}, \ldots, q_{t}\right\}$ induces a $3 \mathrm{PC}\left(v_{1}, y\right)$. If P exists, then $H_{1} \cup Q \cup R$ induces a proper wheel with center y. So P does not exist, i.e., G has no $3 \mathrm{PC}(\triangle, \cdot)$ with a crosspath. $H_{1} \cup H_{2}^{\prime} \cup Q$ must induce a bug with center y (since it cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$ nor a proper wheel). But then x is a crosspath of this bug, a contradiction. Therefore, q_{1} must be of type p 2 .

Suppose that q_{1} is adjacent to y. First assume that P exists. Then $H_{1} \cup Q \cup R$ must induce a bug with center y, and hence $y_{2} \notin R$ and $N(y) \cap Q=\left\{q_{1}\right\}$. In particular, $y_{2} \notin H_{2}^{\prime}$ (since we are assuming that no node of P is adjacent to or coincident with a node of Q). But then $H_{1} \cup H_{2}^{\prime} \cup Q \cup x$ induces a $3 \mathrm{PC}\left(x_{1} x_{2} x, q_{1} y y_{1}\right)$. So P does not exist. Let H^{\prime} be the hole induced by $\left(H_{1} \backslash y\right) \cup H_{2}^{\prime} \cup Q$. If $\left(H^{\prime}, y\right)$ is a bug, then x is its center-crosspath, a contradiction. So $\left(H^{\prime}, y\right)$ is not a bug, i.e., q_{1} is the unique neighbor of y in Q and H^{\prime} does not contain y_{2}. But then $H^{\prime} \cup\{x, y\}$ induces a $3 \mathrm{PC}\left(x_{1} x_{2} x, y_{1} q_{1} y\right)$. Therefore, q_{1} is not adjacent to y.

Assume P exists. Since $H_{1}^{\prime} \cup Q \cup R \cup y$ cannot induce a $3 \mathrm{PC}\left(x, q_{t}\right)$, it must induce a bug, and hence either (i) $y_{2} \notin R$ and $N(y) \cap Q=\left\{q_{t}, q_{t+1}\right\}$, or (ii) $y_{2} \in R$ and $t=l$. If (i) holds, then $y_{2} \notin H_{2}^{\prime}$, and hence $H_{1} \cup H_{2}^{\prime} \cup Q$ induces a $3 \mathrm{PC}\left(y q_{t} q_{t+1}, q_{1} v_{1} v_{2}\right)$. So (ii) holds. So q_{l} is adjacent to y and y_{2}. Since there is no 4 -hole, q_{l} is not adjacent to x_{2}. Since $y_{2} \in R, q_{l}$ must be of type p2. But then $H \cup Q$ induces a $3 \mathrm{PC}\left(q_{1} v_{1} v_{2}, q_{l} y y_{2}\right)$.

So P does not exist, i.e., G has no $3 \mathrm{PC}(\triangle, \cdot)$ with a crosspath. Let $\Sigma=3 \mathrm{PC}\left(q_{1} v_{1} v_{2}, y\right)$ induced by $H_{1} \cup\left\{x, q_{1}, \ldots, q_{t}\right\}$. Suppose q_{l} has a neighbor in $H_{2} \backslash\left\{y, y_{2}\right\}$. If $N(y) \cap Q=q_{t}$, then $q_{t+1}, \ldots, q_{l}, H_{2}^{\prime}$ is a crosspath of Σ, a contradiction. If $N(y) \cap Q=\left\{q_{t}, q_{t+1}\right\}$, then $H_{1} \cup H_{2}^{\prime} \cup Q$ induces a $3 \mathrm{PC}\left(q_{1} v_{1} v_{2}, y q_{t} q_{t+1}\right)$. Let H^{\prime} be the hole induced by $H_{1}^{\prime} \cup H_{2}^{\prime} \cup Q$. If y has exactly two neighbors in Q, and they are not adjacent, then $H^{\prime} \cup y$ induces a $3 \mathrm{PC}(\cdot, \cdot)$. So $\left(H^{\prime}, y\right)$ must be a bug. But then x is a center-crosspath of $\left(H^{\prime}, y\right)$, a contradiction. Therefore, q_{l} does not have a neighbor in $H_{2} \backslash\left\{y, y_{2}\right\}$.

Let H^{\prime} be the hole induced by $H_{1}^{\prime} \cup H_{2}^{\prime} \cup Q$. If $\left(H^{\prime}, y\right)$ is a bug, then x is its centercrosspath, a contradiction. So y has exactly two neighbors in H^{\prime}. These two neighbors are adjacent, else $H^{\prime} \cup y$ induces a $3 \mathrm{PC}(\cdot, \cdot)$. In particular, $t=l$. Hence q_{l} is of type p 2 , and so $H \cup Q$ induces a $3 \mathrm{PC}\left(q_{1} v_{1} v_{2}, q_{l} y y_{2}\right)$.

Case 1.2: P does exist, and a node of P is adjacent to or coincident with a node of Q.
Let q_{i} be the node of Q with lowest index adjacent to a node of P, and let p_{j} (resp. $p_{j^{\prime}}$) be the node of P with highest (resp. lowest) index adjacent to q_{i}. If $i<t$, then by Lemma $2.2, q_{1}, \ldots, q_{i}, p_{j}, \ldots, p_{k}$ is a crosspath, contradicting Lemma 4.6. So $i \geq t$.

Suppose $t=1$. Then q_{1} is of type p2. Since $H_{1} \cup\left\{x, y, q_{1}, \ldots, q_{i}, p_{1}, \ldots p_{j^{\prime}}\right\}$ cannot induce a proper wheel with center y, q_{1} is the unique neighbor of y in q_{1}, \ldots, q_{i}. But then $H \cup\left\{q_{1}, \ldots, q_{i}, p_{j}, \ldots, p_{k}\right\}$ induces a $3 \mathrm{PC}\left(y y_{1} q_{1}, u_{1} u_{2} p_{k}\right)$. So $t>1$.
$H_{1}^{\prime} \cup\left\{x, y, q_{1}, \ldots, q_{i}, p_{1}, \ldots, p_{j^{\prime}}\right\}$ must induce a bug with center y, and hence y is not adjacent to H_{1}^{\prime} and $N(y) \cap\left\{q_{1}, \ldots, q_{i}\right\}=\left\{q_{t}, q_{t+1}\right\}$.

If q_{1} is of type p 1 , then $H_{1} \cup\left\{x, q_{1}, \ldots, q_{t}\right\}$ induces a $3 \mathrm{PC}\left(v_{1}, y\right)$. So q_{1} is of type p 2 . If $i<l$ then $\left(H \backslash y_{2}\right) \cup\left\{q_{1}, \ldots, q_{i}, p_{j}, \ldots, p_{k}\right\}$ contains a $3 \mathrm{PC}\left(q_{1} v_{1} v_{2}, y q_{t} q_{t+1}\right)$. So $i=l$. If q_{l} has a neighbor in $H_{2} \backslash\left\{y, y_{2}\right\}$, then $\left(H \backslash y_{2}\right) \cup Q$ contains a $3 \mathrm{PC}\left(q_{1} v_{1} v_{2}, y q_{t} q_{t+1}\right)$. So q_{l} does not have a neighbor in $H_{2} \backslash\left\{y, y_{2}\right\}$. Since there is no diamond, $t+1<l$. Also, if $j^{\prime}=k$ then p_{k} is not adjacent to y_{2}, else there is a diamond. But then $\left\{x, y, y_{2}, q_{t+1}, \ldots, q_{l}, p_{1}, \ldots p_{j^{\prime}}\right\}$ induces a $3 \operatorname{PC}\left(y, q_{l}\right)$.

Case 2: A node of $\left\{x_{1}, x_{2}\right\}$ has a neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$.
By Claim 1, y has no neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$. Let q_{i} be the node of $Q \backslash q_{1}$ with lowest
index adjacent to a node of $\left\{x_{1}, x_{2}\right\}$.
Suppose that q_{i} is adjacent to x_{2}. If q_{1} is of type p1, then $H \cup\left\{q_{1}, \ldots, q_{i}\right\}$ induces a $3 \mathrm{PC}\left(x_{2}, \cdot\right)$. So q_{1} is of type p 2 or b . But then x and q_{1}, \ldots, q_{i} are crossing appendices of H, and hence Lemma 4.5 is contradicted. Therefore, q_{i} is adjacent to x_{1}.

Let q_{j} be the node of Q with highest index adjacent to x_{1}. Let R be the chordless path from q_{l} to y in $H_{2} \cup q_{l}$. Let H^{\prime} be the hole induced by $H_{1} \cup R \cup\left\{q_{j}, \ldots, q_{l}\right\}$. Note that if q_{l} is adjacent to x, then q_{l} is of type b , and hence q_{l} is not adjacent to y. So if x has a neighbor in $\left\{q_{j}, \ldots, q_{l}\right\}$ then x has three pairwise nonadjacent neighbors in H^{\prime}. Hence $H^{\prime} \cup x$ induces either a $3 \mathrm{PC}(x, y)$ or a proper wheel.

Lemma 5.3 Let G be a (diamond, 4-hole)-free odd-signable graph that does not contain a proper wheel. Assume that G contains a $\Sigma=3 \mathrm{PC}(\triangle, \cdot)$ with a hat, and one of the following holds.
(i) Σ is not a bug.
(ii) G does not contain a bug with a center-crosspath.

Then G has a clique cutset.
Proof: Assume G contains a $\Sigma=3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$ with a hat $P=p_{1}, \ldots, p_{k}$, and (i) or (ii) holds. Let S be the set comprised of x_{1}, x_{2}, x_{3} and all type t nodes w.r.t. Σ. Since there is no diamond, S induces a clique. We now show that S is a clique cutset separating P from $\Sigma \backslash S$. Assume not, and let $Q=q_{1}, \ldots, q_{l}$ be a direct connection from P to $\Sigma \backslash S$ in $G \backslash S$. We may assume without loss of generality that P and Q are chosen so that $|P \cup Q|$ is minimized. Let p_{i} (resp. p_{j}) be the node of P with lowest (resp. highest) index adjacent to q_{1}.

Without loss of generality p_{1} is adjacent to x_{1} and p_{k} to x_{2}. By Lemma 4.1 and definition of S, x_{1}, x_{2}, x_{3} are the only nodes of Σ that may have a neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$ and no node of Q is adjacent to more than one node of $\left\{x_{1}, x_{2}, x_{3}\right\}$. If x_{3} has a neighbor in $Q \backslash q_{l}$, then either $\left(P \backslash p_{1}\right) \cup Q$ (if q_{1} has a neighbor in $P \backslash p_{1}$) or ($\left.P \backslash p_{k}\right) \cup Q$ (otherwise) contains a hat P^{\prime} of Σ and a path Q^{\prime} that is a direct connection from P^{\prime} to $\Sigma \backslash S$ in $G \backslash S$, contradicting the minimality of $|P \cup Q|$. So x_{3} has no neighbor in $Q \backslash q_{l}$, and similarly at most one of x_{1}, x_{2} may have a neighbor in $Q \backslash q_{l}$. Furthermore, if x_{1} (resp. x_{2}) has a neighbor in $Q \backslash q_{l}$, then $j=1$ (resp. $i=k$). By symmetry and Lemma 4.1, it is enough to consider the following cases.

Case 1: q_{l} is of type p w.r.t. Σ with neighbors in $P_{x_{3} y}$.
First suppose that x_{1} and x_{2} have no neighbors in $Q \backslash q_{l}$. Without loss of generality $x_{1} y$ is not an edge. If $i<k$ then $\left(\Sigma \backslash x_{3}\right) \cup Q \cup\left\{p_{1}, \ldots, p_{i}\right\}$ contains a $3 \operatorname{PC}\left(x_{1}, y\right)$. So $i=k$. If $x_{2} y$ is not an edge, then $P \cup Q \cup P_{x_{1} y} \cup\left(P_{x_{3} y} \backslash x_{3}\right) \cup x_{2}$ contains a $3 \mathrm{PC}\left(x_{1}, p_{k}\right)$. So $x_{2} y$ is an edge, i.e., Σ is a bug, and hence (ii) must hold. If $N\left(q_{l}\right) \cap \Sigma=y$ then $P \cup Q \cup P_{x_{3} y} \cup\left\{x_{1}, x_{2}\right\}$ induces an even wheel with center x_{2}. So q_{l} has a neighbor in $P_{x_{3} y} \backslash y$, and hence $Q^{\prime}=p_{k}, Q$ is a crossing of Σ. If Q^{\prime} is a crosspath of Σ, then it is a center-crosspath of a bug Σ, contradicting (ii). By definition of Q, q_{l} has a neighbor in $P_{x_{3} y} \backslash x_{3}$ and hence Q^{\prime} cannot be a hat of Σ. So Q^{\prime} must satisfy (iv) of Lemma 4.7, i.e., q_{l} is of type p2 w.r.t. Σ and it is adjacent to y. Let H be the hole induced by $P \cup Q \cup\left(P_{x_{3} y} \backslash y\right) \cup x_{1}$. Then $\left(H, x_{2}\right)$ is a bug and y is its center-crosspath, contradicting (ii).

So without loss of generality x_{2} has a neighbor in $Q \backslash q_{l}$, and hence $i=k$. But then $P \cup Q \cup P_{x_{3} y} \cup\left\{x_{1}, x_{2}\right\}$ contains a proper wheel with center x_{2}.

Case 2: q_{l} is of type p w.r.t. Σ with neighbors in $P_{x_{2} y}$, and it has a neighbor in $P_{x_{2} y} \backslash y$.
Then $x_{1} y$ is an edge, else $\left(\Sigma \backslash x_{2}\right) \cup P \cup Q$ contains a $3 \mathrm{PC}\left(x_{1}, y\right)$. So Σ is a bug, and hence (ii) holds.

First suppose that $i<k$. Then x_{2} has no neighbor in $Q \backslash q_{l}$. Let $Q^{\prime}=p_{1}, \ldots, p_{i}, Q$. Then Q^{\prime} is a crossing of Σ. If Q^{\prime} is a crosspath of Σ, then it is a center-crosspath of bug Σ, contradicting (ii). By definition of Q, Q^{\prime} cannot be a hat of Σ. So Q^{\prime} must satisfy (iv) of Lemma 4.7, i.e., q_{l} is of type p2 w.r.t. Σ and it is adjacent to y. Then $P_{x_{3} y} \cup Q \cup\left\{x_{2}, p_{j}, \ldots, p_{k}\right\}$ induces a hole H^{\prime}, and hence $\left(H^{\prime}, x_{1}\right)$ must be a bug. So $j>1$ and x_{1} has no neighbor in $Q \backslash q_{l}$. If $i=j$ then $P \cup Q \cup\left\{x_{1}, x_{2}, y\right\}$ induces a $3 \mathrm{PC}\left(x_{1}, p_{i}\right)$. If $p_{i} p_{j}$ is not an edge, then $P \cup Q \cup\left\{x_{1}, x_{2}, y\right\}$ contains a $3 \mathrm{PC}\left(x_{1}, q_{1}\right)$. So $p_{i} p_{j}$ is an edge. But then p_{1}, \ldots, p_{i} is a center-crosspath of $\left(H^{\prime}, x_{1}\right)$, contradicting (ii).

Therefore, $i=k$. So x_{1} has no neighbor in $Q \backslash q_{l}$. Let x_{2}^{\prime} be the neighbor of x_{2} in $P_{x_{2} y}$. If x_{2} has no neighbor in Q and q_{l} has a neighbor in $P_{x_{2} y} \backslash\left\{x_{2}, x_{2}^{\prime}\right\}$, then $P \cup Q \cup P_{x_{2} y} \cup x_{1}$ contains a $3 \mathrm{PC}\left(x_{1}, p_{k}\right)$. If $N\left(q_{l}\right) \cap P_{x_{2} y} \subseteq\left\{x_{2}, x_{2}^{\prime}\right\}$, then q_{l} is adjacent to x_{2}^{\prime} and hence $P \cup Q \cup P_{x_{2} y} \cup x_{1}$ induces a proper wheel with center x_{2}. Hence q_{l} has a neighbor in $P_{x_{2} y} \backslash\left\{x_{2}, x_{2}^{\prime}\right\}$. So x_{2} does have a neighbor in Q. Let R be the chordless path from q_{l} to y in $P_{x_{2} y} \cup q_{l}$. Then $P \cup Q \cup R \cup x_{1}$ induces a hole H^{\prime}. Hence $\left(H^{\prime}, x_{2}\right)$ must be a bug, i.e., $N\left(x_{2}\right) \cap Q=q_{1}$ and $x_{2}^{\prime} \notin R$. But then $Q \cup R \cup P_{x_{3} y} \cup\left\{x_{1}, x_{2}\right\}$ induces a bug with center x_{1}, and P is its center-crosspath, contradicting (ii).

Case 3: q_{l} is of type b w.r.t. Σ with no neighbor in $P_{x_{2} y}$.
If $P_{x_{1} y}$ or $P_{x_{3} y}$ is an edge, then Σ induces a bug and q_{l} is its center-crosspath, a contradiction. So $P_{x_{1} y}$ and $P_{x_{3} y}$ are not edges. Hence $\left(\Sigma \backslash\left\{x_{1}, x_{3}\right\}\right) \cup P \cup Q$ contains a $3 \mathrm{PC}\left(q_{l}, y\right)$.

Case 4: q_{l} is of type b w.r.t. Σ with no neighbor in $P_{x_{3} y}$.
Without loss of generality $N\left(q_{l}\right) \cap P_{x_{1} y}=y_{1}$. If $x_{1}=y_{1}$ then Σ induces a bug with center x_{1}, and q_{l} is its center-crosspath, a contradiction. So $x_{1} \neq y_{1}$. If $x_{1} y_{1}$ is not an edge, then $\left(\Sigma \backslash x_{2}\right) \cup P \cup Q$ contains a $3 \mathrm{PC}\left(q_{l}, y\right)$. So $x_{1} y_{1}$ is an edge. But then, since there is no 4-hole, q_{l} is not adjacent to x_{2}. Therefore, $\left(\Sigma \backslash x_{1}\right) \cup P \cup Q$ contains a $3 \mathrm{PC}\left(q_{l}, y\right)$.

Corollary 5.4 Let G be a (diamond, 4-hole)-free odd-signable graph. If G contains a $3 \mathrm{PC}(\triangle, \cdot)$ with a hat, then G has a clique cutset or a bisimplicial cutset.

Proof: Follows from Theorem 3.2, Theorem 5.2 and Lemma 5.3.
Lemma 5.5 Let G be a (diamond, 4-hole)-free odd-signable graph. If G contains a bug with an ear, then G has a clique cutset or a bisimplicial cutset.

Proof: Assume G has no clique cutset nor a bisimplicial cutset. By Theorem 3.2, Theorem 5.2 and Corollary 5.4, G does not contain a proper wheel, a bug with center-crosspath, nor a $3 \mathrm{PC}(\triangle, \cdot)$ with a hat.

Let (H, x) be a bug and $P=p_{1}, \ldots, p_{k}$ its ear. Assume (H, x) and P are chosen so that $|H \cup P|$ is minimized. Without loss of generality p_{k} is adjacent to y_{2}.

Let X be the set comprised of x_{1}, x_{2} and all type t nodes w.r.t. (H, x). Let Y be the set comprised of y and all type p2 nodes w.r.t. (H, x) adjacent to x and y. Since there is no diamond, both of the sets X and Y induce cliques. We now show that $S=X \cup Y \cup x$ is a cutset separating H_{1} from $H_{2} \cup P$.

Assume not and let $Q=q_{1}, \ldots, q_{l}$ be a direct connection from H_{1} to $H_{2} \cup P$ in $G \backslash S$. Note that x_{1}, x_{2}, x, y are the only nodes of $H \cup P \cup x$ that may have a neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$, and no node of $Q \backslash\left\{q_{1}, q_{l}\right\}$ is adjacent to more than one node of $\left\{x_{1}, x_{2}, x, y\right\}$ (by definition of Q and Lemma 4.1).

Let Σ^{\prime} be the $3 \mathrm{PC}\left(y y_{2} p_{k}, x\right)$ induced by $H_{2} \cup P \cup\{x, y\}$. Now, Σ^{\prime} is a bug with center y.
Claim 1: q_{1} and q_{l} are not of type b w.r.t. (H, x).
Proof of Claim 1: Assume q_{1} is of type b w.r.t. (H, x). Since q_{1} cannot be a center-crosspath of $(H, x), q_{1}$ is not adjacent to x.

First suppose that $N\left(q_{1}\right) \cap H_{1}=y_{1}$. If q_{1} has a neighbor in $P \backslash p_{k}$, then $\left(H_{2} \backslash y_{2}\right) \cup(P \backslash$ $\left.p_{k}\right) \cup\left\{x, y_{1}, q_{1}\right\}$ contains a $3 \mathrm{PC}\left(x, q_{1}\right)$. Node q_{1} cannot be adjacent to p_{k}, else $\left\{y, y_{1}, q_{1}, p_{k}\right\}$ induces a 4-hole. So q_{1} has no neighbor in P. But then $\left.\left(H \backslash x_{2}\right)\right) \cup P \cup\left\{q_{1}, x\right\}$ contains an even wheel with center y.

So $N\left(q_{1}\right) \cap H_{2}=y_{2}$. Suppose q_{1} has a neighbor in P. Since there is no diamond, q_{1} is not adjacent to p_{k}. But then $\left(H_{1} \backslash y_{1}\right) \cup\left(P \backslash p_{k}\right) \cup\left\{x, q_{1}, y_{2}\right\}$ contains a $3 \mathrm{PC}\left(q_{1}, x\right)$. So q_{1} has no neighbor in P. Let R be the chordless path in $\left(H_{1} \backslash x_{1}\right) \cup q_{1}$ from q_{1} to y_{1}. Then R is a hat of Σ^{\prime}, a contradiction.

So q_{1} cannot be of type b, and by analogous argument neither can q_{l}. This completes the proof of Claim 1.

Claim 2: q_{1} and q_{l} are not of type pb w.r.t. (H, x).
Proof of Claim 2: Suppose q_{1} is of type pb w.r.t. (H, x). Note that $N\left(q_{1}\right) \cap H \subseteq H_{1}$. If q_{1} has a neighbor in $P \backslash p_{k}$, then $H_{1} \cup\left(P \backslash p_{k}\right) \cup\left\{x, q_{1}\right\}$ contains a $3 \mathrm{PC}\left(x, q_{1}\right)$. Suppose q_{1} is adjacent to p_{k}. Then, since there is no diamond, q_{1} is not adjacent to y, and hence $H_{1} \cup\left\{x, q_{1}, p_{k}\right\}$ contains a $3 \mathrm{PC}\left(q_{1}, y\right)$. So q_{1} has no neighbor in P. Let H^{\prime} be the hole of $H \cup q_{1}$ that contains x_{1}, x_{2}, y and q_{1}. Then $\left(H^{\prime}, x\right)$ is a bug and P its ear, contradicting the minimality of $|H \cup P|$.

Now suppose that q_{l} is of type pb . Let H^{\prime} be the hole of $H \cup q_{l}$ that contains x_{1}, x_{2}, y and q_{l}. Then $\left(H^{\prime}, x\right)$ is a bug. If q_{l} has a neighbor in P, then by Lemma 4.1 applied to Σ^{\prime} and $q_{l}, N\left(q_{l}\right) \cap P=p_{k}$ and q_{l} is adjacent to y. But then P is an ear of $\left(H^{\prime}, x\right)$, contradicting the minimality of $|H \cup P|$. Hence q_{l} has no neighbor in P. Suppose q_{l} is adjacent to y. Then since there is no diamond and q_{l} is not adjacent to p_{k}, q_{l} is not adjacent to y_{2}. Then q_{l} is a center-crosspath of bug Σ^{\prime}, a contradiction. So q_{l} is not adjacent to y. But then P is an ear of $\left(H^{\prime}, x\right)$, contradicting the minimality of $|H \cup P|$. This completes the proof of Claim 2.

By Lemma 4.1, Claim 1, Claim 2 and the definition of S, q_{1} is of type p1 or p2 w.r.t. (H, x) with neighbors in H_{1}, and if q_{l} has a neighbor in H, then q_{l} is of type p 1 or p 2 w.r.t. (H, x) with neighbors in H_{2}.

Claim 3: At most one of the sets $\left\{x_{1}, x_{2}\right\}$ and $\{x, y\}$ may have a neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$. Furthermore, at most one of the nodes x_{1}, x_{2} may have a neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$.

Proof of Claim 3: First suppose that both a node of $\left\{x_{1}, x_{2}\right\}$ and a node of $\{x, y\}$ have a neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$. Then there is a subpath Q^{\prime} of $Q \backslash\left\{q_{1}, q_{l}\right\}$ such that one endnode of Q^{\prime} is adjacent to a node of $\left\{x_{1}, x_{2}\right\}$, the other endnode of Q^{\prime} is adjacent to a node of $\{x, y\}$, and no intermediate node of Q^{\prime} has a neighbor in $H \cup x$. If x is adjacent to an endnode of Q^{\prime}, then Q^{\prime} is a hat of (H, x), a contradiction. So y is adjacent to an endnode of Q^{\prime}. But then $H \cup Q^{\prime}$ induces a $3 \mathrm{PC}(y, \cdot)$.

Now suppose that both x_{1} and x_{2} have a neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$. Then x and y do not. Hence there is a subpath Q^{\prime} of $Q \backslash\left\{q_{1}, q_{l}\right\}$ whose one endnode is adjacent to x_{1}, the other is adjacent to x_{2}, and no intermediate node of Q^{\prime} has a neighbor in $H \cup x$. But then Q^{\prime} is a hat of (H, x), a contradiction. This completes the proof of Claim 3.

Claim 4: x has no neighbor in Q.
Proof of Claim 4: Assume it does. By Claim 3, x_{1} and x_{2} have no neighbors in $Q \backslash\left\{q_{1}, q_{l}\right\}$. Let H^{\prime} be the hole of $(H \backslash y) \cup P \cup Q$ that contains x_{1}, x_{2} and Q. Then $\left(H^{\prime}, x\right)$ must be a bug, and hence x has a unique neighbor q_{t} in Q. Furthermore, $N\left(q_{l}\right) \cap\left(P \cup H_{2}\right) \neq p_{1}$. Since there is no 4-hole, $N\left(q_{l}\right) \cap\left(P \cup H_{2}\right) \neq\left\{p_{1}, x_{2}\right\}$, i.e., q_{l} has a neighbor in $\left(H_{2} \backslash x_{2}\right) \cup\left(P \backslash p_{1}\right)$.

Suppose y has a neighbor in q_{1}, \ldots, q_{t}. Then $\left(H \backslash\left\{x_{1}, x_{2}\right\}\right) \cup\left(P \backslash p_{1}\right) \cup Q \cup x$ contains a $3 \operatorname{PC}\left(q_{t}, y\right)$. So y has no neighbor in q_{1}, \ldots, q_{t}. If q_{1} is of type p 1 , then $H_{1} \cup\left\{x, q_{1}, \ldots, q_{t}\right\}$ induces a $3 \mathrm{PC}(x, \cdot)$. So q_{1} is of type p 2 . But then q_{1}, \ldots, q_{t} is a center-crosspath of (H, x), a contradiction. This completes the proof of Claim 4.

Claim 5: x_{1} has no neighbor in $Q \backslash q_{1}$, and x_{2} has no neighbor in $Q \backslash q_{l}$.
Proof of Claim 5: Suppose x_{1} has a neighbor in $Q \backslash q_{1}$. Let q_{i} be the node of Q with highest index adjacent to x_{1}. By Claim 4, x has no neighbor in Q. By Claim 3, y has no neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$. If q_{l} is adjacent to y or q_{l} has a neighbor in $P \backslash p_{1}$, then $H_{1} \cup\left(P \backslash p_{1}\right) \cup\left\{x, q_{i}, \ldots, q_{l}\right\}$ contains a $3 \mathrm{PC}\left(x_{1}, y\right)$. So y has no neighbor in $Q \backslash q_{1}$.

If $N\left(q_{l}\right) \cap(H \cup P)=p_{1}$, then $q_{i}, \ldots, q_{l}, p_{1}$ is a hat of (H, x), a contradiction. So q_{l} has a neighbor in H_{2}. If $N\left(q_{l}\right) \cap H_{2}=x_{2}$, then q_{i}, \ldots, q_{l} is a hat of (H, x), a contradiction. So q_{l} has a neighbor in $H_{2} \backslash x_{2}$. If q_{l} is of type p1, then $H \cup\left\{q_{i}, \ldots, q_{l}\right\}$ induces a $3 \mathrm{PC}\left(x_{1}, \cdot\right)$. So q_{l} is of type p 2 , and hence crossing appendices q_{i}, \ldots, q_{l} and x of H contradict Lemma 4.5.

So x_{1} has no neighbor in $Q \backslash q_{1}$. By analogous argument x_{2} has no neighbor in $Q \backslash q_{l}$. This completes the proof of Claim 5.

By Claim 4, x has no neighbor in Q. By Claim 5, x_{1} has no neighbor in $Q \backslash q_{1}$ and x_{2} has no neighbor in $Q \backslash q_{l}$. Suppose $N\left(q_{l}\right) \cap H=x_{2}$. If y has a neighbor in Q, then $H_{2} \cup Q \cup x$ contains a $3 \mathrm{PC}\left(x_{2}, y\right)$. So y has no neighbor in Q. If q_{1} is of type p1, then $H \cup Q$ induces a $3 \mathrm{PC}\left(x_{2}, \cdot\right)$. So q_{1} is of type p2. But then crossing appendices Q and x of H contradict Lemma 4.5. So $N\left(q_{l}\right) \cap H \neq x_{2}$.

Suppose that $N\left(q_{l}\right) \cap P=p_{1}$. Then $\left(H_{1} \backslash x_{1}\right) \cup P \cup Q \cup x$ contains a $3 \operatorname{PC}\left(p_{1}, y\right)$. So $N\left(q_{l}\right) \cap P \neq p_{1}$.

If q_{l} is adjacent to both p_{1} and x_{2}, then there is a 4-hole. Therefore, q_{l} has a neighbor in $\left(H_{2} \backslash x_{2}\right) \cup\left(P \backslash p_{1}\right)$.

Case 1: y has a neighbor in Q.
Let q_{i} be the node of Q with highest index adjacent to y.
Suppose q_{l} does not have a neighbor in H_{2}. Since x has no neighbor in Q and q_{i}, \ldots, q_{l} cannot be a center-crosspath or a hat of bug Σ^{\prime}, either q_{l} has a unique neighbor in P and that neighbor is in $P \backslash p_{k}$, or q_{l} has two nonadjacent neighbors in P. In both cases $P \cup$ $\left\{x, y, q_{i}, \ldots, q_{l}\right\}$ contains a $3 \mathrm{PC}(y, \cdot)$. So q_{l} has a neighbor in H_{2}.

Suppose q_{l} is adjacent to y. First assume that q_{l} is of type p1 w.r.t. (H, x). Then by Lemma 4.1 applied to Σ^{\prime} and q_{l}, node q_{l} is of type b w.r.t. Σ^{\prime}, and hence it is a center-crosspath of bug Σ^{\prime}, a contradiction. So q_{l} is of type p2 w.r.t. (H, x).

Since there is no diamond, q_{l} is adjacent to p_{k}. If q_{l} has a neighbor in $P \backslash p_{k}$, then (H, x) and a subpath of $P \backslash p_{k}$ contradict the minimality of $|H \cup P|$. So $N\left(q_{l}\right) \cap(H \cup P)=\left\{y, y_{2}, p_{k}\right\}$. But then $(H \backslash y) \cup P \cup Q \cup x$ contains a $3 \mathrm{PC}\left(p_{k} y_{2} q_{l}, x x_{1} x_{2}\right)$. So q_{l} is not adjacent to y.

Suppose q_{l} has a neighbor in P. By Lemma 4.1 applied to Σ^{\prime}, q_{l} is of type b w.r.t. Σ^{\prime}. But then either $N\left(q_{l}\right) \cap P=p_{1}$ or $N\left(q_{l}\right) \cap H=x_{2}$. We have already established that none of these two possibilities can happen. Therefore q_{l} has no neighbor in P. But then $\left(H \backslash x_{2}\right) \cup P \cup Q \cup x$ contains a proper wheel with center y.

Case 2: y has no neighbor in Q.
Suppose q_{l} has a neighbor in H. Then Q is an appendix of H, else $H \cup Q$ induces a $3 \mathrm{PC}(\cdot, \cdot)$ or a $3 \mathrm{PC}(\triangle, \triangle)$. By Lemma $4.5, Q$ is in fact a crosspath of (H, x). If Q is a y_{1}-crosspath of (H, x), then $\left(H \backslash x_{2}\right) \cup P \cup Q \cup x$ contains either a proper wheel with center y (if q_{l} has no neighbor in $P \backslash p_{k}$) or a $3 \mathrm{PC}\left(y_{1}, x\right)$ (otherwise). So Q is a y_{2}-crosspath of ($\left.H, x\right)$. By Lemma 4.1 applied to Σ^{\prime} and q_{l}, node q_{l} has no neighbor in P. But then a subpath of $\left(H_{1} \backslash x_{1}\right) \cup Q$ is a hat of Σ^{\prime}, a contradiction.

So q_{l} has no neighbor in H. Suppose $N\left(q_{l}\right) \cap P=p_{k}$. Then the chordless path from q_{l} to y_{1} in $\left(H \backslash x_{1}\right) \cup Q$ is a hat of Σ^{\prime}, a contradiction. So q_{l} has a neighbor in $P \backslash p_{k}$. If q_{1} is of type p1 w.r.t. (H, x), then $H_{1} \cup\left(P \backslash p_{k}\right) \cup Q \cup x$ contains a $3 \mathrm{PC}(x, \cdot)$. So q_{1} is of type p2 w.r.t. (H, x). But then the chordless path from p_{1} to q_{1} in $\left(P \backslash p_{k}\right) \cup Q$ is a center-crosspath of (H, x), a contradiction.

Lemma 5.6 Let G be a (diamond, 4-hole)-free odd-signable graph that does not have a clique cutset nor a bisimplicial cutset. If P is a crossing of a $\Sigma=3 \mathrm{PC}(\triangle, \cdot)$ of G, then P is a crosspath of Σ.

Proof: Assume G does not contain a clique cutset nor a bisimplicial cutset. By Theorem 3.2 G does not contain a proper wheel. Let $P=p_{1}, \ldots, p_{k}$ be a crossing of a $\Sigma=3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$ of G. Suppose that P is not a crosspath of Σ. Then $k>1$ and (ii), (iii) or (iv) of Lemma 4.7 holds. P cannot be a hat of Σ by Lemma 5.4.

Suppose that (iii) of Lemma 4.7 holds. Without loss of generality p_{1} is of type pb w.r.t. Σ, with neighbors in $P_{x_{1} y}$ and p_{k} is of type p2 w.r.t. Σ, with neighbors in $P_{x_{2} y}$. Let H be the hole induced by $P_{x_{1} y} \cup P_{x_{2} y}$. Then $\left(H, p_{1}\right)$ is a bug, and p_{2}, \ldots, p_{k} is either a center-crosspath or an ear of $\left(H, p_{1}\right)$, contradicting Theorem 5.2 or Lemma 5.5.

Suppose that (iv) of Lemma 4.7 holds. Without loss of generality p_{1} is of type p1 w.r.t. Σ, adjacent to y_{1}, and p_{k} is of type p2 w.r.t. Σ, adjacent to y and y_{2}. If $y_{1}=x_{1}$ then Σ is a bug and P its ear, contradicting Lemma 5.5. So $y_{1} \neq x_{1}$. Let H^{\prime} be the hole induced by $\left(\left(P_{x_{1} y} \cup P_{x_{2} y}\right) \backslash y\right) \cup P$. Then $\left(H^{\prime}, y\right)$ is a bug and $P_{x_{3} y}$ is its center-crosspath, contradicting Theorem 5.2.

6 Attachments to a $3 \mathrm{PC}(\triangle, \cdot)$

We now examine how certain types of nodes adjacent to a $\Sigma=3 \mathrm{PC}(\triangle, \cdot)$ attach to Σ in graphs that have no clique cutsets nor bisimplicial cutsets.

In this section we consider a (diamond, 4-hole)-free odd-signable graph G. For a $3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$ of G we use the notation $P_{x_{1} y}, P_{x_{2} y}, P_{x_{3} y}, y_{1}, y_{2}, y_{3}$ as defined in Section 4.

Definition 6.1 Let u be a type t3 node w.r.t. a $\Sigma=3 \operatorname{PC}\left(x_{1} x_{2} x_{3}, y\right)$ of G. Let X be the set comprised of x_{1}, x_{2}, x_{3} and all type t nodes w.r.t. Σ. Note that since G is diamond-free, set
X induces a clique. Suppose that $X \backslash\{u\}$ is not a clique cutset of G, and let $P=p_{1}, \ldots, p_{k}$ be a direct connection from u to Σ in $G \backslash(X \backslash\{u\})$. Path P is called an attachment of u to Σ. If such a path exists, we say that u is attached to Σ.

Lemma 6.2 Let G be a (diamond, 4-hole)-free odd-signable graph that does not have a clique cutset nor a bisimplicial cutset. Let u be a type t3 node w.r.t. a $\Sigma=3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$. Then u is attached to Σ. Let $P=p_{1}, \ldots, p_{k}$ be an attachment of u to Σ. Then no node of Σ has a neighbor in $P \backslash p_{k}$ and p_{k} is of type p1 w.r.t. Σ.

Proof: By Theorem 3.2, G does not contain a proper wheel. Since G has no clique cutset, there exists a direct connection $P=p_{1}, \ldots, p_{k}$ from u to Σ in $G \backslash(X \backslash u)$, i.e., u is attached. By definition of P and Lemma 4.1, no node of P has more than one neighbor in $\left\{x_{1}, x_{2}, x_{3}\right\}$. The only nodes of Σ that may have a neighbor in $P \backslash p_{k}$ are x_{1}, x_{2}, x_{3}. If at least two nodes of $\left\{x_{1}, x_{2}, x_{3}\right\}$ have a neighbor in $P \backslash p_{k}$, then a subpath of $P \backslash p_{k}$ is a hat of Σ, contradicting Lemma 5.6. So without loss of generality x_{2} and x_{3} do not have neighbors in $P \backslash p_{k}$. If x_{1} has a neighbor in $P \backslash p_{k}$, let p_{i} be such a neighbor with highest index. By Lemma 4.1 and definition of P, p_{k} is of type p or b w.r.t. Σ.

Case 1: p_{k} is of type b w.r.t. Σ.
Let $l \in\{1,2,3\}$ such that $N\left(p_{k}\right) \cap P_{x_{l} y}=y_{l}$. If $x_{l}=y_{l}$ then Σ is a bug and p_{k} is its center-crosspath, contradicting Theorem 5.2. So $x_{l} \neq y_{l}$.

Let H be the hole of Σ such that $\left(H, p_{k}\right)$ is a bug. By Theorem 5.2, path $u, p_{1}, \ldots, p_{k-1}$ cannot be a center-crosspath of $\left(H, p_{k}\right)$, so H must contain $P_{x_{1} y}$ and x_{1} must have a neighbor in $P \backslash p_{k}$. In particular $k>1$. If $i<k-1$ then p_{i}, \ldots, p_{k-1} and (H, p_{k}) contradict Lemma 5.6. So $i=k-1$, i.e., x_{1} is adjacent to p_{k-1}. Since $x_{l} \neq y_{l}$, Lemma 4.1 applied to (H, p_{k}) and p_{k-1} is contradicted.

Case 2: p_{k} is of type pb w.r.t. Σ.
If the neighbors of p_{k} in Σ are contained in $P_{x_{2} y} \cup P_{x_{3} y}$, then let H be the hole induced by $P_{x_{2} y} \cup P_{x_{3} y}$. Otherwise, let H be the hole induced by $P_{x_{1} y} \cup P_{x_{2} y}$. Note that $\left(H, p_{k}\right)$ is a bug. By Theorem 5.2, path $u, p_{1}, \ldots, p_{k-1}$ cannot be a center-crosspath of (H, p_{k}) and by Lemma 5.5 it cannot be an ear of $\left(H, p_{k}\right)$, so H must contain $P_{x_{1} y}$ (i.e., p_{k} has neighbors in $P_{x_{1} y}$) and x_{1} must have a neighbor in $P \backslash p_{k}$. In particular $k>1$. If x_{1} is adjacent to p_{k}, then $H \cup P \cup u$ contains a proper wheel with center x_{1}. So x_{1} is not adjacent to p_{k}. If $i=k-1$ then p_{i} contradicts Lemma 4.1. So $i<k-1$. But then p_{i}, \ldots, p_{k-1} and (H, p_{k}) contradict Lemma 5.6.

Case 3: p_{k} is of type p2 w.r.t. Σ.
The neighbors of p_{k} in Σ must be contained in $P_{x_{1} y}$, else $P_{x_{2} y} \cup P_{x_{3} y} \cup P \cup u$ induces a $3 \mathrm{PC}(\triangle, \triangle)$ or an even wheel. Node p_{k} cannot be adjacent to x_{1}, since otherwise $P_{x_{1} y} \cup P_{x_{2} y} \cup$ $P \cup u$ induces a proper wheel with center x_{1}. If x_{1} does not have a neighbor in $P \backslash p_{k}$, then $P_{x_{1} y} \cup P_{x_{2} y} \cup P \cup u$ induces a $3 \mathrm{PC}(\triangle, \triangle)$. So x_{1} has a neighbor in $P \backslash p_{k}$. Since G does not contain a proper wheel, $P_{x_{1} y} \cup P_{x_{2} y} \cup P \cup u$ induces a bug (with center x_{1}) together with a center-crosspath, contradicting Theorem 5.2.

Case 4: p_{k} is of type p1 w.r.t. Σ.
Suppose x_{1} has a neighbor in $P \backslash p_{k}$. Let a be the neighbor of p_{k} in Σ. If $a \notin P_{x_{1} y}$ then p_{i}, \ldots, p_{k} contradicts Lemma 5.6. So $a \in P_{x_{1} y}$. If $a x_{1}$ is not an edge, then $P_{x_{1} y} \cup P_{x_{2} y} \cup$
$\left\{p_{i}, \ldots, p_{k}\right\}$ induces a $3 \mathrm{PC}\left(x_{1}, a\right)$. So $a x_{1}$ is an edge. But then $P_{x_{1} y} \cup P_{x_{2} y} \cup P \cup u$ induces a proper wheel with center x_{1}. Therefore x_{1} does not have a neighbor in $P \backslash p_{k}$, which proves the lemma.

Figure 16: An attachment of a type t 3 node u w.r.t. a $3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$.

Lemma 6.3 Let G be a (diamond, 4-hole)-free odd-signable graph that does not have a clique cutset nor a bisimplicial cutset. Let u be a type t3 node w.r.t. a $\Sigma=3 \operatorname{PC}\left(x_{1} x_{2} x_{3}, y\right)$. Then all attachments of u to Σ end in the same path of Σ.

Proof: Let $P=p_{1}, \ldots, p_{k}$ and $Q=q_{1}, \ldots, q_{l}$ be two attachments of u to Σ. By Lemma 6.2, p_{k} and q_{l} are both of type p1 w.r.t. Σ, and no node of Σ has a neighbor in $\left(P \backslash p_{k}\right) \cup\left(Q \backslash q_{l}\right)$. Let p (resp. q) be the neighbor of p_{k} (resp. q_{l}) in Σ. Suppose that $p \in P_{x_{1} y} \backslash y$ and $q \in P_{x_{2} y} \backslash y$. Note that by definition of attachment, $p \neq x_{1}$ and $q \neq x_{2}$. If a node of P is adjacent to or coincident with a node of Q, then there is a chordless path in $P \cup Q$ from p_{k} to q_{l}, that contradicts Lemma 5.6. So no node of P is adjacent to or coincident with a node of Q. But then $\left(\Sigma \backslash\left\{x_{1}, x_{2}\right\}\right) \cup P \cup Q \cup u$ induces a $3 \mathrm{PC}(u, y)$.

Definition 6.4 Let u be a type t3b node w.r.t. a $\Sigma=3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$, and suppose that u has a neighbor in $P_{x_{i} y} \backslash x_{i}$. Let Σ^{\prime} be the $3 \mathrm{PC}(\triangle, \cdot)$ contained in $\left(\Sigma \backslash\left\{x_{i}\right\}\right) \cup\{u\}$. We say that Σ^{\prime} is obtained by substituting u into Σ.

Definition 6.5 Let u be a type t3 node w.r.t. a $\Sigma=3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$, and let $P=p_{1}, \ldots, p_{k}$ be an attachment of u to Σ. By Lemma 6.2, p_{k} is of type p1 w.r.t. Σ. If the neighbor of p_{k} in Σ is in path $P_{x_{i} y}$, then we say that attachment P ends in $P_{x_{i} y}$. Suppose that P ends in $P_{x_{i} y}$. Let Σ^{\prime} be the $3 \operatorname{PC}(\triangle, \cdot)$ contained in $\left(\Sigma \backslash\left\{x_{i}\right\}\right) \cup P \cup\{u\}$. We say that Σ^{\prime} is obtained by substituting u and its attachment P into Σ.

Lemma 6.6 Let G be a (diamond, 4-hole)-free odd-signable graph that does not have a clique cutset nor a bisimplicial cutset. Let u be a type t node w.r.t. a $\Sigma=3 \operatorname{PC}\left(x_{1} x_{2} x_{3}, y\right)$. If u is of type t3b, then assume that u is not adjacent to y, and let Σ^{\prime} be the $3 \mathrm{PC}(\triangle, \cdot)$ obtained by substituting u into Σ. If u is of type $t 3$, then let $P=p_{1}, \ldots, p_{k}$ be an attachment of u to Σ such that p_{k} is not adjacent to y, and let Σ^{\prime} be the $3 \mathrm{PC}(\triangle, \cdot)$ obtained by substituting u and P into Σ. Then Q is a crosspath of Σ if and only if Q is a crosspath of Σ^{\prime}.

Proof: By Theorem 3.2, G does not contain a proper wheel. Without loss of generality assume that if u is of type t3b (resp. t3) w.r.t. Σ then u (resp. p_{k}) has a neighbor $p \in P_{x_{1} y} \backslash\left\{x_{1}, y\right\}$. Let $Q=q_{1}, \ldots, q_{l}$ be a crosspath of Σ. Note that if Q is a y_{t}-crosspath, then by Theorem $5.2, x_{t} \neq y_{t}$. We now show that Q is a crosspath of Σ^{\prime}.

Case 1: u is of type t3b w.r.t. Σ.

First suppose that Q is a y_{2}-crosspath of Σ that ends in $P_{x_{3} y}$. If u does not have a neighbor in Q, then clearly Q is a crosspath of Σ^{\prime}. So assume that u does have a neighbor in Q, and let q_{i} be such a neighbor with lowest index. Then $\left(P_{x_{1} y} \backslash x_{1}\right) \cup P_{x_{2} y} \cup\left\{u, q_{1}, \ldots, q_{i}\right\}$ contains a $3 \mathrm{PC}\left(u, y_{2}\right)$.

Next suppose that Q is a y_{1}-crosspath that ends in $P_{x_{3} y}$. If u does not have a neighbor in Q, then clearly Q is a crosspath of Σ^{\prime}. So assume that u does have a neighbor in Q, and let q_{i} be such a neighbor with highest index. Then $P_{x_{2} y} \cup P_{x_{3} y} \cup\left\{u, q_{i}, \ldots, q_{l}\right\}$ contains a $3 \mathrm{PC}(\triangle, \triangle)$ or an even wheel with center x_{3}.

Finally, by symmetry, we may assume that Q is a y_{2}-crosspath that ends in $P_{x_{1} y}$. If u has a neighbor in $Q \backslash q_{l}$, then $\left(\Sigma \backslash\left\{x_{1}, x_{2}\right\}\right) \cup\left(Q \backslash q_{l}\right) \cup u$ contains a $3 \mathrm{PC}(u, y)$. So u does not have a neighbor in $Q \backslash q_{l}$. Suppose that u is adjacent to q_{l}. Let H be the hole induced by $P_{x_{1} y} \cup P_{x_{3} y}$. Then (H, u) is a bug, and by Lemma 4.1, q_{l} is of type b w.r.t. (H, u), contradicting Theorem 5.2. So u does not have a neighbor in Q. If the neighbors of q_{l} in $P_{x_{1} y}$ are contained in the $p y$-subpath of $P_{x_{1} y}$, then clearly Q is a crosspath of Σ^{\prime}. So assume that the neighbors of q_{l} in $P_{x_{1} y}$ are contained in the $x_{1} p$-subpath of $P_{x_{1} y}$, call it P^{\prime}. Then $\left(P^{\prime} \backslash x_{1}\right) \cup Q$ contains a path R from q_{1} to p that contradicts Lemma 5.6 applied to Σ^{\prime}.

Case 2: u is of type t 3 w.r.t. Σ.
$P=p_{1}, \ldots, p_{k}$ is an attachment of u to Σ such that p_{k} is not adjacent to y. By Lemma 6.2, p_{k} is of type p1 w.r.t. Σ, and no node of Σ has a neighbor in $P \backslash p_{k}$. Then $\Sigma^{\prime}=3 \mathrm{PC}\left(u x_{2} x_{3}, y\right)$. Let r_{1} and r_{2} be the adjacent neighbors of q_{l} in Σ. Suppose that u has a neighbor in $Q \backslash q_{l}$, and let q_{i} be such a neighbor with highest index. Then q_{i}, \ldots, q_{l} is an attachment of u to Σ that contradicts Lemma 6.2. So u does not have a neighbor in $Q \backslash q_{l}$. Now suppose that u is adjacent to q_{l}. If Q is a y_{1}-crosspath of Σ, then $P_{x_{2} y} \cup P_{x_{3} y} \cup Q \cup u$ induces a $3 \mathrm{PC}(\triangle, \Delta)$ or an even wheel. Analogous contradiction is obtained if Q is a y_{2}-crosspath or a y_{3}-crosspath of Σ. So u does not have a neighbor in Q.

First suppose that Q is a y_{1}-crosspath of Σ. If Q is not a y_{1}-crosspath of Σ^{\prime}, then some node of Q is adjacent to or coincident with a node of P. Let q_{i} be the node of Q with highest index adjacent to a node of $P \cup u$. If $i<l$ then path q_{i}, \ldots, q_{l} contradicts Lemma 5.6 applied to Σ^{\prime}. So $i=l$, and hence q_{l} and Σ^{\prime} contradict Lemma 4.1.

Now assume without loss of generality that Q is a y_{2}-crosspath of Σ. Suppose that a node of P is adjacent to or coincident with a node of Q. Let q_{i} be the node of Q with lowest index adjacent to a node of P, and let p_{j} be the node of P with highest index adjacent to q_{i}. If $i \neq l$ then path $q_{1}, \ldots, q_{i}, p_{j}, \ldots, p_{k}$ contradicts Lemma 5.6 applied to Σ. So $i=l$. But then, by Lemma 4.1 applied to Σ^{\prime} and q_{l}, r_{1} and r_{2} are contained in $P_{x_{1} y}$. Hence by Lemma 5.6 and Lemma 4.1, Q is a y_{2}-crosspath of Σ^{\prime}. So we may assume that no node of P is adjacent to or coincident with a node of Q. If q_{l} has a neighbor in Σ^{\prime}, then by Lemma 5.6 and Lemma 4.1, Q is a y_{2}-crosspath of Σ^{\prime}. Otherwise, $r_{1}, r_{2} \in \Sigma \backslash \Sigma^{\prime}$. But then Q together with an appropriate subpath of $P_{x_{1} y} \backslash x_{1}$ contradicts Lemma 5.6 applied to Σ^{\prime}.

Therefore, if Q is a crosspath of Σ, then it is a crosspath of Σ^{\prime}. The converse holds by symmetry, since x_{1} is either of type t3b w.r.t. Σ^{\prime} or of type t3 w.r.t. Σ^{\prime} attached to Σ^{\prime} by path $\Sigma \backslash \Sigma^{\prime}$.

Lemma 6.7 Let G be a (diamond, 4-hole)-free odd-signable graph. If G contains a bug ($H, x)$ with a type p1 or p2 node that is adjacent to x, then G has a clique cutset or a bisimplicial cutset.

Proof: Let (H, x) be a bug. Let x_{1}, x_{2}, y be the neighbors of x in H such that $x_{1} x_{2}$ is an edge. Let H_{1} (resp. H_{2}) be the sector of (H, x) with endnodes x_{1} (resp. x_{2}) and y.

Let U be the set of type p 1 and p 2 nodes w.r.t. (H, x) that are adjacent to x, and assume that $U \neq \varnothing$. Assume G does not have a clique cutset nor a bisimplicial cutset. Since $\{x, y\}$ cannot be a clique cutset separating U from H, there exists a path $P=p_{1}, \ldots, p_{k}$ in $G \backslash\{x, y\}$ such that $p_{1} \in U, p_{k}$ has a neighbor in $H \backslash\{x, y\}$, and no node of $P \backslash\left\{p_{1}, p_{k}\right\}$ has a neighbor in $(H \cup x) \backslash y$. We may assume without loss of generality that bug (H, x) and path P are chosen so that $|P|$ is minimized. By Theorem 3.2, G does not contain a proper wheel. So by Lemma 4.1 we need to consider the following cases.

Case 1: p_{k} is of type b w.r.t. (H, x).
By Theorem 5.2, p_{k} cannot be adjacent to x. Without loss of generality p_{k} is adjacent to y_{1} (and hence has two neighbors in H_{2}). Let H^{\prime} be the hole induced by $P \cup\left(H_{1} \backslash y\right) \cup x$. Since $H^{\prime} \cup y$ cannot induce a $3 \mathrm{PC}\left(x, y_{1}\right)$, y must have a neighbor in P. So $\left(H^{\prime}, y\right)$ is a wheel, and hence it is a bug. In particular, $N(y) \cap P=p_{1}$. But then $H_{2} \cup P$ induces a $3 \mathrm{PC}\left(x y p_{1}, \triangle\right)$.

Case 2: p_{k} is of type p w.r.t. (H, x).
By definition of P, p_{k} is not adjacent to x. So without loss of generality the neighbors of p_{k} in $H \cup x$ are contained in H_{1}. Note that p_{k} has a neighbor in $H_{1} \backslash y$. If y has no neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$, then by Lemma 5.6, P is a center-crosspath of (H, x), contradicting Theorem 5.2. So y has a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$. Let H^{\prime} be the hole contained in $\left(H_{1} \backslash y\right) \cup P \cup x$ that contains x_{1}. Since $H^{\prime} \cup y$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot),\left(H^{\prime}, y\right)$ is a wheel, and hence it is a bug. But then H_{2} is either a center-crosspath of $\left(H^{\prime}, y\right)$ (contradicting Theorem 5.2) or an ear of (H^{\prime}, y) (contradicting Lemma 5.5).

Case 3: p_{k} is of type t3b w.r.t. (H, x).
Then without loss of generality p_{k} has a neighbor in $H_{1} \backslash x_{1}$. Let H^{\prime} be the hole contained in $H \cup p_{k}$ that contains p_{k} and H_{2}. Then $\left(H^{\prime}, x\right)$ is a bug. By Lemma 4.1, p_{1} is of type p1 or p2 w.r.t. $\left(H^{\prime}, x\right)$ adjacent to x. In particular, $k>2$. So $\left(H^{\prime}, x\right)$ and $P \backslash p_{k}$ contradict our choice of (H, x) and P.

Case 4: p_{k} is of type t 3 w.r.t. (H, x).
By Lemma 6.2, there exists an attachment $Q=q_{1}, \ldots, q_{l}$ of p_{k} to $(H, x), q_{l}$ is of type p 1 w.r.t. (H, x) and no node of $H \cup x$ has a neighbor in $Q \backslash q_{l}$. Without loss of generality the neighbor of q_{l} in $H \cup x$ is contained in H_{1}. Let H^{\prime} be the hole contained in $\left(H \backslash x_{1}\right) \cup Q \cup p_{k}$ that contains p_{k} and H_{2}. Then $\left(H^{\prime}, x\right)$ is a bug. Note that $p_{1} \notin Q$ (by definition of attachment and Lemma 6.2). By Lemma 4.1 and Theorem 5.2, p_{1} is of type p 1 or p 2 w.r.t. $\left(H^{\prime}, x\right)$. Let p_{i} be the node of P with lowest index adjacent to a node of Q (note that such a node exists since p_{k} is adjacent to q_{1}). If $i=k$ then p_{1}, \ldots, p_{k-1} is a hat of $\left(H^{\prime}, x\right)$, contradicting Corollary 5.4. So $i<k$ and hence $\left(H^{\prime}, x\right)$ and p_{1}, \ldots, p_{i} contradict our choice of (H, x) and P.

Definition 6.8 Let u be a type p2 node w.r.t. a $3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$ of G, that is adjacent to y and y_{1}. Assume that $x_{1} \neq y_{1}$. Let $S=\left(N\left[y_{1}\right] \cap N[y]\right) \backslash\{u\}$. Note that since G is diamondfree, S induces a clique. Suppose that S is not a clique cutset of G, and let $P=p_{1}, \ldots, p_{k}$ be a direct connection from u to Σ in $G \backslash S$. Such a path P is called an attachment of u to Σ. If such a path exists, we say that u is attached to Σ.

Figure 17: An attachment of a type p2 node u w.r.t. a $3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$, when u is adjacent to y and y_{1}, and $x_{1} \neq y_{1}$.

Lemma 6.9 Let G be a (diamond, 4-hole)-free odd-signable graph that does not have a clique cutset nor a bisimplicial cutset. Let u be a type p2 node w.r.t. a $\Sigma=3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$ of G that is adjacent to y and y_{1}, and assume that $x_{1} \neq y_{1}$. Then u is attached to Σ. Let $P=p_{1}, \ldots, p_{k}$ be an attachment of u to Σ. Then no node of Σ has a neighbor in $P \backslash p_{k}$ and p_{k} is of type $p 1$ w.r.t. Σ, with a neighbor in $P_{x_{1} y} \backslash\left\{y, y_{1}\right\}$.

Proof: By Theorem 3.2, G does not contain a proper wheel. Since G has no clique cutset, there exists a direct connection P from u to Σ in $G \backslash S$, where $S=\left(N\left[y_{1}\right] \cap N[y]\right) \backslash u$. So u is attached to Σ. By definition of P, the only nodes of Σ that may have a neighbor in $P \backslash p_{k}$ are y and y_{1}, no node of P has more than one neighbor in $\left\{y, y_{1}\right\}$, and p_{k} has a neighbor in $\Sigma \backslash\left\{y, y_{1}\right\}$. If y or y_{1} has a neighbor in $P \backslash p_{k}$, then let p_{i} be such a neighbor with highest index. By Lemma 4.1, we now consider the following cases.

Case 1: p_{k} is of type pb or b w.r.t. Σ.
First suppose that $N\left(p_{k}\right) \cap \Sigma \subseteq P_{x_{1} y} \cup P_{x_{2} y}$. Let H be the hole induced by $P_{x_{1} y} \cup P_{x_{2} y}$. Then $\left(H, p_{k}\right)$ is a bug. Suppose that $k=1$. Then $N(u) \cap\left(H \cup p_{k}\right)=\left\{p_{k}, y, y_{1}\right\}$. By Lemma 4.1 applied to $\left(H, p_{k}\right)$ and u, node u must be of type b w.r.t. $\left(H, p_{k}\right)$. But then u is a centercrosspath of $\left(H, p_{k}\right)$, contradicting Theorem 5.2. So $k>1$. Since p_{k-1} is adjacent to p_{k} and $N\left(p_{k-1}\right) \cap\left(H \cup p_{k}\right) \subseteq\left\{p_{k}, y, y_{1}\right\}$, by Lemma 4.1, node p_{k-1} is of type p1, p2 or b w.r.t. $\left(H, p_{k}\right)$. If p_{k-1} is of type b w.r.t. $\left(H, p_{k}\right)$, then Theorem 5.2 is contradicted. If p_{k-1} is of type p 1 or p2 w.r.t. $\left(H, p_{k}\right)$, then Lemma 6.7 is contradicted.

Now without loss of generality we may assume that p_{k} is of type b w.r.t. Σ and $N\left(p_{k}\right) \cap \Sigma \subseteq$ $P_{x_{2} y} \cup P_{x_{3} y}$. Let H be the hole induced by $P_{x_{2} y} \cup P_{x_{3} y}$. Then $\left(H, p_{k}\right)$ is a bug. If $k=1$ then u and $\left(H, p_{k}\right)$ contradict Lemma 4.1. So $k>1$. By Lemma 4.1, p_{k-1} is of type p1 w.r.t. $\left(H, p_{k}\right)$. But then $\left(H, p_{k}\right)$ and p_{k-1} contradict Lemma 6.7

Case 2: p_{k} is of type p 1 or p 2 w.r.t. Σ with neighbors in $P_{x_{2} y}$ or $P_{x_{3 y} y}$.
Without loss of generality $N\left(p_{k}\right) \cap \Sigma \subseteq P_{x_{2} y}$. If y and y_{1} do not have neighbors in $P \backslash p_{k}$, then path P, u contradicts Lemma 5.6. So y or y_{1} has a neighbor in $P \backslash p_{k}$.

Suppose that p_{i} is adjacent to y. Let p be the neighbor of p_{k} in $P_{x_{2} y}$ that is closest to x_{2}. Let H be the hole contained in $\left(\left(P_{x_{1} y} \cup P_{x_{2} y}\right) \backslash y\right) \cup P \cup u$ that contains the $x_{2} p$-subpath of $P_{x_{2} y}, x_{1} y_{1}$-subpath of $P_{x_{1} y}$ and p_{1}, \ldots, p_{i}. Note that y has at least two nonadjacent neighbors in H, p_{i} and y_{1}. Since $H \cup y$ cannot induce a $3 \mathrm{PC}\left(y_{1}, p_{i}\right),(H, y)$ must be a wheel, and hence it is a bug. In particular $p y$ is not an edge. Node y_{2} is adjacent to y, and hence by Lemma 4.1, it is either of type p 1 or b w.r.t. (H, y). If y_{2} is of type p1 w.r.t. (H, y), then Lemma 6.7 is contradicted. If y_{2} is of type b w.r.t. (H, y), then Theorem 5.2 is contradicted.

So p_{i} must be adjacent to y_{1}. Then since G is diamond-free, $i>1$. By Lemma 5.6, path p_{i}, \ldots, p_{k} is a y_{1}-crosspath of Σ. Let Σ^{\prime} be the $3 \mathrm{PC}\left(\triangle, y_{1}\right)$ induced by $P_{x_{1} y} \cup P_{x_{2} y} \cup\left\{p_{i}, \ldots, p_{k}\right\}$. Let $u=p_{0}$, and let p_{j} be the node of $p_{0}, p_{1}, \ldots, p_{i-1}$ with highest index adjacent to y. Let H be the hole contained in $\left(P_{x_{2} y} \backslash x_{2}\right) \cup\left\{p_{j}, \ldots, p_{k}\right\}$. Since $H \cup y_{1}$ cannot induce a $3 \mathrm{PC}\left(p_{i}, y\right)$, $\left(H, y_{1}\right)$ is a wheel, and hence it must be a bug. Let y_{1}^{\prime} be the neighbor of y_{1} in $P_{x_{1} y} \backslash y$. Then y_{1}^{\prime} is of type p1 w.r.t. $\left(H, y_{1}\right)$, contradicting Lemma 6.7.

Case 3: p_{k} is of type p1 or p 2 w.r.t. Σ with neighbors in $P_{x_{1} y}$.
Then p_{k} is not adjacent to y. First suppose that y_{1} and y do not have neighbors in $P \backslash p_{k}$. If p_{k} is of type p 2 , then $P_{x_{1} y} \cup P_{x_{2} y} \cup P \cup u$ induces a $3 \mathrm{PC}\left(u y_{1} y, \triangle\right)$ or an even wheel with center y_{1}. So p_{k} is of type p1, and the lemma holds. So we may assume that y_{1} or y has a neighbor in $P \backslash p_{k}$. Let p be the neighbor of p_{k} in $P_{x_{1} y}$ that is closest to x_{1}.

Suppose that p_{i} is adjacent to y_{1}. Let $u=p_{0}$, and let p_{j} be the node of p_{0}, \ldots, p_{i-1} with highest index adjacent to y. Let H be the hole induced by $x_{1} p$-subpath of $P_{x_{1} y}, P_{x_{2} y}$ and p_{j}, \ldots, p_{k}. Note that y_{1} is adjacent to two nonadjacent nodes of H, p_{i} and y. Since $H \cup y_{1}$ cannot induce a $3 \mathrm{PC}\left(p_{i}, y\right),\left(H, y_{1}\right)$ is a wheel, and hence it is a bug. In particular, $p y_{1}$ is not an edge. Let y_{1}^{\prime} be the neighbor of y_{1} in $P_{x_{1} y} \backslash y$. By Lemma 4.1, y_{1}^{\prime} is of type p1 or b w.r.t. (H, y_{1}), contradicting Lemma 6.7 or Theorem 5.2. So we may assume that p_{i} is adjacent to y. If p_{k} is of type p1 w.r.t. Σ, then $P_{x_{1} y} \cup P_{x_{2} y} \cup\left\{p_{i}, \ldots, p_{k}\right\}$ induces a $3 \mathrm{PC}(p, y)$. So p_{k} is of type p2 w.r.t. Σ. Let p^{\prime} be the neighbor of p_{k} in $P_{x_{1} y}$ distinct from p, and let P^{\prime} be the $p^{\prime} y_{1}$-subpath of $P_{x_{1} y}$. Let H be the hole contained in $P \cup P^{\prime} \cup u$ that contains P^{\prime} and p_{i}, \ldots, p_{k}. Node y has two nonadjacent neighbors in H, p_{i} and y_{1}. Since $H \cup y$ cannot induce a $3 \mathrm{PC}\left(p_{i}, y_{1}\right),(H, y)$ is a wheel, and hence it is a bug. But then y_{2} is of type p1 w.r.t. (H, y), adjacent to y, contradicting Lemma 6.7.

Case 4: p_{k} is of type t3 w.r.t. Σ.
If y and y_{1} do not have neighbors in $P \backslash p_{k}$, then $P_{x_{1} y} \cup P_{x_{2} y} \cup P \cup u$ induces a $3 \mathrm{PC}\left(y_{1} y u, p_{k} x_{1} x_{2}\right)$. So y or y_{1} has a neighbor in $P \backslash p_{k}$.

First suppose that p_{i} is adjacent to y. Let H be the hole contained in $\left(P_{x_{1} y} \backslash y\right) \cup P \cup u$ that contains $P_{x_{1} y} \backslash y$ and p_{i}, \ldots, p_{k}. As before, (H, y) is a bug. Note that either $y_{2} \neq x_{2}$ or $y_{3} \neq x_{3}$. Without loss of generality $y_{2} \neq x_{2}$. But then y_{2} is of type p1 w.r.t. (H, y) adjacent to y, contradicting Lemma 6.7.

Hence p_{i} must be adjacent to y_{1}. Let H be the hole contained in $P_{x_{2} y} \cup P \cup u$ that contains $P_{x_{2} y}$ and p_{i}, \ldots, p_{k}. As before, $\left(H, y_{1}\right)$ is a bug. Let y_{1}^{\prime} be the neighbor of y_{1} in $P_{x_{1} y} \backslash y$. By Lemma 4.1, y_{1}^{\prime} is of type p1 or b w.r.t. (H, y_{1}), contradicting Lemma 6.7 or Theorem 5.2.

Case 5: p_{k} is of type t3b w.r.t. Σ.
Let H be a hole of Σ such that $\left(H, p_{k}\right)$ is a bug. If $k=1$, let $z=u$, and otherwise let $z=p_{k-1}$. By Lemma 4.1, z is of type $\mathrm{p} 1, \mathrm{p} 2$ or b w.r.t. $\left(H, p_{k}\right)$, adjacent to p_{k}, contradicting Lemma 6.7 or Theorem 5.2.

7 Blocking sequences for 2-joins

In this section we consider an induced subgraph H of G that contains a 2-join $H_{1} \mid H_{2}$. We say that a 2-join $H_{1} \mid H_{2}$ extends to G if there exists a 2-join $H_{1}^{\prime} \mid H_{2}^{\prime}$ of G, with $H_{1} \subseteq H_{1}^{\prime}$ and $H_{2} \subseteq H_{2}^{\prime}$. We characterize the situation in which the 2 -join of H does not extend to a 2-join of G.

Definition 7.1 A blocking sequence for a 2-join $H_{1} \mid H_{2}$ of an induced subgraph H of G is a sequence of distinct nodes x_{1}, \ldots, x_{n} in $G \backslash H$ with the following properties:
(1) (i) $H_{1} \mid H_{2} \cup x_{1}$ is not a 2-join of $H \cup x_{1}$,
(ii) $H_{1} \cup x_{n} \mid H_{2}$ is not a 2-join of $H \cup x_{n}$, and
(iii) if $n>1$ then, for $i=1, \ldots, n-1, H_{1} \cup x_{i} \mid H_{2} \cup x_{i+1}$ is not a 2-join of $H \cup\left\{x_{i}, x_{i+1}\right\}$.
(2) x_{1}, \ldots, x_{n} is minimal w.r.t. property (1), in the sense that no sequence $x_{j_{1}}, \ldots, x_{j_{k}}$ with $\left\{x_{j_{1}}, \ldots, x_{j_{k}}\right\} \subset\left\{x_{1}, \ldots, x_{n}\right\}$, satisfies (1).

Figure 18: A blocking sequence x_{1}, x_{2}, x_{3} for the 2-join $H_{1} \mid H_{2}$.
Blocking sequences for 2-joins were introduced in [7], where the following results are obtained.

Let H be an induced subgraph of G with 2-join $H_{1} \mid H_{2}$ and special sets $\left(A_{1}, A_{2}, B_{1}, B_{2}\right)$. In the following results we let $S=x_{1}, \ldots, x_{n}$ be a blocking sequence for the 2-join $H_{1} \mid H_{2}$ of an induced subgraph H of G.

Remark $7.2([7]) H_{1} \mid H_{2} \cup u$ is a 2-join in $H \cup u$ if and only if $N(u) \cap H_{1}=\varnothing, A_{1}$ or B_{1}. Similarly, $H_{1} \cup u \mid H_{2}$ is a 2-join in $H \cup u$ if and only if $N(u) \cap H_{2}=\varnothing, A_{2}$ or B_{2}.

Lemma 7.3 ([7]) If $n>1$ then, for every node $x_{j}, j \in\{1, \ldots, n-1\}, N\left(x_{j}\right) \cap H_{2}=\varnothing, A_{2}$ or B_{2}, and for every node $x_{j}, j \in\{2, \ldots, n\}, N\left(x_{j}\right) \cap H_{1}=\varnothing, A_{1}$ or B_{1}.

Theorem 7.4 ([7]) Let H be an induced subgraph of a graph G that contains a 2-join $H_{1} \mid H_{2}$. The 2-join $H_{1} \mid H_{2}$ of H extends to a 2-join of G if and only if there exists no blocking sequence for $H_{1} \mid H_{2}$ in G.

Lemma 7.5 ([7]) If x_{j} is the node of lowest index adjacent to a node of H_{2}, then x_{1}, \ldots, x_{j} is a chordless path. Similarly, if x_{j} is the node of highest index adjacent to a node of H_{1}, then x_{j}, \ldots, x_{n} is a chordless path.

Theorem 7.6 ([7]) Let G be a graph and H an induced subgraph of G with a 2-join $H_{1} \mid H_{2}$ and special sets $\left(A_{1}, A_{2}, B_{1}, B_{2}\right)$. Let H^{\prime} be an induced subgraph of G with 2-join $H_{1}^{\prime} \mid H_{2}$ and special sets $\left(A_{1}^{\prime}, A_{2}, B_{1}^{\prime}, B_{2}\right)$ such that $A_{1}^{\prime} \cap A_{1} \neq \varnothing$ and $B_{1}^{\prime} \cap B_{1} \neq \varnothing$. If S is a blocking sequence for $H_{1} \mid H_{2}$ and $H_{1}^{\prime} \cap S \neq \varnothing$, then a proper subset of S is a blocking sequence for $H_{1}^{\prime} \mid H_{2}$.

8 Decomposable $3 \mathrm{PC}(\triangle, \cdot)$

In this section we decompose certain $3 \mathrm{PC}(\triangle, \cdot)$'s (called the decomposable $3 \mathrm{PC}(\triangle, \cdot)$'s). This will allow s to prove Lemma 1.4.

Definition 8.1 Let $\Sigma=3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$, with the neighbors of y on paths $P_{x_{1} y}, P_{x_{2} y}$ and $P_{x_{3} y}$ being nodes y_{1}, y_{2} and y_{3} respectively. Σ is a decomposable $3 \mathrm{PC}(\triangle, \cdot)$ if the following hold.
(1) $x_{3} \neq y_{3}$.
(2) If G contains a $3 \mathrm{PC}(\triangle, \cdot)$ with a crosspath, then Σ has a y_{1}-crosspath and all crosspaths of Σ are from y_{1} to $P_{x_{2} y}$.
(3) One of the following holds:
(i) There exists a node u of type $t 3$ w.r.t. Σ such that every attachment of u to Σ ends in $P_{x 3 y}$.
(ii) There exists a node u of type t3b w.r.t. Σ that has a neighbor in $P_{x_{3} y} \backslash\left\{x_{3}, y\right\}$.
(iii) There exists a node u of type p w.r.t. Σ that has a neighbor in $P_{x_{3} y} \backslash\{y\}$.
$\Sigma \cup u$ is called an extension of the decomposable $3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$.
Lemma 8.2 Let G be a (diamond, 4-hole)-free odd-signable graph that does not have a clique cutset nor a bisimplicial cutset. Let $\Sigma=3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$ and let u be a type t3b node w.r.t. Σ that is adjacent to y. A node $v \in G \backslash(\Sigma \cup u)$ is adjacent to u if and only if v is of type t w.r.t. Σ.

Proof: Suppose that v is adjacent to u. If v does not have a neighbor in $\Sigma \backslash y$, then bug induced by $P_{x_{1} y} \cup P_{x_{2} y} \cup u$ and v contradict Lemma 6.7. So v does have a neighbor in $\Sigma \backslash y$. Without loss of generality v has a neighbor in $P_{x_{3} y} \backslash y$. Let Σ^{\prime} be the $3 \mathrm{PC}\left(u x_{2} x_{3}, y\right)$ obtained by substituting u into Σ. Suppose that v is not of type t w.r.t. Σ. So by Lemma 4.1, v is of type p or b w.r.t. Σ. By Lemma 4.1, v is of type b w.r.t. Σ^{\prime}. But then v is a center-crosspath of bug Σ^{\prime}, contradicting Theorem 5.2.

Now suppose that v is of type t w.r.t. Σ. If v is not adjacent to u, then $\left\{u, v, x_{1}, x_{2}\right\}$ induces a diamond.

Lemma 8.3 Let G be a (diamond, 4-hole)-free odd-signable graph that does not have a clique cutset nor a bisimplicial cutset. Let Σ be a $3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$ of G such that if G has a $3 \mathrm{PC}(\triangle, \cdot)$ with a crosspath, then Σ has a y_{1}-crosspath and all crosspaths of Σ are from y_{1} to $P_{x_{2} y}$. Then there cannot exist a path $P=p_{1}, \ldots, p_{k}$ in $G \backslash \Sigma$ such that p_{1} is of type p w.r.t. Σ with a neighbor in $\left(P_{x_{1} y} \cup P_{x_{2} y}\right) \backslash y, p_{k}$ is of type p w.r.t. Σ with a neighbor in $P_{x_{3} y} \backslash y$, and no node of $P \backslash\left\{p_{1}, p_{k}\right\}$ has a neighbor in $\Sigma \backslash y$.

Proof: Assume such a path P exists. Let $j \in\{1,2\}$ such that $N\left(p_{1}\right) \cap \Sigma \subseteq P_{x_{j} y}$. By Theorem 3.2, G does not contain a proper wheel. If no node of $P \backslash\left\{p_{1}, p_{k}\right\}$ is adjacent to y, then by Lemma 5.6, P is a crosspath, contradicting the assumption that all crosspaths of Σ are from y_{1} to $P_{x_{2} y}$. So a node of $P \backslash\left\{p_{1}, p_{k}\right\}$, say p_{i}, is adjacent to y. Let H be the hole of $(\Sigma \backslash y) \cup P$ that contains $P \cup\left\{x_{j}, x_{3}\right\}$. Suppose that y has at least three neighbors in H. Then since (H, y) cannot be a proper wheel, it must be a bug. Let $j^{\prime}=3-j$. Then (H, y) and $y_{j^{\prime}}$ contradict either Theorem 5.2 or Lemma 6.7. So y has at most two neighbors in H. Suppose y has two neighbors in H. Since $H \cup y$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$, these two neighbors are adjacent. In particular, H does not contain y_{j} nor y_{3}. But then $H \cup P_{x_{j^{\prime}} y}$ induces a $3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, \triangle\right)$.

Therefore y has exactly one neighbor in H. In particular, p_{k} has a neighbor in $P_{x_{3} y} \backslash\left\{y, y_{3}\right\}$ and p_{k} is not adjacent to y. Let H^{\prime} be the hole induced by $P_{x_{j^{\prime}} y} \cup P_{x_{3} y}$. If p_{k} is of type p1 w.r.t. Σ, then $H^{\prime} \cup\left\{p_{1}, \ldots, p_{k}\right\}$ induces a $3 \mathrm{PC}(y, \cdot)$. Suppose p_{k} is of type pb w.r.t. Σ. Then $\left(H^{\prime}, p_{k}\right)$ is a bug. By Lemma 4.1, p_{k-1} is of type p1 w.r.t. $\left(H^{\prime}, p_{k}\right)$, contradicting Lemma 6.7. Therefore p_{k} is of type p2 w.r.t. Σ. By symmetry, p_{1} is also of type p2 w.r.t. Σ and it is not adjacent to y.

Let Σ^{\prime} be the $3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$ contained in $\left(\Sigma \backslash y_{3}\right) \cup\left\{p_{i}, \ldots, p_{k}\right\}$. Then p_{1}, \ldots, p_{i-1} is a p_{i}-crosspath of Σ^{\prime}. So Σ has a y_{1}-crosspath $Q=q_{1}, \ldots, q_{l}$. If no node of Q is adjacent to or coincident with a node of P, then Q is a y_{1}-crosspath of Σ^{\prime}, contradicting Lemma 4.6. So a node of Q is adjacent to or coincident with a node of P. Note that p_{k} and q_{1} are distinct nodes. Let P^{\prime} be a chordless path from q_{1} to p_{k} in $P \cup Q$. If P^{\prime} does not contain p_{i} nor q_{l}, then P^{\prime} is a y_{1}-crosspath of Σ that ends in $P_{x_{3} y}$, contradicting our assumption. So P^{\prime} contains p_{i} or q_{l}.

Suppose P^{\prime} does not contain q_{l}. Then it contains p_{i}. If P^{\prime} does not contain p_{1}, then path $P^{\prime} \backslash\left\{p_{i}, \ldots p_{k}\right\}$ and Σ^{\prime} contradict either Lemma 4.1 (if this path consist of a single node) or Lemma 5.6 (otherwise). So P^{\prime} contains p_{1}, i.e., p_{1} has a neighbor in Q, and it does not belong to Q (since if p_{1} belongs to Q, then $p_{1}=q_{l}$, and this cannot be since we are assuming that P^{\prime} does not contain $\left.q_{l}\right)$. Let H^{\prime} be the hole contained in $\left(\left(P_{x_{1} y} \cup P_{x_{2} y}\right) \backslash y\right) \cup Q$ that contains $Q \cup\left\{x_{1}, x_{2}\right\}$. Then $\left(H^{\prime}, p_{1}\right)$ is a bug. By Lemma 4.1, p_{2} is of type p1, p2 or b w.r.t. $\left(H^{\prime}, p_{1}\right)$. Since p_{2} is adjacent to p_{1}, bug (H^{\prime}, p_{1}) and p_{2} contradict either Theorem 5.2 (if p_{2} is of type b w.r.t. $\left.\left(H^{\prime}, p_{1}\right)\right)$ or Lemma 6.7 (otherwise).

So P^{\prime} contains q_{l}. Then no node of $Q \backslash q_{l}$ has a neighbor in P, and q_{l} does have a neighbor in P. Let $p_{l^{\prime}}$ be the neighbor of q_{l} in P with highest index. If $l^{\prime}>i$ then $q_{l}, p_{l^{\prime}}, \ldots, p_{k}$ contradicts Lemma 5.6 applied to Σ. Suppose that $l^{\prime}=i$. Let H^{\prime} be the hole induced by $\Sigma^{\prime} \backslash\left(P_{x_{1} y} \backslash y\right)$. Then $\left(H^{\prime}, q_{l}\right)$ is a bug. If $l>1$ then $\left(H^{\prime}, q_{l}\right)$ and q_{l-1} contradict Lemma 4.1 or Lemma 6.7. So $l=1$. But then $\left(H^{\prime}, q_{l}\right)$ and y_{1} contradict Lemma 4.1. Therefore $l^{\prime}<i$. If $l^{\prime}=1$ then p_{1} and q_{l} are distinct nodes. If $j=1$ then $P_{x_{1} y} \cup P_{x_{2} y} \cup\left\{p_{1}, q_{l}\right\}$ induces a $3 \mathrm{PC}(\triangle, \Delta)$. So $j=2$. Recall that p_{1}, p_{k} and q_{l} cannot be adjacent to y. Hence $P_{x_{1} y} \cup\left(P_{x_{3} y} \backslash y_{3}\right) \cup P \cup Q$ contains a $3 \mathrm{PC}\left(y_{1}, p_{i}\right)$. So $l^{\prime}>1$. But then $q_{l}, p_{l^{\prime}}, \ldots, p_{i-1}$ is a p_{i}-crosspath of Σ^{\prime} and Q is a y_{1}-crosspath of Σ^{\prime}, contradicting Lemma 4.6.

Lemma 8.4 Let G be a (diamond, 4-hole)-free odd-signable graph that does not have a clique cutset nor a bisimplicial cutset. Let Σ be a $3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$ of G such that if G has a $3 \mathrm{PC}(\triangle, \cdot)$ with a crosspath, then Σ has a y_{1}-crosspath and all crosspaths of Σ are from y_{1} to $P_{x_{2} y}$. Then there cannot exist a path $P=p_{1}, \ldots, p_{k}$ in $G \backslash \Sigma$ such that p_{1} is of type p w.r.t. Σ with a neighbor in $\left(P_{x_{1} y} \cup P_{x_{2} y}\right) \backslash y, p_{k}$ is of type t3 w.r.t. Σ such that all attachments of p_{k} to Σ end in $P_{x_{3} y}$, and no node of $P \backslash\left\{p_{1}, p_{k}\right\}$ has a neighbor in $\Sigma \backslash y$.

Proof: Assume such a path P exists. By Theorem 3.2 G does not contain a proper wheel. Let $j \in\{1,2\}$ such that $N\left(p_{1}\right) \cap \Sigma \subseteq P_{x_{j} y}$. First suppose that y does not have a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$. Since all attachments of p_{k} to Σ end in $P_{x_{3} y}$, path p_{1}, \ldots, p_{k-1} cannot be an attachment of p_{k} to Σ. In particular, $N\left(p_{1}\right) \cap \Sigma=x_{j}$. By Lemma 6.2, p_{k} is attached to Σ with attachment $Q=q_{1}, \ldots, q_{l}$ such that q_{l} is of type p1 w.r.t. Σ and no node of $Q \backslash q_{l}$ has a neighbor in Σ. Let Σ^{\prime} be the $3 \mathrm{PC}\left(x_{1} x_{2} p_{k}, y\right)$ obtained by substituting p_{k} and Q into Σ. If no node of $P \backslash p_{k}$ is adjacent to or coincident with a node of Q, then path p_{1}, \ldots, p_{k-1} and Σ^{\prime} contradict either Lemma 4.1 or Lemma 5.6. So a node of $P \backslash p_{k}$ is adjacent to or coincident with a node of Q. Then $\left(P \backslash p_{k}\right) \cup Q$ contains a chordless path P^{\prime} from p_{1} to q_{l}. Since p_{1} and q_{l} are both of type p1 w.r.t. Σ, P^{\prime} contradicts Lemma 5.6 applied to Σ. Therefore, y must have a neighbor in $P \backslash\left\{p_{1}, p_{k}\right\}$.

Let p_{i} be the neighbor of y in $P \backslash\left\{p_{1}, p_{k}\right\}$ with highest index. Let H be the hole contained in $P \cup\left(P_{x_{j} y} \backslash y\right)$ that contains $P \cup x_{j}$. Suppose that y has at least three neighbors in H. Then since (H, y) cannot be a proper wheel, it must be a bug. Let $j^{\prime} \in\{1,2\} \backslash j$. Then (H, y) and $y_{j^{\prime}}$ contradict either Theorem 5.2 or Lemma 6.7. So y has at most two neighbors in H. Suppose y has two neighbors in H. Since $H \cup y$ cannot induce a $3 \mathrm{PC}(\cdot, \cdot)$, these two neighbors are adjacent. In particular, H does not contain y_{j}. But then $H \cup P_{x_{j^{\prime} y} y}$ induces a $3 \mathrm{PC}\left(x_{1} x_{2} p_{k}, \triangle\right)$. Therefore, y has exactly one neighbor in H (namely p_{i}).

Let Σ^{\prime} be the $3 \mathrm{PC}\left(x_{1} x_{2} p_{k}, y\right)$ induced by $P_{x_{1} y} \cup P_{x_{2} y} \cup\left\{p_{i}, \ldots, p_{k}\right\}$. Then p_{i-1}, \ldots, p_{1} is a p_{i}-crosspath of Σ^{\prime}. So Σ has a y_{1}-crosspath $Q=q_{1}, \ldots, q_{l}$. Note that by Theorem 5.2, $y_{1} \neq x_{1}$. If no node of Q is adjacent to or coincident with a node of P, then Q is a y_{1}-crosspath of Σ^{\prime}, contradicting Lemma 4.6. So a node of Q is adjacent to or coincident with a node of P. Let P^{\prime} be a chordless path from q_{1} to p_{k} in $P \cup Q$. If P^{\prime} does not contain p_{i} nor q_{l}, then $P^{\prime} \backslash p_{k}$ is an attachment of p_{k} to Σ that ends in $P_{x_{1} y} \backslash y$, contradicting our assumption. So P^{\prime} contains p_{i} or q_{l}.

Suppose P^{\prime} does not contain q_{l}. Then it contains p_{i}. If P^{\prime} does not contain p_{1}, then path $P^{\prime} \backslash\left\{p_{i}, \ldots, p_{k}\right\}$ and Σ^{\prime} contradict Lemma 4.1 (if this path consists of a single node) or Lemma 5.6 (otherwise). So P^{\prime} contains p_{1}, i.e., p_{1} has a neighbor in Q (and it is not contained in $Q)$. Let H^{\prime} be the hole contained in $\left(\left(P_{x_{1} y} \cup P_{x_{2} y}\right) \backslash y\right) \cup Q$ that contains $Q \cup\left\{x_{1}, x_{2}\right\}$. Then $\left(H^{\prime}, p_{1}\right)$ is a bug. By Lemma 4.1, p_{2} is of type p1, p2 or b w.r.t. $\left(H^{\prime}, p_{1}\right)$. Since p_{2} is adjacent to $p_{1},\left(H^{\prime}, p_{1}\right)$ and p_{2} contradict either Theorem 5.2 (if p_{2} is of type b w.r.t. $\left(H^{\prime}, p_{1}\right)$) or Lemma 6.7 (otherwise).

Therefore P^{\prime} contains q_{l}. Then no node of $Q \backslash q_{l}$ has a neighbor in P and q_{l} does have a neighbor in P. Let $p_{l^{\prime}}$ be the neighbor of q_{l} in P with highest index. If $l^{\prime}>i$ then $p_{k-1}, \ldots, p_{l^{\prime}}, q_{l}$ is an attachment of p_{k} to Σ that contradicts Lemma 6.2. Suppose that $l^{\prime}=i$. Let H^{\prime} be the hole induced by $\Sigma^{\prime} \backslash\left(P_{x_{1 y}} \backslash y\right)$. Then $\left(H^{\prime}, q_{l}\right)$ is a bug. If $l>1$ then $\left(H^{\prime}, q_{l}\right)$ and q_{l-1} contradict Lemma 4.1 or Lemma 6.7. So $l=1$, and hence (H^{\prime}, q_{l}) and y_{1} contradict Lemma 4.1. Therefore $l^{\prime}<i$. But then Q is a y_{1}-crosspath of Σ^{\prime}. Since Σ^{\prime} has a p_{i}-crosspath, Lemma 4.6 is contradicted.

Theorem 8.5 Let G be a (diamond, 4-hole)-free odd-signable graph that does not have a clique cutset nor a bisimplicial cutset. If G contains a decomposable $3 \mathrm{PC}(\triangle, \cdot)$, then G has a 2-join.

Proof: Let $\Sigma=3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$ be a decomposable $3 \mathrm{PC}(\triangle, \cdot)$, and $\Sigma \cup u$ its extension. Let Y be the set of all type t3b nodes w.r.t. Σ that are adjacent to y. Let $H_{1}=P_{x_{1} y} \cup P_{x_{2} y} \cup Y$, $H_{2}=P_{x_{3} y_{3}} \cup u$ and $H=H_{1} \cup H_{2}$. Let $A_{1}=\left\{x_{1}, x_{2}\right\} \cup Y$ and $B_{1}=\{y\}$. If u is of type t
w.r.t. Σ, then let $A_{2}=\left\{x_{3}, u\right\}$ and $B_{2}=\left\{y_{3}\right\}$. If u is of type p w.r.t. Σ, then let $A_{2}=\left\{x_{3}\right\}$ and let B_{2} contain y_{3} and possibly u (if u is of type p 2 or p3 adjacent to y). By Lemma 8.2, $H_{1} \mid H_{2}$ is a 2-join of H with special sets $\left(A_{1}, A_{2}, B_{1}, B_{2}\right)$. We now show that 2-join $H_{1} \mid H_{2}$ of H extends to a 2 -join of G (which proves the theorem). Assume it does not. By Theorem 7.4, there exists a blocking sequence $S=p_{1}, \ldots, p_{n}$. Without loss of generality we assume that H and S are chosen so that the size of S is minimized. By Definition 7.1 and Remark 7.2, a node of S is adjacent to a node of H_{2}. Let p_{j} be the node of S with lowest index that is adjacent to a node of H_{2}. By Lemma $7.5, p_{1}, \ldots, p_{j}$ is a chordless path.

Claim 1: Node p_{j} cannot be of type t3b w.r.t. Σ.
Proof of Claim 1: Assume it is. Since p_{j} is a node of $G \backslash H, p_{j}$ is not adjacent to y. Suppose that p_{j} has a neighbor in $P_{x_{3} y} \backslash\left\{x_{3}, y\right\}$. Then $\Sigma \cup p_{j}$ is an extension of a decomposable $3 \operatorname{PC}(\triangle, \cdot)$. Let $H^{\prime}=\Sigma \cup Y \cup p_{j}$ and $H_{2}^{\prime}=H^{\prime} \backslash H_{1}$. Then $H_{1} \mid H_{2}^{\prime}$ is a 2 -join of H^{\prime} with special sets $A_{1}^{\prime}=A_{1}, A_{2}^{\prime}=\left\{x_{3}, p_{j}\right\}, B_{1}^{\prime}=B_{1}, B_{2}^{\prime}=\left\{y_{3}\right\}$. By Theorem 7.6, a proper subset of S is a blocking sequence for the 2 -join $H_{1} \mid H_{2}^{\prime}$ of H^{\prime}, contradicting our choice of H and S.

Therefore, without loss of generality p_{j} has a neighbor in $P_{x_{1} y} \backslash\left\{x_{1}, y\right\}$. Let Σ^{\prime} be the $3 \mathrm{PC}\left(p_{j} x_{2} x_{3}, y\right)$ obtained by substituting p_{j} into Σ. If u is of type t3 (resp. t3b) w.r.t. Σ, then by Lemma 4.1, u is of the same type w.r.t. Σ^{\prime}. Suppose that u is of type p w.r.t. Σ and that it is not of the same type w.r.t. Σ^{\prime}. Then u is adjacent to p_{j}. Since $p_{j} \notin Y, p_{j}$ is not adjacent to y, and hence u and Σ^{\prime} contradict Lemma 4.1. So u is of the same type w.r.t. Σ^{\prime} as it is w.r.t. Σ.

Suppose that u is of type t3 w.r.t Σ (and Σ^{\prime}). Since every attachment of u to Σ ends in $P_{x_{3} y}$, it follows that every attachment of u to Σ^{\prime} ends in $P_{x_{3} y}$.

By Lemma 6.6, any crosspath w.r.t. Σ^{\prime} is also a crosspath w.r.t. Σ. So Σ^{\prime} is decomposable with extension $\Sigma^{\prime} \cup u$. Let Y^{\prime} be the set of all nodes of type t3b w.r.t. Σ^{\prime} that are adjacent to y. Note that by Lemma 4.1, $Y=Y^{\prime}$. Let $H^{\prime}=\Sigma^{\prime} \cup Y \cup u$ and $H_{1}^{\prime}=H^{\prime} \backslash H_{2}$. H^{\prime} has a 2-join $H_{1}^{\prime} \mid H_{2}$ with special sets $A_{1}^{\prime}=\left\{p_{j}, x_{2}\right\} \cup Y, A_{2}^{\prime}=A_{2}, B_{1}^{\prime}=B_{1}, B_{2}^{\prime}=B_{2}$. By Theorem 7.6, a proper subset of S is a blocking sequence for the 2-join $H_{1}^{\prime} \mid H_{2}$ of H^{\prime}, contradicting our choice of H and S. This completes the proof of Claim 1.

Claim 2: Node p_{j} cannot be of type t3 w.r.t. Σ.
Proof of Claim 2: Assume it is. By Lemma 6.2, p_{j} is attached to Σ and every attachment of p_{j} to Σ ends in a type p1 node w.r.t. Σ.

Suppose that p_{j} has an attachment $Q=q_{1}, \ldots, q_{m}$ to Σ such that q_{m} is of type p1 w.r.t Σ adjacent to a node of $H_{1} \backslash y$. Without loss of generality q_{m} is adjacent to a node of $P_{x_{1} y} \backslash y$. Note that by Lemma 6.2, no node of Σ has a neighbor in $Q \backslash q_{m}$. Let Σ^{\prime} be the $3 \mathrm{PC}\left(p_{j} x_{2} x_{3}, y\right)$ obtained by substituting p_{j} and Q into Σ.

We now show that u is of the same type w.r.t. Σ^{\prime} as it is w.r.t. Σ. If u is of type t3b w.r.t. Σ, then by Lemma $4.1, u$ is of type t 3 b w.r.t. Σ^{\prime}. Suppose that u is of type p w.r.t. Σ. Suppose that u has a neighbor in p_{j}, Q. By Lemma 4.1, u is of type b w.r.t. Σ^{\prime}. But then $N(u) \cap P_{x_{3} y}=y_{3}$, and u has a neighbor in Q, and hence the chordless path from u to q_{m} in $Q \cup u$ contradicts Lemma 5.6 applied to Σ. So u cannot be adjacent to a node of p_{j}, Q, and hence u is of type p w.r.t. Σ^{\prime}. Finally suppose that u is of type t 3 w.r.t. Σ. Then by Lemma 4.1, u is of type t w.r.t. Σ^{\prime}. Suppose that u is of type t3b w.r.t. Σ^{\prime}. Then u has a neighbor q_{i} in Q, and hence q_{i}, \ldots, q_{m} is an attachment of u to Σ that does not end in $P_{x_{3} y}$,
a contradiction. Therefore, u is of the same type w.r.t. Σ^{\prime} as it is w.r.t. Σ.
Suppose that u is of type t 3 w.r.t Σ (and Σ^{\prime}), and that it has an attachment that ends in a type p1 node w.r.t. Σ^{\prime} adjacent to a node of Q. Then clearly u has an attachment to Σ that ends in $P_{x_{1} y} \backslash y$, contradicting our assumption. Therefore, every attachment of u to Σ^{\prime} ends in $P_{x_{3} y}$.

By Lemma 6.6, any crosspath w.r.t. Σ^{\prime} is also a crosspath w.r.t. Σ. So Σ^{\prime} is decomposable with extension $\Sigma^{\prime} \cup u$. Let Y^{\prime} be the set of all nodes of type t3b w.r.t. Σ^{\prime} that are adjacent to y. Note that by Lemma 4.1, $Y=Y^{\prime}$. Let $H^{\prime}=\Sigma^{\prime} \cup Y \cup u$ and $H_{1}^{\prime}=H^{\prime} \backslash H_{2}$. H^{\prime} has a 2 -join $H_{1}^{\prime} \mid H_{2}$ with special sets $A_{1}^{\prime}=\left\{p_{j}, x_{2}\right\} \cup Y, A_{2}^{\prime}=A_{2}, B_{1}^{\prime}=B_{1}, B_{2}^{\prime}=B_{2}$. By Theorem 7.6, a proper subset of S is a blocking sequence for the 2-join $H_{1}^{\prime} \mid H_{2}$ of H^{\prime}, contradicting our choice of H and S.

Therefore, p_{j} cannot have an attachment to Σ that ends in a type p1 node w.r.t. Σ adjacent to a node of $H_{1} \backslash y$. So every attachment of p_{j} to Σ ends in a type p1 node w.r.t. Σ adjacent to a node of $P_{x_{3} y}$. But then $\Sigma \cup p_{j}$ is an extension of a decomposable $3 \mathrm{PC}(\triangle, \cdot)$. Let $H^{\prime}=\Sigma \cup Y \cup p_{j}$ and $H_{2}^{\prime}=H^{\prime} \backslash H_{1} . H^{\prime}$ has a 2-join $H_{1} \mid H_{2}^{\prime}$ with special sets $A_{1}^{\prime}=A_{1}, A_{2}^{\prime}=\left\{x_{3}, p_{j}\right\}, B_{1}^{\prime}=B_{1}, B_{2}^{\prime}=\left\{y_{3}\right\}$. By Theorem 7.6 , a proper subset of S is a blocking sequence for the 2 -join $H_{1} \mid H_{2}^{\prime}$ of H^{\prime}, contradicting our choice of H and S. This completes the proof of Claim 2.

Claim 3: Node p_{j} cannot be of type b w.r.t. Σ.
Proof of Claim 3: Assume it is. Since Σ is decomposable, $N\left(p_{j}\right) \cap P_{x_{1} y}=y_{1}$ and p_{j} has two adjacent neighbors in $P_{x_{2} y} \backslash y$. Let H^{*} be the hole induced by $P_{x_{1} y} \cup P_{x_{2} y}$. Then $\left(H^{*}, p_{j}\right)$ is a bug. Since p_{j} has a neighbor in H_{2}, it must be adjacent to u. If u is of type t w.r.t. Σ, then u is of type b w.r.t. $\left(H^{*}, p_{j}\right)$. Since u is adjacent to p_{j}, it is a center-crosspath of $\left(H^{*}, p_{j}\right)$, contradicting Theorem 5.2. So u is of type p w.r.t. Σ with a neighbor in $P_{x_{3} y} \backslash y$. If u is adjacent to y, then Lemma 4.1 applied to $\left(H^{*}, p_{j}\right)$ is contradicted. So u is not adjacent to y, and hence u is of type p1 w.r.t. $\left(H^{*}, p_{j}\right)$ adjacent to p_{j}, contradicting Lemma 6.7. This completes the proof of Claim 3.

Claim 4: Node p_{j} does not have a neighbor in $\Sigma \backslash y$, it is adjacent to u and u is of type t3 or p w.r.t. Σ.

Proof of Claim 4: First suppose that p_{j} does not have a neighbor in $\Sigma \backslash y$. Since p_{j} has a neighbor in H_{2}, it must be adjacent to u. Suppose that u is of type t 3 b w.r.t. Σ. Let H^{*} be the hole induced by $P_{x_{2} y} \cup P_{x_{3} y}$. Then $\left(H^{*}, u\right)$ is a bug. By Lemma $4.1, p_{j}$ is of type p1 w.r.t. $\left(H^{*}, u\right)$ adjacent to u, contradicting Lemma 6.7.

Now suppose that p_{j} has a neighbor in $\Sigma \backslash y$. By Lemma 4.1 and Claims 1, 2 and $3, p_{j}$ is of type p w.r.t. Σ. Suppose that the neighbors of p_{j} in Σ are contained in $P_{x_{1} y}$. Since p_{j} has a neighbor in H_{2}, it must be adjacent to u. If u is of type p w.r.t. Σ, then by Lemma 5.6, u, p_{j} must be a crosspath of Σ, contradicting the assumption that Σ is decomposable. If u is of type t 3 w.r.t. Σ, then since G is diamond-free, p_{j} is not adjacent to x_{1}, and hence p_{j} is an attachment of u that has a neighbor in $P_{x_{1} y} \backslash y$, contradicting the assumption that all attachments of u to Σ end in $P_{x_{3} y}$. So u is of type t3b w.r.t. Σ. Let H^{*} be the hole induced by $P_{x_{2} y} \cup P_{x_{3} y}$. Then $\left(H^{*}, u\right)$ is a bug. By Lemma 4.1, p_{j} is of type p1 w.r.t. $\left(H^{*}, u\right)$, contradicting Lemma 6.7. Therefore, the neighbors of p_{j} in Σ cannot be contained in $P_{x_{1} y}$, and by symmetry they cannot be contained in $P_{x_{2} y}$. So p_{j} is of type p w.r.t. Σ and it has a
neighbor in $P_{x_{3} y} \backslash y$.
So $\Sigma \cup p_{j}$ is an extension of a decomposable $3 \mathrm{PC}(\triangle, \cdot)$. Let $H^{\prime}=\Sigma \cup Y \cup p_{j}$ and $H_{2}^{\prime}=H^{\prime} \backslash H_{1}$. H^{\prime} has a 2-join $H_{1} \mid H_{2}^{\prime}$ with special sets $A_{1}^{\prime}=A_{1}, A_{2}^{\prime}=\left\{x_{3}\right\}, B_{1}^{\prime}=B_{1}, B_{2}^{\prime}$ consists of y_{3} and possibly p_{j} (if p_{j} is adjacent to y). By Theorem 7.6, a proper subset of S is a blocking sequence for the 2-join $H_{1} \mid H_{2}^{\prime}$ of H^{\prime}, contradicting our choice of H and S. This completes the proof of Claim 4.

Claim 5: Node p_{1} is of type p w.r.t. Σ with a neighbor in $\left(P_{x_{1} y} \cup P_{x_{2} y}\right) \backslash y$.
Proof of Claim 5: By Claims 1 and 2, p_{1} cannot be of type t w.r.t. Σ. So by Lemma 8.2, p_{1} is not adjacent to a node of Y. Since $H_{1} \mid H_{2} \cup p_{1}$ is not a 2-join of $H \cup p_{1}, p_{1}$ must have a neighbor in H_{1}. Since p_{1} is not adjacent to any node of Y and by Remark 7.2, p_{1} must have a neighbor in $\left(P_{x_{1} y} \cup P_{x_{2} y}\right) \backslash y$.

Suppose that p_{1} is of type b w.r.t. Σ. Since Σ is decomposable, $N\left(p_{1}\right) \cap P_{x_{1} y}=y_{1}$, and p_{1} has two adjacent neighbors in $P_{x_{2} y} \backslash y$. By Claim 3, $j>1$. Let H^{*} be the hole induced by $P_{x_{1 y}} \cup P_{x_{2} y}$. Then $\left(H^{*}, p_{1}\right)$ is a bug. Since p_{1}, \ldots, p_{j} is a chordless path and $j>1, p_{2}$ is adjacent to p_{1}. By Lemma 4.1, Lemma 6.7 and Theorem 5.2 applied to (H^{*}, p_{1}) and p_{2}, node p_{2} must be of type t w.r.t. $\left(H^{*}, p_{1}\right)$. So p_{2} has two adjacent neighbors in $P_{x_{2} y} \backslash y$, and hence by Claim $4, j>2$. But then p_{2} contradicts Lemma 7.3 (since $N\left(p_{2}\right) \cap H_{1} \neq \varnothing, A_{1}$ or B_{1}). Therefore p_{1} cannot be of type b w.r.t. Σ, and hence by Lemma $4.1, p_{1}$ is of type p w.r.t. Σ with a neighbor in $\left(P_{x_{1 y} y} \cup P_{x_{2} y}\right) \backslash y$. This completes the proof of Claim 5.

Claim 6: $j>1$ and nodes of p_{2}, \ldots, p_{j-1} are either not adjacent to any node of H or are of type p1 w.r.t. Σ adjacent to y.

Proof of Claim 6: By Claims 4 and $5, j>1$. Let $i \in\{2, \ldots, j-1\}$. By definition of $p_{j}, N\left(p_{i}\right) \cap H_{2}=\varnothing$. The result now follows from Lemma 4.1 and Lemma 7.3. This completes the proof of Claim 6.

By Claims 4, 5 and 6 , path p_{1}, \ldots, p_{j}, u contradicts Lemma 8.3 or Lemma 8.4.

Proof of Lemma 1.4: Assume G contains a $\Sigma=3 \mathrm{PC}\left(x_{1} x_{2} x_{3}, y\right)$, but does not contain a $3 \mathrm{PC}(\triangle, \cdot)$ with a crosspath. Assume also that G does not have a clique cutset, a bisimplicial cutset nor a 2-join. By Theorem 3.2 and Theorem $5.2 G$ does not contain a wheel. In particular, Σ is long. Assume $G \neq \Sigma$. So $G \backslash \Sigma$ contains a node that has a neighbor in Σ. By Lemma 4.1 any such node is of type p1, p2 or t3 w.r.t. Σ.

First suppose that there exists $u \in G \backslash \Sigma$ that is either of type p1 w.r.t. Σ that is not adjacent to y, or of type p2 w.r.t. Σ. Then Σ is decomposable with extension $\Sigma \cup u$, contradicting Theorem 8.5. Therefore, nodes of $G \backslash \Sigma$ that have a neighbor in Σ are either of type p1 w.r.t. Σ adjacent to y, or of type t 3 w.r.t. Σ.

Next suppose that there exists $u \in G \backslash \Sigma$ that is of type t 3 w.r.t. Σ. By Lemma 6.2, every attachment of u to Σ ends in a type p1 node w.r.t. Σ. Since all type p1 nodes w.r.t. Σ are adjacent to y, every attachment of u to Σ ends in $P_{x_{3} y}$, and hence Σ is decomposable with extension $\Sigma \cup u$, contradicting Theorem 8.5.

Therefore, nodes of $G \backslash \Sigma$ that have a neighbor in Σ are all of type p1 w.r.t. Σ adjacent to y. Let u be any such node. Then u and $\Sigma \backslash y$ are contained in different connected components of $G \backslash y$, i.e., $\{y\}$ is a clique cutset of G, contradicting our assumption.

9 Connected triangles

In this section we decompose certain connected triangles.
Definition 9.1 A connected triangles $T\left(a_{1} a_{2} c, b_{1} b_{2} d, x, y\right)$ consists of a $3 \mathrm{PC}\left(a_{1} a_{2} c, x\right)$, with node $y \in P_{a_{2} x}$ adjacent to node x, together with a y-crosspath P with endnode b_{2} adjacent to $b_{1}, d \in P_{c x}$, where d lies on the $c b_{1}$-subpath of $P_{c x}$. Note that $c=d$ is allowed in this definition. All other nodes must be distinct. When $c=d$, we say that the connected triangles are degenerate.

So if $T\left(a_{1} a_{2} c, b_{1} b_{2} d, x, y\right)$ is a connected triangles, then the graph obtained from T by removing the edge $x y$ is a $3 \mathrm{PC}\left(a_{1} a_{2} c, b_{1} b_{2} d\right)$ or a 4 -wheel with center $c=d$. $T\left(a_{1} a_{2} c, b_{1} b_{2} d, x, y\right)$ is a connected triangles if and only if $T\left(b_{1} b_{2} d, a_{1} a_{2} c, x, y\right)$ is a connected triangles. For $\left\{z, z^{\prime}\right\}=\{x, y\}$ and triangle $\triangle_{T}=a_{1} a_{2} c$ or $b_{1} b_{2} d, T\left(a_{1} a_{2} c, b_{1} b_{2} d, x, y\right)$ contains a $3 \mathrm{PC}\left(\triangle_{T}, z\right)$ with a z^{\prime}-crosspath.

Figure 19: A connected triangles $T\left(a_{1} a_{2} c, b_{1} b_{2} d, x, y\right)$.

Definition 9.2 Let $T\left(a_{1} a_{2} c, b_{1} b_{2} d, x, y\right)$ be connected triangles. Note that T is a nontrivial basic graph with special nodes x and y. Let $P_{c d}$ be the cd-path of T that does not contain any node of $\left\{a_{1}, a_{2}, b_{1}, b_{2}, x, y\right\}$. Similarly define $P_{a_{1} x}, P_{a_{2} y}, P_{b_{1} x}, P_{b_{2} y}$. The path $P_{c d}$ is the internal segment of T and paths $P_{a_{1} x}, P_{a_{2} y}, P_{b_{1} x}, P_{b_{2} y}$ are the leaf segments of T.

Lemma 9.3 Let G be a (diamond, 4-hole)-free odd-signable graph that does not have a clique cutset nor a bisimplicial cutset. Let $T(\triangle, \triangle, x, y)$ be a connected triangles of G. If a node $u \in G \backslash T$ has a neighbor in T, then one of the following holds.
(i) For some segment P of $T, \varnothing \neq N(u) \cap T \subseteq P$, and u is of type p w.r.t. some $3 \mathrm{PC}(\triangle, \cdot)$ contained in T.
(ii) For some big clique K of $T, N(u) \cap T=K$.
(iii) For some big clique K of T and for some segment P of T that contains a node of K, $K \subseteq N(u) \cap T \subseteq K \cup P$, and $|N(u) \cap(T \backslash K)|=1$.
(iv) $N(u) \cap T=\{x, y\}$.
(v) For some $z \in\{x, y\}$ and for some segment P of T that does not contain $z, N(u) \cap T=$ $\left\{z, u_{1}, u_{2}\right\}$, where $u_{1} u_{2}$ is an edge of $P \backslash\{x, y\}$.

Proof: By Theorem 3.2, G does not contain a proper wheel. Let $T=T\left(a_{1} a_{2} c, b_{1} b_{2} d, x, y\right)$. Let Σ_{x} be the $3 \mathrm{PC}\left(a_{1} a_{2} c, x\right)$ contained in T and Σ_{x}^{\prime} the $3 \mathrm{PC}\left(b_{1} b_{2} d, x\right)$ contained in T. We may assume without loss of generality that u has a neighbor in Σ_{x}. Then by Lemma 4.1, u is of type p, b, or t w.r.t. Σ_{x}.

Suppose that u is of type t3b w.r.t. Σ_{x}. We first show that u cannot have a neighbor in $P_{b_{1} x} \backslash x$. Assume it does. Then by Lemma 4.1, u is of type pb w.r.t. Σ_{x}^{\prime}, and hence u does not have a neighbor in $P_{b_{2} y}$. But then $\left(T \backslash\left(P_{a_{1} x} \backslash a_{1}\right)\right) \cup u$ contains either a $3 \mathrm{PC}\left(u a_{2} c, b_{1} b_{2} d\right)$ or an even wheel with center $c=d$. Therefore, u does not have a neighbor in $P_{b_{1} x} \backslash x$. If u has a neighbor in $P_{a_{1} x} \backslash a_{1}$ or $P_{c d} \backslash c$, then by Lemma 4.1, u is of type pb w.r.t. Σ_{x}^{\prime}, and hence u does not have a neighbor in $P_{b_{2} y} \backslash y$, i.e., u satisfies (iii). So assume u has a neighbor in $P_{a_{2} y} \backslash a_{2}$. Then by Lemma 4.1 applied to u and Σ_{x}^{\prime}, u cannot have a neighbor in $P_{b_{2} y} \backslash y$, and hence (iii) holds. So by symmetry we may now assume that u is not of type t3b w.r.t. neither Σ_{x} nor Σ_{x}^{\prime}.

Next suppose that u is of type t3 w.r.t. Σ_{x}. By Lemma 4.1 applied to u and Σ_{x}^{\prime}, u cannot have a neighbor in $P_{b_{2} y} \backslash y$. Hence u satisfies (ii). So by symmetry we may now assume that u is not of type t 3 w.r.t. neither Σ_{x} nor Σ_{x}^{\prime}.

Suppose that u is of type b w.r.t. Σ_{x}. Let u_{1} and u_{2} be the two adjacent neighbors of u in Σ_{x} and let u^{\prime} be the third neighbor of u in Σ_{x}. Since by our assumption u cannot be of type t3b w.r.t. $\Sigma_{x}^{\prime}, u_{1}$ and u_{2} are contained in a segment of T. First suppose that $u^{\prime}=y$. So u must be of type b w.r.t. Σ_{x}^{\prime}. In particular, u does not have a neighbor in $P_{b_{2} y} \backslash y$, i.e., (v) holds. Next suppose that $u^{\prime} \in P_{a_{1} x} \backslash x$. If u has a neighbor in $P_{b_{2} y} \backslash y$, then u must be of type b w.r.t. Σ_{x}^{\prime}. But then $u_{1}, u_{2} \in P_{a_{2} y}$, and hence $\left(T \backslash\left(P_{a_{1} x} \cup P_{b_{1} x}\right)\right) \cup u$ induces an even wheel with center u. So u does not have a neighbor in $P_{b_{2} y} \backslash y$, i.e., $N(u) \cap T=\left\{u^{\prime}, u_{1}, u_{2}\right\}$. If u_{1}, u_{2} are contained in $P_{a_{2} y}$ or $P_{c d}$, then $\left(T \backslash P_{b_{1} x}\right) \cup u$ contains a $3 \mathrm{PC}\left(a_{1} a_{2} c, u u_{1} u_{2}\right)$ (if u is not adjacent to a_{2} nor c) or an even wheel with center a_{2} (if u is adjacent to a_{2}) or an even wheel with center c (if u is adjacent to c). So u_{1}, u_{2} are contained in $P_{b_{1} x}$. But then $(T \backslash x) \cup u$ contains a $3 \mathrm{PC}\left(a_{1} a_{2} c, b_{1} b_{2} d\right)$ or an even wheel with center $c=d$. Finally suppose that $u^{\prime} \in P_{b_{1} x} \backslash x$. If u has a neighbor in $P_{b_{2} y} \backslash y$, then u must be of type b w.r.t. Σ_{x}^{\prime}. But then $u_{1}, u_{2} \in P_{a_{2} y}$, and hence $\left(T \backslash\left(P_{a_{1} x} \cup P_{b_{1} x}\right)\right) \cup u$ induces an even wheel with center u. So u does not have a neighbor in $P_{b_{2} y} \backslash y$, i.e., $N(u) \cap T=\left\{u^{\prime}, u_{1}, u_{2}\right\}$. If $u_{1}, u_{2} \in P_{a_{2} y}$, then $\left(T \backslash P_{a_{1} x}\right) \cup u$ contains a $3 \mathrm{PC}\left(u u_{1} u_{2}, b_{1} b_{2} d\right)$. So $u_{1}, u_{2} \in P_{a_{1} x}$. But then $(T \backslash x) \cup u$ contains a $3 \mathrm{PC}\left(a_{1} a_{2} c, b_{1} b_{2} d\right)$ (if $c \neq d$) or an even wheel with center c (if $c=d$). So by symmetry we may now assume that u is not of type b w.r.t. neither Σ_{x} nor Σ_{x}^{\prime}.

Next suppose that u is adjacent to both x and y. Assume (iv) does not hold. Then u has a neighbor $u^{\prime} \in T \backslash\{x, y\}$. We may assume without loss of generality that $u^{\prime} \in \Sigma_{x} \backslash\{x, y\}$. Then u must be of type pb w.r.t. Σ_{x}, i.e., $u^{\prime} \in P_{a_{2} y}$ and u has no neighbor in $\left(P_{a_{1} x} \cup P_{b_{1} x} \cup P_{c d}\right) \backslash x$. If u has a neighbor in $P_{b_{2} y} \backslash y$, then u is of type pb w.r.t. Σ_{x}^{\prime}, and hence $P_{c d} \cup P_{a_{2} y} \cup P_{b_{2} y} \cup u$ induces a proper wheel with center u, a contradiction. So u does not have a neighbor in $P_{b_{2} y} \backslash y$. But then $\left(T \backslash P_{c d}\right) \cup u$ induces a bug with center u and a hat, contradicting Corollary 5.4. So we may assume that u is not adjacent to both x and y.

By our assumptions u is of type p w.r.t. Σ_{x} and Σ_{x}^{\prime}. Since u is not adjacent to both x and $y, N(u) \cap \Sigma_{x} \subseteq P$, where P is a segment of T. Similarly $N(u) \cap \Sigma_{x}^{\prime} \subseteq Q$, where Q is a segment of T. Suppose that (i) does not hold. Then $P=P_{a_{2} y}, Q=P_{b_{2} y}$, node u has a neighbor in $P_{b_{2} y} \backslash y$ and u has a neighbor in $P_{a_{2} y} \backslash y$. But then $(T \backslash y) \cup u$ contains a $3 \mathrm{PC}\left(a_{1} a_{2} c, b_{1} b_{2} d\right)$ (if $c \neq d$) or an even wheel with center c (if $c=d$).

Theorem 9.4 Let G be a (diamond, 4-hole)-free odd-signable graph that does not have a clique cutset nor a bisimplicial cutset. Let $T\left(a_{1} a_{2} c, b_{1} b_{2} c, x, y\right)$ be a degenerate connected triangles. Then there exists no node $u \notin T$ such that c is the unique neighbor of u in T.

Proof: Assume $T\left(a_{1} a_{2} c, b_{1} b_{2} c, x, y\right)$ is a degenerate connected triangles. Let Σ_{x} (resp. Σ_{x}^{\prime}) be the $3 \mathrm{PC}\left(a_{1} a_{2} c, x\right)$ (resp. $\left.3 \mathrm{PC}\left(b_{1} b_{2} c, x\right)\right)$ contained in T. Let U be the set of nodes $u \in G \backslash T$
such that $N(u) \cap T=c$. Assume $U \neq \varnothing$. Let S be the set of nodes comprised of a_{1}, a_{2}, c and all type (ii) and (iii) nodes w.r.t. T that are adjacent to a_{1}, a_{2} and c. Note that since G is diamond-free, S induces a clique. Since S cannot be a clique cutset, there exists a direct connection p_{1}, \ldots, p_{k} from U to $T \backslash S$ in $G \backslash S$. Let $p_{0} \in U$ be such that $p_{0} p_{1}$ is an edge, and let $P=p_{0}, \ldots, p_{k}$. Note that by Lemma 9.3, if $u \in G \backslash(T \cup S)$ is adjacent to c and $N(u) \cap T \subseteq\left\{a_{1}, a_{2}, c\right\}$, then $u \in U$. So by Lemma 9.3 and the definition of P, the following hold: a_{1} and a_{2} are the only nodes of T that may have a neighbor in $P \backslash\left\{p_{0}, p_{k}\right\}$, and a node of $P \backslash\left\{p_{0}, p_{k}\right\}$ may be adjacent to at most one node of $\left\{a_{1}, a_{2}\right\}$. Suppose that a node of $P \backslash\left\{p_{0}, p_{k}\right\}$ is adjacent to a node of $\left\{a_{1}, a_{2}\right\}$. Let p_{i} be such a node with lowest index. Then p_{0}, \ldots, p_{i} is a hat of Σ_{x}, contradicting Lemma 5.6. Therefore, no node of $P \backslash\left\{p_{0}, p_{k}\right\}$ has a neighbor in T. By Lemma 9.3, we now consider the following cases.

Case 1: p_{k} is of type (i) w.r.t. T.
Then without loss of generality $N\left(p_{k}\right) \cap T \subseteq P_{b_{1} x}$. If $N\left(p_{k}\right) \cap T=b_{1}$, then P is a hat of Σ_{x}^{\prime}, contradicting Lemma 5.6. So p_{k} has a neighbor in $P_{b_{1} x} \backslash b_{1}$. But then $\left(\Sigma_{x}^{\prime} \backslash b_{1}\right) \cup P$ contains a $3 \mathrm{PC}(c, x)$.

Case 2: p_{k} is of type (iv) w.r.t. T.
Then $P_{a_{1} x} \cup P_{a_{2} y} \cup P \cup c$ induces a $3 \mathrm{PC}\left(a_{1} a_{2} c, x y p_{k}\right)$.
Case 3: p_{k} is of type (v) w.r.t. T.
Without loss of generality p_{k} is adjacent to y and has two adjacent neighbors in $P_{a_{1} x}$. Let H be the hole induced by $P_{a_{1} x} \cup P_{a_{2} y}$. Then $\left(H, p_{k}\right)$ is a bug, and p_{k-1} is of type p1 w.r.t. (H, p_{k}), contradicting Lemma 6.7.

Case 4: p_{k} is of type (iii) w.r.t. T.
Then by definition of P, p_{k} is adjacent to b_{1}, b_{2}, c and without loss of generality it has a neighbor in $P_{b_{1} x} \backslash b_{1}$. Let Σ be the $3 \mathrm{PC}\left(c b_{2} p_{k}, x\right)$ contained in $T \cup p_{k}$. Then by Lemma 4.1 applied to $\Sigma, k>1$, and hence p_{0}, \ldots, p_{k-1} is a hat of Σ, contradicting Lemma 5.6.

Case 5: p_{k} is of type (ii) w.r.t. T.
Then by definition of $P, N\left(p_{k}\right) \cap T=\left\{b_{1}, b_{2}, c\right\}$. Let S^{\prime} be the set of nodes comprised of b_{1}, b_{2}, c and all type (ii) and (iii) nodes w.r.t. T that are adjacent to b_{1}, b_{2} and c. Note that since G is diamond-free, S^{\prime} induces a clique. Since S^{\prime} cannot be a clique cutset, there exists a direct connection $Q=q_{1}, \ldots, q_{l}$ from $P \backslash p_{k}$ to $T \backslash S^{\prime}$ in $G \backslash S^{\prime}$. So q_{1} has a neighbor in $P \backslash p_{k}$ and q_{l} has a neighbor in $T \backslash S^{\prime}$. By Lemma 9.3 and the definition of Q, the following hold: b_{1}, b_{2} and c are the only nodes of T that may have a neighbor in $Q \backslash q_{l}$, and a node of $Q \backslash q_{l}$ may be adjacent to at most one node of $\left\{b_{1}, b_{2}, c\right\}$. Suppose that b_{1} or b_{2} has a neighbor in $Q \backslash q_{l}$. Then $\left(Q \backslash q_{l}\right) \cup\left(P \backslash p_{k}\right)$ contains a path P^{\prime} whose one endnode is adjacent to c and no other node of T, whose other endnode is adjacent to exactly one node of $\left\{b_{1}, b_{2}\right\}$ and no other node of T, and whose intermediate nodes have no neighbors in T. But then P^{\prime} is a hat of Σ_{x}^{\prime}, contradicting Lemma 5.6. So b_{1} and b_{2} have no neighbors in $Q \backslash q_{l}$. But then $\left(P \backslash p_{k}\right) \cup Q$ contains a path whose one endnode is adjacent to c and no other node of T, whose other endnode is q_{l} (and hence is adjacent to a node of $T \backslash\left\{b_{1}, b_{2}, c\right\}$), and whose intermediate nodes have no neighbors in T. By symmetry and Cases $1,2,3$ and $4, N\left(q_{l}\right) \cap T=\left\{a_{1}, a_{2}, c\right\}$. Let R be the chordless path from p_{k} to q_{l} in $P \cup Q$. Then q_{l} is of type t3 w.r.t. Σ_{x} and $R \backslash q_{l}$ is an attachment of q_{l} to Σ_{x} that contradicts Lemma 6.2.

Definition 9.5 Let $T\left(a_{1} a_{2} c, b_{1} b_{2} d, x, y\right)$ be connected triangles. A path $P=p_{1}, \ldots, p_{k}$ in
$G \backslash T$ is an x-crosspath of T if one of the following holds:
(i) $k=1$ and p_{1} is of type (v) w.r.t. T, it is adjacent to x and has two adjacent neighbors in $P_{c d}$.
(ii) $k>1, N\left(p_{1}\right) \cap T=x, N\left(p_{k}\right) \cap T$ consists of two adjacent nodes of $P_{c d}$, and no node of $P \backslash\left\{p_{1}, p_{k}\right\}$ has a neighbor in T.

A y-crosspath of T is defined analogously. A crosspath of T is either an x-crosspath or a y-crosspath of T. Note that if P is an x-crosspath (resp. y-crosspath) of T, then P is an x-crosspath (resp. y-crosspath) of any $3 \mathrm{PC}(\triangle, y)$ (resp. $3 \mathrm{PC}(\triangle, x)$) contained in T.

Definition 9.6 Connected triangles $T\left(a_{1} a_{2} c, b_{1} b_{2} d, x, y\right)$ are decomposable if they are nondegenerate and there is no crosspath w.r.t. T. Furthermore, there exists $u \notin T$ that satisfies one of the following:
(i) $\varnothing \neq N(u) \cap V(T) \subseteq V\left(P_{c d}\right)$.
(ii) $N(u) \cap V(T)=\left\{a_{1}, a_{2}, c, v\right\}$ where v is a node of $P_{c d} \backslash c$, or $N(u) \cap V(T)=\left\{b_{1}, b_{2}, d, v\right\}$ where v is a node of $P_{c d} \backslash d$.

The graph $H=T \cup u$ is an extension of decomposable connected triangles T.
Theorem 9.7 Let G be a (diamond, 4-hole)-free odd-signable graph that does not have a clique cutset nor a bisimplicial cutset. If G contains a decomposable connected triangles, then G has a 2-join.

Proof: Let $T\left(a_{1} a_{2} c, b_{1} b_{2} d, x, y\right)$ be decomposable connected triangles of G, and let $H=T \cup u$ be its extension. Let $H_{2}=P_{c d} \cup u$ and $H_{1}=H \backslash H_{2}$. Let $A_{1}=\left\{a_{1}, a_{2}\right\}, B_{1}=\left\{b_{1}, b_{2}\right\}, A_{2}$ contains c and possibly u (if u is adjacent to a_{1}, a_{2}, c), and B_{2} contains d and possibly u (if u is adjacent to $\left.b_{1}, b_{2}, d\right)$. Then $H_{1} \mid H_{2}$ is a 2 -join of H with special sets $\left(A_{1}, A_{2}, B_{1}, B_{2}\right)$. We now show that 2-join $H_{1} \mid H_{2}$ of H extends to a 2-join of G (which proves the theorem). Assume it does not. By Theorem 7.4, there exists a blocking sequence $S=p_{1}, \ldots, p_{n}$. Without loss of generality we assume that H and S are chosen so that the size of S is minimized. Let p_{j} be the node of S with lowest index that is adjacent to a node of H_{2}. Let Σ_{x} be the $3 \mathrm{PC}\left(a_{1} a_{2} c, x\right)$ contained in T and let Σ_{y} be the $3 \mathrm{PC}\left(a_{1} a_{2} c, y\right)$ contained in T.

Claim 1: No node of S is of type (iii) w.r.t. T.
Proof of Claim 1: Assume p_{i} is a vertex of type (iii) w.r.t. T.
First suppose that $N\left(p_{i}\right) \cap T=\left\{a_{1}, a_{2}, c, v\right\}$, where v is a node of $P_{c d} \backslash c$. Then $H^{\prime}=T \cup p_{i}$ is an extension of a decomposable connected triangles. Let $H_{2}^{\prime}=P_{c d} \cup p_{i}$. Then $H_{1} \mid H_{2}^{\prime}$ is a 2-join of H^{\prime} with special sets $A_{1}^{\prime}=A_{1}, A_{2}^{\prime}=\left\{c, p_{i}\right\}, B_{1}^{\prime}=B_{1}, B_{2}^{\prime}=\{d\}$. By Theorem 7.6, a proper subset of S is a blocking sequence for the 2-join $H_{1} \mid H_{2}^{\prime}$ of H^{\prime}, contradicting our choice of H and S.

We may now assume without loss of generality that $N\left(p_{i}\right) \cap T=\left\{a_{1}, a_{2}, c, v\right\}$, where v is a node of $P_{a_{1} x} \backslash a_{1}$. Let $T^{\prime}\left(p_{i} a_{2} c, b_{1} b_{2} d, x, y\right)$ be the connected triangles contained in $\left(T \backslash a_{1}\right) \cup p_{i}$. Suppose that T^{\prime} has a crosspath $Q=q_{1}, \ldots, q_{l}$. If no node of $P_{a_{1} x} \backslash x$ is adjacent to or coincident with a node of Q, then Q is a crosspath of T, contradicting the assumption that T is decomposable. So a node of $P_{a_{1} x} \backslash x$ is adjacent to or coincident with a node of
Q. Let q_{t} be the node of Q with highest index that has a neighbor in $P_{a_{1} x} \backslash x$. If $t>1$ then q_{t}, \ldots, q_{l} and Σ_{y} contradict Lemma 5.6. So $t=1$. Since q_{t} is adjacent to a node of $P_{a_{1} x} \backslash x$, by Lemma $9.3, l>1$. But then, since q_{t} has a neighbor in $P_{a_{1} x} \backslash x$ and q_{l} has two adjacent neighbors in $P_{c d}, Q$ and Σ_{y} contradict Lemma 5.6. Therefore, T^{\prime} has no crosspath. By Lemma 9.3, u is of the same type w.r.t. T^{\prime} as it is w.r.t. T. So T^{\prime} is a decomposable connected triangles with extension $H^{\prime}=T^{\prime} \cup u$. Let $H_{1}^{\prime}=H^{\prime} \backslash H_{2}$. Then $H_{1}^{\prime} \mid H_{2}$ is a 2-join of H^{\prime} with special sets $A_{1}^{\prime}=\left\{p_{1}, a_{2}\right\}, A_{2}^{\prime}=A_{2}, B_{1}^{\prime}=B_{1}, B_{2}^{\prime}=B_{2}$. By Theorem 7.6, a proper subset of S is a blocking sequence for the 2-join $H_{1}^{\prime} \mid H_{2}$ of H^{\prime}, contradicting our choice of H and S. This completes the proof of Claim 1.

Claim 2: Node p_{j} is either of type (ii) w.r.t. T, or it does not have a neighbor in T, it is adjacent to u and u is of type (i) w.r.t. T.

Proof of Claim 2: First suppose that p_{j} is of type (i) w.r.t. T. If $N\left(p_{j}\right) \cap T \subseteq P_{c d}$, then $H^{\prime}=T \cup p_{j}$ is an extension of a decomposable connected triangles. Let $H_{2}^{\prime}=P_{c d} \cup p_{j}$. Then $H_{1} \mid H_{2}^{\prime}$ is a 2 -join of H^{\prime} with special sets $A_{1}^{\prime}=A_{1}, A_{2}^{\prime}=\{c\}, B_{1}^{\prime}=B_{1}, B_{2}^{\prime}=\{d\}$. By Theorem 7.6, a proper subset of S is a blocking sequence for the 2-join $H_{1} \mid H_{2}^{\prime}$ of H^{\prime}, contradicting our choice of H and S. So without loss of generality we may assume that $N\left(p_{j}\right) \cap T \subseteq P_{a_{1} x}$. Since p_{j} has a neighbor in H_{2}, it must be adjacent to u. If u is of type (i) w.r.t. T, then by Lemma 5.6, p_{j}, u must be an x-crosspath w.r.t. Σ_{y}. But then p_{j}, u is an x-crosspath w.r.t. T, a contradiction. So u is of type (iii) w.r.t. T. Let H^{*} be the hole induced by $P_{c d} \cup P_{a_{1} x} \cup P_{b_{1} x}$. Then $\left(H^{*}, u\right)$ is a bug. By Lemma 4.1, p_{j} is of type b w.r.t. $\left(H^{*}, u\right)$, i.e., it is a center-crosspath of (H^{*}, u), contradicting Theorem 5.2. Therefore, p_{j} cannot be of type (i) w.r.t. T.

Next suppose that p_{j} is of type (iv) w.r.t. T. Since p_{j} has a neighbor in H_{2}, it must be adjacent to u. But then u is an attachment of p_{j} to Σ_{x} that contradicts Lemma 6.9.

Now suppose that p_{j} is of type (v) w.r.t. T. Since T is decomposable, without loss of generality p_{j} is adjacent to y and has two adjacent neighbors in $P_{a_{1} x}$. Since p_{j} has a neighbor in H_{2}, it must be adjacent to u. Let H^{*} be the hole induced by $P_{a_{1} x} \cup P_{a_{2} y}$. Then $\left(H^{*}, p_{j}\right)$ is a bug. By Lemma 6.7 , u cannot be of type p1 w.r.t. $\left(H^{*}, p_{j}\right)$, and hence u has a neighbor in H^{*}. But then u is adjacent to a_{1}, a_{2}, c, and hence u is a center-crosspath of (H^{*}, p_{j}), contradicting Theorem 5.2.

Therefore, by Lemma 9.3, if p_{j} has a neighbor in T, then it is of type (ii) w.r.t. T. Now assume that p_{j} has no neighbor in T. Then p_{j} is adjacent to u. Suppose u is of type (iii) w.r.t. T. Let H^{*} be the hole induced by $P_{c d} \cup P_{a_{1} x} \cup P_{b_{1} x}$. Then $\left(H^{*}, u\right)$ is a bug, and hence p_{j} and (H^{*}, u) contradict Lemma 6.7. This completes the proof of Claim 2.

By Lemma 7.5, p_{1}, \ldots, p_{j} is a chordless path. By Lemma 7.3, Lemma 9.3, Claim 1 and definition of p_{j}, for $1<i<j, N\left(p_{i}\right) \cap T=\varnothing$.

Claim 3: Node p_{1} is of type (i) or (iv) w.r.t. T and $N\left(p_{1}\right) \cap T \subseteq H_{1}$.
Proof of Claim 3: By definition of a blocking sequence, $H_{1} \mid H_{2} \cup p_{1}$ is not a 2-join of $H \cup p_{1}$. So by Remark 7.2, p_{1} has a neighbor in H_{1} and p_{1} is not of type (ii) w.r.t. T. Suppose that p_{1} is of type (v) w.r.t. T. Since T is decomposable, $N\left(p_{1}\right) \cap T \subseteq H_{1}$. Without loss of generality $N\left(p_{1}\right) \cap T=\{y, r, s\}$, where r and s are two adjacent nodes of $P_{a_{1} x}$. Let H^{*} be the hole induced by $P_{a_{1} x} \cup P_{a_{2} y}$. Then $\left(H^{*}, p_{1}\right)$ is a bug. By Lemma 6.7, p_{2} cannot be of type p1 w.r.t. $\left(H^{*}, p_{1}\right)$. So p_{2} has a neighbor in H^{*}, and hence $j=2$. By Claim 2, p_{2} is of type (ii) w.r.t.
T adjacent to a_{1}, a_{2}, c (since p_{2} has a neighbor in H^{*}). But then p_{2} is a center-crosspath of $\left(H^{*}, p_{1}\right)$, contradicting Theorem 5.2. Therefore, p_{1} cannot be of type (v) w.r.t. T. So by Claim 1 and Lemma 9.3, p_{1} is of type (i) or (iv) w.r.t. T and $N\left(p_{1}\right) \cap T \subseteq H_{1}$. This completes the proof of Claim 3.

Claim 4: If $N\left(p_{j}\right) \cap T=\left\{a_{1}, a_{2}, c\right\}$, then the following hold:
(i) There exists a chordless path $Q=q_{1}, \ldots, q_{l}$ in $G \backslash T$ such that q_{1} is adjacent to p_{j}, $N\left(q_{l}\right) \cap T=r$, where r is a node of $P_{c d} \backslash c$, and no node of $Q \backslash q_{l}$ has a neighbor in T.
(ii) There does not exists a chordless path $Q=q_{1}, \ldots, q_{l}$ in $G \backslash T$ such that q_{1} is adjacent to $p_{j}, N\left(q_{l}\right) \cap T=r$, where r is a node of $H_{1} \backslash\left\{a_{1}, a_{2}\right\}$, and no node of $Q \backslash q_{l}$ has a neighbor in T.

Proof of Claim 4: Suppose that $N\left(p_{j}\right) \cap T=\left\{a_{1}, a_{2}, c\right\}$. Let K be the set of nodes that consists of a_{1}, a_{2}, c and all type (ii) and (iii) nodes w.r.t. T that are adjacent to a_{1}, a_{2} and c. Since G is diamond-free, K induces a clique. Since $K \backslash p_{j}$ cannot be a clique cutset separating p_{j} from $T, G \backslash\left(K \backslash p_{j}\right)$ contains a direct connection $Q=q_{1}, \ldots, q_{l}$ from p_{j} to T. So q_{1} is adjacent to p_{j}, q_{l} has a neighbor in $T \backslash\left\{a_{1}, a_{2}, c\right\}$, and no node of $Q \backslash q_{l}$ has a neighbor in $T \backslash\left\{a_{1}, a_{2}, c\right\}$. Without loss of generality q_{l} has a neighbor in $\Sigma_{x} \backslash\left\{a_{1}, a_{2}, c\right\}$. Then p_{j} is of type t 3 w.r.t. Σ_{x} and Q is an attachment of p_{j} to Σ_{x}. By Lemma 6.2, no node of $Q \backslash q_{l}$ has a neighbor in T and q_{l} is of type p1 w.r.t. Σ_{x}. By symmetry, if q_{l} has a neighbor in $\Sigma_{y} \backslash\left\{a_{1}, a_{2}, c\right\}$, then q_{l} is of type p1 w.r.t. Σ_{y}. Therefore by Lemma $9.3, N\left(q_{l}\right) \cap T=r$, where r is a node of $T \backslash\left\{a_{1}, a_{2}, c\right\}$. If $r \in P_{c d} \backslash c$ then (i) holds. We now show that r cannot be contained in $H_{1} \backslash\left\{a_{1}, a_{2}\right\}$, proving (i) and (ii). Suppose $r \in H_{1} \backslash\left\{a_{1}, a_{2}\right\}$. If $r \in P_{b_{2} y} \backslash y$ then $(T \backslash y) \cup Q \cup p_{j}$ contains a $3 \mathrm{PC}\left(a_{1} p_{j} c, b_{1} b_{2} d\right)$. So $r \notin P_{b_{2} y} \backslash y$, and by symmetry $r \notin P_{b_{1} x} \backslash x$. So without loss of generality $r \in P_{a_{1} x} \backslash a_{1}$. Let $T^{\prime}\left(p_{j} a_{2} c, b_{1} b_{2} d, x, y\right)$ be the connected triangles contained in $\left(T \backslash a_{1}\right) \cup Q \cup p_{j}$. By Lemma 9.3, u is of the same type w.r.t. T^{\prime} as it is w.r.t. T. We now show that T^{\prime} cannot have a crosspath.

Suppose $R=r_{1}, \ldots, r_{t}$ is a y-crosspath of T^{\prime}. Since T is decomposable, R cannot be a crosspath of T, and hence a node of $P_{a_{1} x}$ is adjacent to or coincident with a node of R. Let r_{i} be the node of R with highest index adjacent to a node of $P_{a_{1} x}$. Note that x does not have a neighbor in R, so r_{i} has a neighbor in $P_{a_{1} x} \backslash x$. By Lemma $9.3, i<t$. If $i>1$ then r_{i}, \ldots, r_{t} and Σ_{y} contradict Lemma 5.6. So $i=1$. By Lemma 9.3, r_{1} is of type (v) w.r.t. T. Let H^{*} be the hole induced by $P_{a_{1} x} \cup P_{a_{2} y}$. Then $\left(H^{*}, r_{1}\right)$ is a bug, and r_{2} is of type p1 w.r.t. $\left(H^{*}, r_{1}\right)$, contradicting Lemma 6.7.

Now suppose that R is an x-crosspath of T^{\prime}. Then R is an x-crosspath w.r.t. $\Sigma_{y}^{\prime}=$ $3 \mathrm{PC}\left(p_{j} a_{2} c, y\right)$ contained in T^{\prime}. By Lemma $6.6, R$ is a crosspath of Σ_{y}, and hence it is a crosspath of T, contradicting the assumption that T is decomposable.

Therefore, T^{\prime} cannot have a crosspath. Hence T^{\prime} is a decomposable connected triangles with extension $H^{\prime}=T^{\prime} \cup u$. Let $H_{1}^{\prime}=H^{\prime} \backslash H_{2}$. Then $H_{1}^{\prime} \mid H_{2}$ is a 2-join of H^{\prime} with special sets $A_{1}^{\prime}=\left\{p_{j}, a_{2}\right\}, A_{2}^{\prime}=A_{2}, B_{1}^{\prime}=B_{1}, B_{2}^{\prime}=B_{2}$. By Theorem 7.6 , a proper subset of S is a blocking sequence for the 2-join $H_{1}^{\prime} \mid H_{2}$ of H^{\prime}, contradicting our choice of H and S. This completes the proof of Claim 4.

By Claim 2 we now consider the following two cases.
Case 1: $N\left(p_{j}\right) \cap T=\varnothing, p_{j}$ is adjacent to u and u is of type (i) w.r.t. T.

Note that p_{1}, \ldots, p_{j}, u is a chordless path whose intermediate nodes have no neighbors in T. By Lemma 5.6 applied to p_{1}, \ldots, p_{j}, u and Σ_{x}, p_{1} cannot be of type (iv) w.r.t. T. So by Claim 3, p_{1} is of type (i) w.r.t. T, and without loss of generality $N\left(p_{1}\right) \cap T \subseteq P_{a_{2} y}$. By Lemma 5.6, p_{1}, \ldots, p_{j}, u is a y-crosspath w.r.t. Σ_{x}, and hence it is a y-crosspath of T, contradicting the assumption that T is decomposable.

Case 2: Node p_{j} is of type (ii) w.r.t. T.
Without loss of generality $N\left(p_{j}\right) \cap T=\left\{a_{1}, a_{2}, c\right\}$. By Claim 3 and Lemma 6.2 applied to Σ_{x} or Σ_{y}, p_{j} and $p_{j-1}, \ldots, p_{1}, N\left(p_{1}\right) \cap T=r$, where r is a node of H_{1}. By Claim 4 (ii), $r \in\left\{a_{1}, a_{2}\right\}$. Without loss of generality $r=a_{1}$. By Claim 4 (i), there exists a chordless path $Q=q_{1}, \ldots, q_{l}$ in $G \backslash T$ such that q_{1} is adjacent to $p_{j}, N\left(q_{l}\right) \cap T=r^{\prime}$, where r^{\prime} is a node of $P_{c d} \backslash c$, and no node of $Q \backslash q_{l}$ has a neighbor in T. Let Σ_{y}^{\prime} be the $3 \mathrm{PC}\left(a_{1} a_{2} p_{j}, y\right)$ contained in $(T \backslash c) \cup Q \cup p_{j}$. Let p_{i} be the node of p_{1}, \ldots, p_{j-1} with highest index that has a neighbor in $Q \cup p_{j}$. By Lemma 4.1, $i>1$. Then p_{1}, \ldots, p_{i} and Σ_{y}^{\prime} contradict Lemma 5.6.

10 Basic graphs

In this section we analyze properties of nontrivial basic graphs, and prove Lemma 1.5 (thus completing the proof of Theorem 1.2).

Lemma 10.1 ([7]) Let K be a big clique of a nontrivial basic graph R with special nodes x and y, and let u, v be two distinct nodes of K. Then R contains a hole H, that contains nodes u, v, x, y and no other node of K.

Lemma 10.2 ([7]) Every leaf (resp. internal) segment of a nontrivial basic graph R with special nodes x and y is the leaf (resp. internal) segment of a connected triangles $T(\triangle, \triangle, x, y)$ contained in R.

Lemma 10.3 ([7]) For any pair of segments P and Q of a nontrivial basic graph R with special nodes x and y, R contains a $\Sigma=3 \mathrm{PC}(\triangle, z)$, where $z \in\{x, y\}$, that contains $P \cup Q \cup$ $\{x, y\}$ such that P and Q belong to distinct paths of Σ. Furthermore, R contains a z^{\prime}-crosspath w.r.t. Σ, where $z^{\prime} \in\{x, y\} \backslash\{z\}$.

In particular, R contains a connected triangles $T(\triangle, \triangle, x, y)$ such that P and Q belong to different segments of T.

Definition 10.4 A graph R contained in G is a maximum nontrivial basic graph of G, if it is nontrivial basic and out of all nontrivial basic graphs in G, R has the largest number of segments, and out of all nontrivial basic graphs of G that have the same number of segments as R, R has the largest number of nodes.

Lemma 10.5 Let G be a (diamond, 4-hole)-free odd-signable graph that does not have a clique cutset, a bisimplicial cutset, nor a 2-join. Let R be a maximum nontrivial basic graph of G, with special nodes x and y.
(1) If P is a leaf segment of R containing x, then R contains a $\Sigma=3 \mathrm{PC}(\triangle, x)$ in which P is one of the paths and y is contained in one of the other two paths. Furthermore, R contains a y-crosspath w.r.t. Σ and all crosspaths of Σ in G are y-crosspaths that do not end in P.
(2) If P is an internal segment of R, then R contains a connected triangles $T(\triangle, \triangle, x, y)$ such that P is the internal segment of T and in G there is no crosspath w.r.t. T.

Proof: Let P be a leaf segment of R containing x. By Lemma $10.2, R$ contains a connected triangles $T(\triangle, \Delta, x, y)$ with P being a leaf segment of T. So T contains a $\Sigma=3 \mathrm{PC}(\triangle, x)$ in which P is one of the paths and y is contained in one of the other two paths. Also T contains a y-crosspath w.r.t. Σ. By Lemma 4.6, all crosspaths of Σ are y-crosspaths. Suppose there exists a y-crosspath $Y=y_{1}, \ldots, y_{m}$ such that y_{m} has neighbors r and s in P. Note that since Y is a crosspath of $\Sigma, r, s \in P \backslash x$. In fact, no node of Y is adjacent to x and no node of $Y \backslash y_{m}$ has a neighbor in P. Since P is a segment of $R, y_{m} \notin R$. If no node of Y is adjacent to or coincident with a node of $R \backslash\{r, s, y\}$, then $R^{\prime}=R \cup Y$ is a nontrivial basic graph. (Note that in this case, $R^{\prime} \backslash\{x, y\}$ is a line graph of a tree in which Y is a leaf segment and it is easy to check that all conditions for R^{\prime} to be nontrivial basic are satisfied). Since this would contradict the maximality of R, we may assume that some node of Y is adjacent to or coincident with a node of $R \backslash\{r, s, y\}$. Let y_{j} be a node of Y with highest index that is adjacent to a node, say u, of $R \backslash\{r, s, y\}$. Node u belongs to some segment $Q(\neq P)$ of R. By Lemma $10.3, R$ contains a connected triangles $T^{\prime}(\triangle, \triangle, x, y)$ such that P and Q belong to different segments of T^{\prime}. Since P is a leaf segment of R that contains x, T^{\prime} contains a $\Sigma^{\prime}=3 \mathrm{PC}(\triangle, x)$ that contains y, and is such that P and Q belong to different paths of Σ^{\prime}. Furthermore, R contains a y-crosspath w.r.t. Σ^{\prime}. Let P^{\prime} (resp. Q^{\prime}) be the path of Σ^{\prime} that contains P (resp. Q).

Suppose that $j=m$. Then by Lemma 4.1, y_{m} is of type b w.r.t. Σ^{\prime}, and hence y_{m} is a u-crosspath of Σ^{\prime}. Then by Lemma 4.6 and since Σ^{\prime} has a y-crosspath, $u=y$, contradicting our choice of u. So $j<m$, i.e., y_{m} is of type p2 w.r.t. Σ^{\prime}. Note also that y_{j} cannot have a neighbor in P.

Suppose y_{j} is of type b w.r.t. Σ^{\prime}. If y_{j} has a neighbor in P^{\prime}, then P^{\prime} together with one other path of Σ^{\prime} induces a bug (with center y_{j}) and y_{j}, \ldots, y_{m} is its center-crosspath, contradicting Theorem 5.2. So y_{j} does not have a neighbor in P^{\prime}. But then $\left(\Sigma^{\prime} \backslash P^{\prime}\right) \cup\left\{x, y_{j}\right\}$ induces a bug $\Sigma^{\prime \prime}$, with center y_{j}. Recall that y_{m} is not adjacent to x, and hence $P^{\prime} \cup\left\{y_{j+1}, \ldots, y_{m}\right\}$ contains a center-crosspath of this bug, contradicting Theorem 5.2. So y_{j} cannot be of type b w.r.t. Σ^{\prime}.

Suppose y_{j} is of type t3b w.r.t. Σ^{\prime}. Then $\Sigma^{\prime} \cup\left\{y_{j}, \ldots, y_{m}\right\}$ contains a bug (with center y_{j}) and a path that either contradicts Lemma 5.6 or is a center-crosspath, contradicting Theorem 5.2.

Suppose that y_{j} is of type t 3 w.r.t. Σ^{\prime}. Then y_{j+1}, \ldots, y_{m} is an attachment of y_{j} to Σ^{\prime} that contradicts Lemma 6.2.

Therefore, by Lemma 4.1, y_{j} is of type p w.r.t. Σ^{\prime}. Recall that y_{j} is not adjacent to x. Hence y_{j}, \ldots, y_{m} is a crossing of Σ^{\prime}. By Lemma $5.6, y_{j}, \ldots, y_{m}$ is a u-crosspath of Σ^{\prime}. Hence by Lemma 4.6 and since Σ^{\prime} has a y-crosspath, $u=y$, contradicting our choice of u. Therefore (1) holds.

Now let P be an internal segment of R. By Lemma $10.2, R$ contains a connected triangles $T(\triangle, \triangle, x, y)$ such that P is the internal segment of T. Suppose without loss of generality that there is a y-crosspath $Y=y_{1}, \ldots, y_{m}$ w.r.t. T. Let r and s be the neighbors of y_{m} in P. Since P is a segment of $R, y_{m} \notin R$. If no node of Y is adjacent to or coincident with a node of $R \backslash\{r, s, y\}$, then (as before) $R^{\prime}=R \cup Y$ is a nontrivial basic graph, contradicting the maximality of R. So a node of Y is adjacent to or coincident with a node of $R \backslash\{r, s, y\}$. Let y_{j} be the node of Y with highest index that has a neighbor, say u, in $R \backslash\{r, s, y\}$. Node
u belongs to some segment $Q(\neq P)$ of R. Note that no node of Y is adjacent to x, and no node of $Y \backslash y_{m}$ has a neighbor in P. In particular, $u \notin\{x, y\}$. By Lemma 10.3, R contains a connected triangles $T^{\prime}(\triangle, \triangle, x, y)$, such that P and Q belong to different segments of T^{\prime}. So T^{\prime} contains a $\Sigma^{\prime}=3 \operatorname{PC}(\triangle, z)$, where $z \in\{x, y\}$, that contains both x and y, and such that P and Q belong to different paths of Σ^{\prime}. Furthermore, T^{\prime} contains a z^{\prime}-crosspath of Σ^{\prime}, where $z^{\prime} \in\{x, y\} \backslash z$. If $z=x$ then a contradiction is obtained in exactly the same way as in the proof of (1). So we may assume that P and Q both belong to segments of T^{\prime} that have y as an endnode. Then $z=y$.

If y_{j} is of type b w.r.t. Σ^{\prime}, then y_{j} is a crosspath of Σ^{\prime}. Since Σ^{\prime} has an x-crosspath, by Lemma 4.6, y_{j} must be an x-crosspath of Σ^{\prime}, but this contradicts the fact that y_{j} cannot be adjacent to x. So y_{j} cannot be of type b w.r.t. Σ^{\prime}.

If $j=m$ then by Lemma 4.1, y_{j} is of type b w.r.t. Σ^{\prime}, a contradiction. So $j<m$, and hence by Lemma 4.1, y_{m} is of type p 2 w.r.t. Σ^{\prime}.

If y_{j} is of type p w.r.t. Σ^{\prime}, then since y_{j} is not adjacent to y and by Lemma 5.6, y_{j}, \ldots, y_{m} is a u-crosspath of Σ^{\prime}. Since Σ^{\prime} has an x-crosspath and $u \neq x$, Lemma 4.6 is contradicted.

If y_{j} is of type t 3 w.r.t. Σ^{\prime}, then y_{j+1}, \ldots, y_{m} is an attachment of y_{j} to Σ^{\prime} that contradicts Lemma 6.2. So by Lemma 4.1, y_{j} is of type t3b w.r.t. Σ^{\prime}. But then $\Sigma^{\prime} \cup\left\{y_{j}, \ldots, y_{m}\right\}$ contains a bug with center y_{j} and a path that either contradicts Lemma 5.6 or is a center-crosspath of this bug, contradicting Theorem 5.2. Therefore (2) holds.

Lemma 10.6 Let G be a (diamond, 4-hole)-free odd-signable graph that does not have a clique cutset, a bisimplicial cutset, nor a 2-join. Let R be a maximum nontrivial basic graph of G, with special nodes x and y. If u is a node of $G \backslash R$ that has a neighbor in R, then one of the following holds.
(i) For some segment P of $R, \varnothing \neq N(u) \cap R \subseteq P$.
(ii) For some big clique K of $R, N(u) \cap R=K$.
(iii) For some big clique K of R and for some segment P of R that contains a node of K, $K \subseteq N(u) \cap R \subseteq K \cup P,|N(u) \cap(R \backslash K)|=1$ and $N(u) \cap\{x, y\}=\varnothing$.
(iv) $N(u) \cap R=\{x, y\}$.
(v) For some big clique K of R and for some $z \in\{x, y\}, N(u) \cap R=K \cup\{z\}$.

Proof: Let u be a node of $G \backslash R$ that has a neighbor in R.
Claim 1: If for some big clique K of $R,|N(u) \cap K| \geq 2$, then $N(u) \cap K=K$.
Proof of Claim 1: Follows from the fact that G is diamond-free. This completes the proof of Claim 1.

Claim 2: Let K_{1} and K_{2} be two distinct big cliques of R. If $\left|N(u) \cap K_{1}\right| \geq 2$, then $\left|N(u) \cap K_{2}\right| \leq 1$.

Proof of Claim 2: Assume $\left|N(u) \cap K_{1}\right| \geq 2$ and $\left|N(u) \cap K_{2}\right| \geq 2$. Then by Claim 1, $N(u) \cap\left(K_{1} \cup K_{2}\right)=K_{1} \cup K_{2}$. Note that $K_{1} \cap K_{2}=\varnothing$, else there is a diamond in $K_{1} \cup K_{2} \cup u$. Let P be a segment of R that contains a node $u_{1} \in K_{1}$. Let Q be a segment of R, distinct
from P, that contains a node $u_{2} \in K_{2}$. By Lemma $10.3, R$ contains a connected triangles $T(\triangle, \triangle, x, y)$ such that P and Q belong to distinct segments of T. Then (by definition of a nontrivial basic graph) T contains at least two nodes of K_{1}, say u_{1} and v_{1}, and at least two nodes of K_{2}, say u_{2} and v_{2}. But then u is adjacent to all endnodes of two distinct edges of T that do not have a common endnode, contradicting Lemma 9.3. This completes the proof of Claim 2.

Claim 3: If $N(u) \cap\{x, y\}=\{x, y\}$, then (iv) holds.
Proof of Claim 3: Assume not. Then for some $v \in R \backslash\{x, y\}, u$ is adjacent to x, y and v. Let P be a segment of R that contains v. By Lemma 10.2, R contains a connected triangles $T(\triangle, \triangle, x, y)$ such that P is one of the segments of T. But then T and u contradict Lemma 9.3. This completes the proof of Claim 3.

Claim 4: R cannot contain two distinct edges $u_{1} v_{1}$ and $u_{2} v_{2}$, that do not both belong to the same big clique of R, such that u is adjacent to all of $\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}$.

Proof of Claim 4: Assume not. Since $u_{1} v_{1}$ and $u_{2} v_{2}$ are distinct edges and they do not belong to the same big clique of R, either $\left\{u_{1}, v_{1}, u_{2}, v_{2}\right\}$ induces a chordless path of length 2 or 3 , or no node of $\left\{u_{1}, v_{1}\right\}$ is adjacent to a node of $\left\{u_{2}, v_{2}\right\}$. Since G is diamond-free, no node of $\left\{u_{1}, v_{1}\right\}$ is adjacent to a node of $\left\{u_{2}, v_{2}\right\}$, in particular all nodes $u_{1}, v_{1}, u_{2}, v_{2}$ are distinct. By Claim 3, $u_{1} v_{1}$ (resp. $u_{2} v_{2}$) belongs to either a segment of R or a big clique of R. By Claim 2 , it is not possible that both $u_{1} v_{1}$ and $u_{2} v_{2}$ belong to big cliques of R. So without loss of generality $u_{1} v_{1}$ belongs to a segment P of R.

Suppose that $u_{2} v_{2}$ also belongs to P. Then by Lemma $10.2, R$ contains a connected triangles $T(\triangle, \triangle, x, y)$ such that P is one of the segments of T. But then T and u contradict Lemma 9.3. So it is not possible that both u_{2} and v_{2} belong to P. Without loss of generality u_{2} belongs to a segment Q of R that is distinct from P. Also without loss of generality $u_{2} \notin\{x, y\}$ (since $u_{2} v_{2}$ belongs to either a big clique of R or a segment of R). By Lemma $10.3, R$ contains a connected triangles $T(\triangle, \triangle, x, y)$ such that P and Q belong to different segments of T. But then u is adjacent to an edge of some segment of T and has a neighbor $u_{2} \notin\{x, y\}$ in another segment of T, contradicting Lemma 9.3. This completes the proof of Claim 4.

Claim 5: If for some big clique K of $R,|N(u) \cap K| \geq 2$, then (ii), (iii) or (v) holds.
Proof of Claim 5: Assume that K is a big clique of R such that $|N(u) \cap K| \geq 2$. By Claim 1, $N(u) \cap K=K$. If u does not have a neighbor in $R \backslash(K \cup\{x, y\})$, then (ii) or (v) holds by Claim 3. So we may assume that u has a neighbor $v \in R \backslash(K \cup\{x, y\})$. Let P be the segment of R that contains v.

Suppose that u has a neighbor in $\{x, y\}$. Then by Claim 3, without loss of generality $N(u) \cap\{x, y\}=x$. Let Q be a segment of R, distinct from P, that contains a node of K. By Lemma 10.3, R contains a connected triangles $T(\triangle, \triangle, x, y)$ such that P and Q belong to different segments of T. Since u is adjacent to x and has neighbors in two distinct segments of $T \backslash\{x, y\}$, by Lemma 9.3, u has exactly four neighbors in $T: x$ and the three nodes of a big clique K_{1} of T. So $K_{1} \subseteq K$ and $v \in K$, contradicting our assumption. Therefore, u is not adjacent to a node of $\{x, y\}$.

Assume that $|N(u) \cap(R \backslash K)|>1$. Then u has a neighbor $w \in R \backslash(K \cup\{x, y, v\})$. First suppose that $w \in P$. Let Q be a segment of R, distinct from P, that contains a node of K. By Lemma $10.3, R$ contains a connected triangles $T(\triangle, \triangle, x, y)$ such that P and Q belong to different segments of T. If a big clique of T is contained in K, then u has at least five neighbors in T, contradicting Lemma 9.3. So a big clique of T is not contained in K, and hence a segment of T contains an edge of K. Since u is adjacent to an edge of one segment of T and has at least two more neighbors in another segment of T, Lemma 9.3 is contradicted. Hence $w \notin P$.

So w belongs to a segment Q of R that is distinct from P. By Lemma 10.3, R contains a connected triangles $T(\triangle, \triangle, x, y)$ such that P and Q belong to different segments of T. Since u is not adjacent to x nor y, by Lemma 9.3 , u has exactly four neighbors in T and it is adjacent to all three nodes of a big clique K_{1} of T. By Claim 2, $K_{1} \subseteq K$, contradicting the assumption that $v, w \in R \backslash K$. Therefore $|N(u) \cap(R \backslash K)|=1$.

Suppose that (iii) does not hold. Then P does not contain a node of K. Let Q be any segment of R that contains a node of K. By Lemma $10.3, R$ contains a connected triangles $T(\triangle, \triangle, x, y)$ such that P and Q belong to different segments of T. By Lemma 9.3 and since u is not adjacent to a node of $\{x, y\}$, for some big clique K_{1} of $T, K_{1} \subseteq K$. Let K_{2} be the other big clique of T. Let P^{\prime} be the segment of T that contains P. By Lemma 9.3, P^{\prime} contains a node w of K_{1}. Since P does not contain a node of K, the $v w$-subpath of P^{\prime} contains an edge of a big clique K_{3} of R. Assume K_{3} is chosen so that the subpath of P^{\prime} from v to a node of K_{3} is shortest possible. Let p be a node of K_{3} that does not belong to P^{\prime}.

First suppose that P^{\prime} is the internal segment of T. Let P^{*} be a path from p to z, where $z \in\{x, y\}$, in $R \backslash(T \backslash\{x, y\})$ that does not contain a node of $\{x, y\} \backslash z$ (note that such a path exists by the definition of a nontrivial basic graph). Without loss of generality $z=y$. Let T^{\prime} be the connected triangles $T^{\prime}(\triangle, \triangle, x, y)$ contained in $T \cup P^{*}$ that contains K_{1}, P^{\prime} and P^{*}. Then T^{\prime} and u contradict Lemma 9.3.

Now assume without loss of generality that P^{\prime} is a leaf segment of T that contains x. First suppose that p does not belong to a leaf segment of R that contains x. We now show that $R \backslash(T \backslash\{x, y\})$ contains a path P^{*} from p to y such that P^{*} does not contain x. If p belongs to a leaf segment of R, then such a path P^{*} clearly exists. So assume that p belongs to an internal segment S of R. Let K_{4} be the big clique of R, distinct from K_{3}, that contains an endnode of S. Let s_{1} be the node of K_{4} that belongs to S, and let s_{2} and s_{3} be two nodes of $K_{4} \backslash s_{1}$. By Lemma 10.1, R contains a hole H that contains s_{2}, s_{3}, x, y and no other node of K_{4}. So H is contained in $R \backslash(T \backslash\{x, y\})$, and hence the desired path P^{*} exists (it consists of S and the appropriate subpath of H). Let T^{\prime} be the connected triangles $T^{\prime}(\triangle, \triangle, x, y)$ contained in $T \cup P^{*}$ that contains K_{2}, P^{\prime} and P^{*}. Then T^{\prime} and u contradict Lemma 9.3.

Hence p belongs to a leaf segment P^{*} of R that contains x. Let p_{x} (resp. p_{w}) be the neighbor of p in P^{\prime} that is closest to x (resp. w). Let $\Sigma^{\prime}=3 \mathrm{PC}\left(p p_{x} p_{w}, x\right)$ induced by P^{\prime}, P^{*} and the leaf segment of T that contains y and a node of K_{1}. By Lemma 4.1, u is of type b w.r.t. Σ^{\prime}, and hence $v x$ is an edge. So by the choice of K_{3}, the $p_{x} x$-subpath \bar{P} of P^{\prime} is a leaf segment of R. But then K_{3} contains two distinct nodes that belong to leaf segments of R that both contain x, contradicting the definition of a nontrivial basic graph. Therefore P must contain a node of K_{1}, i.e., (iii) holds. This completes the proof of Claim 5.

By Claim 5, we may assume that for every big clique K of $R,|N(u) \cap K| \leq 1$. By Claim 3, we may assume without loss of generality that u is not adjacent to x. Assume that (i) does not hold. Then u has neighbors v and w in distinct segments of R, say P and Q. By Lemma
10.3, R contains a connected triangles $T(\triangle, \triangle, x, y)$ such that P and Q belong to different segments of T. By Lemma 9.3 , u has exactly three neighbors in $T: y$ and endnodes of an edge of without loss of generality P. Suppose that u has a neighbor in $R \backslash(P \cup y)$. Then by the same argument, for some sector Q^{\prime} of R, distinct from P, u is adjacent to endnodes of an edge of Q^{\prime}, contradicting Claim 4. Therefore $|N(u) \cap R|=3$. But then $R \cup u$ is a nontrivial basic graph, contradicting the maximality of R.

Proof of Lemma 1.5: Assume G does not have a clique cutset, a bisimplicial cutset nor a 2-join. Assume G contains a $\Sigma=3 \operatorname{PC}(\triangle, \cdot)$ with a crosspath P. By Theorem 5.2, it is not possible that Σ is a bug and P its center-crosspath. Hence $\Sigma \cup P$ induces a nontrivial basic graph. Let R be a maximum nontrivial basic graph of G, and let R^{*} be its extension. Let x, y be the special nodes of R. Assume that $G \neq R^{*}$. Then there exists a node $u \in G \backslash R^{*}$ that has a neighbor in R^{*}.

Claim 1: u has a neighbor in R.
Proof of Claim 1: Assume it does not. Then u is adjacent to a node $v \in R^{*} \backslash R$. Without loss of generality $N(v) \cap R=K \cup x$, where K is a big clique of R. Let v_{1} and v_{2} be two distinct nodes of K. By Lemma 10.1, R contains a hole H that contains nodes v_{1}, v_{2}, x, y. Since G is diamond-free, (H, v) is a bug. But then (H, v) and u contradict Lemma 6.7. This completes the proof of Claim 1.

By Claim 1, u must satisfy one of (i)-(iv) of Lemma 10.6 (note that nodes that satisfy (v) of Lemma 10.6 are in $R^{*} \backslash R$), and hence we consider the following cases.

Case 1: There exists $u \in G \backslash R^{*}$ such that $\varnothing \neq N(u) \cap R \subseteq P$, where P is an internal segment of R.

By Lemma $10.5, R$ contains a connected triangles $T(\triangle, \triangle, x, y)$ such that P is the internal segment of T, and in G there is no crosspath w.r.t. T. By Theorem $9.4, T$ is nondegenerate. Hence T is decomposable with extension $T \cup u$, contradicting Theorem 9.7.

Case 2: There exists $u \in G \backslash R^{*}$ such that $\varnothing \neq N(u) \cap R \subseteq P$, where P is a leaf segment of R, and $N(u) \cap R \nsubseteq\{x, y\}$.

Without loss of generality P contains x. By Lemma $10.5, R$ contains a $\Sigma=3 \mathrm{PC}(\triangle, x)$ in which P is one of the paths and y is contained in one of the other two paths. Also Σ has a y-crosspath and all crosspaths of Σ are y-crosspaths that do not end in P. Suppose that P is of length 1 . Then Σ is a bug, u is adjacent to the center of this bug, and hence Σ and u contradict Lemma 6.7. So P is of length greater than 1 . But then Σ is decomposable with extension $\Sigma \cup u$, contradicting Theorem 8.5.

Case 3: There exists $u \in G \backslash R^{*}$ such that for some big clique K of R and for some segment P of R that contains a node of $K, K \subseteq N(u) \cap R \subseteq K \cup P,|N(u) \cap(R \backslash K)|=1$ and $N(u) \cap\{x, y\}=\varnothing$.

First suppose that P is an internal segment of R. Then by Lemma 10.5, R contains a connected triangles $T\left(a_{1} a_{2} c, b_{1} b_{2} d, x, y\right)$ such that P is the internal segment of T, and in G there is no crosspath w.r.t. T. Without loss of generality $\left\{a_{1}, a_{2}, c\right\} \subseteq K$. Since u has a neighbor in $P \backslash c, T$ is nondegenerate. Hence T is decomposable with extension $T \cup u$, contradicting Theorem 9.7.

Now suppose that P is a leaf segment of R. Without loss of generality P contains x. Note that u is not adjacent to x. In particular, since G is diamond-free, P is of length greater than 1. By Lemma 10.5, R contains a $\Sigma=3 \operatorname{PC}(\triangle, x)$ in which P is one of the paths and y is contained in one of the other two paths of Σ. Furthermore, R contains a y-crosspath w.r.t. Σ, and all crosspath of Σ in G are y-crosspaths that do not end in P. Therefore, Σ is decomposable with extension $\Sigma \cup u$, contradicting Theorem 8.5.

Case 4: There exists $u \in G \backslash R^{*}$ such that $N(u) \cap R=\{x, y\}$.
By Lemma $10.5, R$ contains a $\Sigma=3 \mathrm{PC}\left(a_{1} a_{2} a_{3}, x\right)$ such that y is contained in $P_{a_{3} x}$ path of Σ. Note that by definition of nontrivial basic graph, $y \neq a_{3}$. By Lemma 6.9, u is attached to Σ. Let $P=p_{1}, \ldots, p_{k}$ be an attachment of u to Σ. Then by Lemma $6.9, p_{k}$ is of type p1 w.r.t. Σ, adjacent to a node of $P_{a_{3} x} \backslash\{x, y\}$. Note that $p_{k} \notin R^{*}$. Suppose that p_{k} satisfies (ii) or (iii) of Lemma 10.6. Then p_{k} is adjacent to all nodes of some big clique K of R, and Σ must contain at least one edge of K. But then p_{k} has at least two neighbors in Σ, contradicting the assumption that p_{k} is of type p1 w.r.t. Σ. So p_{k} cannot satisfy (ii) nor (iii) of Lemma 10.6. Hence p_{k} satisfies (i) of Lemma 10.6. But then Case 1 or 2 holds, and we are done.

Case 5: There exists $u \in G \backslash R^{*}$ such that $N(u) \cap R=x$ or $N(u) \cap R=y$.
Let U be the set of nodes $u \in G \backslash R^{*}$ such that $N(u) \cap R=x$ or $N(u) \cap R=y$. So $U \neq \varnothing$. Since $\{x, y\}$ cannot be a clique cutset separating U from R^{*}, there exists a chordless path $P=u_{1}, \ldots, u_{n}$ in $G \backslash\{x, y\}$ such that $u_{1} \in U$ and u_{n} has a neighbor in $R^{*} \backslash\{x, y\}$. Assume P is shortest such path. We may assume that Cases $1,2,3$ and 4 do not hold. Hence by Lemma 10.6 and Claim 1, for every $u \in G \backslash R^{*}$ if u has a neighbor in R^{*}, then either $u \in U$ or $N(u) \cap R=K$ for some big clique K of R. So no node of $P \backslash u_{n}$ has a neighbor in R^{*}, and $N\left(u_{n}\right) \cap R=K$ for some big clique K of R. Without loss of generality u_{1} is adjacent to x.

If K does not contain an endnode of a leaf segment whose other endnode is x, then $R \cup P$ is a nontrivial basic graph, contradicting the maximality of R. So there exists a leaf segment Q of R with endnodes x and $r \in K$. If $x r$ is an edge, then $(R \backslash r) \cup P$ is a nontrivial basic graph that contradicts the maximality of R (since $n>1$). So $x r$ is not an edge, i.e., Q is of length greater than 1. By Lemma $10.5, R$ contains a $\Sigma=3 \mathrm{PC}(\triangle, x)$ in which Q is one of the paths and y is contained in one of the other two paths of Σ. Furthermore, R contains a y-crosspath w.r.t. Σ, and all crosspath of Σ in G are y-crosspaths that do not end in Q. Note that u_{n} is of type t 3 w.r.t. Σ. If all attachments of u_{n} to Σ end in Q, then Σ is decomposable with extension $\Sigma \cup u_{n}$, contradicting Theorem 8.5.

So we may assume that there is an attachment $P^{\prime}=x_{1}, \ldots, x_{k}$ of u_{n} to Σ such that x_{k} has a neighbor in $\Sigma \backslash Q$. By Lemma $6.2, x_{k}$ is of type p1 w.r.t. Σ. Suppose that x_{k} is not adjacent to y. Then $x_{k} \notin R^{*}$. By our assumption that cases $1,2,3$ and 4 do not hold, and since x_{k} is not adjacent to x nor y, x_{k} satisfies (ii) of Lemma 10.6. So for some big clique K of $R, N\left(x_{k}\right) \cap R=K$. Since x_{k} is adjacent to a node of Σ, Σ contains at least one node of K, and hence (by definition of nontrivial basic graph) it must contain at least one edge of K. But then x_{k} would have to have more than one neighbor in Σ, a contradiction. So $N\left(x_{k}\right) \cap \Sigma=y$.

Next we show that no node of P^{\prime} is adjacent to or coincident with a node of $R \backslash y$. Suppose not and let x_{i} be the node of P^{\prime} with lowest index that is adjacent to or coincident with a node of $R \backslash y$, say u.

Suppose that $x_{i} \in R^{*}$. If $i<k$ then x_{i} has no neighbor in $\{x, y\}$ and hence $x_{i} \in R \backslash y$. By the choice of $x_{i}, i=1$, but this contradicts the assumption that $N\left(u_{n}\right) \cap R=K$ (since
u_{n} is adjacent to x_{1}). So $i=k$. If $x_{k} \in R$, then by the choice of $x_{i}, k=1$, and again the assumption that $N\left(u_{n}\right) \cap R=K$ is contradicted. So $x_{k} \in R^{*} \backslash R$. By the choice of x_{i} and Claim 1, $k=1$. Let K^{\prime} be the big clique of R such that $N\left(x_{k}\right) \cap R=K^{\prime} \cup y$. Note that $K \neq K^{\prime}$. Let k_{1} and k_{2} be two distinct nodes of K^{\prime}. By Lemma 10.1 , let H be the hole of R that contains k_{1}, k_{2}, x and y. Then (H, x_{k}) is a bug. By Lemma 4.1 and since $K \neq K^{\prime}$, u_{n} is of type p1 or b w.r.t. $\left(H, x_{k}\right)$, contradicting Lemma 6.7 or Theorem 5.2. Therefore, $x_{i} \in G \backslash R^{*}$.

So x_{i} is adjacent to u. Note that since x_{i} is not adjacent to $x, u \in R \backslash\{x, y\}$. By Lemma 10.6 and since Cases $1,2,3$ and 4 do not hold, $N\left(x_{i}\right) \cap R=K^{\prime}$ for some big clique K^{\prime} of R. Note that $K \neq K^{\prime}$ and $i<k$. Node u is contained in some segment $Q^{\prime}(\neq Q)$ of R. By Lemma 10.3, R contains a $\Sigma^{\prime \prime}=3 \mathrm{PC}\left(a_{1} a_{2} a_{3}, x\right)$ that contains y such that Q and Q^{\prime} belong to different paths of $\Sigma^{\prime \prime}$. Note that by the choice of x_{i}, no node of x_{1}, \ldots, x_{i-1} is adjacent to or coincident with a node of R. If a_{1}, a_{2}, a_{3} are not contained in K (resp. K^{\prime}), then the path of $\Sigma^{\prime \prime}$ that contains Q (resp. Q^{\prime}) contains an edge of K (resp. K^{\prime}) and hence u_{n} (resp. x_{i}) is of type p2 w.r.t. $\Sigma^{\prime \prime}$. So u_{n} and x_{i} are of type p2 or t 3 w.r.t. $\Sigma^{\prime \prime}$. If u_{n} and x_{i} are both of type p2 w.r.t. $\Sigma^{\prime \prime}$, then path $u_{n}, x_{1}, \ldots, x_{i}$ contradicts Lemma 5.6 applied to $\Sigma^{\prime \prime}$. So without loss of generality u_{n} is of type t3 w.r.t. $\Sigma^{\prime \prime}$. Then since $K \neq K^{\prime}, x_{i}$ is of type p 2 w.r.t. $\Sigma^{\prime \prime}$, and hence x_{1}, \ldots, x_{i} is an attachment of u_{n} to $\Sigma^{\prime \prime}$ that contradicts Lemma 6.2.

Therefore no node of P^{\prime} is adjacent to or coincident with a node of $R \backslash y$.
Let Σ^{\prime} be the $3 \mathrm{PC}(\triangle, x)$ obtained from Σ by substituting P, x for Q. Let x_{j} be the node of P^{\prime} with highest index that is adjacent to a node of P. By Lemma $5.6, x_{j}, \ldots, x_{k}$ is a y-crosspath w.r.t. Σ^{\prime}, and hence x_{j} is adjacent to two adjacent nodes u_{t}, u_{t+1} of P. Let R^{\prime} be the graph obtained from R by replacing Q with paths P, x and x_{j}, \ldots, x_{k}. Clearly R^{\prime} is a nontrivial basic graph that contradicts the maximality of R.

Case 6: There exists $u \in G \backslash R^{*}$ such that $N(u) \cap R=K$, for some big clique K of R.
We may assume that Cases $1,2,3,4$ and 5 do not hold. Hence by Lemma 10.6 and Claim 1 , for every $u \in G \backslash R^{*}$, if u has a neighbor in R^{*}, then $N(u) \cap R$ is a big clique of R. Let K be a big clique of R and $u \in G \backslash R^{*}$ such that $N(u) \cap R=K$. Let v_{1} and v_{2} be two nodes of K. Let $K^{\prime}=\left(\left(N\left(v_{1}\right) \cap N\left(v_{2}\right)\right) \cup\left\{v_{1}, v_{2}\right\}\right) \backslash u$. Since G is diamond-free, K^{\prime} is a clique. Since K^{\prime} is not a clique cutset that separates u from R^{*}, in $G \backslash K^{\prime}$ there exists a direct connection $P=u_{1}, \ldots, u_{n}$ from u to R^{*}. So $P \subseteq G \backslash R^{*}$, no node of $P \backslash u_{n}$ has a neighbor in $R^{*} \backslash K^{\prime}$ and u_{n} is adjacent to a node of R^{*}. Suppose that a node u_{i} in $P \backslash u_{n}$ has a neighbor v in R. Since u_{i} does not have a neighbor in $R^{*} \backslash K^{\prime}, v \in K^{\prime} \cap R$, and hence $v \in K$. Since $u_{i} \in G \backslash R^{*}$, $N\left(u_{i}\right) \cap R$ is a big clique of R. So since u_{i} is adjacent to $v \in K, N\left(u_{i}\right) \cap R=K$. But then $u_{i} \in K^{\prime}$, a contradiction. Therefore, no node of $P \backslash u_{n}$ has a neighbor in R.

Since $u_{n} \in G \backslash R^{*}, N\left(u_{n}\right) \cap R=K^{\prime \prime}$, where $K^{\prime \prime}$ is a big clique of R. So since $u_{n} \notin K^{\prime}$, $K \neq K^{\prime \prime}$ and hence u_{n} is adjacent to a node $v \in R \backslash K$. Let Q be the segment of R that contains v. Without loss of generality $v_{1} \notin Q$. Let Q^{\prime} be the segment of R that contains v_{1}. By Lemma $10.3, R$ contains a $\Sigma=3 \mathrm{PC}(\triangle, \cdot)$ such that Q and Q^{\prime} belong to different paths of Σ. Then u and u_{n} are of type p 2 or t 3 w.r.t. Σ.

If u and u_{n} are both of type p2 w.r.t. Σ, then path u, u_{1}, \ldots, u_{n} contradicts Lemma 5.6. So without loss of generality u is of type t 3 w.r.t. Σ. Since $K \neq K^{\prime \prime}, u_{n}$ is of type p 2 w.r.t. Σ. But then u_{1}, \ldots, u_{n} is an attachment of u to Σ that contradicts Lemma 6.2.

11 Proof of Theorem 1.11

Recall that a vertex u of a graph G is a simplicial extreme of G if either u is of degree 2 or $N(u)$ induces a clique. We say that a graph G satisfies property $*$ if the following holds:
(i) G is a clique, or
(ii) G contains two nonadjacent simplicial extremes.

Let \mathcal{C} be the class of graphs that are (even-hole, diamond)-free. We want to show that for every $G \in \mathcal{C}, G$ satisfies property $*$. Assume that this statement does not hold, and let G^{*} be a minimum counterexample, i.e., $G^{*} \in \mathcal{C}, G^{*}$ does not satisfy property *, and for every $G \in \mathcal{C}$ such that $|V(G)|<\left|V\left(G^{*}\right)\right|$, property $*$ holds for G.

Since $G^{*} \in \mathcal{C}$, by Theorem 1.2, it must be either basic or it has a clique cutset, a bisimplicial cutset or a 2-join. In the following lemmas (Lemmas 11.1, 11.211 .4 and 11.7) we show that none of these options can actually happen, which proves Theorem 1.11.

Lemma 11.1 G^{*} cannot be a basic graph.
Proof: Suppose G^{*} is basic. Then clearly G^{*} cannot be a clique, a hole nor a long $3 \mathrm{PC}(\triangle, \cdot)$, and hence G^{*} is an extended nontrivial basic graph. So G^{*} consists of a nontrivial basic graph R with special nodes x and y, such that for all $u \in G^{*} \backslash R$, for some big clique K of R and for some $z \in\{x, y\}, N(u) \cap R=K \cup z$.

Claim 1: R contains at least two big cliques K_{1} and K_{2} such that, for $i=1,2, K_{i}$ contains two distinct nodes that both belong to leaf segments of R.

Proof of Claim 1: Let P be a chordless path in $L=R \backslash\{x, y\}$ that contains the largest number of nodes that belong to big cliques of L. Let u and v be the endnodes of P. By the choice of P, u and v belong to leaf segments of L, say P_{u} and P_{v}. Let u^{\prime} (resp. v^{\prime}) be the node of P_{u} (resp. P_{v}) that belongs to a big clique of L. Let K_{1} (resp. K_{2}) be the big clique of L that u^{\prime} (resp. v^{\prime}) belongs to. By the choice of P, since L contains at least two big cliques, $K_{1} \neq K_{2}$. Let $u^{\prime \prime}$ (resp. $v^{\prime \prime}$) be a node of K_{1} (resp. K_{2}) that does not belong to P. By the choice of $P, u^{\prime \prime}$ and $v^{\prime \prime}$ must both belong to leaf segments of L. Hence K_{1} and K_{2} are the desired two big cliques. This completes the proof of Claim 1.

By Claim 1, let K_{1} and K_{2} be two distinct big cliques of R such that, for $i=1,2, K_{i}$ contains nodes u_{i} and v_{i} that both belong to leaf segments of R, say $P_{u_{i}}$ and $P_{v_{i}}$. Since R is a nontrivial basic graph, for $i=1,2$, without loss of generality $x \in P_{u_{i}}$ and $y \in P_{v_{i}}$. Since $P_{u_{i}} \cup P_{v_{i}}$ cannot induce a 4-hole, at least one of $P_{u_{i}}$ or $P_{v_{i}}$ is of length greater than 1. Hence a node $w_{1} \in\left(P_{u_{1}} \cup P_{v_{1}}\right) \backslash\left\{x, y, u_{1}, v_{1}\right\}$ is of degree 2 in R. Similarly a node $w_{2} \in\left(P_{u_{2}} \cup P_{v_{2}}\right) \backslash\left\{x, y, u_{2}, v_{2}\right\}$ is of degree 2 in R. Therefore R contains two nonadjacent nodes of degree 2 , and hence so does G^{*}, contradicting the assumption that G^{*} is a minimum counterexample to property $*$.

Lemma 11.2 Let G be an (even-hole, diamond)-free graph such that for every (even-hole, diamond)-free graph G^{\prime} such that $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, property $*$ holds for G^{\prime}. If S is a clique cutset of G and C_{1}, \ldots, C_{k} are the connected components of $G \backslash S$, then for every $i=1, \ldots, k$, C_{i} contains a simplicial extreme of G.
In particular, G^{*} does not have a clique cutset.

Proof: Assume S is a clique cutset of G, and let C_{1}, \ldots, C_{k} be the connected components of $G \backslash S$. Since $k \geq 2, G_{i}=G\left[C_{i} \cup S\right]$ has fewer nodes than G, and hence G_{i} satisfies property *. Hence C_{i} contains a simplicial extreme of G_{i}, say x_{i}. But then x_{i} is also a simplicial extreme of G. Since x_{1} and x_{2} are two nonadjacent simplicial extremes of G, it follows that G^{*} cannot have a clique cutset.

Lemma 11.3 Let G be an (even-hole, diamond)-free graph such that for every (even-hole, diamond)-free graph G^{\prime} such that $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, property $*$ holds for G^{\prime}. If $S=\{x, y\}$ is a 2-node cutset of G, then either G has a clique cutset or the following hold.
(i) $x y$ is not an edge, $G \backslash S$ has exactly two connected components C_{1} and C_{2}, and for $i=1,2$ every node of S has a neighbor in C_{i}.
(ii) Either both C_{1} and C_{2} contain a simplicial extreme of G, or for some $i \in\{1,2\}$, $G\left[V\left(C_{i}\right) \cup S\right]$ induces a path of length 2 or 3.

Proof: Let $S=\{x, y\}$ be any 2-node cutset of G, and let C_{1}, \ldots, C_{k} be the connected components of $G \backslash S$. Assume G does not have a clique cutset. Then $x y$ is not an edge, and for every $i=1, \ldots, k$, every node of S has a neighbor in C_{i}. If $k \geq 3$, then there is a $3 \mathrm{PC}(x, y)$. So $k=2$, and hence (i) holds.

We now define blocks G_{1} and G_{2} of decomposition of G by S. For $i=1,2$ let Q_{i} be any chordless path from x to y in $G\left[C_{i} \cup S\right]$ (note that such a path exists by (i)). Block G_{1} consists of $G\left[C_{1} \cup S\right]$ together with the marker path P_{2} from x to y such that no node of $P_{2} \backslash\{x, y\}$ has a neighbor in C_{1}. If Q_{2} is of even length, then P_{2} is of length 2 , and otherwise P_{2} is of length 3. Block G_{2} is defined analogously.

Claim 1: G_{1} and G_{2} are both (even-hole, diamond)-free graphs.
Proof of Claim 1: By definition of G_{1}, since G is diamond-free, so is G_{1}. Suppose G_{1} contains an even hole H. H must contain P_{2}, else it is an even hole of G. But then $\left(H \backslash P_{2}\right) \cup Q_{2}$ is an even hole of G, a contradiction. So G_{1} is (even-hole, diamond)-free, and by symmetry so is G_{2}. This completes the proof of Claim 1 .

Assume $G\left[C_{2} \cup S\right]$ is not a chordless path of length 2 or 3 . We now show that C_{1} contains a simplicial extreme of G. Let $S^{\prime}=\left\{x^{\prime}, y^{\prime}\right\}$ be a 2-node cutset of G such that if C_{1}^{\prime} and C_{2}^{\prime} are the two connected components of $G \backslash S^{\prime}$, then $C_{1}^{\prime} \subseteq C_{1}$ and $C_{2} \subseteq C_{2}^{\prime}$. Out of all such 2-node cutsets assume S^{\prime} is chosen so that $\left|C_{1}^{\prime}\right|$ is minimized. Since $G\left[C_{2} \cup S\right]$ is not a chordless path of length 2 or 3 , and $C_{2} \subseteq C_{2}^{\prime}$, it follows that $G\left[C_{2}^{\prime} \cup S^{\prime}\right]$ is not a chordless path of length 2 or 3. Let G_{1}^{\prime} and G_{2}^{\prime} be the blocks of decomposition of G by S^{\prime}. Then $\left|V\left(G_{1}^{\prime}\right)\right|<|V(G)|$ and by Claim 1, G_{1}^{\prime} is (even-hole, diamond)-free. Hence G_{1}^{\prime} satisfies property $*$. In particular G_{1}^{\prime} contains two nonadjacent simplicial extremes. Suppose that a node c_{1} of C_{1}^{\prime} is a simplicial extreme of G_{1}^{\prime}. Then c_{1} is also a simplicial extreme of G, and since $C_{1}^{\prime} \subseteq C_{1}$, it follows that C_{1} contains a simplicial extreme of G.

So we may assume that no node of C_{1}^{\prime} is a simplicial extreme of G_{1}^{\prime}. Then without loss of generality x^{\prime} is a simplicial extreme of G_{1}^{\prime}. In particular, x^{\prime} has the unique neighbor $x^{\prime \prime}$ in C_{1}^{\prime}. If $\left|C_{1}^{\prime}\right|=1$ then $x^{\prime \prime}$ is a simplicial extreme of G_{1}^{\prime}, a contradiction. So $\left|C_{1}^{\prime}\right| \geq 2$. But then $S^{\prime \prime}=\left\{x^{\prime \prime}, y^{\prime}\right\}$ is a 2-node cutset of G, with connected components of $G \backslash S^{\prime \prime}$ being $C_{1}^{\prime \prime}=C_{1}^{\prime} \backslash x^{\prime \prime}$ and $C_{2}^{\prime \prime}=C_{2}^{\prime} \cup x^{\prime}$. This contradicts our choice of S^{\prime}.

Therefore, either $G\left[C_{2} \cup S\right]$ is a chordless path of length 2 or 3 , or C_{1} contains a simplicial extreme of G. By symmetry it follows that either $G\left[C_{1} \cup S\right]$ is a chordless path of length 2 or 3 , or C_{2} contains a simplicial extreme of G. So (ii) holds.

Lemma 11.4 Let G be an (even-hole, diamond)-free graph such that for every (even-hole, diamond)-free graph G^{\prime} such that $\left|V\left(G^{\prime}\right)\right|<|V(G)|$, property $*$ holds for G^{\prime}. Assume G does not have a clique cutset. If $V_{1} \mid V_{2}$ is a 2-join of G, then for some $v_{1} \in V_{1}$ and $v_{2} \in V_{2}, v_{1} v_{2}$ is not an edge, and v_{1} and v_{2} are both simplicial extremes of G.
In particular, G^{*} does not have a 2-join.
Proof: Assume G has a 2-join $V_{1} \mid V_{2}$ with special sets $\left(A_{1}, A_{2}, B_{1}, B_{2}\right)$. Assume there are no nodes $v_{1} \in V_{1}, v_{2} \in V_{2}$ such that $v_{1} v_{2}$ is not an edge and v_{1} and v_{2} are both simplicial extremes of G. For $i=1,2$, let Q_{i} be a chordless path of $G\left[V_{i}\right]$ with one endnode in A_{i}, the other in B_{i}, and no intermediate node in $A_{i} \cup B_{i}$. Blocks of decomposition by this 2-join, G_{1} and G_{2}, are defined as follows. Block G_{1} consists of $G\left[V_{1}\right]$ together with a chordless path $P_{2}=a_{2}, \ldots, b_{2}$ such that a_{2} is adjacent to every node of A_{1}, b_{2} is adjacent to every node of B_{1}, and these are the only adjacencies between $G\left[V_{1}\right]$ and P_{2}. If Q_{2} is of odd length, then P_{2} is an edge, and otherwise P_{2} is of length 2. Block G_{2} is defined analogously.

Claim 1: Both blocks G_{1} and G_{2} are (even-hole, diamond)-free, and satisfy property *.
Proof of Claim 1: By definition of 2-join, since G does not contain a diamond, neither do G_{1} and G_{2}. Suppose G_{1} contains an even hole H. Since H cannot be contained in G, it must contain path P_{2}. But then $\left(H \backslash P_{2}\right) \cup Q_{2}$ induces an even hole of G, a contradiction. So G_{1} is even-hole-free, and by symmetry so is G_{2}. By definition of 2-join, for $i=1,2, G\left[V_{i}\right]$ does not induce a chordless path and hence $\left|V\left(G_{i}\right)\right|<|V(G)|$, i.e., G_{i} satisfies property *. This completes the proof of Claim 1.

Claim 2: The following hold:
(i) A_{1} is either a clique or $\left|A_{2}\right|=1$.
(ii) Every node of A_{1} has a neighbor in $V_{1} \backslash A_{1}$.

Analogous statements hold for other special sets.
Proof of Claim 2: Suppose A_{1} is not a clique. Let x_{1} and x_{2} be two nonadjacent nodes of A_{1}. If $\left|A_{2}\right|>1$ then $A_{2} \cup\left\{x_{1}, x_{2}\right\}$ contains a diamond or a 4 -hole. So $\left|A_{2}\right|=1$, i.e., (i) holds.

Let $x_{1} \in A_{1}$ and suppose that x_{1} does not have a neighbor in $V_{1} \backslash A_{1}$. By definition of 2-join, some node of A_{1} must have a neighbor in $V_{1} \backslash A_{1}$, and hence $\left|A_{1}\right| \geq 2$. By (i) and symmetry, A_{2} induces a clique. If $N\left(x_{1}\right) \cap A_{1}$ also induces a clique, then $\left(N\left(x_{1}\right) \cap A_{1}\right) \cup A_{2}$ is a clique cutset of G, contradicting our assumption. So $N\left(x_{1}\right) \cap A_{1}$ contains two nonadjacent nodes, x_{1}^{\prime} and $x_{1}^{\prime \prime}$. But then $A_{2} \cup\left\{x_{1}, x_{1}^{\prime}, x_{1}^{\prime \prime}\right\}$ contains a diamond. Therefore (ii) holds. This completes the proof of Claim 2.

Claim 3: If $\left|A_{1}\right|=1$ then $\left|B_{1}\right|>1$ and $\left|B_{2}\right|>1$.
Proof of Claim 3: Assume $\left|A_{1}\right|=1$. Suppose $\left|B_{1}\right|=1$. Then by definition of 2-join, $A_{1} \cup B_{1}$ is a 2-node cutset. By Lemma 11.3 and our assumption, either $G\left[V_{1}\right]$ or $G\left[V_{2} \cup A_{1} \cup B_{1}\right]$ must
be a path of length 2 or 3, but this contradicts the definition of a 2-join. So $\left|B_{1}\right|>1$. By analogous argument $\left|B_{2}\right|>1$. This completes the proof of Claim 3.

Claim 4: For $i=1,2, V_{i}$ contains a simplicial extreme of G.
Proof of Claim 4: We first show that V_{1} contains a simplicial extreme of G_{1}. Assume not. By Claim 1, G_{1} satisfies property $*$, and hence it contains two nonadjacent simplicial extremes. So P_{2} must be of length 2, and a_{2} and b_{2} are both simplicial extremes of G_{1}. But then $\left|A_{1}\right|=\left|B_{1}\right|=1$, contradicting Claim 3. Therefore V_{1} contains a simplicial extreme of G_{1}, say x_{1}.

We now show that V_{1} contains a simplicial extreme of G. If $x_{1} \in V_{1} \backslash\left(A_{1} \cup B_{1}\right)$ then x_{1} is a simplicial extreme of G and we are done. So assume without loss of generality that $x_{1} \in A_{1}$ and that x_{1} is not a simplicial extreme of G. Then $\left|A_{2}\right| \geq 2$. By Claim 2 (i), A_{1} is a clique. By Claim 2 (ii), x_{1} has a neighbor x_{1}^{\prime} in $V_{1} \backslash A_{1}$. So x_{1} is not a simplicial vertex of G_{1}, i.e., it is of degree 2 in G_{1}. In particular $\left|A_{1}\right|=1$. By Claim 3, $\left|B_{1}\right|>1$ and $\left|B_{2}\right|>1$. By Claim 2 (i) and symmetry, $B_{1} \cup B_{2}$ induces a clique. If $x_{1}^{\prime} \in B_{1}$ then $B_{2} \cup x_{1}^{\prime}$ is a clique cutset of G separating x_{1} from a node of $V_{1} \backslash x_{1}$ (since x_{1} is of degree 2 in G_{1}, i.e., x_{1}^{\prime} is the only neighbor of x_{1} in V_{1}), contradicting our assumption that G has no clique cutset. So $x_{1}^{\prime} \notin B_{1}$. Let $A_{1}^{\prime}=\left\{x_{1}^{\prime}\right\}$ and $A_{2}^{\prime}=\left\{x_{1}\right\}$. Then $V_{1} \backslash x_{1} \mid V_{2} \cup x_{1}$ is a 2-join of G with special sets $\left(A_{1}^{\prime}, A_{2}^{\prime}, B_{1}, B_{2}\right)$. By the first paragraph $V_{1} \backslash x_{1}$ contains a simplicial extreme y_{1} of block G_{1}^{\prime}. Clearly y_{1} is also a simplicial extreme of G_{1}. If $y_{1} \notin B_{1}$ then $y_{1} \in V_{1} \backslash\left(A_{1} \cup B_{1}\right)$ and hence it is a simplicial extreme of G. So $y_{1} \in B_{1}$. Since $\left|B_{1}\right|>1$ and B_{1} induces a clique, y_{1} is a simplicial vertex of G_{1}, but then y_{1} cannot have a neighbor in $V_{1} \backslash B_{1}$, contradicting Claim 2. Therefore V_{1} contains a simplicial extreme of G, and by symmetry so does V_{2}. This completes the proof of Claim 4.

By Claim 4, there exist nodes $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$ that are both simplicial extremes of G. By our assumption $v_{1} v_{2}$ must be an edge, and hence without loss of generality $v_{1} \in A_{1}$ and $v_{2} \in A_{2}$. By Claim 2 (ii), $\left|A_{1}\right|=\left|A_{2}\right|=1$. By Claim 3, $\left|B_{1}\right|>1$ and $\left|B_{2}\right|>1$. By Claim 2 (i), $B_{1} \cup B_{2}$ induces a clique. Let v_{1}^{\prime} be the neighbor of v_{1} in V_{1}. If $v_{1}^{\prime} \in B_{1}$ then $B_{2} \cup v_{1}^{\prime}$ is a clique cutset of G, a contradiction. So $v_{1}^{\prime} \notin B_{1}$. Let $A_{1}^{\prime}=\left\{v_{1}^{\prime}\right\}$ and $A_{2}^{\prime}=\left\{v_{1}\right\}$. Then $V_{1} \backslash v_{1} \mid V_{2} \cup v_{1}$ is a 2 -join of G with special sets $\left(A_{1}^{\prime}, A_{2}^{\prime}, B_{1}, B_{2}\right)$. By Claim $4, V_{1} \backslash v_{1}$ contains a simplicial extreme y_{1} of G. But then v_{2} and y_{1} are two nonadjacent simplicial extremes of G with $y_{1} \in V_{1}$ and $v_{2} \in V_{2}$, a contradiction.

Therefore for some $v_{1} \in V_{1}, v_{2} \in V_{2}, v_{1} v_{2}$ is not an edge and v_{1} and v_{2} are both simplicial extremes of G. Since G^{*} is a minimum counterexample to property $*$, it follows that G^{*} cannot have a 2 -join.

Lemma 11.5 Suppose S is a bisimplicial cutset of G^{*} with center x such that for a wheel (H, x) of G^{*} and a long sector S_{1} of $(H, x), S$ separates S_{1} from $H \backslash S_{1}$. Then the following hold.
(i) If (H, x) is a proper wheel, then S_{1} is of length 3 and all intermediate nodes of S_{1} are of degree 2 in G^{*}.
(ii) If (H, x) is a bug, then one of the two long sectors of (H, x) is of length 3 and all its intermediate nodes are of degree 2 in G^{*}.

Proof: Let x_{1} and x_{2} be the endnodes of sector S_{1} of (H, x). Then $S=X_{1} \cup X_{2} \cup x$, where X_{1} consists of x_{1} and all nodes adjacent to both x and x_{1}, and X_{2} consists of x_{2} and all
nodes adjacent to both x and x_{2}. Let C_{1} be the connected component of $G \backslash S$ that contains $S_{1} \backslash S$, and C_{2} the connected component of $G \backslash S$ that contains $H \backslash\left(S_{1} \cup S\right)$. Note that since $S_{1} \cup\left\{x, x_{1}, x_{2}\right\}$ cannot induce an even hole, S_{1} is of odd length greater than 1. For $i=1,2$ let $X_{1}^{i}\left(\right.$ resp. $\left.X_{2}^{i}\right)$ be the nodes of X_{1} (resp. X_{2}) that have a neighbor in C_{i}. For $i=1,2$ let block $G_{i}=G^{*}\left[C_{i} \cup X_{1}^{i} \cup X_{2}^{i} \cup x\right]$.

Claim 1: For $i=1,2$, either C_{i} contains a simplicial extreme of G^{*}, or $\left|X_{1}^{i}\right|=\left|X_{2}^{i}\right|=1$ and the two nodes of $X_{1}^{i} \cup X_{2}^{i}$ are both of degree 2 in G_{i}.

Proof of Claim 1: G_{i} satisfies property $*$, so G_{i} contains two nonadjacent simplicial extremes. If a node of C_{i} is a simplicial extreme of G_{i}, then it is also a simplicial extreme of G^{*}. So assume that no node of C_{i} is a simplicial extreme of G_{i}. Then for some $x_{1}^{\prime} \in X_{1}^{i}$ and $x_{2}^{\prime} \in X_{2}^{i}$, x_{1}^{\prime} and x_{2}^{\prime} are both simplicial extremes of G_{i}. But then x_{1}^{\prime} and x_{2}^{\prime} are both of degree 2 in G_{i}, and hence $\left|X_{1}^{i}\right|=\left|X_{2}^{i}\right|=1$. This completes the proof of Claim 1.

Claim 2: For some $i \in\{1,2\}, G_{i}$ induces a 5-hole.
Proof of Claim 2: Suppose that G_{1} does not induce a 5 -hole. We now show that C_{2} contains a simplicial extreme of G^{*}. Assume it does not. Then by Claim $1,\left|X_{1}^{2}\right|=\left|X_{2}^{2}\right|=1$ and the two nodes of $X_{1}^{2} \cup X_{2}^{2}$ are both of degree 2 in G_{2}. Let G_{2}^{\prime} be the graph that consists of $G^{*}\left[C_{2} \cup X_{1}^{2} \cup X_{2}^{2} \cup\left\{x, x_{1}, x_{2}\right\}\right]$ and a chordless path $P_{1}=x_{1}, a, b, x_{2}$ so that no node of $\{a, b\}$ has a neighbor in $G_{2}^{\prime} \backslash\left\{x_{1}, x_{2}\right\}$. Since G_{1} does not induce a 5 -hole, $\left|V\left(G_{2}^{\prime}\right)\right|<\left|V\left(G^{*}\right)\right|$. By the construction of G_{2}^{\prime}, since G^{*} is diamond-free, so is G_{2}^{\prime}. Suppose G_{2}^{\prime} contains an even hole H^{\prime}. Since H^{\prime} cannot be an even hole of G^{*}, it must contain P_{1}. Since $\left|X_{1}^{2}\right|=\left|X_{2}^{2}\right|=1$, $H^{\prime} \cap S=H \cap S$. But then $\left(H^{\prime} \backslash P_{1}\right) \cup S_{1}$ induces an even hole of G^{*}, a contradiction. Therefore, G_{2}^{\prime} is (even-hole, diamond)-free, and hence property $*$ holds for G_{2}^{\prime}. So G_{2}^{\prime} contains two nonadjacent simplicial extremes. Let H^{\prime} be the hole of G_{2}^{\prime} induced by $\left(H \backslash S_{1}\right) \cup P_{1}$. Then (H^{\prime}, x) is a wheel, and hence no node of $X_{1}^{2} \cup X_{2}^{2} \cup\left\{x, x_{1}, x_{2}\right\}$ can be a simplicial extreme of G_{2}^{\prime}. Therefore there exists $c_{2} \in C_{2}$ that is a simplicial extreme of G_{2}^{\prime}. But then c_{2} is also a simplicial extreme of G^{*}, contradicting our assumption. Therefore, C_{2} must contain a simplicial extreme of G^{*}.

Since G^{*} cannot contain two nonadjacent simplicial extremes, C_{1} cannot contain a simplicial extreme of G^{*}. Then by Claim 1, $\left|X_{1}^{1}\right|=\left|X_{2}^{1}\right|=1$, i.e., $X_{1}^{1}=\left\{x_{1}\right\}$ and $X_{2}^{1}=\left\{x_{2}\right\}$. Now suppose that G_{2} does not induce a 5 -hole. If (H, x) is a bug, then by symmetry it would follow that C_{1} contains a simplicial extreme of G^{*}, contradicting our assumption. Therefore (H, x) is a proper wheel. So (H, x) must contain at least three long sectors, and hence C_{2} must contain at least 5 nodes. We now construct G_{1}^{\prime} as follows: G_{1}^{\prime} consists of G_{1} together with a chordless path $P_{2}=x_{1}, a, b, c, x_{2}$ such that the only adjacencies between $\{a, b, c\}$ and G_{1} are the three edges $a x_{1}, a x, c x_{2}$. Note that since C_{2} contains at least 5 nodes, $\left|V\left(G_{1}^{\prime}\right)\right|<\left|V\left(G^{*}\right)\right|$. We now show that G_{1}^{\prime} is (even-hole, diamond)-free. Suppose G_{1}^{\prime} contains a diamond D. Then since G^{*} does not contain a diamond, $D=\left\{a, x, x_{1}, u\right\}$, where u is adjacent to both x and x_{1}. But then $u \in X_{1}^{1}$, contradicting the assumption that $\left|X_{1}^{1}\right|=1$. So G_{1}^{\prime} does not contain a diamond. Now suppose that G_{1}^{\prime} contains an even hole H^{\prime}. Since H^{\prime} is not an even hole of G^{*}, H^{\prime} must contain P_{2}. Let H_{2} be the path obtained from H by removing the interior nodes of S_{1}. Since H is an odd hole and S_{1} is of odd length, H_{2} must be of even length. So P_{2} and H_{2} have the same parity. Since $\left|X_{1}^{1}\right|=\left|X_{2}^{1}\right|=1, H^{\prime} \cap S=\left\{x_{1}, x_{2}\right\}$ and no node of $S \backslash\left\{x, x_{1}, x_{2}\right\}$ has a neighbor in H^{\prime}. But then $\left(H^{\prime} \backslash\{a, b, c\}\right) \cup H_{2}$ induces an even hole of G^{*}, a contradiction. Therefore, G_{1}^{\prime} is (even-hole, diamond)-free.

So G_{1}^{\prime} satisfies property $*$, and hence G_{1}^{\prime} must contain two nonadjacent simplicial extremes. Since no node of $\left\{x, x_{1}, x_{2}, a\right\}$ is a simplicial extreme of G_{1}^{\prime}, it follows that a node $c_{1} \in C_{1}$ is a simplicial extreme of G_{1}^{\prime}. But then c_{1} is also a simplicial extreme of G^{*}, a contradiction. This completes the proof of Claim 2.

The lemma now follows from Claim 2.
Lemma 11.6 G^{*} does not contain a proper wheel.
Proof: Suppose G^{*} contains a proper wheel (H, x). By Theorem 3.2, for some two distinct long sectors S_{i} and S_{j} of (H, x), there exists a bisimplicial cutset with center x that separates S_{i} from $H \backslash S_{i}$, and there exists a bisimplicial cutset with center x that separates S_{j} from $H \backslash S_{j}$. By Lemma 11.5, the interior nodes of both S_{i} and S_{j} are all of degree 2 in G^{*}. So G^{*} contains two nonadjacent simplicial extremes, a contradiction.

Lemma 11.7 G^{*} does not have a bisimplicial cutset.
Proof: Suppose G^{*} does have a bisimplicial cutset S^{\prime} with center x. Then for some wheel $\left(H^{\prime}, x\right)$ and for some long sector S^{*}, S^{\prime} separates S^{*} from $H^{\prime} \backslash S^{*}$. By Lemma 11.6, G^{*} does not contain a proper wheel, and hence $\left(H^{\prime}, x\right)$ is a bug. Let x_{1}, x_{2}, c be the neighbors of x in H^{\prime} such that $x_{2} c$ is an edge. Then $S^{\prime}=X_{1} \cup X_{2} \cup x$, where $X_{1}=N\left[x_{1}\right] \cap N(x)$ and $X_{2}=N\left[x_{2}\right] \cap N(x)=N[c] \cap N(x)$. By Lemma 11.5, without loss of generality the long sector S^{*} of ($\left.H^{\prime}, x\right)$ with endnodes x_{1} and c is of length 3 and its interior nodes are both of degree 2 in G^{*}. Let $S^{*}=x_{1}, a, b, c$.

Let C be the connected component of $G^{*} \backslash S^{\prime}$ that contains the interior nodes of sector S_{1} of $\left(H^{\prime}, x\right)$ (i.e., the sector with endnodes x_{1} and x_{2}). Let X_{1}^{C} (resp. X_{2}^{C}) be the nodes of X_{1} (resp. X_{2}) that have a neighbor in C. Let $G=G^{*}\left[C \cup X_{1}^{C} \cup X_{2}^{C} \cup x\right]$. Then G satisfies property $*$, and hence G must contain two nonadjacent simplicial extremes. If a node $u \in C$ is a simplicial extreme of G, then it is also a simplicial extreme of G^{*}. But then u and a are two nonadjacent simplicial extremes of G^{*}, a contradiction. So no node of C is a simplicial extreme of G. Hence $\left|X_{1}^{C}\right|=\left|X_{2}^{C}\right|=1$ (i.e., $X_{1}^{C}=\left\{x_{1}\right\}$ and $\left.X_{2}^{C}=\left\{x_{2}\right\}\right)$ and x_{1} and x_{2} are both simplicial extremes in G. In particular, c has no neighbor in C, i.e., x and x_{2} are the only neighbors of c in $V(G)$.

Note that $S_{1} \cup\left\{x, x_{1}, x_{2}\right\}$ induces a hole of G. So far we have shown that G satisfies the following:
(1) $d_{G}\left(x_{1}\right)=d_{G}\left(x_{2}\right)=2$.
(2) $G \backslash\left\{x, x_{1}, x_{2}\right\}$ does not contain a simplicial extreme of G.
(3) x_{1}, x, x_{2} are contained in a hole of G.

Claim 1: G does not contain a clique cutset.
Proof of Claim 1: Suppose S is a clique cutset of G. Let C_{1}, \ldots, C_{k} be the connected components of $G \backslash S$. By (3), without loss of generality $\left\{x, x_{1}, x_{2}\right\} \subseteq C_{1} \cup S$. By Lemma 11.2, C_{2} contains a simplicial extreme c_{2} of G. But then $c_{2} \in G \backslash\left\{x, x_{1}, x_{2}\right\}$, contradicting (2). This completes the proof of Claim 1.

Claim 2: G contains a $3 \mathrm{PC}(\triangle, x)$ that contains x_{1} and x_{2}.
Proof of Claim 2: By (3) let H be a hole of G that contains x_{1}, x, x_{2}. We first show that $d_{G}(x) \geq 3$. Suppose that $d_{G}(x)=2$. Let $x_{1}^{\prime}\left(\right.$ resp. $\left.x_{2}^{\prime}\right)$ be the neighbor of x_{1} (resp. x_{2}) in $H \backslash x$. Note that since G is 4-hole-free, $x_{1}^{\prime} \neq x_{2}^{\prime}$. Let $A_{1}=\left\{x_{1}\right\}, A_{2}=\left\{x_{1}^{\prime}\right\}, B_{1}=\left\{x_{2}\right\}$, $B_{2}=\left\{x_{2}^{\prime}\right\}, V_{1}=\left\{x, x_{1}, x_{2}, a, b, c\right\}$ and $V_{2}=G \backslash\left\{x, x_{1}, x_{2}\right\}$. By $(2), G \neq H$ and hence $V_{1} \mid V_{2}$ is a 2-join of $G^{\prime}=G^{*}[V(G) \cup\{a, b, c\}]$. By Claim $1, G$ does not have a clique cutset, and hence neither does G^{\prime}. By Lemma 11.4, V_{2} contains a simplicial extreme of G^{\prime} that contradicts (2). Hence $d_{G}(x) \geq 3$.

Let U be the set of nodes of $G \backslash H$ that are adjacent to x. Since $d_{G}(x) \geq 3, U \neq \varnothing$. By (1) and the fact that G^{*} does not contain a proper wheel nor a $3 \mathrm{PC}(\cdot, \cdot)$, if $u \in U$, then either $N(u) \cap H=\{x\}$ or (H, u) is a bug. If some $u \in U$ is such that (H, u) is a bug, then (H, u) is the desired $3 \mathrm{PC}(\triangle, x)$. So, we may assume that for every $u \in U, N(u) \cap H=\{x\}$. By Claim 1, $\{x\}$ cannot be a clique cutset of G separating U from $H \backslash x$. Let $P=p_{1}, \ldots, p_{k}$ be a shortest path of $G \backslash x$ such that $p_{1} \in U$ and p_{k} is adjacent to a node of H. Since G^{*} does not contain a proper wheel nor a $3 \mathrm{PC}(\cdot, \cdot), P$ is an appendix of H (Definition 2.1), and $H \cup P$ induces the desired $3 \mathrm{PC}(\triangle, x)$. This completes the proof of Claim 2.

In the following claims we will use some terminology that was introduced in Section 4: in particular, the types of nodes adjacent to a $3 \mathrm{PC}(\triangle, \cdot)$ referred to in Lemma 4.1 and right after that lemma, and the other definitions in that section.

Claim 3: Let Σ be any $3 \mathrm{PC}(\triangle, x)$ contained in G that contains x_{1} and x_{2}. If Σ has a crossing Q in G, then Σ is a bug and Q its hat. In particular, if Σ is not a bug, then it has no crossing, and consequently no node is of type b w.r.t. Σ.

Proof of Claim 3: Assume that $\Sigma=3 \mathrm{PC}\left(y_{1} y_{2} y_{3}, x\right)$ contained in G is such that path $P_{y_{1} x}$ (resp. $P_{y_{2} x}$) of Σ contains $x_{1}\left(\right.$ resp. $\left.x_{2}\right)$. Let x_{3} be the neighbor of x in path $P_{y_{3} x}$. Suppose that Σ has a crossing $Q=q_{1}, \ldots, q_{l}$ in G, and assume that if Σ is a bug then Q is not its hat.

First suppose that Q is a crosspath of Σ. By (1), Q is an x_{3}-crosspath of Σ. Without loss of generality q_{1} is adjacent to x_{3}. But then either $G^{*}\left[\left(\Sigma \backslash y_{1}\right) \cup Q \cup\{a, b, c\}\right]$ (if q_{l} has a neighbor in $P_{y_{1} x}$) or $G^{*}\left[\left(\Sigma \backslash y_{2}\right) \cup Q \cup\{a, b, c\}\right]$ (if q_{l} has a neighbor in $P_{y_{2} x}$) contains an even wheel with center x. So Q cannot be a crosspath.

Now suppose that Q is a hat of Σ. Then by our assumption Σ is not a bug, so by Lemma 5.3, G has a clique cutset, contradicting Claim 1 . So Q cannot be a hat.

By (1) Q cannot satisfy (iv) of Lemma 4.7, and hence Q must satisfy (iii) of Lemma 4.7. Without loss of generality q_{1} is of type pb w.r.t. Σ and q_{l} is of type p2 w.r.t. Σ. Suppose that the neighbors of q_{1} in Σ are in $P_{y_{3} x}$. Then $G^{*}[(\Sigma \backslash x) \cup Q \cup\{a, b, c\}]$ contains a $3 \mathrm{PC}\left(y_{1} y_{2} y_{3}, \triangle\right)$ (when q_{l} is not adjacent to y_{1} nor y_{2}) or an even wheel with center y_{1} or y_{2} (otherwise). So we may assume without loss of generality that the neighbors of q_{1} in Σ are in $P_{y_{1} x}$. If q_{1} is adjacent to x, then $G^{*}\left[\left(\Sigma \backslash y_{1}\right) \cup Q \cup\{a, b, c\}\right]$ contains a proper wheel with center x. So q_{1} is not adjacent to x. But then either $G\left[\left(\Sigma \backslash y_{3}\right) \cup Q\right]$ (if the neighbors of q_{l} in Σ are in $P_{y_{3} x}$) or $G\left[\left(\Sigma \backslash y_{2}\right) \cup Q\right]$ (if the neighbors of q_{l} in Σ are in $\left.P_{y_{2} x}\right)$ contains a $3 \mathrm{PC}\left(x, q_{1}\right)$. This completes the proof of Claim 3 .

Claim 4: Let Σ be any $3 \mathrm{PC}(\triangle, x)$ contained in G that contains x_{1} and x_{2}. If Σ is not a bug, then there does not exist a path $Q=q_{1}, \ldots, q_{l}$ in $G \backslash \Sigma$ such that q_{1} and q_{l} are both of type p w.r.t. Σ, they both have neighbors in $\Sigma \backslash x$, they have neighbors in different paths of
$\Sigma \backslash x$, and no node of $Q \backslash\left\{q_{1}, q_{l}\right\}$ has a neighbor in $\Sigma \backslash x$.
Proof of Claim 4: Assume that $\Sigma=3 \mathrm{PC}\left(y_{1} y_{2} y_{3}, x\right)$ contained in G is such that path $P_{y_{1} x}$ (resp. $P_{y_{2} x}$) of Σ contains x_{1} (resp. x_{2}). Let x_{3} be the neighbor of x in path $P_{y_{3} x}$. Assume that Σ is not a bug and path Q exists. If no node of $Q \backslash\left\{q_{1}, q_{l}\right\}$ has a neighbor in Σ, then Q is a crossing of Σ, contradicting Claim 3. Therefore, x has a neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$.

We now show that q_{1} has a neighbor in $\Sigma \backslash\left\{y_{1}, y_{2}, y_{3}, x\right\}$. Assume not. Then q_{1} is adjacent to a node of $\left\{y_{1}, y_{2}, y_{3}\right\}$. By Lemma 4.1, and since Σ is not a bug, q_{1} is of type p1 w.r.t. Σ adjacent to a node of $\left\{y_{1}, y_{2}, y_{3}\right\}$. If q_{1} is adjacent to y_{3}, then $\left(Q \backslash q_{l}\right) \cup P_{y_{1} x} \cup P_{y_{3} x}$ induces a $3 \mathrm{PC}\left(y_{3}, x\right)$. So without loss of generality q_{1} is adjacent to y_{1}, and hence $\left(Q \backslash q_{l}\right) \cup P_{y_{1} x} \cup P_{y_{3} x}$ induces a $3 \mathrm{PC}\left(y_{1}, x\right)$. Therefore, q_{1} has a neighbor in $\Sigma \backslash\left\{y_{1}, y_{2}, y_{3}, x\right\}$, and by symmetry so does q_{l}.

If the neighbors of q_{1} and q_{l} in Σ are contained in $P_{y_{1} x} \cup P_{y_{2} x}$, then $G^{*}\left[\left(P_{y_{1} x} \backslash y_{1}\right) \cup\left(P_{y_{2} x} \backslash\right.\right.$ $\left.\left.y_{2}\right) \cup Q \cup\{a, b, c\}\right]$ contains a proper wheel with center x. So without loss of generality q_{1} has a neighbor in $P_{y_{3} x}$. If q_{l} has a neighbor in $P_{y_{1} x} \backslash x$, then $G^{*}\left[\left(\Sigma \backslash y_{1}\right) \cup Q \cup\{a, b, c\}\right]$ contains a proper wheel with center x. So q_{l} has a neighbor in $P_{y_{2} x} \backslash x$. But then $G^{*}\left[\left(\Sigma \backslash y_{2}\right) \cup Q \cup\{a, b, c\}\right]$ contains a proper wheel with center x. This completes the proof of Claim 4.

We say that a $\Sigma=3 \operatorname{PC}(\triangle, x)$ contained in G is simple if it contains x_{1} and x_{2}, it is not a bug, and no node is of type t3b w.r.t. Σ adjacent to x.

Claim 5: G contains a simple $3 \mathrm{PC}(\triangle, x)$.
Proof of Claim 5: Let $\Sigma=3 \mathrm{PC}\left(y_{1} y_{2} y_{3}, x\right)$ be a $3 \mathrm{PC}(\triangle, x)$ contained in G such that it contains x_{1} and x_{2}, the path of Σ that contains x_{1} is shortest possible, and with respect to all these conditions, the path of Σ that does not contain x_{1} nor x_{2} is shortest possible. Note that by Claim 2 such a Σ exists. Assume without loss of generality that path $P_{y_{1} x}$ (resp. $P_{y_{2} x}$) of Σ contains x_{1} (resp. x_{2}), and let x_{3} be the neighbor of x on path $P_{y_{3} x}$ of Σ. Note that by (1), $x_{1} \neq y_{1}$ and $x_{2} \neq y_{2}$. We now show that Σ is simple. Assume it is not. Then either $x_{3}=y_{3}$ or there exists a type t3b node w.r.t. Σ adjacent to x. In fact, by our choice of $\Sigma, x_{3}=y_{3}$, i.e., Σ is a bug with center y_{3}.

We now show that $S=Y_{1} \cup Y_{2} \cup y_{3}$, where $Y_{1}=N[x] \cap N\left(y_{3}\right)$ and $Y_{2}=N\left[y_{1}\right] \cap N\left(y_{3}\right)=$ $N\left[y_{2}\right] \cap N\left(y_{3}\right)$, is a bisimplicial cutset of G separating $P_{y_{1} x}$ from $P_{y_{2} x}$. Assume not and let $Q=q_{1}, \ldots, q_{l}$ be a direct connection from $P_{y_{1} x}$ to $P_{y_{2} x}$ in $G \backslash S$. By (1), Claim 3 and Lemma 4.1, $l>1, q_{1}$ is of type p w.r.t. Σ with a neighbor in $P_{y_{1} x} \backslash\left\{x, x_{1}, y_{1}\right\}, q_{l}$ is of type p w.r.t. Σ with a neighbor in $P_{y_{2} x} \backslash\left\{x, x_{2}, y_{2}\right\}$, and no node of $Q \backslash\left\{q_{1}, q_{l}\right\}$ has a neighbor in $\Sigma \backslash\left\{x, y_{1}, y_{2}, y_{3}\right\}$. If x has a neighbor in Q, then $G^{*}\left[\left(\Sigma \backslash\left\{y_{1}, y_{2}, y_{3}\right\}\right) \cup Q \cup\{a, b, c\}\right]$ contains a proper wheel with center x, a contradiction. So x does not have a neighbor in Q. If no node of $\left\{y_{1}, y_{2}, y_{3}\right\}$ has a neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$, then Q is a crossing of Σ that contradicts Claim 3. So a node of $\left\{y_{1}, y_{2}, y_{3}\right\}$ has a neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$. Note that by definition of S and since there is no diamond, a node of $Q \backslash\left\{q_{1}, q_{l}\right\}$ cannot be adjacent to more than one node of $\left\{y_{1}, y_{2}, y_{3}\right\}$. Let q_{i} be the node of $Q \backslash\left\{q_{1}, q_{l}\right\}$ with lowest index that has a neighbor in $\left\{y_{1}, y_{2}, y_{3}\right\}$. If q_{i} is adjacent to y_{2} or y_{3}, then q_{1}, \ldots, q_{i} is a crossing of Σ that contradicts Claim 3. So q_{i} is adjacent to y_{1}. By analogous argument applied to the node of $Q \backslash\left\{q_{1}, q_{l}\right\}$ with highest index adjacent to a node of $\left\{y_{1}, y_{2}, y_{3}\right\}, y_{2}$ also has a neighbor in $Q \backslash\left\{q_{1}, q_{l}\right\}$. Let q_{j} be the node of Q with lowest index adjacent to y_{2}. Let u_{1} (resp. u_{2}) be the neighbor of q_{1} (resp. q_{l}) in $P_{y_{1} x}$ (resp. $P_{y_{2} x}$) that is closest to x. Let H^{\prime} be the hole induced by $x u_{1-}$ subpath of $P_{y_{1} x}, P_{y_{2} x}$ and q_{1}, \ldots, q_{j}. Then $\left(H^{\prime}, y_{1}\right)$ must be a bug, i.e., $u_{1} y_{1}$ is not an edge
and and one of the following holds: (a) $N\left(y_{1}\right) \cap\left\{q_{1}, \ldots, q_{j}\right\}=\left\{q_{i}, q_{i+1}\right\}$ or (b) $i=2$ and $N\left(y_{1}\right) \cap\left\{q_{1}, \ldots, q_{j}\right\}=\left\{q_{1}, q_{2}\right\}$. First suppose that (a) holds. Suppose y_{3} has no neighbor in q_{i+2}, \ldots, q_{j-1}. Then y_{3} has no neighbor in q_{1}, \ldots, q_{j}. Let $H^{\prime \prime}$ be the hole induced by $x u_{1}$-subpath of $P_{y_{1} x}$ and $\left\{q_{1}, \ldots, q_{j}, y_{2}, y_{3}\right\}$. Then $\left(H^{\prime \prime}, y_{1}\right)$ is an even wheel. So y_{3} must have a neighbor in q_{i+2}, \ldots, q_{j-1}. But then $\left\{q_{i+1}, \ldots, q_{j}, y_{1}, y_{2}, y_{3}\right\}$ must induce a bug, i.e., y_{3} has a unique neighbor in q_{i+2}, \ldots, q_{j-1}, and so it also has a unique neighbor in q_{1}, \ldots, q_{j}. Hence $u_{1} u_{2}$-subpath of $P_{y_{1} x} \cup P_{y_{2} x}$ that contains x, together with Q and y_{3} induces either a $3 \mathrm{PC}(\cdot, \cdot)$ or a proper wheel, a contradiction. When (b) holds, contradiction is obtained by analogous argument. Therefore $S=Y_{1} \cup Y_{2} \cup y_{3}$ is a bisimplicial cutset that separates $P_{y_{1} x}$ from $P_{y_{2} x}$.

Let C_{1} be the connected component of $G \backslash S$ that contains x_{1}. Let Y_{1}^{1} (resp. Y_{2}^{1}) be the nodes of Y_{1} (resp. Y_{2}) that have a neighbor in C_{1}. Let $G_{1}=G\left[C_{1} \cup Y_{1}^{1} \cup Y_{2}^{1} \cup y_{3}\right]$. Then property $*$ holds for G_{1}. Note that if a node of $C_{1} \backslash x_{1}$ is a simplicial extreme of G_{1}, then it is also a simplicial extreme of G, contradicting (2). So no node of $C_{1} \backslash x_{1}$ is a simplicial extreme of G_{1}. Since G_{1} must contain two nonadjacent simplicial extremes, a node of $\left(Y_{1}^{1} \backslash x\right) \cup Y_{2}^{1} \cup y_{3}$ must be a simplicial extreme of G_{1}. Since every node of $Y_{1}^{1} \backslash x$ is adjacent to x and y_{3} and it has a neighbor in C_{1}, it follows that no node of $Y_{1}^{1} \backslash x$ can be a simplicial extreme of G_{1}. So a node of $Y_{2}^{1} \cup y_{3}$ must be a simplicial extreme of G_{1}. Hence $\left|Y_{2}^{1}\right|=1$, i.e., $Y_{2}^{1}=\left\{y_{1}\right\}$.

Next we show that $\left|Y_{1}^{1}\right|=1$, i.e., $Y_{1}^{1}=\{x\}$. Assume not. Then there exists u that is adjacent to x and y_{3} and has a neighbor in C_{1}. By Lemma 4.1, u is of type p2 w.r.t. Σ. Since u has a neighbor in C_{1}, there exists a path $Q=q_{1}, \ldots, q_{l}$ such that $q_{1}=u, Q \backslash q_{1} \subseteq C_{1}, q_{l}$ has a neighbor in $P_{y_{1} x} \backslash\left\{y_{1}, x\right\}$, and no intermediate node of Q has a neighbor in $P_{y_{1} x} \backslash\left\{y_{1}, x\right\}$. But then $G^{*}\left[\left(\Sigma \backslash y_{1}\right) \cup Q \cup\left\{y_{3}, a, b, c\right\}\right]$ contains a proper wheel with center x, a contradiction. Therefore $Y_{1}^{1}=\{x\}$.

Note that since $\left\{x, x_{1}, y_{1}, y_{3}\right\}$ cannot induce a 4 -hole, $x_{1} y_{1}$ is not an edge. We now show that $\left\{x_{1}, y_{1}\right\}$ is a cutset of G separating $P_{y_{1} x} \backslash\left\{x, x_{1}, y_{1}\right\}$ from $P_{y_{2} x} \cup y_{3}$. Assume not. Since $Y_{1}^{1}=\{x\}$ and $Y_{2}^{1}=\left\{y_{1}\right\},\left\{x, y_{1}, y_{3}\right\}$ is a cutset of G separating $P_{y_{1} x} \backslash\left\{x, y_{1}\right\}$ from $P_{y_{2} x}$. So there exists a path $Q=q_{1}, \ldots, q_{l} \subseteq C_{1}$ such that q_{1} is adjacent to x or y_{3}, q_{l} is adjacent to a node of $P_{y_{1} x} \backslash\left\{x, x_{1}, y_{1}\right\}$, and no intermediate node of Q has a neighbor in $\Sigma \backslash\left\{x_{1}, y_{1}\right\}$. Actually, by (1), no intermediate node of Q has a neighbor in $\Sigma \backslash y_{1}$. If q_{1} is adjacent to y_{3}, then y_{1} must be of degree 2 in G_{1} (recall that a node of $Y_{2}^{1} \cup y_{3}$ must be a simplicial extreme of G_{1}), so y_{1} cannot have a neighbor in Q, and hence Q is a crossing of Σ that contradicts Claim 3. So q_{1} is not adjacent to y_{3}, and hence it is adjacent to x. If y_{1} has a neighbor in $Q \backslash q_{l}$, then $P_{y_{1} x} \cup\left(Q \backslash q_{l}\right) \cup y_{3}$ contains a $3 \mathrm{PC}\left(y_{1}, x\right)$. So y_{1} does not have a neighbor in $Q \backslash q_{l}$. By the choice of Σ, Q cannot be an appendix of the hole induced by $P_{y_{1} x} \cup P_{y_{2} x}$. In particular, by Lemma 4.1, $l>1, q_{1}$ is of type p1 w.r.t. Σ and q_{l} is of type p1 or pb w.r.t. Σ. Note that if q_{l} is of type pb w.r.t. Σ, then by (1) and our choice of Σ, q_{l} is not adjacent to x. In both cases $P_{y_{1} x} \cup Q \cup y_{3}$ contains a $3 \mathrm{PC}(x, \cdot)$. Therefore $\left\{x_{1}, y_{1}\right\}$ is a cutset of G that separates $P_{y_{1} x} \backslash\left\{x, x_{1}, y_{1}\right\}$ from $P_{y_{2} x} \cup y_{3}$. But then $\left\{x_{1}, y_{1}\right\}$ is a cutset of $G^{*}[G \cup\{a, b, c\}]$. By Lemma 11.3, $C_{1} \backslash x_{1}$ contains a simplicial extreme of $G^{*}[G \cup\{a, b, c\}]$, and hence of G as well, contradicting (2). This completes the proof of Claim 5.

By Claim 5, let $\Sigma=3 \mathrm{PC}\left(y_{1} y_{2} y_{3}, x\right)$ be a simple $3 \mathrm{PC}(\triangle, x)$ contained in G. We assume that x_{1} is on path $P_{y_{1} x}$ of Σ, x_{2} is on path $P_{y_{2} x}$ of Σ, and x_{3} is the neighbor of x on path $P_{y_{3} x}$ of Σ. We say that a node $u \in G \backslash \Sigma$ is a pendant of Σ if one of the following holds:
(i) u is of type t3 w.r.t. Σ and every attachment of u to Σ ends in a type p node w.r.t. Σ whose neighbors are contained in $P_{y_{3} x}$.
(ii) u is of type t3b w.r.t. Σ and it has a neighbor in $P_{y_{3} x} \backslash\left\{y_{3}, x\right\}$.
(iii) u is of type p w.r.t. Σ and it has a neighbor in $P_{y_{3} x} \backslash x$.

We say that $\Sigma \cup u$ is an extension of a simple $3 \mathrm{PC}(\triangle, \cdot)$.
We now show that every simple $\Sigma=3 \mathrm{PC}\left(y_{1} y_{2} y_{3}, x\right)$ has a pendant. Since Σ is not a bug, $x_{3} \neq y_{3}$. By (2), the intermediate nodes of $P_{y_{3} x}$ cannot be of degree 2 in G. So there exists $u \in G \backslash \Sigma$ that is adjacent to a node of $P_{y_{3} x} \backslash\left\{y_{3}, x\right\}$. By Claim 3, no node is of type b w.r.t. Σ, so by Lemma 4.1, u is of type p or t 3 b w.r.t. Σ, i.e., it is a pendant of Σ.

Let $H=\Sigma \cup u$ be an extension of a simple $\Sigma=3 \mathrm{PC}\left(y_{1} y_{2} y_{3}, x\right)$. Let $H_{1}=P_{y_{1} x} \cup P_{y_{2} x}$ and $H_{2}=H \backslash H_{1}$. Let $A_{1}=\left\{y_{1}, y_{2}\right\}$ and $B_{1}=\{x\}$. If u is of type t 3 or t3b w.r.t. Σ, then let $A_{2}=\left\{y_{3}, u\right\}$, and otherwise let $A_{2}=\left\{y_{3}\right\}$. Let B_{2} contain x_{3} and possibly u (if u is of type p w.r.t. Σ adjacent to $x)$. Then $H_{1} \mid H_{2}$ is a 2-join of H with special sets $\left(A_{1}, A_{2}, B_{1}, B_{2}\right)$.

We now show that it is not possible that the 2-join $H_{1} \mid H_{2}$ of H extends to a 2-join of G. Assume it does. Then there exists a 2-join $V_{1} \mid V_{2}$ of G such that $P_{y_{3} x} \backslash x \subseteq V_{2}$ and $P_{y_{1} x} \cup P_{y_{2} x} \subseteq V_{1}$. By Lemma 11.4, V_{2} contains a simplicial extreme v_{2} of G. But then since $\left\{x, x_{1}, x_{2}\right\} \subseteq V_{1}, v_{2} \in G \backslash\left\{x, x_{1}, x_{2}\right\}$, contradicting (2). So the 2-join $H_{1} \mid H_{2}$ of H does not extend to a 2 -join of G. By Theorem 7.4 there exists a blocking sequence $S=p_{1}, \ldots, p_{n}$ in G for $H_{1} \mid H_{2}$. Without loss of generality we assume that $H=\Sigma \cup u$ and S are chosen so that the size of S is minimized. Let p_{j} be the node of S with lowest index that is adjacent to a node of H_{2}. By Lemma 7.5, p_{1}, \ldots, p_{j} is a chordless path.

Claim 6: Let v be a type t3 node w.r.t. Σ. Then v is attached to Σ. Let $Q=q_{1}, \ldots, q_{k}$ be an attachment of v to Σ. Then q_{k} is of type p w.r.t. Σ, with neighbors contained in say $P_{y_{i} x}$. Furthermore, no node of $\Sigma \backslash y_{i}$ has a neighbor in $Q \backslash q_{k}$, and if q_{k} is adjacent to x, then q_{k} has no neighbor in $\left(P_{y_{1} x} \cup P_{y_{2} x}\right) \backslash x$ and y_{1} and y_{2} have no neighbor in Q.

Proof of Claim 6: Let Y be the set comprised of y_{1}, y_{2}, y_{3} and all type t nodes w.r.t. Σ. Since G is diamond-free, Y induces a clique. By Claim 1, G does not contain a clique cutset, and hence there exists a direct connection $Q=q_{1}, \ldots, q_{k}$ from v to Σ in $G \backslash(Y \backslash\{v\})$, i.e., v is attached. By definition of Q and Lemma 4.1, no node of Q has more than one neighbor in $\left\{y_{1}, y_{2}, y_{3}\right\}$. The only nodes of Σ that may have a neighbor in $Q \backslash q_{k}$ are y_{1}, y_{2}, y_{3}. If at least two nodes of $\left\{y_{1}, y_{2}, y_{3}\right\}$ have a neighbor in $Q \backslash q_{k}$, then a subpath of $Q \backslash q_{k}$ is a hat of Σ, contradicting Claim 3 (since Σ is simple). So without loss of generality y_{2} and y_{3} do not have neighbors in $Q \backslash q_{k}$. If y_{1} has a neighbor in $Q \backslash q_{k}$, let q_{i} be such a neighbor with highest index.

Since Σ is simple, by Claim 3 no node is of type b w.r.t. Σ. So by Lemma 4.1 and definition of Q, q_{k} is of type p w.r.t. Σ and it has a neighbor in $\Sigma \backslash\left\{y_{1}, y_{2}, y_{3}\right\}$. Suppose that y_{1} has a neighbor in $Q \backslash q_{k}$, and q_{k} has a neighbor in $\Sigma \backslash P_{y_{1} x}$. Then q_{i}, \ldots, q_{k} is a crossing of Σ, contradicting Claim 3.

Suppose that q_{k} is adjacent to x and it has a neighbor in $P_{y_{1} x} \backslash x$. Then by (1), q_{k} is of type pb w.r.t. Σ. But then $G^{*}\left[\left(P_{y_{1} x} \backslash y_{1}\right) \cup P_{y_{2} x} \cup Q \cup\{v, a, b, c\}\right]$ contains a 4 -wheel with center x. So q_{k} does not have a neighbor in $P_{y_{1} x} \backslash x$ and similarly it does not have a neighbor in $P_{y_{2} x} \backslash x$. So the neighbors of q_{k} in Σ are contained in $P_{y_{3} x}$. Suppose that y_{1} has a neighbor in Q, and let q_{t} be such a neighbor with highest index. Note that $t<k$, i.e., $t=i$. Then y_{2} and y_{3} do not have neighbors in Q and $N\left(q_{k}\right) \cap \Sigma=x$ (else there is a crossing that contradicts Claim 3). But then $P_{y_{1} x} \cup P_{y_{2} x} \cup\left\{q_{i}, \ldots, q_{k}\right\}$ induces a $3 \mathrm{PC}\left(x, y_{1}\right)$. Hence y_{1} does not have a neighbor in Q, and similarly neither does y_{2}. This completes the proof of Claim 6.

Claim 7: Node p_{j} cannot be of type t3b w.r.t. Σ.
Proof of Claim 7: Assume it is. Since Σ is simple, p_{j} is not adjacent to x. Suppose that p_{j} has a neighbor in $P_{y_{3} x} \backslash\left\{y_{3}, x\right\}$. Then $\Sigma \cup p_{j}$ is an extension of a simple $3 \mathrm{PC}(\triangle, x)$. Let $H^{\prime}=\Sigma \cup p_{j}$ and $H_{2}^{\prime}=H^{\prime} \backslash H_{1}$. Then $H_{1} \mid H_{2}^{\prime}$ is a 2-join of H^{\prime} with special sets $A_{1}^{\prime}=A_{1}$, $A_{2}^{\prime}=\left\{y_{3}, p_{j}\right\}, B_{1}^{\prime}=B_{1}, B_{2}^{\prime}=\left\{x_{3}\right\}$. By Theorem 7.6, a proper subset of S is a blocking sequence for the 2-join $H_{1} \mid H_{2}^{\prime}$ of H^{\prime}, contradicting our choice of H and S.

Therefore, without loss of generality p_{j} has a neighbor in $P_{y_{1} x} \backslash\left\{y_{1}, x\right\}$. Let $\Sigma^{\prime}=$ $3 \mathrm{PC}\left(p_{j} y_{2} y_{3}, x\right)$ obtained by substituting p_{j} into Σ. Clearly Σ^{\prime} is not a bug and it contains x_{1} and x_{2}. If a node v is of type t3b w.r.t. Σ^{\prime} adjacent to x, then by Lemma 4.1, v is also of type t 3 b w.r.t. Σ adjacent to x. Hence, since Σ is a simple $3 \mathrm{PC}(\triangle, x)$, so is Σ^{\prime}. If u is of type t 3 (resp. t3b) w.r.t. Σ, then by Lemma $4.1, u$ is of the same type w.r.t. Σ^{\prime}. Since p_{j} is not adjacent to x, and by Lemma 4.1, if u is of type p w.r.t. Σ, then it is also of type p w.r.t. Σ^{\prime}. Suppose that u is of type t3 w.r.t. Σ (and Σ^{\prime}). Since every attachment of u to Σ ends in a type p node w.r.t. Σ with neighbors in $P_{y_{3} x}$, the same is true of the attachments of u to Σ^{\prime}.

Therefore, $H^{\prime}=\Sigma \cup u$ is an extension of a simple $3 \mathrm{PC}(\triangle, x)$. Let $H_{1}^{\prime}=H^{\prime} \backslash H_{2}$. Then $H_{1}^{\prime} \mid H_{2}$ is a 2 -join of H^{\prime} with special sets $A_{1}^{\prime}=\left\{p_{j}, y_{2}\right\}, A_{2}^{\prime}=A_{2}, B_{1}^{\prime}=B_{1}, B_{2}^{\prime}=B_{2}$. By Theorem 7.6, a proper subset of S is a blocking sequence for the 2-join $H_{1}^{\prime} \mid H_{2}$ of H^{\prime}, contradicting our choice of H and S. This completes the proof of Claim 7.

Claim 8: Node p_{j} cannot be of type t3 w.r.t. Σ.
Proof of Claim 8: Assume it is. By Claim 6, p_{j} is attached to Σ. Suppose that every attachment of p_{j} to Σ ends in a type p node w.r.t. Σ whose neighbors are contained in $P_{y_{3} x}$. Then $H^{\prime}=\Sigma \cup p_{j}$ is an extension of a simple $3 \mathrm{PC}(\triangle, x)$. Let $H_{2}^{\prime}=H^{\prime} \backslash H_{1}$. Then $H_{1} \mid H_{2}^{\prime}$ is a 2-join of H^{\prime} with special sets $A_{1}^{\prime}=A_{1}, A_{2}^{\prime}=\left\{y_{3}, p_{j}\right\}, B_{1}^{\prime}=B_{1}, B_{2}^{\prime}=\left\{x_{3}\right\}$. By Theorem 7.6, a proper subset of S is a blocking sequence for the 2-join $H_{1} \mid H_{2}^{\prime}$ of H^{\prime}, contradicting our choice of H and S.

So by Claim 6 we may assume without loss of generality that p_{j} has an attachment $Q=q_{1}, \ldots, q_{k}$ to Σ such that q_{k} is of type p w.r.t. Σ adjacent to a node of $P_{y_{1} x} \backslash\left\{y_{1}, x\right\}$. By Claim $6, q_{k}$ is not adjacent to x, and no node of $Q \backslash q_{k}$ has a neighbor in $\Sigma \backslash y_{1}$. Let Σ^{\prime} be the $3 \mathrm{PC}\left(p_{j} y_{2} y_{3}, x\right)$ contained in $\Sigma \cup Q \cup p_{j}$. Clearly Σ^{\prime} is not a bug and it contains x_{1} and x_{2}. If node v is of type t3b w.r.t. Σ^{\prime} adjacent to x, then by Lemma 4.1, it is of the same type w.r.t. Σ. Hence, since Σ is simple, so is Σ^{\prime}.

Since Σ^{\prime} is simple, by Claim 3 no node is of type b w.r.t. Σ^{\prime}. Hence, by Lemma 4.1, if u is of type p w.r.t. Σ, then it is of type p w.r.t. Σ^{\prime}. Similarly, if u is of type t3b w.r.t. Σ, then it is of the same type w.r.t. Σ^{\prime} (with a neighbor in $P_{y_{3} x} \backslash\left\{y_{3}, x\right\}$). So suppose that u is of type t 3 w.r.t. Σ. By Lemma 4.1, u is of type t w.r.t. Σ^{\prime}. Since all attachments of u to Σ end in type p node w.r.t. Σ whose neighbors are contained in $P_{y_{3} x}, u$ cannot have a neighbor in Q. Hence u is of type t3 w.r.t. Σ^{\prime}. If u has an attachment to Σ^{\prime} that ends in a type p node whose neighbors are not contained in $P_{y_{3} x}$, then so does Σ. So every attachment of u to Σ^{\prime} ends in a type p node whose neighbors are contained in $P_{y_{3} x}$. Hence, u is a pendant of Σ^{\prime}.

But then $H^{\prime}=\Sigma^{\prime} \cup u$ is an extension of a simple $3 \mathrm{PC}(\triangle, x)$. Let $H_{1}^{\prime}=H^{\prime} \backslash H_{2}$. Then $H_{1}^{\prime} \mid H_{2}$ is a 2 -join of H^{\prime} with special sets $A_{1}^{\prime}=\left\{y_{2}, p_{j}\right\}, A_{2}^{\prime}=A_{2}, B_{1}^{\prime}=B_{1}, B_{2}^{\prime}=B_{2}$. By Theorem 7.6, a proper subset of S is a blocking sequence for the 2-join $H_{1}^{\prime} \mid H_{2}$ of H^{\prime}, contradicting our choice of H and S. This completes the proof of Claim 8.

Claim 9: Node p_{j} does not have a neighbor in $\Sigma \backslash x$, it is adjacent to u, and u is of type t3
or p w.r.t. Σ.
Proof of Claim 9: First suppose that p_{j} has a neighbor in $\Sigma \backslash x$. So by Lemma 4.1 and Claims 3,7 and $8, p_{j}$ is of type p w.r.t. Σ. Suppose that the neighbors of p_{j} in Σ are contained in $P_{y_{1} x}$. Since p_{j} has a neighbor in H_{2}, it must be adjacent to u. If u is of type p w.r.t. Σ, then path u, p_{j} is a crossing of Σ, contradicting Claim 3. If u is of type t3 w.r.t. Σ, then since G is diamond-free, p_{j} is not adjacent to y_{1}, and hence p_{j} is an attachment of u that has a neighbor in $P_{y_{1} x} \backslash x$, contradicting the assumption that all attachment of u to Σ end in $P_{y_{3} x}$. So u is of type t 3 b w.r.t. Σ. Let $\Sigma^{\prime}=3 \mathrm{PC}\left(y_{1} y_{2} u, x\right)$ contained in $\left(\Sigma \backslash y_{3}\right) \cup u$. Clearly Σ^{\prime} contains x_{1} and x_{2}. Since u is not adjacent to x, Σ^{\prime} is not a bug. If a node is of type t3b w.r.t. Σ^{\prime} adjacent to x, then by Lemma 4.1 , it is also of type t3b w.r.t. Σ adjacent to x, contradicting the assumption that Σ is simple. Hence Σ^{\prime} is simple. But then by Lemma $4.1, p_{j}$ is of type b w.r.t. Σ^{\prime}, contradicting Claim 3 applied to Σ^{\prime}. Therefore, the neighbors of p_{j} in Σ cannot be contained in $P_{y_{1} x}$, and by symmetry they cannot be contained in $P_{y_{2} x}$.

So p_{j} is of type p w.r.t. Σ and it has a neighbor in $P_{y_{3} x} \backslash x$. But then $H^{\prime}=\Sigma \cup p_{j}$ is an extension of a simple $3 \mathrm{PC}(\triangle, x)$. Let $H_{2}^{\prime}=H^{\prime} \backslash H_{1}$. Then $H_{1} \mid H_{2}^{\prime}$ is a 2 -join of H^{\prime} with special sets $A_{1}^{\prime}=A_{1}, A_{2}^{\prime}=\left\{y_{3}\right\}, B_{1}^{\prime}=B_{1}, B_{2}^{\prime}$ contains x_{3} and possibly p_{j} (if p_{j} is adjacent to x). By Theorem 7.6, a proper subset of S is a blocking sequence for the 2-join $H_{1} \mid H_{2}^{\prime}$ of H^{\prime}, contradicting our choice of H and S.

Therefore, p_{j} does not have a neighbor in $\Sigma \backslash x$. Since p_{j} has a neighbor in H_{2}, it must be adjacent to u. Suppose that u is of type t3b w.r.t. Σ. Let $\Sigma^{\prime}=3 \mathrm{PC}\left(y_{1} y_{2} u, x\right)$ contained in $\left(\Sigma \backslash y_{3}\right) \cup u$. As above, Σ^{\prime} is simple, and hence $H^{\prime}=\Sigma^{\prime} \cup p_{j}$ is an extension of a simple $3 \mathrm{PC}(\triangle, x)$. Let $H_{2}^{\prime}=H^{\prime} \backslash H_{1}$. Then $H_{1} \mid H_{2}^{\prime}$ is a 2 -join of H^{\prime} with special sets $A_{1}^{\prime}=A_{1}$, $A_{2}^{\prime}=\{u\}, B_{1}^{\prime}=B_{1}, B_{2}^{\prime}$ contains x_{3} and possibly p_{j} (if p_{j} is adjacent to x). By Theorem 7.6, a proper subset of S is a blocking sequence for the 2 -join $H_{1} \mid H_{2}^{\prime}$ of H^{\prime}, contradicting our choice of H and S. Therefore, u is of type t 3 or p w.r.t. Σ. This completes the proof of Claim 9.

Claim 10: Node p_{1} is of type p w.r.t. Σ with a neighbor in $\left(P_{y_{1} x} \cup P_{y_{2} x}\right) \backslash x$.
Proof of Claim 10: By Lemma 4.1 and Claims 3, 7 and 8, p_{1} is of type p w.r.t. Σ. Since $H_{1} \mid H_{2} \cup p_{1}$ is not a 2-join of $H \cup p_{1}$ (by definition of a blocking sequence), p_{1} must have a neighbor in H_{1}. By Remark $7.2, p_{1}$ must have a neighbor in $\left(P_{y_{1} x} \cup P_{y_{2} x}\right) \backslash x$. This completes the proof of Claim 10.

Claim 11: $j>1$ and nodes p_{2}, \ldots, p_{j-1} are either not adjacent to any node of H or are of type $p 1$ w.r.t. Σ adjacent to x.

Proof of Claim 11: By Claims 9 and 10, $j>1$. Let $i \in\{2, \ldots, j-1\}$. By definition of p_{j}, $N\left(p_{i}\right) \cap H_{2}=\varnothing$. The result now follows from Lemma 4.1 and Lemma 7.3. This completes the proof of Claim 11.

By Claims 9,10 and $11, p_{1}, \ldots, p_{j}, u$ is a chordless path such that p_{1} is of type p w.r.t. Σ with a neighbor in $\left(P_{y_{1} x} \cup P_{y_{2} x}\right) \backslash x, u$ is of type p or t3 w.r.t. Σ, and no node of p_{2}, \ldots, p_{j} has a neighbor in $\Sigma \backslash x$. If u is of type p w.r.t. Σ, then path p_{1}, \ldots, p_{j}, u contradicts Claim 4. So u is of type t 3 w.r.t. Σ.

First suppose that x has a neighbor in p_{2}, \ldots, p_{j}, and let p_{i} be such a neighbor with highest index. Let Σ^{\prime} be the $3 \mathrm{PC}\left(y_{1} y_{2} u, x\right)$ induced by $P_{y_{1} x} \cup P_{y_{2} x} \cup\left\{u, p_{i}, \ldots, p_{j}\right\}$. Clearly
Σ^{\prime} contains x_{1} and x_{2}, and it is not a bug. If $i=2$, then by Lemma 4.1, p_{1} is of type b w.r.t. Σ^{\prime}, contradicting Claim 3. So $i>2$ and hence path p_{1}, \ldots, p_{i-1} contradicts Claim 4.

Therefore, no node of p_{2}, \ldots, p_{j} has a neighbor in Σ. Since all attachments of u to Σ end in a type p node w.r.t. Σ whose neighbors are contained in $P_{y_{3} x}, p_{1}, \ldots, p_{j}$ cannot be an attachment of u to Σ. Hence without loss of generality $N\left(p_{1}\right) \cap \Sigma=y_{1}$.

Let $Q=q_{1}, \ldots, q_{l}$ be an attachment of u to Σ. Note that by Claim 6, no node of $\Sigma \backslash y_{3}$ has a neighbor in $Q \backslash q_{l}$. Let Σ^{\prime} be the $3 \mathrm{PC}\left(y_{1} y_{2} u, x\right)$ contained in $\left(\Sigma \backslash y_{3}\right) \cup Q \cup u$. Clearly Σ is not a bug and it contains x_{1} and x_{2}. Let p_{i} be the node of p_{1}, \ldots, p_{j} with highest index adjacent to a node of $Q \cup u$. Then by Lemma 4.1, $i>1$, and hence path p_{1}, \ldots, p_{i} is a crossing of Σ^{\prime}, contradicting Claim 3 .

Therefore, G^{*} does not have a bisimplicial cutset.

References

[1] L. Addario-Berry, M. Chudnovsky, F. Havet, B.Reed, and P. Seymour, Bisimplicial vertices in even-hole-free graphs, manuscript, 2006.
[2] L.W. Beineke, Characterizations of derived graphs, J. Comb. Th. 9 (1970) 129-135.
[3] C. Berge, Färbung von Graphen deren sämtliche bzw. deren ungerade Kreise starr sind (Zusammenfassung), Wiss. Z. Martin-Luther Univ. Halle-Wittenberg, Math.-Natur. Reihe 10 (1961) 114-115.
[4] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph theorem, Annals of Math. 164 (2006) 51-229.
[5] M. Chudnovsky and P. Seymour, The three-in-a-tree problem, preprint (2006), submitted.
[6] M. Conforti, G. Cornuéjols, A. Kapoor and K. Vušković, Even and odd holes in cap-free graphs, Journal of Graph Theory 30 (1999) 289-308.
[7] M. Conforti, G. Cornuéjols, A. Kapoor and K. Vušković, Even-hole-free graphs, Part I: Decomposition theorem, Journal of Graph Theory 39 (2002) 6-49.
[8] M. Conforti, G. Cornuéjols, A. Kapoor and K. Vušković, Even-hole-free graphs, Part II: Recognition algorithm, Journal of Graph Theory 40 (2002) 238-266.
[9] H. Everett, C.M.H. de Figueiredo, C. Linhares Sales, F. Maffray, O. Porto and B.A. Reed, Even Pairs in Perfect Graphs, J.L. Ramírez-Alfonsín and B.A. Reed eds., Wiley Interscience (2001) 67-92.
[10] P. Erdős, Graph theory and probability, Canad. J. Math. 11 (1959) 34-38.
[11] M. Farber, On diameters and radii of bridged graphs, Discrete Mathematics 73 (1989) 249-260.
[12] C.M.H. de Figueiredo and K. Vušković, A class of β-perfect graphs, Discrete Mathematics 216 (2000) 169-193.
[13] A. Gyárfás, Problems from the world surrounding perfect graphs, Zastos. Mat. 19 (1987) 413-431.
[14] J. Keijsper and M. Tewes, Conditions for β-perfectness, Discuss. Math. Graph Theory 22 (2002), 123-148.
[15] H. Kierstead, and J.H. Schmerl, The chromatic number of graphs which induce neither $K_{1,3}$ nor $K_{5}-e$, Discrete Mathematics 58 (1986) 253-262.
[16] S.E. Markossian, G.S. Gasparian and B.A. Reed, β-perfect graphs, Journal of Combinatorial Theory B 67 (1996) 1-11.
[17] B. Randerath, and I. Schiermeyer, Vertex coloring and forbidden subgraphs-a survey, Graphs and Combinatorics 20 (1) (2004) 1-40.
[18] M.V.G. da Silva and K. Vušković, Triangulated neighborhoods in even-hole-free graphs, Discrete Mathematics 307 (2007) 1065-1073.
[19] M.V.G. da Silva and K. Vušković, Decomposition of even-hole-free graphs by 2-joins and star cutsets, in preparation.
[20] K. Truemper, Alpha-balanced graphs and matrices and GF(3)-representability of matroids, Journal of Combinatorial Theory B 32 (1982) 112-139.
[21] V.G. Vizing, On an estimate of the chromatic class of p-graphs, Diskret. Analiz. 3 (1964) 25-30 [in Russian].

[^0]: *This work was supported in part by EPSRC grant EP/C518225/1.

