
This is a repository copy of Combinatorial optimization with 2-joins.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/74344/

Article:

Trotignon, N and Vuskovic, K (2012) Combinatorial optimization with 2-joins. Journal of
Combinatorial Theory: Series B, 102 (1). 153 - 185 . ISSN 0095-8956

https://doi.org/10.1016/j.jctb.2011.06.002

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

See Attached

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Combinatorial optimization with 2-joins

Nicolas Trotignon∗ and Kristina Vušković†

June 1, 2011

Abstract

A 2-join is an edge cutset that naturally appears in decomposition
of several classes of graphs closed under taking induced subgraphs, such
as perfect graphs and claw-free graphs. In this paper we construct com-
binatorial polynomial time algorithms for finding a maximum weighted
clique, a maximum weighted stable set and an optimal coloring for a
class of perfect graphs decomposable by 2-joins: the class of perfect
graphs that do not have a balanced skew partition, a 2-join in the
complement, nor a homogeneous pair. The techniques we develop are
general enough to be easily applied to finding a maximum weighted
stable set for another class of graphs known to be decomposable by
2-joins, namely the class of even-hole-free graphs that do not have a
star cutset.

We also give a simple class of graphs decomposable by 2-joins into
bipartite graphs and line graphs, and for which finding a maximum
stable set is NP-hard. This shows that having holes all of the same
parity gives essential properties for the use of 2-joins in computing
stable sets.

AMS Mathematics Subject Classification: 05C17, 05C75, 05C85, 68R10
Key words: combinatorial optimization, maximum clique, minimum stable
set, coloring, decomposition, structure, 2-join, perfect graphs, Berge graphs,
even-hole-free graphs.

∗CNRS, LIP – ENS Lyon (France), email: nicolas.trotignon@ens-lyon.fr. Partially
supported by the French Agence Nationale de la Recherche under reference anr Heredia

10 jcjc 0204 01.
†School of Computing, University of Leeds, Leeds LS2 9JT, UK and Faculty of Com-

puter Science, Union University, Knez Mihailova 6/VI, 11000 Belgrade, Serbia. E-mail:
k.vuskovic@leeds.ac.uk. Partially supported by Serbian Ministry of Education and Sci-
ence grants III44006 and OI174033 and EPSRC grant EP/H021426/1.
The two authors are also supported by PHC Pavle Savić grant jointly awarded by EGIDE,
an agency of the French Ministère des Affaires étrangères et européennes, and Serbian
Ministry for Science and Technological Development.

1

1 Introduction

In this paper all graphs are simple and finite. We say that a graph G
contains a graph F if F is isomorphic to an induced subgraph of G, and it
is F -free if it does not contain F . A hole in a graph is an induced cycle
of length at least 4. An antihole is the complement of a hole. A graph G
is said to be perfect if for every induced subgraph G′ of G, the chromatic
number of G′ is equal to the maximum size of a clique of G′. A graph is
said to be Berge if it does not contain an odd hole nor an odd antihole.
In 1961, Berge [1] conjectured that every Berge graph is perfect. This was
known as the Strong Perfect Graph Conjecture (SPGC), it was an object
of much research until it was finally proved by Chudnovsky, Robertson,
Seymour and Thomas in 2002 [8]. So Berge graphs and perfect graphs are
the same class of graphs, but we prefer to write “Berge” for results which
rely on the structure of the graphs, and “perfect” for results which rely on
the properties of their colorings. We now explain the motivation for this
paper and describe informally the results. We use several technical notions
that will be defined precisely later.

1.1 Optimization with decomposition

In the 1980’s, Gröstchel, Lovász and Schrijver [26, 27] devised a polynomial
time algorithm that optimally colors any perfect graph. This algorithm
relies on the ellipsoid method and consequently is impractical. Finding a
purely combinatorial polynomial time algorithm is still an open question. In
fact, after the resolution of the SPGC and the construction of polynomial
time recognition algorithm for Berge graphs [7], this is the key open problem
in the area.

The proof of the SPGC in [8] was obtained through a decomposition
theorem for Berge graphs. So, it is a natural question to ask whether this
decomposition theorem can be used for coloring and other combinatorial
optimization problems. Up to now, it seems that the decomposition theorem
is very difficult to use. Let us explain why. In a connected graph G, a
subset of vertices and edges is a cutset if its removal disconnects G. A
Decomposition Theorem for a class of graphs C is of the following form.

Decomposition Theorem: If G belongs to C then G is either “basic” or
G has some particular cutset.

Decomposition Theorems can be used for proving theorems. For ex-
ample, the SPGC was proved using the decomposition theorem for Berge

2

graphs [8], by ensuring that “basic” graphs are simple in the sense that they
are easily proved to be perfect directly, and the cutsets used have the prop-
erty that they cannot occur in a minimum counter-example to the SPGC.

Decomposition theorems can be used also for algorithms. For instance,
they yielded many recognition algorithms. To recognize a class C with a
decomposition theorem, “basic” graphs need to be simple in the sense that
they can easily be recognized, and the cutsets used need to have the fol-
lowing property. The removal of a cutset from a graph G disconnects G
into two or more connected components. From these components blocks of
decomposition are constructed by adding some more vertices and edges. A
decomposition is C-preserving if it satisfies the following: G belongs to C
if and only if all the blocks of decomposition belong to C. A recognition
algorithm takes a graph G as input and decomposes it using C-preserving
decompositions into a polynomial number of basic blocks, which are then
checked, in polynomial time, whether they belong to C. This is an ideal
scenario, and it worked for example for obtaining recognition algorithms for
regular matroids (using k-separations, k = 1, 2, 3) [41], max-flow min-cut
matroids (using 2-sums and ∆-sums) [44], and graphs that do not contain
a cycle with a unique chord (using 1-joins and vertex cutsets of size 1 or 2)
[43].

But several classes of graphs are too complex for allowing such a direct
approach. The main problem is what we call strong cutsets. The typi-
cal example of a strong cutset is the Chvátal’s star cutset [3]: a cutset
that contains one vertex and a subset of its neighbors. The problem with
such a cutset is that it can be very big, for instance, it can be the whole
vertex-set except two vertices. And since in the cutset itself, edges are quite
unconstrained, knowing that the graph has a star cutset tells little about its
structure. From this discussion, it could even be thought that star cutsets
are just useless, but this is not the case: deep theorems use strong cutsets.
The first one is the Hayward’s decomposition theorem of weakly triangu-
lated graphs [28], a simple class of graphs that captures ideas that were
used later for all Berge graphs.

More generally, using strong cutsets is essential for proving theorems
about many complex classes of graphs closed under taking induced sub-
graphs, the most famous example being the proof of the SPGC that uses a
generalization of star cutsets: the balanced skew partition. Robertson and
Seymour have obtained results about minor-closed families of stunning gen-
erality, see [33] for a survey. The Robertson-Seymour Theorem [38] states
that every minor-closed class of graphs can be characterized by a finite fam-
ily of excluded minors. Furthermore, every minor-closed property of graphs

3

can be tested in polynomial time [37]. The fact that a unified theory with
deep algorithmic consequences exists for classes closed under taking minors
and that no such theory exists up to now for the induced subgraph contain-
ment relation has perhaps something to do with these strong cutsets.

Yet, for recognition algorithms, strong cutsets can be used. Examples are
balanced matrices (using 2-joins and double star cutsets) [14], balanced 0,±1
matrices (using 2-joins, 6-joins and double star cutsets) [11], even-hole-free
graphs (using 2-joins and star cutsets) [19], and Berge graphs (using 2-joins
and double star cutsets from the decomposition theorem in [16]) [7]. This
is accomplished by a powerful tool: the cleaning, that is a preprocessing
of graphs not worth describing here. For combinatorial optimization algo-
rithms (maximum clique, coloring, . . .), it seems that the cleaning is useless
and no one knows how strong cutsets could be used.

1.2 Our results

What we are interested in is whether the known decomposition theorems
for perfect graphs [8, 6, 42] and even-hole-free graphs [12, 19] can be used
to construct combinatorial polynomial time optimization algorithms. But
as we explained above, we do not know how to handle the strong cutsets
(namely star cutsets and their generalizations, balanced skew partitions and
double star cutsets). So we take the bottom-up approach. Let us explain
this. In all classes similar to Berge graphs (in the sense that strong cutsets
are needed for their decomposition), it can be proved that a decomposition
tree can be built by using in a first step only the strong cutsets, and in
a second step only the other cutsets (this is not at all obvious for Berge
graphs, see [42]). So it is natural to ask whether we can optimize on classes
of graphs decomposable by cutsets that are not strong.

For Berge graphs and even-hole-free graphs, if we assume that no strong
cutset is needed, we obtain a class of graphs decomposable along 2-joins, a
decomposition that was introduced by Cornuéjols and Cunningham in [17]
where they prove that no minimum counter-example to the SPGC can admit
a 2-join. 2-Joins proved to be of great use in decomposition theorems, they
were also used in several recognition algorithms mentioned above, but never
yet have they been used in construction of optimization algorithms. Proving
that a minimally imperfect graph admits no 2-join is done by building blocks
of decomposition w.r.t. a 2-join that are smaller graphs with the same clique
number and the same chromatic number as the original graph. But as we will
see, it is not at all straightforward to transform these ideas into optimization
algorithms for our classes.

4

Our main results are Theorem 9.1 and 9.2. They say that for Berge
graphs with no balanced skew partition, no 2-join in the complement and
no homogeneous pair, the following problems can be solved combinatorially
in polynomial time: maximum weighted clique, maximum weighted stable
set and optimal coloring. The homogeneous pair and the 2-join in the com-
plement are not really strong cutsets. Excluding homogeneous pairs was
suggested to us by Celina de Figueiredo [20] and is very helpful for several
technical reasons, see below. In this bottom-up approach, the next step
would be to analyze how homogeneous pairs could be used in optimization
algorithms. This step might be doable because some classes of Berge graphs
are optimized with homogeneous pairs, see [24]. This might finally lead to
a coloring algorithm for Berge graphs with no balanced skew partitions.

Our approach is general enough to give results about even-hole-free
graphs that are structurally quite similar to Berge graphs. Their structure
was first studied by Conforti, Cornuéjols, Kapoor and Vušković in [12] and
[13]. They were focused on showing that even-hole-free graphs can be recog-
nized in polynomial time (a problem that at that time was not even known
to be in NP), and their primary motivation was to develop techniques which
can then be used in the study of Berge graphs. In [12] a decomposition theo-
rem was obtained using 2-joins, star, double star and triple star cutsets, and
in [13] a polynomial time decomposition based recognition algorithm was
constructed. Later da Silva and Vušković [19] significantly strengthened the
decomposition theorem for even-hole-free graphs by using just 2-joins and
star cutsets, which significantly improved the running time of the recogni-
tion algorithm for even-hole-free graphs. It is this strengthening that we use
in this paper. One can find a maximum clique in an even-hole-free graph
in polynomial time, since as observed by Farber [23] 4-hole-free graphs have
O(n2) maximal cliques and hence one can list them all in polynomial time
(in all complexity analysis, n stands for the number of vertices of the input
graph and m for the number of its edges). In [18] da Silva and Vušković
show that every even-hole-free graph has a vertex whose neighborhood is
hole-free, which leads to a faster algorithm for finding a maximum clique in
an even-hole-free graph. The complexities of finding a maximum stable set
and an optimal coloring are not known for even-hole-free graphs.

1.3 Outline of the paper

In Section 2 we precisely describe all the decomposition theorems we will
be working with. For even-hole-graphs, we rely on the theorem of da Silva
and Vušković [18]. For the decomposition of Berge graphs we rely on an

5

improvement due to Trotignon [42] of the decomposition theorems of Chud-
novsky, Robertson, Seymour and Thomas [8], and Chudnovsky [6]. We need
this improvement because we use the so called non-path 2-joins in the algo-
rithms, and not simply the 2-joins as defined in [8]. For the same reason,
we need to exclude the homogeneous pair because some Berge graphs are
decomposable only along path 2-join or homogeneous pair (an example is
represented Figure 1).

In Section 3 we show how to construct blocks of decomposition w.r.t. 2-
joins that will be class-preserving. This allows us to recursively decompose
along 2-joins down to basic graphs.

Using 2-joins in combinatorial optimization algorithms requires building
blocks of decomposition and asking at least two questions for at least one
block (while for recognition algorithms, one question is enough). When this
process is recursively applied it can potentially lead to an exponential blow-
up even when the decomposition tree is linear in the size of the input graph.
This problem is bypassed by using what we call extreme 2-joins, that is 2-
joins whose one block of decomposition is basic. In Section 4 we prove that
non-basic graphs in our classes actually have extreme 2-joins. Interestingly,
we give an example showing that Berge graphs in general do not necessarily
have extreme 2-joins, their existence is a special property of graphs with
no star cutset. This allows us to build a decomposition tree in which every
internal node has two children, at least one of which is a leaf, and hence
corresponds to a basic graph.

In Section 5, we show how to put weights on vertices of the block of de-
composition w.r.t. an extreme 2-join in order to compute maximum cliques.
In fact the approach used here could solve the maximum weighted clique
problem for any class with a decomposition theorem along extreme 2-joins
down to basic graphs for which the problem can be solved.

For stable sets, the problem is more complicated. As an evidence, in
Section 10, we show a simple class of graphs decomposable along extreme
2-joins into bipartite graphs and line graphs of cycles with one chord. This
class has a structure close to Berge graphs and in fact much simpler in many
respects. Yet, we prove that computing maximum stable sets for this class
is NP-hard. So, in Section 6, devoted to stable sets, we need to somehow
take advantage of the parity of the cycles. To do so, in Subsection 6.1, we
prove a couple of lemmas showing that a maximum weighted stable set and
a 2-join overlap in a very special way for graphs where cycles are all of the
same parity. These lemmas allow an unusual construction for blocks that
preserve simultaneously the weight of a maximal weighted stable set and
being Berge.

6

Our unusual blocks raise some problems. First, if we use them to fully
decompose a graph from our class, what we obtain in the leaves of the
decomposition tree are not basic graphs, but what we call extensions of
basic graphs. In Section 7, we show how to solve optimization problems for
extensions of basic graphs.

Another problem (that is in fact the source of the previous one) is that
our blocks are not class-preserving. They do preserve being Berge, but they
introduce balanced skew partitions. To bypass this problem, we construct
our decomposition tree in Section 8 in two steps. First, we use classical
class-preserving blocks. In the second step, we reprocess the tree to use the
unusual blocks.

In Section 9 we give the algorithms for solving the clique and stable
set problems. We also recall a classical method to color a perfect graph
assuming that subroutines exist for cliques and stable sets. We show that
this method can be used for our class.

Section 10 is devoted to the NP-hardness result mentioned above.

2 Decomposition theorems

In this section we introduce all the decomposition theorems we will use in
this paper. But before we continue, for the convenience we first establish
the following notation for the classes of graphs we will be working with.

We denote by C the class of all graphs. We use the superscript parity

to mean that all holes have the same parity. So, Cparity can be defined
equivalently as the union of the odd-hole-free graphs and the even-hole-
free graphs. Note that every Berge graph is in Cparity. We will use the
superscript ehf to restrict the class to even-hole-free graphs and Berge to
restrict the class to Berge graphs. So for instance, CBerge denotes the class of
Berge graphs. We use the subscript no cutset to restrict the class to those
graphs that do not have a balanced skew partition, a connected non-path
2-join in the complement, nor a homogeneous pair. For technical reasons,
mainly to avoid reproving results from [42], we also need the subscript no

bsp to restrict a class to graphs with no balanced skew partition. We use
the subscript no sc to restrict the class to graphs with no star cutset. We
use the subscript basic to restrict the class to the relevant basic graphs.
Table 1 sums up all the classes used in this paper. The classes are defined
more formally in the remainder of this section.

We call path any connected graph with at least one vertex of degree at
most 1 and no vertex of degree greater than 2. A path has at most two

7

Class Definition

Cparity Graphs where all holes have same parity

CBerge Berge graphs

Cehf Graphs that do not contain even holes

CBerge
no cutset Berge graphs with no balanced skew partition, no con-

nected non-path 2-join in the complement and no ho-
mogeneous pair

CBerge
no bsp Berge graphs with no balanced skew partition

CBerge
basic Bipartite, line graphs of bipartite, path-cobipartite

and path-double split graphs; complements of all these
graphs

Cehf
basic Even-hole-free graphs that can be obtained from the

line graph of a tree by adding at most two vertices

Cno sc Graphs that have no star cutset

Cparity
no sc Graphs of Cparity that have no star cutset

Cehf
no sc Even-hole-free graphs that have no star cutset

Table 1: Classes of graphs

vertices of degree 1, which are the ends of the path. If a, b are the ends of
a path P we say that P is from a to b. The other vertices are the interior
vertices of the path. We denote by v1−· · ·−vn the path whose edge set is
{v1v2, . . . , vn−1vn}. When P is a path, we say that P is a path of G if P is
an induced subgraph of G. If P is a path and if a, b are two vertices of P
then we denote by a−P−b the only induced subgraph of P that is path from
a to b. The length of a path is the number of its edges. An antipath is the
complement of a path. Let G be a graph and let A and B be two subsets
of V (G). A path of G is said to be outgoing from A to B if it has an end in
A, an end in B, length at least 2, and no interior vertex in A ∪ B.

The 2-join was first defined by Cornuéjols and Cunningham [17]. A
partition (X1,X2) of the vertex-set is a 2-join if for i = 1, 2, there exist
disjoint non-empty Ai, Bi ⊆ Xi satisfying the following:

• every vertex of A1 is adjacent to every vertex of A2 and every vertex
of B1 is adjacent to every vertex of B2;

• there are no other edges between X1 and X2;

8

• for i = 1, 2, |Xi| ≥ 3;

• for i = 1, 2, Xi is not a path of length 2 with an end in Ai, an end in
Bi and its unique interior vertex in Ci = Xi \ (Ai ∪ Bi).

The sets X1,X2 are the two sides of the 2-join. When sets Ai’s and Bi’s
are like in the definition we say that (X1,X2, A1, B1, A2, B2) is a split of
(X1,X2). Implicitly, for i = 1, 2, we will denote by Ci the set Xi \ (Ai ∪Bi).

A 2-join (X1,X2) in a graph G is said to be connected if for i = 1, 2,
there exists a path from Ai to Bi with interior in Ci.

A 2-join is said to be a path 2-join if it has a split (X1,X2, A1, B1, A2, B2)
such that for some i ∈ {1, 2}, G[Xi] is a path with an end in Ai, an end in
Bi and interior in Ci. Implicitly we will then denote by ai the unique vertex
in Ai and by bi the unique vertex in Bi. We say that Xi is the path-side
of the 2-join. Note that when G is not a hole then at most one of X1,X2

is a path side of (X1,X2). A non-path 2-join is a 2-join that is not a path
2-join. Note that all the 2-joins used in [11], [12], [13], [14] [15] and [16] are
in fact non-path 2-joins.

2.1 Decomposition of even-hole-free graphs

A vertex cutset in a graph G is a set S ⊂ V (G) such that G\S is disconnected
(G \ S means G[V (G) \ S]). By N [x] we mean N(x)∪ {x}. A star cutset in
a graph G is a vertex cutset S such that for some x ∈ S, S ⊆ N [x]. Such a
vertex x is called a center of the star, and we say that S is centered at x.

A graph is in Cehf
basic if it is even-hole-free and one can obtain the line

graph of a tree by deleting at most two of its vertices.
Building on the work in [29], da Silva and Vušković establish the follow-

ing strengthening of the original decomposition theorem for even-hole-free
graphs [12].

Theorem 2.1 (da Silva and Vušković [19]) If G ∈ Cehf then either
G ∈ Cehf

basic or G has a star cutset or a connected non-path 2-join.

Actually in the decomposition theorem of [19], the basic graphs are de-
fined in a more specific way, but for the purposes of the algorithms the
statement of Theorem 2.1 suffices.

2.2 Decomposition of Berge graphs

If X,Y ⊆ V (G) are disjoint, we say that X is complete to Y if every vertex
in X is adjacent to every vertex in Y . We also say that (X,Y) is a complete

9

pair. We say that X is anticomplete to Y if there are no edges between X
and Y . We also say that (X,Y) is an anticomplete pair. We say that a
graph G is anticonnected if its complement G is connected.

Skew partitions were first introduced by Chvátal [3]. A skew partition
of a graph G = (V,E) is a partition of V into two sets A and B such that
A induces a graph that is not connected, and B induces a graph that is not
anticonnected. When A1, A2, B1, B2 are non-empty sets such that (A1, A2)
partitions A, (A1, A2) is an anticomplete pair, (B1, B2) partitions B, and
(B1, B2) is a complete pair, we say that (A1, A2, B1, B2) is a split of the
skew partition (A,B). A balanced skew partition (first defined in [8]) is a
skew partition (A,B) with the additional property that every induced path
of length at least 2 with ends in B, interior in A has even length, and every
antipath of length at least 2 with ends in A, interior in B has even length.
If (A,B) is a skew partition, we say that B is a skew cutset. If (A,B) is
balanced we say that the skew cutset B is balanced. Note that Chudnovsky
et al. [8] proved that no minimum counter-example to the strong perfect
graph conjecture admits a balanced skew partition.

Call double split graph (first defined in [8]) any graph G that may be
constructed as follows. Let k, l ≥ 2 be integers. Let A = {a1, . . . , ak},
B = {b1, . . . , bk}, C = {c1, . . . , cl}, D = {d1, . . . , dl} be four disjoint sets.
Let G have vertex-set A ∪ B ∪ C ∪ D and edges in such a way that:

• ai is adjacent to bi for 1 ≤ i ≤ k. There are no edges between {ai, bi}
and {ai′ , bi′} for 1 ≤ i < i′ ≤ k;

• cj is non-adjacent to dj for 1 ≤ j ≤ l. There are all four edges between
{cj , dj} and {cj′ , dj′} for 1 ≤ j < j′ ≤ l;

• there are exactly two edges between {ai, bi} and {cj , dj} for 1 ≤ i ≤ k,
1 ≤ j ≤ l and these two edges are disjoint.

The homogeneous pair was first defined by Chvátal and Sbihi [4]. The
definition that we give here is a slight variation. A homogeneous pair is a
partition of V (G) into six sets (A,B,C,D,E, F) such that:

• A, B, C, D and F are non-empty (but E is possibly empty);

• every vertex in A has a neighbor in B and a non-neighbor in B, and
vice versa (note that this implies that A and B both contain at least
2 vertices);

• the pairs (C,A), (A,F), (F,B), (B,D) are complete;

10

• the pairs (D,A), (A,E), (E,B), (B,C) are anticomplete.

All the decomposition theorems for Berge graphs that we mention now
are published in papers that have a definition of a connected 2-join and a
homogeneous pair slightly more restrictive than ours. So, the statements
that we give here follow directly from the original statements.

The following theorem was first conjectured in a slightly different form
by Conforti, Cornuéjols and Vušković, who proved it in the particular case
of square-free graphs [15]. A corollary of it is the Strong Perfect Graph
Theorem.

Theorem 2.2 (Chudnovsky, Robertson, Seymour and Thomas, [8])
Let G be a Berge graph. Then either G is bipartite, line graph of bipartite,
complement of bipartite, complement of line graph of bipartite or double
split, or G has a homogeneous pair, or G has a balanced skew partition or
one of G,G has a connected 2-join.

The theorem that we state now is due to Chudnovsky who proved it from
scratch, that is without assuming Theorem 2.2. Her proof uses the notion
of trigraph. The theorem shows that homogeneous pairs are not necessary
to decompose Berge graphs. Thus it is a result stronger than Theorem 2.2.

Theorem 2.3 (Chudnovsky, [6, 5]) Let G be a Berge graph. Then either
G is bipartite, line graph of bipartite, complement of bipartite, complement
of line graph of bipartite or double split, or one of G,G has a connected
2-join or G has a balanced skew partition.

2.3 Avoiding path 2-joins in Berge graphs

Theorem 2.3 allows path 2-joins and they are not easy to handle. Because
their path side is sometimes not substantial enough to allow building a block
of decomposition that carries sufficiently information. But there are other
reasons that we explain now. Let us first remind the starting point of this
work: we do not know how to handle skew partitions in algorithms. So,
things should be easier for a Berge graph with no skew partition. Such a
graph is likely to have a 2-join, but when decomposing along this 2-join, we
may create a skew partition again. Thus, it seems impossible to devise a re-
cursive algorithm that decomposes graphs with no balanced skew partitions
along 2-joins. A careful study of this phenomenon, done in [42], shows that
path 2-joins, more precisely certain kinds of path 2-join, are responsible for
this and can be avoided. Let us state this more precisely.

11

The following theorem shows that path 2-joins are not necessary to de-
compose Berge graphs, but at the expense of extending balanced skew par-
titions to general skew partitions and introducing a new basic class. So, this
theorem is useless for us (at least, we do not know how to use it). Before
stating the theorem, we need to define the new basic class.

A graph G is path-cobipartite if it is a Berge graph obtained by subdi-
viding an edge between the two cliques that partitions the complement of a
bipartite graph. More precisely, a graph is path-cobipartite if its vertex-set
can be partitioned into three sets A,B,P where A and B are non-empty
cliques and P consist of vertices of degree 2, each of which belongs to the
interior of a unique path of odd length with one end a in A, the other one
b in B. Moreover, a has neighbors only in A ∪ P and b has neighbors only
in B ∪ P . Note that a path-cobipartite graph such that P is empty is the
complement of bipartite graph. Note that our path-cobipartite graphs are
simply the complement of the path-bipartite graphs defined by Chudnovsky
in [5]. For convenience, we prefer to think about them in the complement
as we do.

Theorem 2.4 (Chudnovsky, [5]) Let G be a Berge graph. Then either
G is bipartite, line graph of bipartite, complement of bipartite, complement
of line graph of bipartite, double split, path-bipartite, complement of path-
bipartite, or G has a connected non-path 2-join, or G has a connected 2-join,
or G has a homogeneous pair or G has a skew partition.

A path-double split graph is any graph H that may be constructed as
follows. Let k, l ≥ 2 be integers. Let A = {a1, . . . , ak}, B = {b1, . . . , bk},
C = {c1, . . . , cl}, D = {d1, . . . , dl} be four disjoint sets. Let E be another
possibly empty set disjoint from A, B, C, D. Let H have vertex-set A∪B∪
C ∪ D ∪ E and edges in such a way that:

• for every vertex v in E, v has degree 2 and there exists i ∈ {1, . . . , k}
such that v lies on a path of odd length from ai to bi;

• for 1 ≤ i ≤ k, there is a unique path of odd length (possibly 1) between
ai and bi whose interior is in E. There are no edges between {ai, bi}
and {ai′ , bi′} for 1 ≤ i < i′ ≤ k;

• cj is non-adjacent to dj for 1 ≤ j ≤ l. There are all four edges between
{cj , dj} and {cj′ , dj′} for 1 ≤ j < j′ ≤ l;

• there are exactly two edges between {ai, bi} and {cj , dj} for 1 ≤ i ≤ k,
1 ≤ j ≤ l and these two edges are disjoint.

12

Note that a path-double split graph G has an obvious skew partition that
is not balanced: (A∪B∪E,C ∪D). In fact, it is proved in [42], Lemma 4.5,
that this is the unique skew partition of G. Also, either E is empty and the
graph is a double split graph or E is not empty and the graph has a path
2-join. Path-double split graphs are the reason why in Theorem 2.4, one
needs to add non-balanced skew partitions in the list of decompositions.

We call flat path of a graph G any path of length at least 2, whose interior
vertices all have degree 2 in G and whose ends have no common neighbors
outside the path. A homogeneous 2-join is a partition of V (G) into six
non-empty sets (A, B, C, D, E, F) such that:

• (A,B,C,D,E, F) is a homogeneous pair such that E is not empty;

• every vertex in E has degree 2 and belongs to a flat path of odd length
with an end in C, an end in D and whose interior is in E;

• every flat path outgoing from C to D and whose interior is in E is the
path-side of a non-cutting connected 2-join of G.

Note we have not defined cutting and non-cutting 2-joins. The definition
is long (see [42]) and we do not need it here because the only property of
homogeneous 2-joins that we are going to use is that they imply the exis-
tence of a homogeneous pair. Homogeneous 2-joins are the reason why in
Theorem 2.4, one needs to add homogeneous pairs in the list of decomposi-
tions.

The following theorem generalizes the previously known decomposition
theorems for Berge graphs. So it implies the Strong Perfect Graph Theorem,
but its proof relies heavily on Theorem 2.3. Hence it does not give a new
proof of the Strong Perfect Graph Theorem.

Theorem 2.5 (Trotignon, [42]) Let G be a Berge graph. Then either G
is bipartite, line graph of bipartite, complement of bipartite, complement of
line graph of bipartite or double split, or one of G,G is a path-cobipartite
graph, or one of G,G is a path-double split graph, or one of G,G has a
homogeneous 2-join, or one of G,G has a connected non-path 2-join, or G
has a balanced skew partition.

Here, we will only use the obvious following corollary:

Theorem 2.6 If G is in CBerge
no cutset, then either G is in CBerge

basic or G has a
connected non-path 2-join.

13

c

d

e1

e2

b1

b2

a1

a2
f1

f2

f3

f4

Figure 1: A graph that has a homogeneous 2-join ({a1, a2}, {b1, b2}, {c}, {d},
{e1, e2}, {f1, f2, f3, f4})

proof — Follows directly from Theorem 2.5 and the fact that a graph
with a homogeneous 2-join, or whose complement has a homogeneous 2-
join, admits a homogeneous pair. 2

Note that since we need to use non-path 2-joins, we really need to ex-
clude homogeneous pairs (or to find a different approach). Indeed, there
exist Berge graphs that are decomposable only with path 2-joins and homo-
geneous pairs. An example from [42] is shown Figure 1.

3 Blocks of decomposition with respect to a 2-join

Blocks of decomposition with respect to a 2-join are built by replacing each
side of the 2-join by a path and the lemma below shows that for graphs in
Cparity there exists a unique way to choose the parity of that path.

Lemma 3.1 Let G be a graph in Cparity and (X1,X2, A1, B1, A2, B2) be a
split of a connected 2-join of G. Then for i = 1, 2, all the paths with an end
in Ai, an end in Bi and interior in Ci have the same parity.

proof — Since (X1,X2) is connected there exits a path P with one end in
A3−i, one end in B3−i and interior in C3−i. If two paths Q,R from Ai to Bi

with interior in Ci are of different parity then the holes P ∪ Q and P ∪ R
are of different parity, a contradiction to G ∈ Cparity. 2

14

Let G be a graph and (X1,X2, A1, B1, A2, B2) be a split of a connected
2-join of G. Let k1, k2 ≥ 1 be integers. The blocks of decomposition of G
with respect to (X1,X2) are the two graphs Gk1

1 , Gk2

2 that we describe now.
We obtain Gk1

1 by replacing X2 by a marker path P2, of length k1, from a
vertex a2 complete to A1, to a vertex b2 complete to B1 (the interior of P2

has no neighbor in X1). The block Gk2

2 is obtained similarly by replacing
X1 by a marker path P1 of length k2. We say that Gk1

1 and Gk2

2 are parity-
preserving if G is in Cparity, for i = 1, 2 and for a path Qi from Ai to Bi

whose intermediate vertices are in Ci (and such a path exists since (X1,X2)
is connected), the marker path Pi has the same parity as Qi. Note that by
Lemma 3.1, our definition does not depend on the choice of a particular Qi.

3.1 Interaction between 2-joins and cutsets

Here we show that assuming that a graph does not admit the cutsets we
consider gives several interesting properties for its 2-joins.

Lemma 3.2 Let G be in Cno sc and let (X1,X2, A1, B1, A2, B2) be a split of
a 2-join of G. Then the following hold:

(i) every component of G[Xi] meets both Ai and Bi, i = 1, 2;

(ii) (X1,X2) is connected;

(iii) every u ∈ Xi has a neighbor in Xi, i = 1, 2;

(iv) every vertex of Ai has a non-neighbor in Bi, i = 1, 2;

(v) every vertex of Bi has a non-neighbor in Ai, i = 1, 2;

(vi) |Xi| ≥ 4, i = 1, 2.

proof — To prove (i), suppose for a contradiction that some connected
component C of G[X1] does not intersect B1 (the other cases are symmetric).
If there is a vertex c ∈ C \ A1 then for any vertex u ∈ A2, we have that
{u} ∪ A1 is a star cutset that separates c from B1. So, C ⊆ A1. If |A1| ≥ 2
then pick any vertex c ∈ C and a vertex c′ 6= c in A1. Then {c′} ∪ A2 is
a star cutset that separates c from B1. So, C = A1 = {c}. Hence, there
exists some component of G[X1] that does not intersect A1, so by the same
argument as above we deduce |B1| = 1 and the unique vertex of B1 has no
neighbor in X1. Since |X1| ≥ 3, there is a vertex u in C1. For any vertex v
in X2, {v} is a star cutset of G that separates u from A1, a contradiction.

Item (ii) follows directly from (i).

15

To prove (iii), just notice that if some vertex in Xi has no neighbor in
Xi, then it forms a component of G[Xi] that does not intersect one of Ai, Bi.
This is a contradiction to (i).

To prove (iv) and (v), consider a vertex a ∈ A1 complete to B1 (the
others cases are symmetric). If A1 ∪ C1 6= {a} then B1 ∪ A2 ∪ {a} is a
star cutset that separates (A1 ∪ C1) \ {a} from B2, a contradiction. So,
A1 ∪ C1 = {a} and |B1| ≥ 2 because X1 ≥ 3. Let b 6= b′ ∈ B1. So,
{b, a} ∪ B2 is a star cutset that separates b′ from A2, a contradiction.

To prove (vi), suppose for a contradiction that |X1| = 3. Up to symmetry
we assume |A1| = 1, and let a1 be the unique vertex in A1. As we just
proved, every vertex of B1 has a non-neighbor in A1. Since A1 = {a1}, this
means that a1 has no neighbor in B1. Since (X1,X2) is a connected 2-join
(because of (ii)), G[X1] must be path of length 2 whose interior is in C1.
This contradicts the definition of a 2-join. 2

Note that a star cutset of size at least 2 is a skew cutset. The following
was noticed by Zambelli [45] and is sometimes very useful. A proof can be
found in [42], Lemma 4.3.

Lemma 3.3 Let G be a Berge graph of order at least 5 with at least one
edge. If G has a star cutset then G has a balanced skew partition.

Lemma 3.4 If a graph G is in CBerge
no bsp and admits a 2-join or a homogeneous

pair, then neither G nor G has a star cutset.

proof — Assume the hypothesis. Since G has 2-join or a homogeneous
pair, it is of order at least 5 and both G and G have at least one edge. So,
by Lemma 3.3, if G has a star cutset, then G has a balanced skew partition,
a contradiction. Similarly, by Lemma 3.3, if G has a star cutset, then G has
a balanced skew partition, and hence so does G, a contradiction. 2

Lemma 3.5 Let G ∈ Cehf
no sc ∪ CBerge

no bsp. If (X1,X2, A1, B1, A2, B2) is a split
of a 2-join of G then every vertex of Ai has a neighbor in Xi \ Ai, i = 1, 2;
and every vertex of Bi has a neighbor in Xi \ Bi, i = 1, 2.

proof — By Lemma 3.4, G has no star cutset, so by Lemma 3.2 (ii),
(X1,X2) is connected. Consider a vertex a ∈ A1 with no neighbor in X1\A1

(the other cases are similar). We put Z = (A1 ∪A2) \ {a}. So, Z is a cutset
that separates a from the rest of the graph. We note that A1 6= {a} because
(X1,X2) is connected. If G ∈ CBerge

no bsp then V (G)\Z is a star cutset (centered
at a) of G and this contradicts Lemma 3.4. If G ∈ Cehf

no sc then we note that

16

at least one of A1, A2 is a clique because G contains no 4-hole. So Z is a
star cutset of G, a contradiction. 2

3.2 Staying in the class

Here we prove several lemmas of the same flavour, needed later for inductive
proofs and recursive algorithms. They all say that building the blocks of a
graph with respect to some well chosen 2-join preserves several properties
like being free of cutset or member of some class.

Lemma 3.6 Let G be a graph in Cparity
no sc and (X1,X2) a connected 2-join

of G. Let Gk1

1 , Gk2

2 be parity-preserving blocks of decomposition of G w.r.t.
(X1,X2), where k1, k2 ≥ 2. If one of Gk1

1 , Gk2

2 contain an odd (resp. even)
hole, then G contains an odd (resp. even) hole.

proof — Let C be a hole in Gk1

1 say. Let P2 = a2−· · ·−b2 be the marker
path of Gk1

1 . If C ⊆ X1 ∪ {a2, b2} then we obtain a hole C ′ of G as follows.
By Lemma 3.2 (iv), there exist non-adjacent vertices a′2 ∈ A2, b′2 ∈ B2. If
a2 ∈ C (resp. if b2 ∈ C) then we replace a2 (resp. b2) by a′2, (resp. b′2). So,
holes C and C ′ have the same length and in particular the same parity.

So we may assume that C contains interior vertices of P2. This means
that C is the union of P2 together with a path Q from A1 to B1 with interior
in C1. We obtain a hole C ′ of G by replacing P2 by any path of G from A2

to B2 with interior in C2. Such a path exists because (X1,X2) is connected.
Holes C and C ′ have the same parity from the definition of parity-preserving
blocks and Lemma 3.1. 2

Lemma 3.7 Let G ∈ Cehf
no sc ∪ CBerge

no bsp and let (X1,X2) be a connected 2-
join of G. Let Gk1

1 and Gk2

2 be blocks of decomposition w.r.t. (X1,X2). If
k1, k2 ≥ 3 then Gk1

1 and Gk2

2 are both in Cno sc.

proof — By Lemma 3.4, G is in Cno sc. Let (X1,X2, A1, B1, A2, B2) be a
split of (X1,X2). Let P2 = a2−· · ·−b2 be the marker path of Gk1

1 .
Suppose that Gk1

1 say has a star cutset S centered at x. If S ∩ P2 = ∅
then S is a star cutset of G, a contradiction. So S ∩ P2 6= ∅. If x 6∈ P2 then
w.l.o.g. x ∈ A1 and hence S ∪ A2 is a star cutset of G, a contradiction.

So x ∈ P2. First suppose that x coincides with a2 or b2, say x = a2.
Since k1 > 1, vertices of B1 ∪ {b2} are all contained in the same component
B of Gk1

1 \ S. Let C be a connected component of Gk1

1 \ S that is distinct
from B. If C \ A1 6= ∅ then for a′2 ∈ A2, A1 ∪ {a′2} is a star cutset of G, a

17

contradiction. So C ⊆ A1. Hence, some vertex c of C is in A1 and has no
neighbor in X1 \ A1, a contradiction to Lemma 3.5.

Therefore, x ∈ P2 \{a2, b2}. Since (X1,X2) satisfies (i) from Lemma 3.2,
both G[X1 ∪{a2}] and G[X1 ∪{b2}] are connected. So, both a2 and b2 must
be in S, a contradiction to k1 ≥ 3. 2

Lemma 3.8 Let G ∈ Cehf
no sc. Let (X1,X2) be a connected 2-join of G and

let Gk1

1 and Gk2

2 be parity-preserving blocks of decomposition. If k1, k2 ≥ 3
then Gk1

1 and Gk2

2 are both in Cehf
no sc.

proof — For i = 1, 2, by Lemma 3.7, Gki

i has no star cutset. By Lemma 3.6,

Gki

i contains no even hole. 2

Lemma 3.9 Let G ∈ CBerge
no bsp and let (X1,X2) be a connected non-path 2-

join of G. Let Gk1

1 and Gk2

2 be parity-preserving blocks of decomposition of G
w.r.t. (X1,X2) where 3 ≤ k1, k2 ≤ 4. Then Gk1

1 and Gk2

2 are both in CBerge
no bsp.

proof — Lemma 4.12 and 4.18 from [42] say that if (X1,X2) is proper then
the conclusion holds, where a proper 2-join means a 2-join that satisfies (i)
from Lemma 3.2. So, by Lemma 3.2, (X1,X2) is proper and the conclusion
holds. 2

Lemma 3.10 Let G ∈ CBerge
no bsp and let (A,B,C,D,E, F) be a homogeneous

pair of G. Then every vertex of C has a neighbor in E ∪D and every vertex
of D has a neighbor in E ∪ C.

proof — If there exists a vertex c ∈ C with no neighbor in E ∪ D then
(A∪C∪F)\{c} is a skew cutset that separates c from the rest of the graph.
Hence, G has a star-cutset centered at c, a contradiction to Lemma 3.4. The
case with d ∈ D is similar. 2

Berge graphs have a particular problem: their decomposition theorems
allow 2-joins in the complement. And swapping to the complement makes
difficult keeping track of maximum stable sets and cliques. The following
lemma shows how to bypass this problem.

Lemma 3.11 Let G ∈ CBerge
no cutset and let (X1,X2) be a connected non-path

2-join of G. Let Gk1

1 and Gk2

2 be parity-preserving blocks of decomposition of
G w.r.t. (X1,X2) where 3 ≤ k1, k2 ≤ 4. Then Gk1

1 and Gk2

2 are in CBerge
no cutset.

18

proof — Note that G is in CBerge
no bsp. By Lemma 3.9, Gk1

1 and Gk2

2 are both
Berge graphs and Gk1

1 and Gk2

2 have no balanced skew partition. Because of
the symmetry, we just have to prove the following two claims:

(1) Gk2

2 has no connected 2-join.

Note that Gk2

2 has a 2-join (a path 2-join). So by Lemma 3.4, Gk2

2 has no star
cutset. In Gk2

2 , we denote by P1 = a1−c1−c2−c′−b1 the marker path, where
a1 is complete to A2 and b1 to B2. Note that this path may be of length 3
or 4. If it is of length 3, then we suppose c′ = b1, this is convenient to avoid

a multiplication of cases. Note that by Lemma 3.2 (ii), any 2-join of Gk2

2

is connected. Let us suppose for a contradiction that Gk2

2 has a 2-join. Let
(X ′

1,X
′
2, A

′
1, B

′
1, A

′
2, B

′
2) be a split of this 2-join. We put C ′

i = X ′
i \ (A′

i∪B′
i),

i = 1, 2.

Since c1, c2 are of degree 2 in Gk2

2 , they are of degree |V (Gk2

2)| − 3 in

Gk2

2 . Since by Lemma 3.2 (vi), |X ′
i| ≥ 4, i = 1, 2, we must have c1, c2 ∈

A′
1 ∪ A′

2 ∪ B′
1 ∪ B′

2. Also, c1, c2 are non-adjacent in Gk2

2 so up to symmetry
there are two cases. Here below, the words “neighbor” and “non-neighbor”

refer to adjacency in Gk2

2 .
Case 1: c1 ∈ A′

1, c2 ∈ B′
2. Then by Lemma 3.2, (iv) applied to (X ′

1,X
′
2),

c1 must have a non-neighbor in B′
1, and this non-neighbor must be a1 (a1, c2

are the only non-neighbors of c1). So, a1 ∈ B′
1. Similarly, c2 must have a

non-neighbor in A′
2, and this non-neighbor must be c′, i.e. c′ ∈ A′

2. But

then, since a1c
′ is an edge of Gk2

2 , this contradicts the definition of a 2-join.
Case 2: c1 ∈ A′

1, c2 ∈ B′
1. We must have B′

2 = {a1} because a1, c2 are
the only non-neighbors of c1. For the same reason, A′

2 = {c′}. Since a1

is a neighbor of c′, there is a contradiction to Lemma 3.2 (iv) applied to
(X ′

1,X
′
2). This proves (1).

(2) Gk2

2 has no homogeneous pair.

Suppose for a contradiction that (A,B,C,D,E, F) is a homogeneous pair of
Gk2

2 . It is convenient to use now a slightly different notation for the marker
path P1 = a1−c1−c2−c′−b1. Now, when the path is of length 3, we suppose
c′ = c2.

By Lemma 3.10, every vertex in A,B,C,D,F has degree at least 3. So,
c1, c2, c

′ ∈ E. We will reach the contradiction by giving an homogeneous
pair (A′, B′, C ′,D′, E′, F ′) of G.

In E′, we put every vertex of E\{c1, c2, c
′}, and we add C1. If E contains

a1, we add A1 to E′. If E contains b1, we add B1 to E′. We set A′ = A

19

and B′ = B. In C ′, we put every vertex of C \ {a1, b1}. If C contains a1, we
add A1 to C ′. If C contains b1, we add B1 to C ′. We define similarly D′,
F ′ from D and F respectively. Now we observe that (A′, B′, C ′,D′, E′, F ′)
partitions V (G) and is a homogeneous pair of G (note that E′ is possibly
empty). This proves (2). 2

4 Extreme 2-joins

In this section, we show how to find a 2-join in a graph so that one of the
blocks has no more 2-joins. The idea behind this is that when (X1,X2) is a
2-join of G and the block of decomposition Gk1

1 has no more decomposition
then it is basic. So a lot of computations can be made on G[X1] without
leading to an exponential complexity.

Let (X1,X2) be a connected non-path 2-join of a graph G. We say
that (X1,X2) is a minimally-sided connected non-path 2-join if for some
i ∈ {1, 2}, the following holds: for every connected non-path 2-join (X ′

1,X
′
2)

of G, neither X ′
1 (Xi nor X ′

2 (Xi holds. We call Xi a minimal side of
this minimally-sided 2-join. Note that minimally-sided connected non-path
2-joins exist in any graph that admits a connected non-path 2-join.

Let (X1,X2) be a connected non-path 2-join of G. We say that (X1,X2)
is an extreme 2-join if for some i ∈ {1, 2} and all k ≥ 3 the block of decom-
position Gk

i has no connected non-path 2-join. We say that Xi is an extreme
side of such a 2-join. Figure 2 shows that graphs in general do not have an
extreme 2-join, but as we now show, graphs with no star cutset do.

Lemma 4.1 Let G ∈ Cno sc and let (X1,X2, A1, B1, A2, B2) be a split
of a connected non-path 2-join of G. If |A1| = 1 then (X1 \ A1,X2 ∪
A1, NG[X1](A1), B1, A1, B2) is a split of a connected non-path 2-join of G.

proof — Assume A1 = {a1}. So by Lemma 3.2 (v), a1 has no neighbor
in B1. Let A′

1 = NG[X1](a1). Then A′
1 ∩ B1 = ∅. By Lemma 3.2 (vi),

|X1 \ A1| ≥ 3. Since (X1,X2) is a non-path 2-join of G, it follows that
(X1 \ A1,X2 ∪ A1, A

′
1, B1, A1, B2) is a split of a non-path 2-join of G. By

Lemma 3.2 (ii), (X1 \ A1,X2 ∪ A1) is connected. 2

Lemma 4.2 Let G ∈ Cno sc and let (X1,X2, A1, B1, A2, B2) be a split of a
minimally-sided connected non-path 2-join of G. Let X1 be a minimal side.
Then |A1| ≥ 2 and |B1| ≥ 2. In particular, A2 ∪ B2 contains only vertices
of degree at least 3.

20

G H

Figure 2: Graph G that has a star cutset, but does not have an extreme
connected non-path 2-join. G has a connected non-path 2-join represented
with bold lines, and all connected non-path 2-joins are equivalent to this
one. Both of the blocks of decomposition are isomorphic to graph H, and
H has a connected non-path 2-join whose edges are represented with bold
lines.

proof — If |A1| = 1 then by Lemma 4.1, (X1 \A1,X2 ∪A1) is a connected
non-path 2-join of G, contradicting the assumption that (X1,X2) is mini-
mally sided connected non-path 2-join of G. So |A1| ≥ 2, and by symmetry
|B1| ≥ 2. By Lemma 3.2 (iii), all vertices of A2 ∪ B2 have degree at least
3. 2

Recall that a flat path of a graph G is any path of G of length at least 2,
whose interior vertices all have degree 2 in G, and whose ends have no
common neighbors outside the path.

Lemma 4.3 Let G ∈ Cno sc and let (X1,X2, A1, B1, A2, B2) be a split of a
minimally sided connected non-path 2-join of G. Let X1 be a minimal side,
and let P be a flat path of G. If P ∩ X1 6= ∅ and P ∩ X2 6= ∅, then one of
the following holds:

(i) For an endvertex u of P , P \ u ⊆ X1 and u ∈ A2 ∪ B2.

(ii) For endvertices u and v of P , u ∈ A2, v ∈ B2, P \ {u, v} ⊆ X1,
the length of P is at least 3 and G[X1] has exactly two connected
components that are both a path with one end in A1, one end in B1

and interior in C1.

21

proof — Let u and v be the endvertices of P . By Lemma 4.2, the interior
of P must lie in X1 and w.l.o.g. u ∈ A2. By Lemma 3.2 (iii), the neighbor
x of u along P has a neighbor in X1, so |A2| = 1. Hence if (i) does not
hold then v ∈ B2. Also, P is of length at least 3. So, the interior of P is a
connected component C of G[X1]. If G[X1 \ C] is not a path with one end
in A1, one end in B1 and interior in C1 then (X1 \C,X2 ∪C) is a connected
non-path 2-join. Indeed, by Lemma 3.2 (i), X1 \ C meets A1 and B1, and
since it is not a path, it has size at least 3, so (X1 \C,X2 ∪C) is a non-path
2-join that is connected by Lemma 3.2 (ii). This contradicts (X1,X2) being
minimally-sided. Therefore (ii) holds. 2

Lemma 4.4 Let (X1,X2, A1, B1, A2, B2) be a split of a minimally-sided
connected non-path 2-join of a graph G, with X1 being a minimal side. As-
sume that G and all the blocks of decomposition of G w.r.t. (X1,X2) whose
marker paths are of length at least 3, all belong to Cno sc. Then (X1,X2) is
an extreme 2-join and X1 is an extreme side.

proof — Suppose that the block of decomposition Gk1

1 , k1 ≥ 3, has a
connected non-path 2-join with split (X ′

1,X
′
2, A

′
1, B

′
1, A

′
2, B

′
2). For i = 1, 2

let C ′
i = X ′

i \ (A′
i ∪ B′

i). Let P2 = x0−x1−· · ·−xk1
, where x0 = a2 and

xk1
= b2, be the marker path of Gk1

1 .

Case 1: For some i ∈ {1, 2}, P2 ⊆ X ′
i.

W.l.o.g. P2 ⊆ X ′
2. Note that since N

G
k1
1

(P2 \{a2, b2}) ⊆ {a2, b2} we have

P2 ∩ (A′
2 ∪ B′

2) ⊆ {a2, b2}. Note also that since a2 and b2 have no common
neighbor in Gk1

1 we have |A′
2 ∩ {a2, b2}| ≤ 1 and |B′

2 ∩ {a2, b2}| ≤ 1. So by
symmetry it suffices to consider the following subcases:

Case 1.1: P2 ⊆ C ′
2

Since a2 is adjacent to all vertices of A1 and a2 has no neighbor in X ′
1

(since a2 6∈ A′
2 ∪ B′

2) it follows that A1 ⊆ X ′
2. Similarly B1 ⊆ X ′

2. But then
(X ′

1, (X
′
2\P2)∪X2) is a connected non-path 2-join of G. Since A1∪B1 ⊆ X ′

2,
X ′

1 (X1, contradicting our choice of (X1,X2).

Case 1.2: a2 ∈ A′
2 and P2 \ {a2} ⊆ C ′

2.

So b2 has no neighbor in X ′
1, and since b2 is adjacent to all vertices of B1,

it follows that B1 ⊆ X ′
2. In particular, X ′

1 (X1. Since a2 ∈ A′
2, P2 ⊆ X ′

2

and N
G

k1
1

(a2) \ P2 = A1, it follows that A′
1 ⊆ A1 and (X ′

1 \ A′
1) ∩ A1 = ∅.

22

But then (X ′
1, (X

′
2 \ P2) ∪ X2, A

′
1, B

′
1, (A

′
2 \ {a2}) ∪ A2, B

′
2) is a split of a

connected non-path 2-join of G, contradicting our choice of (X1,X2).

Case 1.3: a2 ∈ A′
2, b2 ∈ B′

2 and P2 \ {a2, b2} ⊆ C ′
2.

Since (X ′
1,X

′
2) is not a path 2-join, X ′

2 ∩ X1 6= ∅, and hence X ′
1 (X1.

Since a2 ∈ A′
2, P2 ⊆ X ′

2 and N
G

k1
1

(a2) \ P2 = A1, it follows that A′
1 ⊆ A1

and (X ′
1 \ A′

1) ∩ A1 = ∅. Similarly B′
1 ⊆ B1 and (X ′

1 \ B′
1) ∩ B1 = ∅. But

then (X ′
1, (X

′
2 \P2)∪X2, A

′
1, B

′
1, (A

′
2 \ {a2})∪A2, (B

′
2 \ {b2})∪B2) is a split

of a connected non-path 2-join of G, contradicting our choice of (X1,X2).

Case 2: For i = 1, 2, P2 ∩ X ′
i 6= ∅.

We may assume w.l.o.g. that (X ′
1,X

′
2) is a minimally-sided connected

non-path 2-join of Gk1

1 , with X ′
1 being the minimal side. But then by Lemma

4.3 applied to (X ′
1,X

′
2) and P2 it suffices up to symmetry to consider the

following two cases:

Case 2.1: a2 ∈ A′
2 and P2 \ a2 ⊆ X ′

1.

Since x1 is of degree 2 and x2 ∈ X ′
1, it follows that |A′

2| = 1. Note that
P2\{a2, x1} ⊆ X ′

1\A′
1. Since a2 ∈ A′

2, A′
1\{x1} ⊆ A1 and A1\A′

1 ⊆ X ′
2\A′

2.
Note that since (X ′

1,X
′
2) is connected, A1\A

′
1 6= ∅. Note that P2∩B′

1 ⊆ {b2}.
First suppose that b2 ∈ C ′

1. Since b2 is adjacent to all vertices of B1,
B1 ⊆ X ′

1. By Lemma 3.2, (v), no vertex of B′
2 has a neighbor in A′

2, which
implies B′

2 ∩ A1 = ∅. So, C ′
2 6= ∅ and by Lemma 3.2 (vi), |X ′

2| ≥ 4. But
then (X ′

2 \ {a2}, (X
′
1 \P2)∪X2, A1 \A′

1, B
′
2, A2, B

′
1) is a split of a connected

non-path 2-join of G, contradicting our choice of (X1,X2) (since clearly
X ′

2 \ {a2} (X1).
Hence b2 6∈ C ′

1 and b2 ∈ B′
1. Then B′

2 ⊆ B1 and B1 \ B′
2 ⊆ X ′

1. By
Lemma 3.2, (v), no vertex of B′

2 has a neighbor in A′
2, which implies B′

2 ∩
A1 = ∅. So (X ′

2 \ {a2}, (X
′
1 \ P2) ∪ X2, A1 \ A′

1, B
′
2, A2, (B

′
1 \ {b2}) ∪ B2)

is a split of a connected non-path 2-join of G, contradicting our choice of
(X1,X2) (since clearly X ′

2 \ {a2} (X1).

Case 2.2: a2 ∈ A′
2, b2 ∈ B′

2 and P2 \ {a2, b2} ⊆ X ′
1.

Then x1 ∈ A′
1, xk1−1 ∈ B′

1 and P \{a2, b2, x1, xk1−1} ⊆ C ′
1. Since x1 and

xk1−1 are of degree 2 in Gk1

1 , it follows that A′
2 = {a2} and B′

2 = {b2}. Since
N

G
k1
1

(a2) = A1 ∪ {x1}, it follows that A′
1 \ {x1} ⊆ A1 and A1 \ A′

1 ⊆ X ′
2.

Similarly B′
1 \{xk1−1} ⊆ B1 and B1 \B′

1 ⊆ X ′
2. Since (X ′

1,X
′
2) is connected,

A1 \A′
1 6= ∅ and B1 \B′

1 6= ∅. Since a2 and b2 have no common neighbor in
Gk1

1 , (A1 \ A′
1) ∩ (B1 \ B′

1) = ∅. Since (X ′
1,X

′
2) is a non-path 2-join, |X ′

2 \

23

{a2, b2}| ≥ 3. But then ((X ′
1 \P2)∪X2,X

′
2 \{a2, b2}, A2, B2, A1 \A′

1, B1\B′
1)

is a split of a 2-join of G. By Lemma 3.2 (ii) this 2-join is connected. Since
Gk1

1 [X ′
2] and G[X2] are not paths, this 2-join is a non-path 2-join. But then

since X ′
2 \ {a2, b2} (X1, our choice of (X1,X2) is contradicted. 2

When M is a collection of vertex-disjoint flat paths, a 2-join (X1,X2) is
M-independent if for every path P from M we have either V (P) ⊆ X1 or
V (P) ⊆ X2. These special types of 2-joins will have a fundamental role to
play when it comes to computing a largest stable set.

Lemma 4.5 Let (X1,X2, A1, B1, A2, B2) be a split of a minimally-sided
connected non-path 2-join of a graph G, with X1 being a minimal side. As-
sume that G and all the blocks of decomposition of G w.r.t. (X1,X2) whose
marker paths are of length at least 3, all belong to Cno sc. Let M be a set
of vertex-disjoint flat paths of length at least 3 of G. If there exists a path
P ∈ M such that P ∩A1 6= ∅ and P ∩A2 6= ∅, then let A′

1 = A2, and other-
wise let A′

1 = A1. If there exists a path P ∈ M such that P ∩ B1 6= ∅
and P ∩ B2 6= ∅, then let B′

1 = B2, and otherwise let B′
1 = B1. Let

X ′
1 = X1 ∪ A′

1 ∪ B′
1 and X ′

2 = V (G) \ X ′
1. Then the following hold:

(i) (X ′
1,X

′
2) is a connected non-path 2-join of G.

(ii) (X ′
1,X

′
2) is M-independent.

(iii) (X ′
1,X

′
2) is an extreme 2-join of G and X ′

1 is an extreme side of this
2-join.

proof — If there exists a path P ∈ M such that P∩A1 6= ∅ and P∩A2 6= ∅,
then by Lemma 4.3, either for an endvertex u of P , P \u ⊆ X1 and u ∈ A2;
or for endvertices u and v of P , u ∈ A2, v ∈ B2 and P \ {u, v} ⊆ X1. Since
the intermediate vertices of P are of degree 2, it follows that |A2| = 1, and
so (i) holds by Lemma 4.1 (possibly applied twice).

Let (X ′
1,X

′
2, A

′
1, B

′
1, A

′
2, B

′
2) be the split of (X ′

1,X
′
2), where A2 ∈

{A′
1, A

′
2} and B2 ∈ {B′

1, B
′
2}. By Lemma 4.3, applied to (X1,X2), paths

P ∈ M are one of the following types:

Type 1: P ⊆ X1

Type 2: P ⊆ X2

Type 3: For an endvertex u of P , u ∈ A2 and P \ u ⊆ X1.

Type 4: For an endvertex u of P , u ∈ B2 and P \ u ⊆ X1.

24

Type 5: For endvertices u and v of P , u ∈ A2, v ∈ B2 and P \{u, v} ⊆ X1.

Note that since M is a collection of vertex-disjoint paths, at most one
path of M is of type 3 (resp. type 4), and if there exists a type 3 (resp. type
4) path then for every type 2 path P , P ∩ A2 = ∅ (resp. P ∩ B2 = ∅). Also
there is at most one type 5 path in M, and if such a path exists there are
no type 3 and 4 paths in M, and for every type 2 path P of M, P ∩A2 = ∅
and P ∩B2 = ∅. So by the construction of (X ′

1,X
′
2) all type 1 (resp. type 2)

paths w.r.t. (X1,X2) stay type 1 (resp. type 2) w.r.t. (X ′
1,X

′
2), and all type

3, 4 and 5 paths w.r.t. (X1,X2) become type 1 w.r.t. (X ′
1,X

′
2). Therefore

(ii) holds.
For k1, k2 ≥ 3, let Gk1

1 and Gk2

2 be the blocks of decomposition of G w.r.t.
the 2-join (X1,X2). By Lemma 4.4, Gk1

1 has no connected non-path 2-join.

Let P2 be the marker path of Gk1

1 . Let G
′k′

1

1 be the block of decomposition of

G with respect to (X ′
1,X

′
2). Notice that G

′k′
1

1 can be obtained from Gk1

1 by
subdividing an edge of P2 (0, 1 or 2 times), and hence by our assumption,

G
′k′

1

1 ∈ Cno sc. Therefore by Lemma 4.4, G
′k′

1

1 has no connected non-path
2-join and hence (iii) holds. 2

Lemma 4.6 There is an algorithm with the following specification:

Input: A connected graph G and a set M of vertex-disjoint flat paths of G
of length at least 3.

Output: One of the following is returned.

(i) An extreme connected non-path 2-join of G (with an identified
extreme side) that is M-independent.

(ii) G or a block of decomposition of G w.r.t. some 2-join whose
marker path is of length at least 3, has a star cutset.

(iii) G has no connected non-path 2-join.

Running time: O(n3m)

proof — First check whether G has a star cutset. Note that this can be
done in time O(n3) as noted by Chvátal [3]: for every x ∈ V (G), check
whether G \ N [x] is disconnected, and also check whether there exists y ∈
N(x) such that y has no neighbor in G \N [x]. If the answer to any of these
is yes, then G has a star cutset centered at x, and otherwise it does not. If

25

G is identified as having a star cutset return (ii) and stop, and otherwise
continue.

Note that at this point in the algorithm we know that G ∈ Cno sc, and
hence by Lemma 3.2 (ii) any 2-join of G is connected.

Run the O(n3m)-algorithm from Theorem 5.2 in [2] for G. This algo-
rithm outputs a minimally sided non-path 2-join of an input graph with
no star cutset, or certifies that the input graph has no non-path 2-join. If
this stage of the algorithm does not find any non-path 2-join in G, then
return (iii) and stop. Otherwise let (X1,X2, A1, B1, A2, B2) be the split of a
minimally-sided connected non-path 2-join found, and w.l.o.g. assume that
X1 is a minimal side.

Let G3
1 and G3

2 be the blocks of decomposition of G w.r.t. (X1,X2).
Check whether G3

1 and G3
2 have a star cutset. If any one of them does,

then return (ii) and stop. Otherwise, we continue and we note that since
G3

1, G
3
2 ∈ Cno sc clearly blocks of decomposition of G w.r.t. (X1,X2) Gk1

1 and
Gk2

2 , for any k1, k2 ≥ 3, also belong to Cno sc.
If there exists a path P ∈ M such that P ∩ A1 6= ∅ and P ∩ A2 6= ∅,

then let A′
1 = A2, and otherwise let A′

1 = A1. If there exists a path P ∈ M
such that P ∩ B1 6= ∅ and P ∩ B2 6= ∅, then let B′

1 = B2, and otherwise let
B′

1 = B1. Let X ′
1 = X1∪A′

1∪B′
1 and X ′

2 = V (G)\X ′
1. Then by Lemma 4.5,

(X ′
1,X

′
2) is an extreme connected non-path 2-join (with X ′

1 being an extreme
side) that is M-independent. We return this 2-join in (i) and stop.

Clearly this algorithm can be implemented to run in time O(n3m). 2

Note that later when we apply the above algorithm in our main algo-
rithm, if the output is (ii), then by Lemma 3.7 we can conclude that G does
not belong to CBerge

no cutset or to Cehf
no sc.

5 Keeping track of cliques

Here we show how to find a maximum clique in a graph using 2-joins. For
the sake of induction we have to solve the weighted version of the problem.

Through all the next sections, by graph we mean a graph with weights
on the vertices. Weights are numbers from K where K means either the set
R+ of non-negative real numbers or the set N+ of non negative integers. The
statements of the theorems will be true for K = R+ but the algorithms are
to be implemented with K = N+. Let G be a weighted graph with a weight
function w on V (G). When H is an induced subgraph of G or a subset of
V (G), w(H) denotes the sum of the weights of vertices in H. Note that
we view a graph where no weight is assigned to the vertices as a weighted

26

graph whose vertices have all weight 1. Here, ω(G) denotes the weight of a
maximum weighted clique of G.

Let (X1,X2, A1, B1, A2, B2) be a split of a connected 2-join of G. We
define for k ≥ 3 the clique-block Gk

2 of G with respect to (X1,X2). It is
obtained from the block Gk

2 by giving weights to the vertices. Let P1 =
a1−x1−· · ·−xk−1−b1 be the marker path of Gk

2 . We assign the following
weights to the vertices of Gk

2 :

• for every u ∈ X2, wGk
2
(u) = wG(u);

• wGk
2
(a1) = ω(G[A1]);

• wGk
2
(b1) = ω(G[B1]);

• wGk
2
(x1) = ω(G[X1]) − ω(G[A1]);

• wGk
2
(xi) = 0, for i = 2, . . . , k − 1.

Lemma 5.1 ω(G) = ω(Gk
2).

proof — Let K be a maximum weighted clique of G. We show that the
clique-block Gk

2 has a clique of weight wG(K), and hence ω(G) ≤ ω(Gk
2).

If K ⊆ X2 then K ⊆ V (Gk
2). If K ⊆ X1 then {a1, x1} is a clique of Gk

2

of weight wG(K). So assume that K ∩ X1 6= ∅ and K ∩ X2 6= ∅. W.l.o.g.
K∩A1 6= ∅ and K∩A2 6= ∅, and hence K ⊆ A1∪A2. But then (K\A1)∪{a1}
is a clique of Gk

2 of weight wG(K). Therefore ω(G) ≤ ω(Gk
2).

Now let K be a maximum weighted clique of Gk
2 . We show that G has

a clique of weight wGk
2
(K), and hence ω(Gk

2) ≤ ω(G). If K ⊆ X2 then K is

a clique of G. Suppose K ∩ P1 = {a1}, and let K ′ be a clique of A1 whose
weight is ω(G[A1]). Then (K ∩A2)∪K ′ is a clique of G of weight wGk

2
(K).

So we may assume that K = {a1, x1}. Then wGk
2
(K) = ω(G[X1]), and G

has a clique of the same weight. Therefore ω(Gk
2) ≤ ω(G). 2

6 Keeping track of stable sets

Here we show how to use 2-joins to compute maximum stable sets. This
is more difficult than cliques mainly because stable sets may completely
overlap both sides of a 2-join. For the sake of induction we need to put
weights on the vertices. But even with weights, there is an issue: we are
not able to compute maximum weighted stable set of a graph assuming that

27

some computations are done on its blocks as defined in Section 3. So we
need to enlarge slightly our blocks to encode information, and this causes
some trouble. First, the extended blocks may fail to be in the class we
are working on. This problem will be solved in Section 8 by building the
decomposition tree in two steps. Also in a decomposition tree built with
our unusual blocks, the leaves may fail to be basic graphs, so computing
something in the leaves of the tree is a problem postponed to Section 7.

Throughout this section, G is a fixed graph with a weight function w
on the vertices and (X1,X2, A1, B1, A2, B2) is a split of a 2-join of G. For
i = 1, 2, Ci = Xi \ (Ai ∪ Bi). For any graph H, α(H) denotes the weight
of a maximum weighted stable set of H. We define a = α(G[A1 ∪ C1]),
b = α(G[B1 ∪ C1]), c = α(G[C1]) and d = α(G[X1]).

Lemma 6.1 Let S be a stable set of G of maximum weight. Then one and
only one of the following holds:

(i) S ∩ A1 6= ∅, S ∩ B1 = ∅, S ∩ X1 is a maximum weighted stable set of
G[A1 ∪ C1] and w(S ∩ X1) = a;

(ii) S ∩ A1 = ∅, S ∩ B1 6= ∅, S ∩ X1 is a maximum weighted stable set of
G[B1 ∪ C1] and w(S ∩ X1) = b;

(iii) S ∩ A1 = ∅, S ∩ B1 = ∅, S ∩ X1 is a maximum weighted stable set of
G[C1] and w(S ∩ X1) = c;

(iv) S ∩ A1 6= ∅, S ∩ B1 6= ∅, S ∩ X1 is a maximum weighted stable set of
G[X1] and w(S ∩ X1) = d.

proof — Follows directly from the definition of a 2-join. 2

6.1 Stable sets overlapping 2-joins

We need kinds of blocks that preserve being in CBerge. To define them we
need several inequalities that tell more about how stable sets and 2-joins
overlap.

Lemma 6.2 0 ≤ c ≤ a, b ≤ d ≤ a + b.

proof — The inequalities 0 ≤ c ≤ a, b ≤ d are trivially true. Let D be a
maximum weighted stable set of G[X1]. We have:

d = w(D) = w(D ∩ A1) + w(D ∩ (C1 ∪ B1)) ≤ a + b.

28

2

A 2-join with split (X1,X2, A1, B1, A2, B2) is said to be X1-even (resp.
X1-odd) if all paths from A1 to B1 with interior in C1 are of even length
(resp. odd length). Note that from Lemma 3.1, if G is in Cparity and (X1,X2)
is connected, then (X1,X2) must be either X1-even or X1-odd.

Lemma 6.3 If (X1,X2) is an X1-even 2-join of G, then a + b ≤ c + d.

proof — Let A be a stable set of G[A1 ∪ C1] of weight a and B a stable
set of G[B1 ∪ C1] of weight b. In the bipartite graph G[A ∪ B], we denote
by YA (resp. YB) the set of those vertices of A ∪ B such that there exists
a path in G[A ∪ B] joining them to some vertex of A ∩ A1 (resp. B ∩ B1).
Note that from the definition, A∩A1 ⊆ YA, B∩B1 ⊆ YB and no edges exist
between YA ∪ YB and (A ∪ B) \ (YA ∪ YB). Also, YA and YB are disjoint
with no edges between them because else, there is some path in G[A ∪ B]
from some vertex of A ∩ A1 to some vertex of B ∩ B1. If such a path is
minimal with respect to this property, its interior is in C1 and it is of odd
length because G[A ∪ B] is bipartite. This contradicts the assumption that
(X1,X2) is X1-even. Now we put:

• ZD = (A ∩ YA) ∪ (B ∩ YB) ∪ (A \ (YA ∪ YB));

• ZC = (A ∩ YB) ∪ (B ∩ YA) ∪ (B \ (YA ∪ YB)).

From all the definitions and properties above, ZD and ZC are stable sets
and ZD ⊆ X1 and ZC ⊆ C1. So, a + b = w(ZC) + w(ZD) ≤ c + d. 2

Lemma 6.4 If (X1,X2) is an X1-odd 2-join of G, then c + d ≤ a + b.

proof — Let D be a stable set of G[X1] of weight d and C a stable set
of G[C1] of weight c. In the bipartite graph G[C ∪ D], we denote by YA

(resp. YB) the set of those vertices of C ∪ D such that there exists a path
in G[C ∪ D] joining them to some vertex of D ∩ A1 (resp. D ∩ B1). Note
that from the definition, D ∩ A1 ⊆ YA, D ∩ B1 ⊆ YB and no edges exist
between YA ∪ YB and (C ∪ D) \ (YA ∪ YB). Also, YA and YB are disjoint
with no edges between them because else, there is some path in G[C ∪ D]
from some vertex of D ∩ A1 to some vertex of D ∩ B1. If such a path is
minimal with respect to this property, its interior is in C1 and it is of even
length because G[C ∪ D] is bipartite. This contradicts the assumption that
(X1,X2) is X1-odd. Now we put:

29

• ZA = (D ∩ YA) ∪ (C ∩ YB) ∪ (C \ (YA ∪ YB));

• ZB = (D ∩ YB) ∪ (C ∩ YA) ∪ (D \ (YA ∪ YB).

From all the definitions and properties above, ZA and ZB are stable sets
and ZA ⊆ A1 ∪C1 and ZB ⊆ B1 ∪C1. So, c+d = w(ZA)+w(ZB) ≤ a+ b.2

6.2 Even and odd blocks

We call flat claw of a weighted graph G any set {q1, q2, q3, q4} of vertices
such that:

• the only edges between the qi’s are q1q2, q2q3 and q4q2;

• q1 and q3 have no common neighbor in V (G) \ {q2};

• q4 has degree 1 in G and q2 has degree 3 in G.

Lemma 6.5 Let G be a graph, Q = {q1, q2, q3, q4} a flat claw of G and S′ a
maximum weighted stable set of G. Then one and only one of the following
holds:

(i) q1 ∈ S′, q3 /∈ S′ and S′ ∩ Q is a maximum weighted stable set of
G[{q1, q2, q4}];

(ii) q1 /∈ S′, q3 ∈ S′ and S′ ∩ Q is a maximum weighted stable set of
G[{q2, q3, q4}];

(iii) q1 /∈ S′, q3 /∈ S′ and S′ ∩ Q is a maximum weighted stable set of
G[{q2, q4}];

(iv) q1 ∈ S′, q3 ∈ S′ and S′ ∩ Q is a maximum weighted stable set of
G[{q1, q2, q3, q4}].

proof — Follows directly from the definitions. 2

We define now the even block G2 with respect to (X1,X2). We keep
X2 and replace X1 by a flat claw on q1, . . . , q4 where q1 is complete to A2

and q3 is complete to B2. We give the following weights: w(q1) = d − b,
w(q2) = c, w(q3) = d − a, w(q4) = a + b − d. From Lemma 6.2, all weights
are non-negative. By Lemma 6.3, the following Lemma applies in particular
if (X1,X2) is a connected X1-even 2-join.

30

Lemma 6.6 If a+ b ≤ c+d and if G2 is the even block of G, then α(G2) =
α(G).

proof — Let S be a stable set of maximum weight in G. Then S must
satisfy one of (i), (ii), (iii) or (iv) of Lemma 6.1. Respective to these cases
one can construct a stable set S′ of G2 that has the weight of S, by taking
the union of S ∩ X2 and one of {q1, q4}, {q3, q4}, {q2} or {q1, q3, q4}.

Conversely, if S′ is a stable set of G2 of maximum weight then it satisfies
one of (i), (ii), (iii) or (iv) of Lemma 6.5. Respective to these cases, w(S′∩Q)
is a, b, c or d (by Lemma 6.2 and because a+b ≤ c+d) and one can construct
a maximum stable set S of G by replacing S′ ∩ Q by a maximum weighted
stable set of G[A1 ∪ C1], G[B1 ∪ C1], G[C1] or G[X1]. 2

We call flat vault of graph G any set {r1, r2, r3, r4, r5, r6} of vertices such
that:

• the only edges between the ri’s are such that r3, r4, r5, r6, r3 is a 4-hole;

• N(r1) = N(r5) \ {r4, r6};

• N(r2) = N(r6) \ {r3, r5};

• r1 and r2 have no common neighbors;

• r3 and r4 have degree 2 in G.

Lemma 6.7 Let G be a graph, Q = {r1, r2, r3, r4, r5, r6} a flat vault of G
and S′ a maximum weighted stable set of G. Then one and only one of the
following holds:

(i) S′ ∩ {r1, r5} 6= ∅, S′ ∩ {r2, r6} = ∅ and S′ ∩Q is a maximum weighted
stable set of G[{r1, r3, r4, r5}];

(ii) S′ ∩ {r1, r5} = ∅, S′ ∩ {r2, r6} 6= ∅ and S′ ∩Q is a maximum weighted
stable set of G[{r2, r3, r4, r6}];

(iii) S′ ∩ {r1, r5} = ∅, S′ ∩ {r2, r6} = ∅ and S′ ∩Q is a maximum weighted
stable set of G[{r3, r4}];

(iv) S′ ∩ {r1, r5} 6= ∅, S′ ∩ {r2, r6} 6= ∅ and S′ ∩Q is a maximum weighted
stable set of G[{r1, r2, r3, r4, r5, r6}].

31

proof — Follows directly from the definitions. 2

Let us now define the odd block G2 with respect to (X1,X2). We replace
X1 by a flat vault on r1, . . . , r6. Moreover r1, r5 are complete to A2 and
r2, r6 are complete to B2. We give the following weights: w(r1) = d − b,
w(r2) = d − a, w(r3) = w(r4) = c, w(r5) = w(r6) = a + b − c − d. Note
that if we suppose c + d ≤ a + b (which holds in particular if (X1,X2) is an
X1-odd connected 2-join by Lemma 6.4), all the weights are non-negative
by Lemma 6.2.

Lemma 6.8 If c + d ≤ a + b and if G2 is the odd block of G, then α(G2) =
α(G).

proof — Let S be a stable set of maximum weight in G. Then S must
satisfy one of (i), (ii), (iii) or (iv) of Lemma 6.1. So, respective to these
cases, it is easy to construct a stable set S′ of G2 that has the weight of S,
by taking the union of S ∩ X2 and one of {r1, r3, r5}, {r2, r4, r6}, {r3} or
{r1, r2, r3, r5}.

Conversely, if S′ is a stable set of G2 of maximum weight then it sat-
isfies one of (i), (ii), (iii) or (iv) of Lemma 6.7. Respective to these cases,
w(S′ ∩ Q) is a, b, c or d (because c + d ≤ a + b) and one can construct a
maximum weighted stable set S of G of the same weight as S′ by replacing
S′ ∩ {r1, r2, r3, r4, r5, r6} by a maximum weighted stable set of G[A1 ∪ C1],
G[B1 ∪ C1], G[C1] or G[X1]. 2

Note that the following lemma fails for Cehf because the odd block con-
tains an even hole.

Lemma 6.9 Let G be a graph in CBerge and (X1,X2) be a connected 2-join
of G. If (X1,X2) is X1-even then the even block G2 is in CBerge. If (X1,X2)
is X1-odd then the odd block G2 is in CBerge.

proof — Suppose that G2 contains an odd hole H. If no edge of H has
both ends in V (G2)\X2, then H ⊆ X2∪(NG2

(A2)\X2)∪(NG2
(B2)\X2). We

obtain an odd hole H ′ of G as follows. By Lemma 3.2 (iv), there exist non-
adjacent vertices a1 ∈ A1, b1 ∈ B1. If H ∩ (NG2

(A2) \ X2) 6= ∅, we replace
the unique vertex in H ∩ (NG2

(A2) \ X2) by a1. We proceed similarly with
H ∩ (NG2

(B2)\X2) and b1. We obtain an odd hole H ′ of G, a contradiction.
If H has an edge whose ends are both in V (G2) \ X2 then H is vertex-

wise partitioned into q1− q2− q3 when (X1,X2) is X1-even (resp. r5 − r6

when (X1,X2) is X1-odd), and a path with one end in A2, one end in B2

32

and interior in C2. Then an odd hole of G can be obtained by replacing
q1−q2−q3 (resp. r5−r6) by a path of even (resp. odd) length of G from A1

to B1 with interior in C1. This contradicts G being Berge.
Suppose that G2 contains an odd antihole H. Since an antihole on 5

vertices is in fact a hole, we may assume that H is on at least 7 vertices.
So all vertices of H have degree at least four. Hence, if G2 is an even block
then H cannot go through q2, q4. So, up to the replacement of at most two
vertices, H is an odd antihole of G, a contradiction. Now suppose G2 is an
odd block. Because of the degrees, r3, r4 /∈ H. In an antihole on at least 7
vertices, every pair of vertices has a common neighbor. A vertex of {r1, r5}
has no common neighbor with a vertex of {r2, r6}. So, we may assume that
H ∩ {r2, r6} = ∅. We have NG2

(r1) ⊆ NG2
(r5) so not both r1, r5 are in H.

So, we may assume that r5 /∈ H. So, up to the replacement of r1 by a vertex
of A1, H is an odd antihole of G, a contradiction. 2

6.3 The gem block

We present here a block of decomposition that we do not use in the rest
of the paper but that is interesting because it can be used in all situations
(whereas some inequalities must be satisfied for even and odd blocks).

To build the gem-block G2 replace X1 by an induced path p−x−y−p′

plus a vertex z complete to this path. Vertex p is complete to A2 and vertex
p′ is complete to B2. We give weights: w(p) = a, w(x) = a+b−d, w(y) = d,
w(p′) = 2d − a, w(z) = c + d. Note that all weights are non-negative by
Lemma 6.2. We omit the proof of the following Lemma since we do not use
it.

Lemma 6.10 If G2 is the gem-block of G then α(G2) = α(G) + d.

The gem-block appears implicitly in the proof of the NP-completeness
result in Section 10.

7 Extensions of basic classes

To build a decomposition tree that allows keeping track of maximum stable
sets we use the even and odd blocks defined in Section 6. As a consequence,
the leaves of our decomposition tree may fail to be basic, but are what we
call extensions of basic graphs. Let us define this.

Let P = p1−· · ·−pk, k ≥ 4, be a flat path of a graph G. Extending P
means:

33

• Either:

(i) replace the vertices of P by a flat claw on q1, . . . , q4 where q1 is
complete to NG(p1)\{p2} and q3 is complete to NG(pk)\{pk−1};

(ii) replace X1 by a flat vault on r1, . . . , r6 where r1, r5 are complete
to NG(p1) \ {p2} and r2, r6 are complete to NG(pk) \ {pk−1}.

• Mark the vertices of the flat claw (or vault) with the integer k.

An extension of a pair (G,M), where G is a graph and M is a set of
vertex-disjoint flat paths of length at least 3 of G, is any weighted graph
obtained by extending the flat paths of M and giving any non-negative
weights to all the vertices. Note that since M is a set of vertex-disjoint
paths, the extensions of the paths from M can be done in any order and
lead to the same graph. An extension of a graph G is any graph that is an
extension of (G,M) for some M.

We say that the extension of P is parity-preserving when P has even
length and is replaced by a flat claw, or when P has odd length and is
replaced by a flat vault. We define the parity-preserving extension of a
pair (G,M) and of a graph G by requiring that all extensions of paths are
parity-preserving.

7.1 Recognition of extensions basic graphs

We will describe algorithms for computing cliques and stable sets in graphs
from our basic classes and their extensions. To apply these algorithms we
need to detect in which basic class a graph is. For bipartite graphs, line
graphs of bipartite graphs and their complements, this a classical problem,
see [31, 39]. For double split graphs, this is very easy, see [42], Section 7. For
path-cobipartite graphs it is very easy by picking a vertex of degree 2 if any,
checking if it belongs to a flat path, if so taking a maximal such flat path,
and checking if the flat path satisfies the definition of a path-cobipartite
graph. A similar trick recognizes path-double split graphs. All these classes
can be recognized in linear time.

The class Cehf
basic can be recognized in time O(n2m) by checking for all

pairs of vertices if their deletion gives the line graph of a tree. Checking that
the graph is even-hole free is easy, since in the line graph of a tree, there
exists a unique induced path joining any pair of vertices.

Recognition of extensions of basic graphs is easy thanks to the mark
given to the new vertices arising from extensions. These marks allow to
compute the original graph from its extension.

34

Also, when a graph is identified to be basic, the algorithms above certify
that the graph is basic. For bipartite graphs, it gives a bipartition, for a
line graph G, a root-graph R such that G = L(R). For double split graphs,
path cobipartite graphs, path-double split graph and graph from Cehf

basic, the
sets like in their respective definitions are output.

We do not write a theorem about these algorithms, but in the description
of the algorithms in the rest of the paper, when we consider an extended
basic graph, it is implicit that the algorithm can know in time O(n2m) in
which basic class the graph is. Since all our algorithms run in time at least
O(n3m), this does not affect the overall complexity.

7.2 Parity-preserving extensions of basic Berge graphs (ex-
cept line graphs)

Lemma 7.1 A parity-preserving extension of a bipartite graph is a bipartite
graph.

proof — Suppose that a graph G is bipartite. So we color its vertices
black and white. Suppose that a parity-preserving extension with respect
to P = p1−· · ·−pk is performed. If the path has even length then up to
symmetry p1 and pk are black. Since the extension is parity-preserving, P
is replaced by a flat claw on q1, q2, q3, q4. We give color black to q1, q3, q4

and color white to q2. If the path has odd length then up to symmetry p1 is
black and pk is white. Since the extension is parity-preserving, P is replaced
by a flat vault on r1, r2, r3, r4, r5, r6. We give color black to r1, r3, r5 and
color white to r2, r4, r6. This shows that the parity-preserving extension of
P yields a bipartite graphs and the lemma follows by an induction on the
number of extended paths. 2

The following lemma shows that maximum weighted stable sets can be
computed for all parity-preserving extensions of Berge basic classes, except
line graphs of bipartite graphs.

Lemma 7.2 There is an algorithm with the following specification:

Input: A weighted graph G that is a parity preserving extension of either
a bipartite graph, the complement of a bipartite graph, the complement
of a line graph of a bipartite graph, a path-cobipartite graph, the com-
plement of a path-cobipartite graph, a path-double split graph or the
complement of a path-double split graph.

Output: A maximum weighted stable set of G.

35

Running time: O(n5)

proof — For parity-preserving extensions of bipartite graphs, the result
follows from Lemma 7.1. Indeed, computing a maximum weighted stable
set in a bipartite graph can be done in time O(n3), see [40].

Let k be a constant integer and C a class of graphs for which there exits
a polynomial time algorithm to compute maximum weighted stable sets.
Let Ck be the class of those graphs obtained from a graph in C by adding
k vertices and giving a mark to them. Then there is a polynomial time
algorithm for computing a maximum weighted stable set for a graph G in
Ck. It suffices to try every stable subset S of the set of marked vertices,
to delete all the marked vertices, to give weight zero to the neighbors of
vertices of S, to run the algorithm for C in what remains and to denote by
AS the stable set obtained. Then compute w(S ∪ AS). Choose a stable set
of maximum weight among the N ≤ 2k stable sets so obtained. Note that
2k is a constant.

This method works for parity-preserving extensions of complements of
bipartite graphs, complements of line graphs of bipartite graphs and com-
plements of path-cobipartite graphs. Indeed, as we show next, a graph from
any of these classes cannot contain two vertex-disjoint flat paths of length
at least three. So, at most one path is extended and by the remark above
the desired algorithm relies on classical algorithms for maximum weighted
stable set in complements of bipartite graphs, complements of line graphs of
bipartite graphs, and bipartite graphs (note that maximum weighted stable
set in a complement of a path-cobipartite graph corresponds to maximum
weighted clique in path-cobipartite graph, and all maximal cliques of such
graphs are either of size 2 or belong to the cobipartite graph obtained by
removing vertices of degree 2). All this can be done in time O(n3), see [40].

The only complement of a bipartite graph that contains a flat path of
length at least 3 is P4. line graphs of bipartite graphs cannot contain di-
amonds, so complements of line graphs of bipartite graphs cannot contain
complements of diamonds. Hence they cannot contain two vertex-disjoint
flat paths of length at least three. Now we deal with the complement G
of a path-cobipartite graph. Since we know how to handle complements
of bipartite graphs, we may assume that the path P form the definition is
non-empty. So, G contains a vertex u of degree |V (G)| − 3 (pick a vertex in
P). So, G cannot contain two disjoint flat paths of length at least 3 because
the interior vertices of such paths would contradict deg(u) = |V (G)| − 3.

To compute a maximum weighted stable set in a parity-preserving exten-
sion G of a path-cobipartite graphs H, apply the following method, where

36

the notation A,B,P is like in the definition of path-cobipartite graphs. First
observe that only vertices of P are replaced during extensions. For all sta-
ble sets S of G[A ∪ B] (and there are at most |A| + |B| + |A||B| of them),
consider the graph GS = G \ (A ∪ B ∪ N(S)). Note that GS is a bipartite
graph because it is an induced subgraph of a parity-preserving extension of
a path. So we can compute a maximum weighted stable set TS of GS in
time O(n3), see [40]. Among all stable sets S ∪ TS so constructed, choose
one of maximum weight. So all this can be done in time O(n5).

To compute a maximum weighted stable set in a parity-preserving ex-
tension G of a path-double split graph H apply the following method, where
the notation A,B,C,D,E, k, l is like in the definition. First observe that
only vertices of E are replaced during the extension. For all stable sets S
of G[C ∪ D] (and there are 3l + 1 of them, including ∅), consider the graph
GS = G \ (C ∪ D ∪ N(S)). So, GS is an induced subgraph of G \ (C ∪ D)
and has at most k connected components that are paths or parity-preserving
extensions of paths, and hence GS is a bipartite graph. So we can compute
a maximum weighted stable set TS of GS in time O(n3), see [40]. Among
all stable sets S ∪TS so constructed, choose one of maximum weight. So all
this can be done in time O(n4).

To compute a maximum weighted stable set in a parity-preserving ex-
tension G of the complement H of a path-double split graph H there are two
cases. First case, the set E is empty. Then, H is in fact a double split graph
and so is H. So G is a parity-preserving extension of a path-double split
graph, and we already know how to proceed in this case. Second case, the
set E is not empty. Then, all vertices in H have at least 3 non-neighbors,
so in H, no vertex has degree 2. So, no path can be extended, G = H and
to compute a maximum weighted stable set in G it suffices to compute a
maximum weighted clique in H. We can do this by listing all cliques K of
H[A ∪ B ∪ E] (including the empty set). Note that there are only linearly
many such cliques. Let HK be the subgraph of H induced by the set of all
vertices C ∪ D that are adjacent to all of K. It is easy to compute a max-
imum weighted clique TK of HK (it suffices to choose for each pair cj , dj ,
j = 1, . . . ,m, the vertex with bigger weight). Among all cliques K ∪ TK so
constructed, choose the one of maximum weight. So all this can be done in
time O(n4). 2

37

Figure 3: R and L(R). Paths of L(R) to be extended are represented with
bold edges.

7.3 Extensions of line graphs

Extensions of line graphs are more difficult to handle than other extensions
because an extension of a line graph may fail to be a line graph and a line
graph may contain arbitrarily many disjoint long flat paths. Note that in
this subsection, extensions are not required to be parity-preserving.

Let G′ be a weighted graph that is an extension of a line graph G = L(R),
see Figures 3 and 4. We now define the transformation G′′ of G′, see Figure 5.
The structure of G′′, i.e. its vertices and edges, depends only on G but the
weights given to its vertices depend only on G′. Let M be the set of vertex-
disjoint flat paths of length at least 3 of G that are extended to get G′. So,
M = {P 1, . . . , P k} and we put P i = pi

1−· · ·−pi
li
. For all 1 ≤ i ≤ k, path P i

of G is replaced in G′ by a set Qi that induces either a flat claw on vertices
qi
1, q

i
2, q

i
3, q

i
4 or a flat vault on vertices ri

1, r
i
2, r

i
3, r

i
4, r

i
5, r

i
6. For all flat paths

P i of M, we put Ai
2 = NG(pi

1) \ {p
i
2}, Bi

2 = NG(pi
li
) \ {pi

li−1}.

For all 1 ≤ i ≤ k, we prepare a set Si of four new vertices pi, p′i, xi, yi.
The graph G′′ has vertex-set:

V (G′′) = (S1 ∪ · · · ∪ Sk) ∪ V (G) \ (P 1 ∪ · · · ∪ P k).

Edges of G′′ depend only on edges of G. They are:

• pip′i, xipi, piyi, yip′i, p′ixi, i = 1, . . . , k;

• uv for all u, v ∈ V (G) ∩ V (G′′) such that uv ∈ E(G);

38

Figure 4: G′

Figure 5: G′′ = L(R′′) and R′′

39

• piu for all u ∈ Ai
2 ∩ V (G′′), i = 1, . . . , k;

• p′iu for all u ∈ Bi
2 ∩ V (G′′), i = 1, . . . , k;

• xiu for all u ∈ (Ai
2 ∪ Bi

2) ∩ V (G′′), i = 1, . . . , k;

• pipj for all i, j such that pi
1p

j
1 ∈ E(G);

• p′ipj for all i, j such that pi
li
pj
1 ∈ E(G);

• p′ip′j for all i, j such that pi
li
pj

lj
∈ E(G);

• xipj for all i, j such that pi
1p

j
1 ∈ E(G) or pi

li
pj
1 ∈ E(G);

• xip′j for all i, j such that pi
1p

j
lj
∈ E(G) or pi

li
pj

lj
∈ E(G);

• xixj for all i, j such that pi
1p

j
1 ∈ E(G) or pi

1p
j
lj
∈ E(G) or pi

li
pj
1 ∈ E(G)

or pi
li
pj

lj
∈ E(G).

We define the following numbers that depend only on G′:

• ai = α(G′[{qi
1, q

i
2, q

i
4}]) for all i such that Qi is a flat claw of G′;

• ai = α(G′[{ri
1, r

i
3, r

i
4, r

i
5}]) for all i such that Qi is a flat vault of G′;

• bi = α(G′[{qi
2, q

i
3, q

i
4}]) for all i such that Qi is a flat claw of G′;

• bi = α(G′[{ri
2, r

i
3, r

i
4, r

i
6}]) for all i such that Qi is a flat vault of G′;

• ci = α(G′[{qi
2, q

i
4}]) for all i such that Qi is a flat claw of G′;

• ci = α(G′[{ri
3, r

i
4}]) for all i such that Qi is a flat vault of G′;

• di = α(G′[{qi
1, q

i
2, q

i
3, q

i
4}]) for all i such that Qi is a flat claw of G′;

• di = α(G′[{ri
1, r

i
2, r

i
3, r

i
4, r

i
5, r

i
6}]) for all i such that Qi is a flat vault of

G′.

Note that from the definitions, ci ≤ ai, bi ≤ di for all i = 1, . . . , k. We give
the following weights to the vertices of G′′ (they depend on the weights in
G′):

• wG′′(u) = wG′(u) for all u ∈ V (G) ∩ V (G′′);

• wG′′(pi) = ai, i = 1, . . . , k;

40

• wG′′(p′i) = bi, i = 1, . . . , k;

• wG′′(yi) = ci, i = 1, . . . , k;

• wG′′(xi) = di − ci, i = 1, . . . , k.

A multigraph is a graph where multiple edges between vertices are al-
lowed (but we do not allow loops).

Lemma 7.3 G′′ is the line graph of a multigraph.

proof — Path P i of G corresponds to a path Ri = ri
1−· · ·−ri

li+1 of R. For

all i = 1, . . . , k, path Ri is induced and has interior vertices of degree 2 in R
because P i is a flat path of G. Since paths of M are vertex-disjoints, paths
R1, . . . , Rk are edge-disjoint (but they may share end-vertices). Now let us
build a multigraph R′′ from R, see Figure 5. We delete the interior vertices
of all Ri’s. For each Ri, we add two vertices ui, vi and the edges ri

1r
i
li+1,

uiri
1, uiri

li+1 and uivi.
It is a routine matter to check that L(R′′) is isomorphic to G′′. Edge

ri
1r

i
li+1 corresponds to vertex xi, edge uiri

1 corresponds to vertex pi, edge

uiri
li+1 corresponds to p′i and edge uivi corresponds to vertex yi. Note that

possibly, two paths Ri and Rj have the same ends. For instance ri
1 = rj

1 and

ri
li+1 = rj

lj+1 is possible. Then, the edge ri
1r

i
li+1 is added twice. This is why

we need R′′ to be a multigraph. 2

Lemma 7.4 α(G′′) = α(G′).

proof — Let S′ be a stable set of maximum weight in G′. Let us build a
stable set S′′ of G′′ of same weight. In S′′, we keep all vertices of S′∩V (G′′).
For all i such that Qi is a flat claw of G′, S′ satisfies one of (i), (ii), (iii) or
(iv) of Lemma 6.5. So, respective to these cases we put one of {pi}, {p′i},
{yi} or {xi, yi} in S′′. For all i such that Qi is a flat vault of G′, S′ satisfies
one of (i), (ii), (iii) or (iv) of Lemma 6.7. So, respective to these cases we
put one of {pi}, {p′i}, {yi} or {xi, yi} in S′′. This yields a stable set of G′′

of the same weight as S′.
Conversely, if S′′ is a stable set of G′′ of maximum weight then we may

assume for all i, S′′ ∩ {pi, p′i, xi, yi} is one of {pi}, {p′i}, {yi} or {xi, yi}.
The only exception could be when wG′′(yi) = 0 and S′′ ∩ {pi, p′i, xi, yi} = ∅
or {xi}, but then we add yi to S′′. If Qi is a flat claw, respective to these
cases, we put in S′ a maximum weighted stable set of one of G′[{qi

1, q
i
2, q

i
4}],

41

G′[{qi
2, q

i
3, q

i
4}], G′[{qi

2, q
i
4}] or G′[{qi

1, q
i
2, q

i
3, q

i
4}]. If Qi is a flat vault, respec-

tive to these cases, we put in S′ a maximum weighted stable set of one of
G′[{ri

1, r
i
3, r

i
4, r

i
5}], G′[{ri

2, r
i
3, r

i
4, r

i
6}], G′[{ri

3, r
i
4}] or G′[{ri

1, r
i
2, r

i
3, r

i
4, r

i
5, r

i
6}].

This yields a stable set of G′ of the same weight as S′′. 2

Lemma 7.5 There is an algorithm with the following specification:

Input: A weighted graph G′ that is an extension of a line graph G.

Output: A maximum weighted stable set of G′.

Running time: O(n3)

proof — Build the transformation G′′ of G′ as explained above. So, by
Lemma 7.3, G′′ is the line graph of a multigraph. Compute a multigraph
R such that G′′ = L(R) (see [31, 39]), then compute in R a matching of
maximum weight by Edmonds’ algorithm (see [40, 22]). It corresponds to a
maximum weighted stable set in G′′. By Lemma 7.4, this maximum weighted
stable set has the same weight as a maximum weighted stable set S′ of G′.
Note that the proof of Lemma 7.4 shows how to actually obtain S′. 2

7.4 Extensions of basic even-hole-free graphs

Here again, extensions are not required to be parity-preserving.

Lemma 7.6 There is an algorithm with the following specification:

Input: A weighted graph G that is an extension of a graph from Cehf
basic.

Output: A maximum weighted stable set and a maximum weighted clique
of G.

Running time: O(n4)

proof — Let H be a graph in Cehf
basic and M a set of vertex-disjoint flat

paths of H of length at least 3, such that the input graph G is an extension
of (H,M). Let A be a set of vertices of H such that |A| ≤ 2 and H \A is a
line graph (it takes time O(n4) to find A, by checking for all possible pairs
whether their removal yields a line graph). Let M′ be the set of paths of
M that contain some vertex of A. Note that |M′| ≤ 2.

Since |A| ≤ 2 and |M′| ≤ 2, there is a set of vertices B such that |B| ≤ 12
and G is obtained from G′ by adding vertices of B where G′ is an extension

42

of (H \ A,M\M′). By Lemma 7.5, a maximum weighted stable set of G′

can be computed in time O(n3). To compute a maximum weighted stable
set of G it suffices to try every stable set S of B, to delete all vertices of
S \B, to give weight zero to neighbors of vertices of S, and to compute the
maximum weighted stable set of the remaining graph (which is as we noted
an extension of a line graph). Choose a maximum weighted stable set so
obtained. Clearly all this can be done in time O(n3).

To compute a maximum weighted clique, it suffices to notice that G
contains linearly many inclusion-wise maximal cliques. So, it suffices to list
them and to choose one of maximum weight. 2

It is convenient to sum up all the results of the section:

Lemma 7.7 There is an algorithm with the following specification:

Input: A weighted graph G that is a parity preserving extension of a graph
from CBerge

basic or any extension of a graph from Cehf
basic.

Output: A maximum weighted stable set and a maximum weighted clique
of G.

Running time: O(n5)

proof — Follows from Lemmas 7.2, 7.5 and 7.6 for computing stables sets.
For cliques, it is done in Lemma 7.6 for graphs from Cehf

basic. For CBerge
basic , it

suffices to notice that the class is self-complementary, so we may rely on the
algorithm for stable sets. 2

8 Constructing the decomposition tree

We now give algorithms to construct several decomposition trees for graphs
in our classes. First we show how to build a decomposition tree with the
usual parity preserving blocks (as defined in Section 3). Then we show how
to reprocess such a tree to get a tree with clique-blocks, even blocks or odd
blocks according to what we need to optimize.

8.1 Tree with parity preserving blocks

We define now a decomposition tree TG of a graph G ∈ D, where D is one
of CBerge

no cutset, C
ehf
no sc. We call Dbasic the class of all basic graphs associated

43

to the class (so, if D = CBerge
no cutset then Dbasic = CBerge

basic and if D = Cehf
no sc

then Dbasic = Cehf
basic).

We decompose a graph G ∈ D using extreme 2-joins into basic graphs.
Let us now define more precisely what we call decomposition tree (proving
its existence and constructing it will be done later).

Decomposition tree TG of depth p ≥ 1 of a graph G ∈ D that has a connected
non-path 2-join.

(i) The root of TG is (G0,M0), where G0 = G and M0 = ∅.

(ii) Each node of the decomposition tree is a pair (H,M) where H is a
graph of D and M is a set of disjoint flat paths of length 3 or 4 of H.

The non-leaf nodes of TG are pairs (G0,M0), . . . , (Gp−1,Mp−1). Each
non-leaf node (Gi,Mi) has two children. One is (Gi+1,Mi+1), the
other one is (Gi+1

B ,Mi+1
B).

The leaf-nodes of TG are the pairs (G1
B ,M1

B), . . . , (Gp
B ,Mp

B) and
(Gp,Mp). Graphs G1

B , . . . , Gp
B all belong to Dbasic.

(iii) For i = 0, . . . , p− 1, Gi has a connected non-path 2-join (Xi
1,X

i
2) that

is extreme with extreme side Xi
1 and that is Mi-independent. Graphs

Gi+1 and Gi+1
B are the parity preserving blocks of Gi w.r.t. (Xi

1,X
i
2)

(as defined in Section 3), whose marker paths are of length 3 or 4. The
block Gi+1

B corresponds to the extreme side Xi
1, i.e. Xi

1 ⊆ V (Gi+1
B).

Set Mi+1
B consists of paths from Mi whose vertices are in Xi

1. Note
that the marker path used to construct the block Gi+1

B does not belong
to Mi+1

B .

Set Mi+1 consists of paths from Mi whose vertices are in Xi
2 together

with the marker path P i+1 used to build Gi+1.

(iv) M1
B ∪ . . . ∪Mp

B ∪Mp is the set of all marker paths used in the con-
struction of the nodes G1, . . . , Gp of TG, and sets M1

B , . . . ,Mp
B ,Mp

are pairwise disjoint.

Node (Gp,Mp) is a leaf of TG and is called the deepest node of TG. Note
that all leaves of TG except possibly the deepest node are basic.

Lemma 8.1 For any decomposition tree TG, the depth of TG is at most n.

proof — Let a branch of a graph be any path of length at least 2 whose
endvertices are both of degree at least 3 and whose interior vertices are of

44

degree 2 (in the graph). For a graph G, let ν(G) be the number of vertices
of degree at least 3 in G, and τ(G) the number of branches in G. We will
show that for i = 0, . . . , p − 1:

(1) ν(Gi+1) + τ(Gi+1) < ν(Gi) + τ(Gi).

This implies the lemma because it shows that p is at most

ν(G) + τ(G) ≤ n.

Let i ∈ {0, . . . , p − 1} and let (Xi
1,X

i
2, A

i
1, B

i
1, A

i
2, B

i
2) be a split of the

2-join (Xi
1,X

i
2). Let P i+1 = ai

1−· · ·−bi
1 be the marker path of Gi+1. Let

P = u−· · ·−u′ be a path of Gi such that u ∈ Ai
1, u

′ ∈ Bi
1 and P \ {u, u′} ∈

Xi
1\(Ai

1∪Bi
1) (note that such a path exists since (Xi

1,X
i
2) is connected). We

choose such a path P with a minimum number of vertices of degree at least 3.
Since (Xi

1,X
i
2) is a non-path 2-join, there is a vertex q ∈ Xi

1\P . Observe that
dGi+1(ai

1) ≤ dGi(u) and dGi+1(bi
1) ≤ dGi(u′), and hence ν(Gi+1) ≤ ν(Gi).

When q is of degree at least 3 we have ν(Gi+1) < ν(Gi). Also, since exactly
one branch of Gi+1 intersects P i+1, we have τ(Gi+1) ≤ τ(Gi) + 1.

First suppose that P contains a vertex of degree 2. Then there is a
branch P ∗ of Gi that contains a node of P , and hence τ(Gi+1) ≤ τ(Gi). If
dGi(q) ≥ 3, then ν(Gi+1) < ν(Gi), and hence (1) holds. So suppose that
dGi(q) = 2. Then q belongs to a branch Q∗ of Gi. Clearly P ∗ 6= Q∗, so
τ(Gi+1) < τ(Gi), and hence (1) holds.

Now we may assume that all vertices of P are of degree at least 3.
Suppose that P is of length at least 2. So ν(Gi+1) ≤ ν(Gi)−1. If dGi(q) ≥ 3
then ν(Gi+1) ≤ ν(Gi) − 2, and hence (1) holds. Otherwise, q belongs to a
branch of Gi and so τ(Gi+1) ≤ τ(Gi), and hence (1) holds.

Finally we assume that P is of length 1, and both u and u′ are of degree
at least 3. By Lemma 3.3 and Lemma 3.2, (iv) and (v), |Ai

1|, |B
i
1| ≥ 2.

Since Ai
2 ∪ {u, u′} is not a star cutset of Gi, there is a path T = t−· · ·−t′

such that t ∈ Ai
1 \ {u}, t

′ ∈ Bi
1 \ {u

′} and T \ {t, t′} ⊆ Xi
1 \ (Ai

1 ∪ Bi
1). By

the choice of P , T contains at least two vertices of degree at least 3. So,
ν(Gi+1) ≤ ν(Gi) − 2 and hence (1) holds. 2

Lemma 8.2 There is an algorithm with the following specification:

Input: A graph G in D that has a connected non-path 2-join.

Output: A decomposition tree TG of G of depth at most n whose leaves
are all in Dbasic.

45

Running time: O(n4m)

proof — Let the root of TG be (G0,M0) = (G, ∅). We suppose by in-
duction that a decomposition tree of depth i has been constructed. So,
the deepest leaf (Gi,Mi) is a pair such that Gi ∈ D and Mi is a set of
vertex-disjoint flat paths of Gi of length 3 or 4. Apply the algorithm from
Lemma 4.6 to Gi and Mi. One of the following is the output of this algo-
rithm.

Case 1: An extreme connected non-path 2-join (Xi
1,X

i
2) of Gi, with say Xi

1

being the extreme side, that is Mi-independent.
Let Gi+1 and Gi+1

B be parity-preserving blocks of decomposition of
Gi w.r.t. (Xi

1,X
i
2) (as defined in Section 3), whose marker paths are of

length 3 or 4, and block Gi+1
B corresponds to Xi

1-side. By Lemma 3.8 and
Lemma 3.11, Gi+1 and Gi+1

B are both in D. Since Gi+1
B is the block that cor-

responds to Xi
1, Gi+1

B has no connected non-path 2-join. If D = Cehf
no sc then

by Theorem 2.1, Gi+1
B ∈ Cehf

basic. If D = CBerge
no cutset, then by Theorem 2.6,

Gi+1
B ∈ CBerge

basic . Therefore, Gi+1
B ∈ Dbasic.

Since (Xi
1,X

i
2) is Mi-independent, for P ∈ Mi, either P ⊆ Xi

1 or P ⊆
Xi

2. Let Mi+1
B be the set of paths of Mi that belong to Xi

1. Let Mi+1

be the set of paths of Mi that belong to Xi
2 together with the marker

path P i+1 of Gi+1. Clearly Mi+1
B (resp. Mi+1) is a set of vertex-disjoint

flat paths of Gi+1
B (resp. Gi+1) of length 3 or 4, Mi+1

B ∩ Mi+1 = ∅ and
Mi+1

B ∪Mi+1 = Mi ∪ {P i+1}.
Hence, in Case 1, we have built a deeper decomposition tree of G.

Case 2: Gi or a block of decomposition of Gi w.r.t. some 2-join whose
marker path is of length at least 3, has a star cutset.

Since Gi ∈ D and by Lemma 3.3, Gi cannot have a star cutset. By
Lemma 3.2 (ii), any 2-join of Gi is connected, and hence by Lemma 3.7 this
case actually cannot happen.

Case 3: Gi has no connected non-path 2-join.
Note that i ≥ 1 since G is assumed to have a non-path connected 2-join.

If D = Cehf
no sc then by Theorem 2.1, Gi ∈ Cehf

basic. If D = CBerge
no cutset, then by

Theorem 2.6, Gi ∈ CBerge
basic . Therefore Gi ∈ Dbasic.

By Lemma 8.1, we see that Case 3 must happen at some point, after at
most n iterations. So, when Case 3 happens we output the tree TG and stop.
All the leaves of TG are basic. Since the complexity of the algorithm from
Lemma 4.6 is O(n3m) and there are at most n iterations, the algorithm for

46

constructing TG runs in time O(n4m). 2

8.2 Clique-decomposition tree

The clique-decomposition tree is used to compute maximum cliques for
graphs in D. This tree TC

G has the same definition as TG except that weights
are given to the vertices. Let us be more precise by defining how to compute
the children of (Gi,Mi) in TC

G . Recall that the graph Gi has an extreme
2-join (Xi

1,X
i
2) with extreme side Xi

1. Its children are (Gi+1
B ,Mi+1

B) and
(Gi+1,Mi+1). In Gi+1

B , all vertices from G[Xi
1] keep their weights (as they

are in Gi) and vertices of the new marker path receive weight 0. The weights
of Gi+1 are assigned as in the construction of the clique block in Section 5.
Note that computing the weights in the construction of Gi+1 relies on several
computations on Gi[Xi

1], or equivalently on Gi+1
B which is a basic graph. So

by Lemma 7.7, building Gi+1 takes time O(n5). This construction leads to
the following result:

Lemma 8.3 There is an algorithm with the following specification:

Input: A weighted graph G that is in CBerge
no cutset or in Cehf

no sc and that has
a connected non-path 2-join.

Output: A maximum weighted clique of G.

Running time: O(n6)

proof — By Lemma 8.2, we build a decomposition tree for G, and as
explained above we reprocess the tree to get a clique-decomposition tree. By
repeatedly applying Lemma 5.1, we see that ω(G0) = ω(G1) = · · · = ω(Gp).
We can compute a maximum weighted clique in the basic graph Gp by
Lemma 7.7, and the proof of Lemma 5.1 shows how to backtrack such a
maximum weighted clique to G. 2

Note that for graphs of Cehf
no sc, the lemma above is not so interesting

because a faster algorithm exists for the class Cehf, see the introduction.

8.3 Stable-decomposition tree for CBerge

no cutset

We define now the stable-decomposition tree T S
G of a graph in CBerge

no cutset.
The tree T S

G has the same definition as TG except that even or odd blocks
are used sometimes and that the sets Mi’s and Mi

B’s will be sets of disjoint
flat claws and vaults (instead of paths). Let us be more precise.

47

Decomposition tree T S
G of depth p ≥ 1 of a weighted graph G ∈ CBerge

no cutset

that has a connected non-path 2-join.

(i) The root of T S
G is (G′′0,M′′0), where G′′0 = G and M′′0 = ∅.

(ii) For each node (H,M) of the decomposition tree, H is a Berge graph
and M is a set of disjoint flat claws or flat vaults of H.

The non-leaf nodes of T S
G are pairs (G′′0,M′′0), . . . , (G′′p−1,M′′p−1).

Each non-leaf node (G′′i,M′′i) has two children. One is
(G′′i+1,M′′i+1), the other one is (G′′i+1

B ,M′′i+1
B).

The leaf-nodes of T S
G are the pairs (G′′1

B ,M′′1
B), . . . , (G′′p

B ,M′′p
B) and

(G′′p,M′′p). Graphs G′′1
B , . . . , G′′p

B are all parity-preserving extensions
of graphs from CBerge

basic .

(iii) For i = 0, . . . , p − 1, G′′i has a connected non-path 2-join (X ′′i
1 ,X ′′i

2).

Graph G′′i+1
B is the parity-preserving block of Gi w.r.t. (X ′′i

1 ,X ′′i
2) (as

defined in Section 3), whose marker path is of length 3 or 4 and which
corresponds to the side X ′′i

1 , i.e. X ′′i
1 ⊆ V (G′′i+1

B). Vertices of X ′′i
1 keep

their weight from G′′i and vertices of the marker path receive weight
zero.

Graph G′′i+1 is the even block or the odd block of G′′i w.r.t. (X ′′i
1 ,X ′′i

2),
according to the X ′′

1 -parity of (X ′′i
1 ,X ′′i

2).

Set M′′i+1
B consists of claws and vaults from M′′i whose vertices are

in X ′′i
1 . Note that the marker path used to construct the block G′′i+1

B

does not belong to M′′i+1
B .

Set M′′i+1 consists of claws and vaults from M′′i whose vertices are
in X ′′i

2 together with the claw or the vault P ′′i+1 used to build G′′i+1.

(iv) M′′1
B ∪ . . . ∪ M′′p

B ∪ M′′p is the set of all marker claws or vaults
used in the construction of the nodes G′′1, . . . , G′′p of T S

G , and sets
M′′1

B , . . . ,M′′p
B ,M′′p are pairwise disjoint.

The existence of T S
G is not clear since introducing even and odd blocks

may create star cutsets (and so balanced skew partitions) in our graphs, so
that we cannot rely on Theorem 2.6 to build the tree recursively. But here
we show how to actually construct T S

G by reprocessing TG.
Start from TG and for each node (Gi,Mi), i = 1, . . . , p of TG, extend the

marker path introduced in that node to obtain a graph G′′i. Accordingly, re-
place the marker paths in the graphs Gi

B and sets Mi
B , Mi by marker claws

48

and vaults to obtain G′′i
B , M′′i

B and M′′i. We obtain the nodes (G′′i,M′′i)

and (G′′i
B ,M′′i

B) of T S
G .

Note that extending a flat path P of length at least 3 in a graph H with
a {P}-independent connected 2-join (X1,X2), yields a graph H ′′ that has a
connected 2-join (X ′′

1 ,X ′′
2) naturally arising from (X1,X2): put all vertices

of X1 \ P in X ′′
1 , all vertices of X2 \ P in X ′′

2 and put the claw or the vault
arising from P in X ′′

1 when P ⊆ X1 and in X ′′
2 when P ⊆ X2. So, the

connected 2-joins (X ′′i
1,X

′′i
2)’s all exist and are immediate to find from TG.

Note that by Lemma 6.9, all nodes of T S
G are in CBerge. So, all the 2-joins

(X ′′i
1,X

′′i
2)’s are either X ′′i

1-even or X ′′i
1-odd and we can choose whether we

use an even or an odd block.
Note that computing the weights in the construction of the even or odd

block G′′i+1 relies on several computations on G′′i[Xi
1], or equivalently on

G′′i+1
B which is a parity-preserving extension of a graph from CBerge

basic , so the
computations can be done in time O(n5) by Lemma 7.7.

8.4 Stable-decomposition tree for Cehf

no sc

For an even-hole-free graph the tree T S
G as defined above may fail to exist.

Because building an odd block does not preserve being even-hole-free. So,
2-joins appearing in the decomposition tree may fail to be either X1-even
or X1-odd, so we do not know when to use even or odd blocks. But with a
little twist, we can define a useful tree.

The definition of T S
G for a graph in Cehf

no sc is very similar to the definition
for CBerge

no cutset, so we do not repeat it and point out the differences instead.
The main difference is when to use odd or even block. Recall that G′′i

has a 2-join (X ′′i
1 ,X ′′i

2). Let (X ′′i
1 ,X ′′i

2 , A′′i
1 , B′′i

1 , A′′i
2 , B′′i

2) be a split of this 2-
join. We define ai = α(G[A′′i

1 ∪ C ′′i
1]), bi = α(G[B′′i

1 ∪ C ′′i
1]), ci = α(G[C ′′i

1])
and di = α(G[X ′′i

1]). If ai + bi ≤ ci + di then G′′i+1 is the even block G′′i

w.r.t. (X ′′i
1 ,X ′′i

2). Else, it is the odd block. Note that graphs in T S
G are not

required to be in Cehf.
The other difference is that graphs G′′1

B , . . . , G′′p
B and G′′p are any (and

not only parity-preserving) extensions of graphs from Cehf
basic. Note that in

Lemma 7.7, the extensions are not required to be parity-preserving for Cehf
basic.

Lemma 8.4 There is an algorithm with the following specification:

Input: A weighted graph G that is in CBerge
no cutset or in Cehf

no sc and that has
a connected non-path 2-join.

Output: A maximum weighted stable set of G.

49

Running time: O(n4m)

proof — By Lemma 8.2, we build a decomposition tree for G, and as
explained above we reprocess the tree to get a stable-decomposition tree
T S

G . By repeatedly applying Lemmas 6.6 and 6.8, we see that α(G′′0) =

α(G′′1) = · · · = α(G′′p). Note that the inequalities necessary to apply
Lemmas 6.6 and 6.8 are satisfied. For Berge graphs, this follows from the
fact that all nodes of T S

G are Berge so that we can rely on Lemma 6.3 and
6.4. For even-hole-free graphs, the inequalities are true from the definition
of T S

G .
We can compute a maximum weighted stable set in the extension of

basic graph G′′p by Lemma 7.7 (when G is Berge, the extension is parity-
preserving) , and the proofs of Lemmas 6.6 and 6.8 show how to backtrack
such a maximum weighted stable set to G. 2

9 Optimization algorithms

Theorem 9.1 There is an algorithm with the following specification:

Input: A weighted graph G that is either a Berge graph with no balanced
skew partition, no connected non-path 2-join in the complement and
no homogeneous pair; or an even-hole-free graph with no star cutset.

Output: A maximum weighted stable set and a maximum weighted clique
of G.

Running time: O(n6)

proof — If G is in CBerge
basic or in Cehf

basic we rely on Lemma 7.7. Else, by
Theorem 2.1 or 2.6, G has a connected non-path 2-join. So, we may rely on
Lemmas 8.3 and 8.4. 2

Let us now point out that our method works for our two classes for
different reasons. For Berge graphs, it is because our even and odd blocks
are class-preserving. For even-hole-free graphs, it is because the basic class is
restricted to graphs obtained from line graphs by adding a bounded number
of vertices. In fact, our method works for something more general than
even-hole-free graphs with no star cutset. Let Lk be the class of graphs
obtained from line graphs by adding k vertices. If k is fixed, we can compute
maximum weighted cliques and stable sets for any class that is decomposable
with extreme 2-joins into graphs of Lk. For k = 0, this gives a subclass of

50

claw-free graphs. For k = 2 this gives a super-class of even-hole-free graphs
with no star cutset.

Theorem 9.2 There exists an algorithm of complexity O(n7) whose input
is a Berge graph G with no balanced skew partition, no connected non-path
2-join in the complement and no homogeneous pair, and whose output is an
optimal coloring of G and an optimal coloring of G.

proof — There exists a combinatorial coloring algorithm for an input
perfect graph G that uses at most n times as subroutines algorithms for
maximum cliques and stable sets. See [30] or Corollary 67.2c in [40]. This
algorithm relies on the fact that perfect graphs are closed under taking
induced subgraphs and replicating vertices. Our class is not, but taking
induced subgraphs is easily simulated by giving weight 0 to a vertex and
replicating k times a vertex is simulated by giving weight k to the vertex.
The method also works for G because we may compute maximum weighted
cliques and stable sets for G as well. 2

10 NP-completeness

Here, we give a class C of graph for which computing a maximum stable
set is NP-hard. The interesting feature of class C is that all graphs in C
are decomposable along extreme 2-joins into one bipartite graph and several
gem-wheels where a gem-wheel is any graph made of an induced cycle of
length at least 5 together with a vertex adjacent to exactly four consecu-
tive vertices of the cycle. Note that a gem-wheel is a line graph (of a cycle
with one chord). Our NP-completeness result (proved jointly with Guys-
lain Naves) shows that being able to decompose along extreme 2-joins is
not enough in general to compute stables sets. This suggests that being
in Cparity is essential for computing stable sets along 2-joins and that the
inequalities of Subsection 6.1 capture an essential feature of Cparity.

Here, extending a flat path P = p1−· · ·−pk of a graph means deleting
the interior vertices of P and adding three vertices x, y, z and the following
edges: p1x, xy, ypk, zp1, zx, zy, zpk. By extending a graph G we mean
extending all paths of M where M is a set a flat paths of length at least 3
of G. Class C is the class of all graphs obtained by extending 2-connected
bipartite graphs. From the definition, it is clear that all graphs of C are
decomposable along extreme connected non-path 2-joins. One leaf of the

51

decomposition tree will be the underlying bipartite graph. All the others
leaves will be gem-wheels.

We call 4-subdivision any graph G obtained from a graph H by subdi-
viding four times every edge. More precisely, every edge uv of H is replaced
by an induced path u−a−b−c−d−v where a, b, c, d are of degree two. It is
easy to see that α(G) = α(H)+ 2|E(H)|. This construction, essentially due
to Poljak [36], yields as observed by Guyslain Naves:

Theorem 10.1 (Naves, [35]) The problem whose instance is a graph G
from C and an integer k, and whose question is “Does G contain a stable
set of size at least k” is NP-complete.

proof — Let H be any graph. First we subdivide 5 times every edge of H.
So each edge ab is replaced by P7 = a−p1−· · ·−p5−b. The graph H ′ obtained
is bipartite. Now we build an extension G of H ′ by replacing all the P5’s
p1−· · ·−p5 arising from the subdivisions in the previous step by P4’s. And
for each P4 we add a new vertex complete to it and we call apex vertices all
these new vertices. The graph G that we obtain is in C. It is easy to see that
there exists a maximum stable set of G that contain no apex vertex because
an apex vertex of a maximum stable set can be replaced by one vertex of
its neighborhood. So, we call G′ the graph obtained from G by deleting all
the apex vertices and see that α(G′) = α(G). Also, G′ is the 4-subdivision
arising from H. So from the remark above, maximum stable sets in H and
G have sizes that differ by 2|E(H)|. 2

Our NP-completeness result is related to Lemma 6.10. With respect
to computing maximum stable sets, these two results say in a sense that
gem-blocks carry enough information to encode one side of a 2-join.

Acknowledgement

This work started in November 2008 when the first author was visiting Uni-
versidade Federal do Rio de Janeiro, Brasil, during discussions with Simone
Dantas, Sulamita Klein and Celina de Figueiredo. Originally, the project
was to color Berge graphs without balanced skew partitions. Celina sug-
gested to add the homogeneous pair-free assumption and this idea was very
important for the success of this work.

Thanks to Guyslain Naves for showing the NP-hardness result. This
manuscript also benefited from a very careful reading of an anonymous ref-
eree.

52

References

[1] C. Berge. Färbung von Graphen, deren sämtliche bzw. deren ungerade
Kreise starr sind. Technical report, Wissenschaftliche Zeitschrift
der Martin-Luther-Universität Halle-Wittenberg, Mathematisch-
Naturwissenschaftliche Reihe 10, 1961.

[2] P. Charbit, M. Habib, N. Trotignon, and K. Vušković. Detecting 2-joins
faster. Manuscript, 2010.

[3] V. Chvátal. Star-cutsets and perfect graphs. Journal of Combinatorial
Theory, Series B, 39:189–199, 1985.

[4] V. Chvátal and N. Sbihi. Bull-free Berge graphs are perfect. Graphs
and Combinatorics, 3:127–139, 1987.

[5] M. Chudnovsky. Berge trigraphs and their applications. PhD thesis,
Princeton University, 2003.

[6] M. Chudnovsky. Berge trigraphs. Journal of Graph Theory, 53(1):1–55,
2006.

[7] M. Chudnovsky, G. Cornuéjols, X. Liu, P. Seymour and K. Vušković.
Recognizing Berge graphs. Combinatorica, 25(2):143–186, 2005.

[8] M. Chudnovsky, N. Robertson, P. Seymour and R. Thomas. The strong
perfect graph theorem. Annals of Mathematics, 164(1):51–229, 2006.

[9] M. Chudnovsky and P. Seymour. Three-colourable perfect graphs with-
out even pairs. Manuscript, 2008.

[10] M. Chudnovsky and P. Seymour. Even pairs in Berge graphs. Journal
of Combinatorial Theory, Series B, 99:370–377, 2009.

[11] M. Conforti, G. Cornuéjols, A. Kapoor and K. Vušković. Balanced
0,±1 matrices, Part I: Decomposition theorem, and Part II: Recogni-
tion algorithm. Journal of Combinatorial Theory, Series B, 81:243-306,
2001.

[12] M. Conforti, G. Cornuéjols, A. Kapoor and K. Vušković. Even-hole-
free graphs, Part I: Decomposition theorem. Journal of Graph Theory,
39:6-49, 2002.

53

[13] M. Conforti, G. Cornuéjols, A. Kapoor and K. Vušković. Even-hole-
free graphs, Part II: Recognition algorithm. Journal of Graph Theory,
40:238-266, 2002.

[14] M. Conforti, G. Cornuéjols and M.R. Rao. Decomposition of balanced
matrices. Journal of Combinatorial Theory, Series B, 77:292–406, 1999.

[15] M. Conforti, G. Cornuéjols, and K. Vušković. Square-free perfect
graphs. Journal of Combinatorial Theory, Series B, 90:257–307, 2004.

[16] M. Conforti, G. Cornuéjols, and K. Vušković. Decomposition of odd-
hole-free graphs by double star cutsets and 2-joins. Discrete Applied
Mathematics, 141:41–91, 2004.

[17] G. Cornuéjols and W.H. Cunningham. Composition for perfect graphs.
Discrete Mathematics, 55:245–254, 1985.

[18] M.V.G. da Silva and K. Vušković. Triangulated neighborhoods in even-
hole-free graphs. Discrete Mathematics, 307:1065-1073, 2007.

[19] M.V.G da Silva and K. Vušković. Decomposition of even-hole-free
graphs with star cutsets and 2-joins. preprint, 2008.

[20] C. de Figueiredo. Personal communication, 2008.

[21] G.A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Mathema-
tischen Seminar der Universität Hamburg, 25:71–76, 1961.

[22] J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathemat-
ics, 17:449–467, 1965.

[23] M. Farber. On diameters and radii of bridged graphs. Discrete Mathe-
matics, 73:249-260, 1989.

[24] C.M.H. de Figueiredo and F. Maffray. Optimizing bull-free perfect
graphs. SIAM Journal on Discrete Mathematics, 18:226–240, 2004.

[25] J. Fonlupt and J.P. Uhry. Transformations which preserve perfectness
and h-perfectness of graphs. In A. Bachem, M. Grötschel, and B. Korte,
editors, Bonn Workshop on Combinatorial Optimization, pages 83–85.
North-Holland, 1982. Annals of Discrete Mathematics, 16.

[26] M. Gröstchel, L. Lovász and A. Schrijver. The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1:169-197,
1981.

54

[27] M. Gröstchel, L. Lovász and A. Schrijver. Geometric algorithms and
combinatorial optimization, Springer Verlag, 1988.

[28] R.B. Hayward. Weakly triangulated graphs. Journal of Combinatorial
Theory, Series B, 39:200–209, 1985.

[29] T. Kloks, H. Müller and K. Vušković. Even-hole-free graphs that do not
contain diamonds: a structure theorem and its consequences. Journal
of Combinatorial Theory B, 99:733-800, 2009.

[30] J. Kratochv́ıl and A. Sebő. Coloring precolored perfect graphs. Journal
of Graph Theory, 25:207–215, 1997.

[31] P.G.H. Lehot. An optimal algorithm to detect a line graph and output
its root graph. Journal of the Association for Computing Machinery,
21(4):569–575, 1974.

[32] L. Lovász. Normal hypergraphs and the perfect graph conjecture. Dis-
crete Mathematics, 2:253–267, 1972.

[33] L. Lovász, Graph minor theory. Bulletin of the American Mathematical
Society, 43(1):75–86, 2005.

[34] F. Maffray and N. Trotignon. A class of perfectly contractile graphs.
Journal of Combinatorial Theory, Series B, 96(1):1–19, 2006.

[35] G. Naves. Personal communication, 2009.

[36] S. Poljak. A note on the stable sets and coloring of graphs. Commen-
tationes Mathematicae Universitatis Carolinae, 15:307–309, 1974.

[37] N. Robertson and P. Seymour. Graph minors XIII. The disjoint paths
problem. Journal of Combinatorial Theory B, 63:65–110, 1995.

[38] N. Robertson and P.D. Seymour. Graph minors. XX. Wagner’s conjec-
ture. Journal of Combinatorial Theory, Series B, 92:325–357, 2004.

[39] N.D. Roussopoulos. A max {m,n} algorithm for determining the graph
H from its line graph G. Information Processing Letters, 2:108–112,
1973.

[40] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency,
Springer, 2003.

55

[41] P.D. Seymour. Decomposition of regular matroids. Journal of Combi-
natorial Theory, Series B, 28(3):305–359, 1980.

[42] N. Trotignon. Decomposing Berge graphs and detecting balanced skew
partitions. Journal of Combinatorial Theory, Series B, 98:173–225,
2008.

[43] N. Trotignon and K. Vušković. N. Trotignon and K. Vušković. A struc-
ture theorem for graphs with no cycle with a unique chord and its
consequences. Journal of Graph Theory, 63(1):31–67, 2010.

[44] K. Truemper. Max-flow min-cut matroids: Polynomial testing and
polynomial algorithms for maximum flow and shortest routes. Mathe-
matics of Operations Research, 12:72-96, 1987.

[45] G. Zambelli. On Perfect Graphs and Balanced Matrices. PhD thesis,
Carnegie Mellon University, 2004.

56

