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Dilute Magnetic Semiconductor Quantum-Well
Structures for Magnetic Field Tunable

Far-Infrared/Terahertz Absorption
Ivana Savić, Vitomir Milanović, Zoran Ikonić, Dragan Indjin, Vladimir Jovanović, and

Paul Harrison, Senior Member, IEEE

Abstract—The design of ZnCdSe–ZnMnSe-based quantum
wells is considered, in order to obtain a large shift of the peak
absorption wavelength in the far infrared range, due to a giant
Zeeman splitting with magnetic field, while maintaining a rea-
sonably large value of peak absorption. A triple quantum-well
structure with a suitable choice of parameters has been found to
satisfy such requirements. A maximal tuning range between 14.6
and 34.7 meV is obtained, when the magnetic field varies from zero
to 5 T, so the wavelength of the absorbed radiation decreases from
85.2 to 35.7 m with absorption up to 1.25% at low temperatures.
These structures might form the basis for magnetic field tunable
photodetectors and quantum cascade lasers in the terahertz range.

Index Terms—Infrared detectors, manganese alloys, magnetic
field effects, quantum wells, quantum theory, tunable circuits and
devices.

I. INTRODUCTION

THERE are a wide variety of potential applications for

electronic and photonic systems operating in terahertz

frequency bands (1–10 THz, 300–30 m) such as in medicine,

microelectronics, agriculture, gas sensing and environmental

monitoring, astronomy and satellite mapping, etc., which has

driven a lot of research toward their design and fabrication.

Compact coherent quantum cascade lasers and quantum-well

photodetectors have been developed recently [1]–[8] which

motivated new theoretical studies of terahertz physics [9]–[11].

The tunability of such terahertz sources and detectors is the

next challenge for further development of terahertz photonics.

Dilute magnetic semiconductors (DMS) are materials

with a fraction of cations substituted by magnetic ions, e.g.,

Mn ions replacing some group-II cations in Zn Mn Se,

Cd Mn Te, and Zn Mn Te. The magnetic properties

of DMS are determined by the strong exchange interaction

between the and band electrons and the [5] electrons

associated with the localized magnetic ions. This ex-
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change interaction affects processes which involve electrons

in the conduction and valence bands, exciton and impurity

levels and induces unique magneto-optical properties which

are qualitatively different from those observed in nonmagnetic

semiconductors [12], [13].

While interband transitions in DMS have been studied inten-

sively in the last decade [12], [14], both theoretically and ex-

perimentally, to our knowledge, the research of intersubband

transitions has not been reported. Intersubband transitions might

be of interest due to the prospect of their application in mag-

netic field tunable devices. An external magnetic field applied

to a semiconductor quantum well parallel to the confinement

direction splits the in-plane continuum of quantized subbands

into Landau levels, each subband producing a set of Landau

levels, described by a Landau index and additionally by spin

index (gyromagnetic spin splitting within Landau levels). Both

the Landau level energies and their splitting depend linearly on

the magnetic field.

If the structure includes DMS, the conduction band edge

varies with the magnetic field locally (i.e., remains unchanged

in regions comprising nonmagnetic semiconductors) and,

hence, modifies the potential profile. The shift of the potential

(in the magnetic layers and near the interfaces) is opposite for

the two spins and, consequently, they experience two different

potential profiles, which are effectively tuned by the magnetic

field. This spin-dependent variation of the confinement energy

is particularly significant in the vicinity of the interfaces and

in turn leads to different, and field-dependent, spectra of the

size-quantized component of the electron energies for the two

spins, and this phenomenon is known as the giant Zeeman

splitting. Since the spin and Landau level index are conserved

in optical transitions caused by -polarized light, the transition

energies will vary with the magnetic field, and this variation is

different for the two spin states. This translates into tunability of

intersubband transition energies by varying the magnetic field,

in contrast to the case of nonmagnetic semiconductor-based

structures where the potential profile and, hence, the size-quan-

tization part of the electron energy, do not depend on the

magnetic field (apart from irrelevant global shift). Due to the

enhanced Zeeman splitting at an non-DMS/DMS interface

and its effect on magneto-optical properties of a structure as

a whole, the idealized model of DMS-based structures with

abrupt interfaces is not sufficient, and an essential requirement

in modeling is the inclusion of altered composition profile,

which in turn modifies the spin-dependent potential profile.

0018-9197/04$20.00 © 2004 IEEE
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Fig. 1. A triple ZnMnSe–ZnCdSe–ZnSe quantum-well structure. Dashed lines
denote 2-ML—thick intermixing regions.

The giant Zeeman splitting offers a route toward achieving

magnetic field tunable absorption wavelength in DMS nanos-

tructures. By increasing the magnetic field one changes the tran-

sition energies and the wavelength of the absorbed radiation.

For any magnetic field different wavelengths are absorbed in

the spin-up and spin-down transitions within the same pair of

size-quantized levels (spin-flip transitions are negligable [15]).

Splittings of a few meV which are achievable in materials like

ZnMnSe or CdMnTe imply a large tunability on a relative scale

if the transition energy is in the terahertz range. If we com-

pare quantum-well structures based upon these materials, op-

erating as photodetectors, against bolometers, the latter has a

very high responsivity at a few kelvin and does not require

an external magnetic field. However, the magnetic field itself

makes such structures frequency tunable, in contrast to either

bolometers or another existing detector—the Schottky diode.

The aim of this work was to engineer the structure profile of

ZnSe–ZnMnSe–ZnCdSe quantum wells in respect to achieving

maximum tunability of far infrared intersubband transitions by

varying the magnetic field. The influence of relevant parameters

(temperature, sheet density of impurities) on the absorption in

the optimized structure was then examined.

II. THEORETICAL MODEL

We consider a symmetric triple-coupled quantum-well

structure formed from ZnSe–Zn Cd Se quantum wells

separated by Zn Mn Se layers (Fig. 1). A symmetric double

quantum-well structure is its special case, with . The

-axis was taken to be the direction of confinement. The struc-

ture was chosen to be symmetric to provide large absorption.

Magnetic barrier layers were placed in the middle of the struc-

ture to maximize (minimize) the influence of varying barrier

heights on even (odd) parity states, which should result in

maximal tunability.

The total Hamiltonian of an electron in the Zn Mn Se bar-

riers is [12]–[26]

(1)

where is the conventional Hamiltonian for nonmagnetic

semiconductor structures, while the - exchange contribution

is contained in . Thus, reads [12]–[26]

(2)

where is the electron effective mass (here assumed constant

throughout the structure, in free electron mass

units, which is reasonable for low concentration of Mn and

Cd), is the magnetic vector potential, is the Landé factor

of conduction band electrons (here , also assumed

constant), is the Bohr magneton, and is the magnetic field

along the -axis. The first term of is the kinetic energy, the

second term is the conduction band edge (band offset),

and the third term is the potential responsible for spin splitting

of Landau levels (“ ” is for spin-up and “ ” for spin-down

electrons).

The – exchange potential occurs only in DMS layers,

and also in interface regions due to the diffusion of Mn ions

from magnetic layers, and depends on the magnetic field. Man-

ganese magnetic moments contribute to the total magnetic mo-

ment in the external magnetic field, forming a strong total mag-

netic field which interacts with the electrons. At low Mn con-

centrations they are noninteracting and all partic-

ipate in the total magnetization. Besides the - interaction

between the conduction band electrons and localized magnetic

ions, the Mn –Mn exchange also has a significant influ-

ence. The dominant nearest-neighbor exchange process is anti-

ferromagnetic, reducing the number of Mn ions contributing to

the total magnetic moment, and cannot be neglected at higher

Mn concentrations. Therefore, an empirical expression for the

spin-dependent potential induced by the magnetic field is taken

[12], [18], [19]

(3)

where “ ” is for the spin-up electrons and “ ” for the spin-

down electrons, is the - exchange integral for the conduc-

tion band, is the density of cations, and is the thermal

average of the Mn spin, which, for paramagnetic materials

amounts to

(4)

where is the Boltzmann constant, the temperature, and

is the Brillouin function

(5)

In (3) and (4), phenomenological fitting parameters, known as

the effective manganese concentration and the effective tem-

perature , are introduced [12], [18], [19], both depending on

and . The position dependence is due to the presence of in-

terfaces. The reduced number of magnetic nearest neigbors at

the interface enhances the magnetization by reducing the prob-

ability of forming antiferromagnetic pairs. Furthermore, inter-

faces are not ideally abrupt and a distribution of manganese ions

across them contributes to the magnetization.
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Substituting these barrier potentials in the Schrödinger equa-

tion, we get

(6)

in the magnetic barriers and the interface regions, and

(7)

in the nonmagnetic layers.

Using the Landau gauge the quantized state

envelope wavefunctions read

(8)

where is the dimension of the structure along the -axis,

is the Landau length, labels

Landau levels , and is the harmonic

oscillator wavefunction

(9)

where is the th Hermite polynomial.

Neglecting the gyromagnetic spin splitting, which is signifi-

cantly smaller due to the - exchange ( 0.5 meV at T)

and does not influence the transition energies, the Schrödinger

equation for reads

(10)

The wavefunctions of all the Landau levels that stem from the

same size-quantized electron state have the same form, the en-

ergies of subsequent Landau levels being shifted by

, where is the cyclotron frequency. The electron states are

specified by the set of quantum numbers , and their

energies

(11)

depend on , and .

Intersubband transitions exist only in doped structures, with

low-lying states occupied by electrons. In accordance with (11),

the electron sheet density and the Fermi level are related

by

(12)

In optical transitions caused by -polarized light, the Landau

index and spin are conserved, and absorption occurs only on

transitions between different size-quantized states (hereafter

refered to as the th and the th state). The fractional absorption

on such a transition is [27]

(13)

(14)

where is the refraction index, and are the corre-

sponding wavefunctions, with energies and for spin

, and

(15)

Transitions between states and occur only if they are of op-

posite parities.

The total absorption involving one spin orientation is a sum

of contributions of all Landau levels

(16)

where the spin subscript is supressed. For small magnetic

fields the above sum can be replaced by Euler–Maclaurin sum-

mation formula [28]

(17)
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Since the integral in (17) is proportional to , in low magnetic

field limit the sum can be approximated by the integral. Then the

absorption takes the form

(18)

The delta function can be replaced by a Lorentzian, to account

for state broadening

(19)

where is the transition linewidth (here, taken as 5 meV).

The peak absorption in weak magnetic field is then given by

(20)

To address the enhanced magnetization at a non-DMS/DMS

interface, a theoretical method mapping its profile in details

was developed [29], [30]. It takes into account the effect of

graded interfaces, the interface roughness and the enhanced

magnetization at interfaces. Since the parameters used for

the characterization of the interface profile are not known for

ZnMnSe–ZnCdSe–ZnSe systems, we used a modified model

[22], [23] that introduces a 2-monolayer-wide intermixing

region left and right of the DMS barrier assuming different

Mn concentrations, effective Mn concentrations and effective

temperatures in the barriers and the intermixing regions. The

complete potential profile of a triple quantum-well structure

including the intermixing regions represented by dashed lines

is shown in Fig. 1.

The band offset was calculated with the incorporation of the

deformation-potential term (strain) and the variation of compo-

sition profile of Mn ions in the magnetic barriers and at the inter-

face using the band, strain and lattice parameters from [20]. The

band offset between Zn Mn Se and ZnSe materials when

they are in contact and is positive, and to a very

good approximation a linear function

meV (21)

The band offset between ZnSe and Zn Cd Se is positive and

in a good agreement with the following linear dependence on :

meV (22)

The difference between conduction band edges at

Zn Mn Se–Zn Cd Se heterojunction is positive and can

be calculated from

meV (23)

The inclusion of a modified composition profile, and spin-de-

pendent potential shift in the 2-ML interface regions requires

solving the Schrödinger equation in a more complicated struc-

ture than a triple quantum well. This was performed by a fi-

nite-difference method [31].

III. NUMERICAL RESULTS AND DISCUSSION

The design was performed by varying the thickness of the

Zn Cd Se, Zn Cd Se, and Zn Mn Se layers and their

composition with respect to achieving maximal tunability of the

transitions between the ground and the first excited size-quan-

tized states, by increasing the magnetic field from zero until

the - interaction saturates which occurs at magnetic fields

of 5 T. These magnetic fields are realizable by a split-pair su-

perconducting coil [4]. As will be discussed later, the spin-down

states experience a reduction in the barrier height and enhance-

ment of the transition energies and absorption, and the parame-

ters of the structure were chosen so that spin-down intersubband

transitions satisfy these conditions. Another requirement was

that the first excited energy state of the electrons of either spin

remains at least one transition linewidth below the potential of

ZnSe barriers when the - interaction saturation occurs so that

the transitions of both spin electrons remain bound-to-bound

and the absorption in the whole magnetic range can be calcu-

lated from (20). In the case of Zn Mn Se it is [18], [19]

eV so the - potential is given by

meV (24)

As the barrier thickness decreases, interactions among the

wells become stronger so the splitting becomes larger. Addition-

ally, the spin splitting is increased because the antiferromagnetic

interactions between magnetic ions are reduced which leads to

significantly enhanced effective magnetic moments and the -

potential [18], [19], [22], [23]. The thickness of magnetic bar-

riers was here set to 1 nm, in the range considered in the litera-

ture [18], [19]. For 1-nm-thick Zn Mn Se layers, assuming

that the effective Mn concentration is and the effec-

tive temperature K (same as in Zn Mn Se bulk),

the effective Mn concentration and the effective temperature in

the 2-ML interface regions were found to be and

1.2 K. With such magnetic barriers the maximum shift

of the barrier height, and therefore of transition energies for

both spin states is achieved. The maximal magnetically induced

change of Zn Mn Se barrier is 41.9 meV in the

intermixing regions and 12.8 meV inside the layers.

Having adopted the barrier thickness 1.12 nm (4 ML)

and Mn concentration , the thickness of the inner well

and the outer wells were varied, as well as the composi-

tion of Zn Cd Se and Zn Cd Se materials, in order to ob-

tain the radition absorption in the desired range by increasing

the magnetic field until saturation occurs. The best results are

obtained for 1.68 nm, 2.52 nm, , and

. In this case, the spin-down transitions are tunable in the

range (22.4 meV, 34.7 meV), i.e., sweep 12.3 meV for mag-

netic field variation between 0 and 5 T. At the same time, the

energy of spin-up transition varies from 22.4 to 13 meV. In
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Fig. 2. The wavelength of the spin-up and spin-down transitions of the
designed triple ZnMnSe–ZnCdSe–ZnSe quantum-well structure (a = 1:68

nm, b = 1:12 nm, c = 2:52 nm, x = 0:2; y = 0:1; z = 0:25) as a function
of the magnetic field for two different temperatures T = 1:5 K and T = 4:2

K when N = 8 � 10 cm .

terms of wavelengths, the tuning range is 55.3–35.7 m for spin-

down, and 55.3–95.6 m for spin-up transitions. Certainly, if

the field decreases from 0 to 5 T the roles of spin-up and spin-

down transitions are interchanged. For comparison, the maximal

tuning range of spin-down transition predicted in a double well

structure [32] is 5.2 meV, with the structure parameters:

1.12 nm, 2.52 nm, , and . This is signifi-

cantly smaller than the tuning range of the triple quantum wells.

With this choice of parameters, the structure has only two

size-quantized bound states. The maximal splitting of the

spin-down state from the zero-field position can be made

even larger with different parameters, and the magnetic field

would then move the excited state up until it reaches the

continuum, and only the ground state of spin-up electrons

remains. Any particular Landau level and spin state con-

tributes to absorption if the Fermi level is between the lower

and upper state energy. This requirement is satisfied for at

least one spin state for the relatively high doping sheet den-

sities cm cm , and we have taken

cm . The exact treatment would require

a self-consistent solution of the Schrödinger and Poisson

equations with the additional inclusion of exchange-corre-

lation effects. However, previous experience [33]–[35] with

self-consistent calculations of GaAlAs structures indicate

that many-body effects should not significantly modify the

absorption profile for cm . A more detailed

analysis, incorporating many-body effects into our model, will

be addressed in due course.

The spin splitting of the Landau levels depends not only on

the magnetic field and conduction band edge design, but also on

temperature. From Fig. 2. one can see that the both spin transi-

tion wavelengths vary with field more slowly at higher temper-

atures. The same wavelength range can be achieved at higher

temperatures by using stronger fields. Due to the temperature

dependence of the different spin state populations, i.e., due to

reduced spin polarization at higher temperatures, the - ex-

change interaction decreases as the temperature increases, as

Fig. 3. The squares of the wavefunctions of the spin-degenerate electron states
whenB = 0 T and the spin-up and spin-down saturated states whenB = 5 T in
the designed triple ZnMnSe–ZnCdSe–ZnSe quantum-well structure (a = 1:68

nm, b = 1:12 nm, c = 2:52 nm, x = 0:2; y = 0:1; z = 0:25) when T = 1:5

K and N = 8 � 10 cm .

well as the total spin splitting and absorption, so the magnetic

field at higher temperatures has to be stronger to induce the same

degree of spin polarization and splitting.

The squares of the wavefunctions corresponding to two states

are shown in Fig. 3, the ground state being even and the ex-

cited state odd. In the zero-field case, the major part of the even

wavefunction is localized in the ZnCdSe wells, particularly in

the inner one, while the odd function penetrates more into the

DMS layers. The reason for the different behavior of even/odd

states with increasing field clearly follows from very different

overlaps of their wavefunctions with DMS or DMS interface

layers, where the field variation is translated into the potential

variation.

In nonmagnetic semiconductors the variation of the Landau

levels is a linear function of the magnetic field. The spin splitting

is rather small ( 0.5 meV at 5 T). Fig. 4(a) represents the

situation assuming that the barrier material has the same prop-

erties as ZnMnSe but without the - exchange included. In

DMS the magnetic field induces spin-dependent changes of bar-

rier heights, causing the Landau levels of spin-up (spin-down)

electrons to move up (down) in energy, Fig. 4(b). The spin split-

ting is inverted (the sign of the splitting is changed) and am-

plified significantly. This increases until the magnetic field be-

comes strong enough that the - exchange interaction satu-

rates, and beyond that point the system behaves in non-DMS

manner (but with the saturated - potential profile).

As the magnetic field increases, the Fermi level drops through

subsequent Landau levels, Fig. 4(b). At low fields the spacing

between the Landau levels is small, and a number of them are
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Fig. 4. The fan-out of Landau levels from the two quantized states in the
designed triple ZnMnSe–ZnCdSe–ZnSe quantum-well structure (a = 1:68 nm,
b = 1:12 nm, c = 2:52 nm, x = 0:2; y = 0:1; z = 0:25) (a) assuming that
the sp-d exchange interaction does not exist in ZnMnSe and (b) including the
sp-d exchange interaction in ZnMnSe as a function of the magnetic field when
T = 1:5 K and N = 8 � 10 cm .

near the Fermi level, so these drops are not distinct. For stronger

fields ( 2 T) the Fermi level increases, becoming close to the

ground state Landau level. This Landau level increases faster

than the Fermi level, causing the latter to drop, and reach the

next lower Landau level. At strong enough fields there is only

one Landau level near the Fermi level, so these drops are sharp

and result in a staircase-like behavior of the Fermi level.

In the case shown in Fig. 4(b), for fields smaller than 2 T, at

least one spin-up and one spin-down Landau levels are below

the Fermi energy. Above 2 T, the spin splitting is such that all

the Landau levels of the spin-up electrons are above the Fermi

level. Given that the temperature is near zero, their population

is extremely small, and so is the absorption on the spin-up tran-

sitions. For the spin-down electrons some of the ground state

Landau levels are below the Fermi level, almost completely oc-

cupied and thus contributing to absorption.

The matrix element in the optimized structure (Fig. 5) is rela-

tively large, and so is the absorption. This is due to the very thin

DMS layers, which couple the ZnCdSe wells strongly enough

that the wavefunction overlap is significantly better than in the

structures comprising thicker DMS layers. As one can see from

Fig. 3. the wavefunctions overlap for the spin-down states is

smaller than in the zero-field case, and the opposite is true for

spin-up states. However, the value of the absorption on spin-up

or spin-down transitions results as an interplay of matrix el-

ement and state population effects. Indeed, the absorption on

Fig. 5. The matrix element of the spin-down and spin-up transitions of the
designed triple ZnMnSe–ZnCdSe–ZnSe quantum-well structure (a = 1:68 nm,
b = 1:12 nm, c = 2:52 nm, x = 0:2; y = 0:1; z = 0:25) as a function of the
magnetic field for two different temperatures T = 1:5 K and T = 4:2 K when
N = 8 � 10 cm .

Fig. 6. The magnetic-field-dependent absorption involving the spin-down
and spin-up electrons and total absorption in the designed triple
ZnMnSe–ZnCdSe–ZnSe quantum-well structure (a = 1:68 nm, b = 1:12 nm,
c = 2:52 nm, x = 0:2; y = 0:1; z = 0:25) for two different temperatures
T = 1:5 K and T = 4:2 K when N = 8 � 10 cm .

spin-up transitions decreases from 0.65 % at zero field to zero at

approximately 2 T (Fig. 6), while the absorption on spin-down

transitions increases from 0.65 % to 1.25 %, reaching satura-

tion before the - exchange interaction saturates. The total ab-

sorption on both transitions is roughly constant across the whole

magnetic field range. At zero field both contribute equally. As

the field increases, the lowest spin-down Landau level popula-

tion decreases and becomes negligible, and so does the corre-

sponding absorption. The total electron density is determined by

doping, and is independent on the field. Therefore, the number

of spin-down electrons occupying the lowest levels, and the ab-

sorption involving them, increase. In this paper the widths of the

layers are of the order of a nanometer, which implies that inter-

face roughness has a significant impact on the broadening of ab-

sorption linewidth [36]. This effect was not explored in detail,

or accounted for in our calculations of the peak absorption. In-

cluding this broadening would scale the results, but the general

shape of the absorption profile would be preserved. The contri-

bution of interface roughness scattering to absorption linewidth

will be considered in future work.

From (18) one would expect that the drops of the Fermi level

cause similar drops of absorption on spin-down transitions,

and since the total absorption is almost constant the absorption

spikes on the spin-up transitions would appear. Fig. 6 shows
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Fig. 7. The absorption involving the spin-down and spin-up electrons in the
designed triple ZnMnSe–ZnCdSe–ZnSe quantum-well structure (a = 1:68 nm,
b = 1:12 nm, c = 2:52 nm, x = 0:2; y = 0:1; z = 0:25) as a function of the
wavelength for two different impurity sheet densities N = 8 �10 cm and
N = 4 � 10 cm when T = 1:5 K.

that this effect occurs only at weaker fields (1–2 T). In this

range the drops are not prominent, and plateaus rather than

drops and spikes are observed (the inset of Fig. 6). The effect

diminishes as the temperature increases. At stronger fields only

the spin-down transitions occur, as noted above, and the drops

will not affect the absorption.

The influence of temperature on absorption is qualitatively

similar to its influence on the absorbtion wavelength. For a fixed

field the spin-down transitions are weaker at higher tempera-

tures, and the spin-up transitions become stronger. If the mag-

netic field is very strong the absorption becomes almost inde-

pendent of temperature, Fig. 6. This is because a larger field has

to be used to increase spin polarization at higher temperatures in

order to achieve splitting appropriate to a particular wavelength.

Another interesting effect to note is that the practically achiev-

able tuning range may be reduced by inappropriate doping. For

instance, with the doping density of cm the

absorption is zero in the wavelength range (85.2–95.6 m), and

this part of the theoretically possible tuning range (35.7– 95.6

m) is cut off (Fig. 7). At lower doping densities an even wider

range of wavelengths would be cutoff.

A good external tunability of the designed structure is pre-

dicted. However, in any real terahertz intersubband laser or pho-

todetector device design other wavelength-dependent character-

istics should be considered. For example, free carrier losses de-

pend on working wavelengths, hence, waveguide structure opti-

mization [1] will be necessary. Also, photodetector background

limited infrared performance is influenced by peak detection

wavelength and doping density and injector barrier thickness

optimization will be required [7].

IV. CONCLUSION

Intersubband absorption in a magnetic-field tunable triple

quantum-well structure, which includes dilute magnetic semi-

conductor layers, was investigated. The magnetically induced

spin splitting is found to enable tuning of the absorption

wavelength. The structure parameters were engineered to get

maximal tunability in the desired range of the far infrared

spectrum, and the influence of magnetic field, temperature and

doping on the energy spectrum and absorption was explored.
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