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Digital Phase-Locked Loops Tracked by a Relay Sensor
Catherine Bonnet, Jonathan R. Partington, and Michel Sorine

Abstract—An optimal algorithm is presented for tracking the
phase of a slowly modulating signal by means of digital sampling
of its sign. Error bounds and a numerical illustration are given.

Index Terms— Demodulation, digital control, optimal algo-
rithms, phase-locked loop, sampling.

I. INTRODUCTION

DIGITAL phase-locked loops have been much studied
since the 1970’s [3]–[7], [10], since they are used in

communications and system design in order to track the
phase of an incoming signal. In the classical theory, the
given data consist of actual (possibly corrupted) measurements
of the signal at appropriate sampling intervals. However,
in some recent applications (e.g., [1] and [2]), it has been
found necessary to consider approximately sinusoidal signals
whose values are only accessible after passing through a relay
sensor—that is, the given data are now the sign (1) of the
incoming signal. In this letter, we shall provide an algorithm
for tracking the phase changes of such a signal which, being
central in the sense of Information-Based Complexity theory
[8], [9], possesses certain optimality properties. What this
means is that at theth sampling instant, we know that the
set of possible phase errors is an interval; to minimize the
worst-case error, we must choose the midpoint of that interval
as our new estimate of the phase error.

II. A PHASE-TRACKING ALGORITHM

We shall suppose that an approximately sinusoidal signal is
given by

where is its amplitude, its nominal frequency, and
its slowly-varying phase carrying the information. We shall
suppose that is continuous as in the case of phase-coherent
or frequency modulation. Demodulation will be possible under
the additional condition

(1)

where is sufficiently small. The measurements ofare
detected by a relay sensor, which provides us with a sequence
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of values, given by

(2)

where is a sequence of sampling times, and a
disturbance that is small in magnitude, that is,

with

As usual,

if
if .

We make no assumption about sign other than that it
returns a value in the interval

We shall present an algorithm that is optimal when we
assume a bounded-error model of noise; it should be remarked
here that it will also have almost-optimality properties in
the case when the noise has a symmetrical distribution (e.g.,
Gaussian), because it will provide an interpolatory algorithm
in the sense of [8] and [9]. Moreover, if there is some absolute
bound that is satisfied with high probability by the noise, then
this value can be used to tune the algorithm. The performance
in the Gaussian case will be illustrated later by means of a
simulation.

Further, we set and the
sampling interval. is the control input of the sampling
process. It will be determined in feedback-law form using thea
priori informations and measurements
To maximize the amount of information obtained from the sign
of we should sample near its zeros. As in [6], we attempt
to track positive-going zero crossings of Such a closed-
loop system is called a digital phased-locked loop. Note that
condition (1) ensures that the positive-going zero crossings are
well defined. In fact, the th zero, is the unique solution of

Let

(3)

denote the true, unknown, phase error at theth sample. The
phase error can be interpreted as the controlled state, and
(3) and (2) as the state-space equations:

(4)

where and are the
input and output errors.

The amplitude of thea posterioriregulation error is given by
where is the central minimax estimate

of given
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Our procedure is to choose in order to minimize the
a priori worst-case phase error. Doing so, we shall obtain as
a byproduct the central (minimax) estimate of
knowing

Theorem II.1: Suppose that
Then, under the conditions above, the worst-case optimal
phase estimates and the control are given by

(5)

(6)

(7)

and the worst-case bounds on and are

and (8)

where

(9)

Asymptotically, the estimation and phase errors satisfy

(10)

(11)

Proof: We suppose that, for lies within an
interval indeed, we shall see that we can take

for each Assuming this for the
moment, then given the additional information we know
that

from which we conclude that

or for . The case
is slightly different, and our initial data allow us

to conclude only that we may assume that
, . We denote by the radius

of the interval All points of this interval are possible. Thus
our central (minimax) estimate of is now

for (12)

and . To compensate for this, the optimal choice
for is given by

(13)

Therefore, knowing that lies in an interval of length
will lie in a similar interval,

symmetrized about 0, and expanded by the output error

The error is bounded in modulus by and
thus we can take

(14)

for , whereas

(15)

We shall now show inductively that
for all However, it is not necessary for our

purposes that decrease monotonically. Note that

As we have inductively that
for each Further, we have

inductively that

(16)

by virtue of the hypothesis on We deduce that
so that

and (14) can be rewritten

At this point, note that that
is, the control is admissible. Due to (3), the central estimate
of at time satisfies

(17)

leading to (8). Now to obtain the second formula in (6), we
use (17) to obtain

(18)

which simplifies, using (4) and the definition of, to give

(19)

and then the formula follows using (13).
Let be given by and for

Then clearly for each
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Fig. 1.

Fig. 2.

The solution to a recurrence relation of the form

with is

In this case,

and

As we have and, asymptotically,

as asserted in (10). Likewise (11) now follows from (12). We
have also proved the remark below.

Remark II.1: The feedback law from to is
affine, but not time-invariant, since earlier measurements will
necessarily have more effect as the sampling method locks
onto the correct phase. Asymptotically, however, it is approx-
imately time-invariant:

Fig. 3.

III. EXAMPLE

We take and

To show that the method still performs very well in the
presence of Gaussian disturbances, the simulation makes use
of such noise, distributed according to the law

Fig. 1 shows the theoretical bound on the phase error;
and Fig. 2 shows the sampling interval

The phase error bound quickly settles down to a
value of approximately 0.27, which is in accordance with the
predicted worst-case value
Likewise, the sampling intervals are close to the true period,

Fig. 3 shows the actual phase error, which is not
available to the algorithm, but which is in practice smaller than
the predicted worst-case bound. We remark that the algorithm
is very robust, in that it rapidly compensates for any outlier.
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