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Coordinate Descent Iterations in Fast Affine
Projection Algorithm

Yuriy Zakharov, Member, IEEE, and Felix Albu, Member, IEEE

Abstract—We propose a new approach for real-time imple-
mentation of the fast affine projection (FAP) algorithm. This is
based on exploiting the recently introduced dichotomous coor-
dinate descent (DCD) algorithm, which is especially efficient for
solving systems of linear equations on real-time hardware and
software platforms since it is free of multiplication and division.
The numerical stability of the DCD algorithm allows the new
combined DCD-FAP algorithm also to be stable. The convergence
and complexity of the DCD-FAP algorithm is compared with that
of the FAP, Gauss–Seidel FAP (GS-FAP), and modified GS-FAP
algorithms in the application to acoustic echo cancellation. The
DCD-FAP algorithm demonstrates a performance close to that of
the FAP algorithm with ideal matrix inversion and the complexity
smaller than that of the Gauss–Seidel FAP algorithms.

Index Terms—Coordinate descent, echo cancellation, fast affine
projection, Gauss–Seidel algorithm.

I. INTRODUCTION

T
HE affine projection (AP) algorithm is an efficient adap-

tive filtering technique [1]. It allows a higher convergence

speed than the normalized least-mean squares (NLMS) algo-

rithm, especially when the excitation signal is colored, as is the

case with speech. However, it is complicated for implementa-

tion. The fast AP (FAP) algorithm allows a significant simpli-

fication [2], but it requires matrix inversion, which is a source

of numerical instability, especially when implementing on real-

time hardware [e.g., field-programmable gate array (FPGA)]

and fixed-point software [e.g., digital signal processor (DSP)]

platforms. In the original FAP algorithm, this is due to the fast

recursive least-squares (RLS) algorithm. Other iterative tech-

niques were proposed for matrix inversion in the FAP algorithm,

in particular, the steepest descent and conjugate gradient tech-

niques [3]. Gauss–Seidel (GS) iterations provide a good solu-

tion to the problem; one GS iteration per sample is enough in

order to achieve nearly optimal performance [4], [5]. The FAP

algorithm based on matrix inversion is computationally efficient

only if the step size, which controls the convergence speed and

the steady-state output (residual) error, is close to one. To re-

duce the residual error after the algorithm has converged, the

step size should be reduced. Moreover, when the step size is

close to one, the FAP algorithm is sensitive to the input noise.
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As a result, there is still a necessity to find an efficient numer-

ical implementation of the FAP algorithm with an arbitrary step

size.

We propose a new approach for real-time implementation of

the FAP algorithm. This is based on exploiting the recently in-

troduced dichotomous coordinate descent (DCD) algorithm [6]

for solving systems of linear equations. The numerical stability

of the DCD algorithm allows the new combined DCD-FAP al-

gorithm also to be stable. The DCD algorithm is free of multi-

plication and division. Its complexity is low compared with the

whole complexity of adaptive filtering. We compare the perfor-

mance of the new algorithm with the NLMS algorithm, the FAP

algorithm based on an ideal matrix inversion (ideal FAP) or GS

iterations (GS-FAP), and a modified GS-FAP algorithm based

on the solution of a linear system in application to acoustic echo

cancellation.

II. FAP ALGORITHM

The FAP algorithm is defined as follows [2], [5]. Let the

system output be , where is the excitation

signal matrix, is an unknown impulse response, and is ad-

ditive white noise, and assume that for , we have

(1)

At each sample

(2)

(3)

update using (4)

(5)

or solve (6)

(7)

(8)

where is the time index, is an

adaptive weight vector of a length is the step size, and

denotes the matrix transpose. The excitation signal

matrix has the structure ,

where is the inverse of

a regularized autocorrelation matrix of the excitation

signal is the regularization parameter,

is the identity matrix, is an vector consisting

of a sum of the fast normalized residual echo is the
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last element of is a vector consisting of the uppermost

elements of consists of upper elements

of , and the vector contains

lower elements of . In step (4), is updated by re-

placing the first row and column with elements of , while the

bottom-right submatrix is replaced with the

top-left submatrix of .

The complexity of FAP algorithms is multiply–ac-

cumulate (MAC) operations per sample. The term is for steps

(3) and (8), while the term , which does not depend on ,

is for the other steps, among which step (6) is computationally

most demanding. In an ideal FAP algorithm, with a direct ma-

trix inversion, . The fast RLS algorithm allows

reduction in the complexity of the matrix inversion, resulting in

; however, it shows numerical instability [2].

If , then , where , and the

first column of the matrix is only required for calculating

in (6). Since , the matrix is slowly varying in

time, as is the solution of the system. Assuming that we

have already obtained an accurate estimate of the vector

for sample , one GS iteration per sample is enough for

nearly optimal performance [4], [5]. The GS-FAP algorithm is

based on one update of at every sample. This is equivalent

to solving the system with one GS iteration

where is the th element of the vector is th element of

is the th element of , and

. Thus, the FAP algorithm based on matrix inversion benefits

from distribution of the calculation in time. However, for an

arbitrary , the matrix inverse will require the solution of

systems of equations [3]. This is computationally expensive,

even with such a distribution of the calculation.

For an arbitrary , the solution of the system of equations

in (6) might be preferable to matrix inversion. Unfortunately,

calculations associated with the solution of the system cannot

be distributed in time; a relatively accurate solution should be

found at every sample period. The DCD algorithm allows the so-

lution to be obtained without any multiplications and divisions;

instead, it uses shift-accumulation (SAC) operations; the latter

makes it attractive when a real-time implementation is required.

III. DCD ALGORITHM

The system of equations to be solved is , where,

for clarity, we have omitted the lower index associated with the

sample period. For the solution of the system, the DCD algo-

rithm [6] is used. The algorithm is based on binary representa-

tion of elements of the solution vector with bits within an

amplitude range . It starts an iterative approximation

of the solution vector from the most significant bit. Once the

most significant bit has been found for all vector elements, the

algorithm starts updating the next less significant bit, and so on.

If a bit update happens (such an iteration is called “successful”),

the vector is also updated. The complexity of the algorithm is

mainly due to “successful” iterations. To limit the complexity

(with an uncertain error of the solution), a limit for the number

of “successful” iterations is predefined. If there is no such

limit or the parameter is high enough, the accuracy of

the solution is . Thus, parameters of the DCD algorithm

are as follows: —number of bits used for representation of

elements of the vector within an amplitude range

and —the maximum number of “successful” iterations, at

which the solution vector is updated. Denote and elements

of vectors and , respectively. The DCD algorithm can be im-

plemented as follows.

Initialization: .

for

(1) Flag

for

if , then

Flag

if , then the algorithm stops

end of the -loop

if Flag , then go to (1)

end of the -loop

The DCD algorithm guarantees convergence to the true solu-

tion if elements of the true solution vector are within the in-

terval . It is seen from the algorithm description that if

is a power of two, then multiplications by factors of power of

two are only used; these can be replaced by bit shifts. Thus, the

DCD algorithm can be implemented without explicit multipli-

cations and divisions, which are well known to require a signifi-

cantly higher chip area and power consumption in hardware im-

plementation than addition and bit-shift operations. Moreover,

divisions are often the source of numerical instability. The com-

plexity of the DCD algorithm for a particular system of equa-

tions depends on many factors. However, for given and

, the peak (worst-case scenario) complexity can be shown to

be

SACs (9)

IV. NUMERICAL RESULTS

Now, we consider acoustic echo cancellation in the following

scenario. The room acoustic impulse response has a length

. The excitation signal is speech sampled at the frequency 8

kHz with a 16-bit resolution. In all FAP algorithms, the affine

projection order is , and the step size is . The

parameters of the DCD algorithm are set to and

, while the number of updates , which controls

the algorithm complexity and solution accuracy, is varying.

Fig. 1 shows the simulation results for scenarios with noise

30 dB down from the echo, i.e., the signal-to-noise ratio

SNR dB. Experimental plots have been obtained

by averaging the misalignment in 100

trials. In each trial, new excitation speech and noise signals

are used. It is seen that even with one “successful” update
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Fig. 1. Comparison of the misalignment (dB) for the ideal FAP, GS-FAP, and
DCD-FAP algorithms. N = 8; � = 1=8;SNR = 30 dB.

Fig. 2. Comparison of the misalignment (dB) for the ideal FAP and modified
GS-FAP algorithms. N = 8; � = 1=8;SNR = 30 dB.

, the DCD-FAP algorithm provides a significantly

better performance than the NLMS and GS-FAP algorithms.

The performance of the DCD-FAP algorithm improves as

increases, and for , it is close to the performance of

the ideal FAP algorithm. Simulations for dB (not

shown here) have demonstrated that “successful”

updates provide nearly the same performance as the ideal FAP

algorithm.

Note that GS iterations can also be used to solve the system of

equations in (6); we call such a combined algorithm the mod-

ified GS-FAP algorithm. In this case, the number of iterations

may need to be more than one. Fig. 2 shows how the perfor-

mance of the modified GS-FAP algorithm is improved with the

number of GS iterations and approaches that of the ideal FAP

algorithm in the same scenario as in Fig. 1. It is seen that the

modified GS-FAP algorithm with one iteration provides a better

performance than the GS-FAP algorithm and approximately the

Fig. 3. Comparison of the misalignment (dB) for the ideal FAP, DCD-FAP
(N = 32), and modified GS-FAP (N = 1 and N = 4)
algorithms with time-varying regularization in a double-talk scenario.
N = 8; � = 1=8;SNR = 30 dB.

same as the DCD-FAP algorithm with one “successful” update

(see Fig. 1). For , we obtain a performance close to that

of the ideal FAP algorithm.

In noisy conditions, especially in double-talk scenarios,

regularization is a necessary part of adaptive algorithms. The

adaptation should be slowed down in the presence of intensive

near-end signals. Fig. 3 compares the misalignment for the ideal

FAP, DCD-FAP and modified GS-FAP (

and ) algorithms in a double-talk scenario. In this sce-

nario, the echo power is 11 dB below the near-end speech and

SNR dB. The regularization parameter varies according

to a simple technique based on approaches described in [5]

and [7]: , where

if or otherwise, , and

and are time-averaged powers of signals and

, respectively. For averaging, attack-release filters were used

with instantaneous attack and a slow-release time constant

of 1 s, as in [5]. It is seen that the ideal FAP and DCD-FAP

algorithms demonstrate performance with the misalignment

difference being less than 1 dB. The modified GS-FAP algo-

rithm with shows poorer performance, especially at

the initial stage of the adaptation. For , its performance

approaches that of the DCD-FAP algorithm with .

Note that with , the performance of the DCD-FAP

algorithm (not shown here) is the same as that of the modified

GS-FAP algorithm with . The overall echo attenua-

tion (ERLE) over the time interval between the 2nd and 26th

seconds is approximately 17 dB for all three algorithms.

Fig. 4 shows results for the same scenario as in Fig. 3, with

a lower SNR of 20 dB. In this case, the ideal FAP, DCD-FAP

, and modified GS-FAP algorithms

demonstrate approximately equal performance. Note that the

same performance is provided by the DCD-FAP algorithm with

“successful” updates (not shown here). The modified

GS-FAP algorithm with one iteration shows a slower

convergence at the initial stage of the adaptation.
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Fig. 4. Comparison of the misalignment (dB) for the ideal FAP, DCD-FAP
(N = 32), and modified GS-FAP (N = 1 and N = 4)
algorithms with time-varying regularization in a double-talk scenario.
N = 8; � = 1=8;SNR = 20 dB.

In all trials, the complexity of the DCD algorithm for

, and 32 has not exceeded 128, 248, and 568 SACs, respec-

tively. These are close to the peak DCD complexity from (9):

144, 256, and 592 SACs, respectively. The average complexity

has been smaller: 75, 166, and 452 SACs, respectively. Simula-

tions with smaller down to (not shown here) pro-

duced a performance close to that for . As the peak

DCD complexity depends mainly on , its reduction, in the

case of , has not been significant (88, 200, and 472

SACs, respectively), but the average complexity has been re-

duced greatly (67, 114, and 135 SACs, respectively).

For step (6), the modified GS-FAP algorithm requires approx-

imately MACs and divisions; for and

, this results in 256 MACs and 32 divisions. For the same

performance, the DCD-FAP algorithm requires a maximum of

256 SACs and no multiplication or division. Note that, in our

example, steps (3) and (8) of the adaptive filtering require ap-

proximately MACs per sample, which is signifi-

cantly greater than the DCD peak complexity. MAC and divi-

sion operations required for GS iterations are well known to be

more complicated for hardware implementation than addition

and bit-shift operations required for DCD iterations. Moreover,

division operations are a source of numerical instability, and it

is preferable to avoid them in real-time systems.

V. CONCLUSION

We have proposed a new approach for real-time implementa-

tion of the fast affine projection algorithm. This is based on the

application of the dichotomous coordinate descent iterations

for solving systems of linear equations in the FAP algorithm.

As the DCD algorithm does not require explicit multiplications

and divisions, it is well suited for implementation on real-time

hardware and fixed-point software platforms, providing a com-

putationally stable DCD-FAP algorithm. We have compared

the performance of the new algorithm with the ideal FAP and

Gauss–Seidel FAP algorithms in application to acoustic echo

cancellation. It has been shown that the DCD-FAP algorithm

demonstrates performance close to that of the ideal FAP algo-

rithm and the complexity smaller than that of the Gauss–Seidel

FAP algorithms.
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