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Frequency Estimation in Multipath
Rayleigh-Sparse-Fading Channels

Yuriy V. Zakharov, Member, IEEE, Vladimir M. Baronkin, and Tim. C. Tozer, Member, IEEE

Abstract—Maximum-likelihood (ML) data-aided frequency
estimation in multipath Rayleigh-fading channels with sparse
impulse responses is investigated. We solve this problem under the
assumption that the autocorrelation matrix of the pilot signal can
be approximated by a diagonal matrix, the fading of different path
amplitudes are independent from each other, and the additive
noise is white and Gaussian. The ML frequency estimator is
shown to be based on combining nonlinearly transformed path
periodograms. We have derived the nonlinear function for the two
cases: known and unknown fading variances. The new frequency
estimators lead, in particular cases, to known ML frequency
estimators for nonsparse multipath fading channels. The use of a
priori information about the mean number of paths in the channel
allows a significant improvement of the accuracy performance.
Exploiting the sparseness of the channel impulse response is
shown to significantly reduce the threshold signal-to-noise ratio at
which the frequency error departs from the Cramer–Rao lower
bound. However, precise knowledge of the channel sparseness is
not required in order to realize this improvement.

Index Terms—Fading channels, frequency estimation, maximum
likelihood (ML) estimation, multipath channels, Rayleigh chan-
nels.

I. INTRODUCTION

I
N MANY communication scenarios, a receiver has to per-

form both frequency and timing synchronization in a large

frequency and timing uncertainty. The synchronization problem

becomes especially difficult if the propagation channel is multi-

path and fading. In mobile channels, multipath components ex-

perience different Doppler offsets; however, if the mobile speed

and the carrier frequency are relatively low, the frequency offset

is mainly due to the difference between carriers of the receiver

and transmitter, and the assumption of equal frequency offsets

for all multipath components can be accepted. Under such an

assumption one approach to solve the synchronization problem

is to estimate and compensate for the frequency offset, and then

perform the timing synchronization (or equalization). This work

is devoted to the first stage: frequency estimation in multipath

Rayleigh-fading channels with an unknown sparse impulse re-

sponse. Specifically, we consider a maximum likelihood (ML)

data-aided frequency estimation [1].
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In burst data transmission, a pilot signal is used for synchro-

nization, and this should be as short as possible in order not to

decrease the spectral efficiency of the communication system.

This requires a high accuracy performance of the channel es-

timator. The performance should be high enough to accurately

compensate for the channel distortion. This can be achieved

by using the most efficient estimators, which are known to

be ML estimators. The structure and performance of the ML

estimator depends on the channel and signal model; the more

a priori information that can be introduced into the model,

the higher the performance that can be achieved. Knowledge

of the sparseness of the channel impulse response is informa-

tion which, when introduced in a channel model, can lead to

more advanced estimators. We use the term “sparseness” to

emphasise that the number of multipath components is much

fewer than the number of resolved delays within the timing

uncertainty interval.

An ML frequency estimator for multipath Rayleigh-fading

channels, i.e., when the path amplitudes are complex Gaussian

random variables, has been presented in [2]. For channels with

independent fading and unknown variances of path amplitudes

the ML frequency estimator combines nonlinearly transformed

path periodograms for all possible delays, and a maximum of

the combined periodogram over a frequency acquisition range

indicates the frequency estimate. The scheme of the estimator

is shown in Fig. 1. For each possible delay , ,

a path periodogram is calculated. It is defined

as a squared module of a discrete Fourier transform (DFT) of

the product of the received signal and the delayed conju-

gate transmitted signal . The path periodogram is

normalized by a factor , which depends on

the noise variance and the autocorrelation of the trans-

mitted (pilot) signal , and a nonlinear transform of the

normalized path periodogram is performed. The results of the

nonlinear transforms are combined in a statistic whose max-

imum indicates the frequency estimate. The nonlinear function

is defined as [2]

if

if .
(1)

The nonlinear function allows the frequency estimator to

accumulate the periodograms of strong paths rejecting weak

paths.

An ML frequency estimator for multipath deterministic chan-

nels has been derived in [3] and [4]. We use the term “de-

terministic” to emphasise that path amplitudes are unknown

deterministic parameters. In [5], an ML frequency estimator

1536-1276/04$20.00 © 2004 IEEE
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Fig. 1. Frequency estimator with nonlinear transformation of path periodograms.

for multipath deterministic channels with a sparse impulse re-

sponse has been presented. It is interesting that for such sparse

channels, the frequency estimator has the same structure as

that depicted in Fig. 1; the only difference is in the nonlinear

transform. Now

(2)

where is a probability of appearance of a path with a nonzero

amplitude at delay . The case means that all the path

amplitudes are not zero. For , we have leading

to a linear weight addition of the path periodograms; such

an estimator coincides with the ML frequency estimator for

multipath channels with unknown deterministic path amplitudes

[4]. The behavior of the function for small significantly

affects frequency errors at low signal-to-noise ratios (SNRs) and

defines the SNR threshold at which the frequency error departs

from the Cramer–Rao lower bound (CRLB). The nonlinear

transform reduces the SNR threshold with respect to that of the

frequency estimator with a linear weight addition of the path

periodograms; the ability of a frequency estimator to operate

at low SNRs is very important for many practical applications.

The purpose of this paper is to derive an ML frequency

estimator for multipath Rayleigh-fading channels with sparse

impulse responses. We will show that this frequency estimation

may also be realized by the scheme depicted in Fig. 1, but

with new nonlinear transforms. The nonlinear transform differs

for the two cases: known and unknown fading statistics. We

will also show that the new proposed frequency estimators

generalize ML frequency estimation in multipath fading chan-

nels because previously known estimators are shown to be

particular variants of the frequency estimators proposed in

this paper. We will present simulation results and compare the

estimation accuracy for the different nonlinear transforms of

path periodograms.

This paper is organized as follows. Section II describes

channel and signal models. In Section III, we derive the ML

frequency estimator for multipath Rayleigh-sparse-fading

channels. In Section IV, we present simulation results, and

Section V contains conclusions.

II. SIGNAL MODEL

Using complex-envelope notation, the observed signal can be

modeled as

(3)

where is the sampling interval, an unknown frequency

offset to be estimated, and the number of samples observed.

The additive complex white Gaussian noise samples

have variance . The complex envelope can be repre-

sented as

(4)

where is the transmitted (pilot) signal, are un-

known complex path amplitudes, are delays of the

paths, and are independent binary random variables:

. We consider as an admissible set of de-

lays, for example, . The model (3) is based on the

assumption that all paths have the same frequency offset; this is

valid, for example, when there exists a frequency offset between

carrier frequencies of the transmitter and the receiver, and the

frequency offsets due to the Doppler effect are negligible. We

assume that the appearance of a path with a nonzero amplitude

at delay is a random event with probability

and is independent of appearances of paths with nonzero ampli-

tudes at the other delays. The number of paths with nonzero

amplitudes within the delay uncertainty range is a

random value with mean , where denotes

the statistical expectation; for example, if and

, we have the mean number of significant paths

. We also assume that the pilot signal possesses a diagonal

correlation matrix with elements

(5)

where is the Dirac delta function and denotes complex

conjugate. Note that (5) can be only approximately true, for ex-

ample, for long pseudonoise sequences. We will show below

that this approximation affects the frequency estimates at only

high SNRs.

The signal model (3) can be arranged in matrix form as

(6)

where and are vectors with elements and ,

respectively; is an vector of complex path amplitudes:

; diag is a diagonal matrix;

is an vector of independent random
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binary variables: with the probability , with

the probability ; is an matrix with elements

; and diag .

Here, denotes matrix transposition.

The probability density function (pdf) of the received signal

vector (subject to fixed , , and ) can be written as

(7)

where denotes Hermitian transposition, denotes the

determinant of the matrix , and is the noise

covariance matrix. The noise samples are assumed to be uncor-

related, i.e., where is an identity matrix.

We consider Rayleigh-fading channels, i.e., the path ampli-

tudes are complex-valued zero-mean random vari-

ables with the Gaussian pdf

(8)

where is the fading covariance matrix. The

complex path amplitudes are assumed to be uncorrelated, i.e.,

the fading covariance matrix is

diag (9)

where is the variance of the path amplitude .

The pdf of the vector can be written as

(10)

where is the Dirac delta function.

The described channel model possesses the following

drawbacks.

1) There is a nonzero probability that the number of paths

with nonzero amplitudes is equal to zero, which from (4)

results in . This probability is calculated as

. If, for example, and

we have a relatively high probability of such

an event: . This situation does not make

any physical sense; therefore, in our simulation below, in

each simulation trial we repeat generating the delay set

until the channel has at least one path with a

nonzero amplitude (i.e., at least one number ,

, is equal to one).

2) In the signal model (4), the path delays are taken as

integer multiples of the sampling period , i.e.,

. This means that does not represent the

delay of a physical multipath component but rather the

th delay of the equivalent tapped-delay-line that models

the transmission channel. Then, the complex coefficient

represents the sample of the overall channel impulse

response taken at instant . Denoting by and

the delays and complex gains of the physical

multipath components ( being the effective number of

multipath components), the coefficients are given by

(11)

where denotes the convolution between the im-

pulse responses of the transmit and receive filters. The

path gains can be modeled as independent

zero-mean Gaussian random variables. However, de-

noting as the mean power of the th

physical path, from (11), it is seen that

(12)

i.e., the coefficients cannot be assumed statistically

independent as in (9).

However, the ML approach applied to this channel model

leads to a frequency estimator possesing improved accuracy per-

formance in more realistic channels. We demonstrate this in the

following by simulating our frequency estimation algorithm in a

multipath channel with a fixed number of multipath components

and arbitrary fractional delays within a delay uncertainty in-

terval .

III. ALGORITHM DERIVATION

In order to derive the ML frequency estimation algorithm we

use the Bayesian approach by integrating out the nuisance pa-

rameters and , . We can write

Re Im (13)

where Re and Im denote, respectively, the real and imagi-

nary parts of a complex-valued number, the pdf is

defined by (7), the pdf is defined by (8), and the pdf

is defined in (10). The ML frequency estimator is found by max-

imizing the function

(14)

where is the frequency acquisition range, e.g., .

From the Appendix, we have

(15)

where the coefficient does not depend on the frequency ,

, , ,

and are the DFTs of the product

(16)

After taking the logarithm in (15), it is seen that the ML fre-

quency estimation is based on calculation of path periodograms
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, normalization of the periodograms by factors , and

combining nonlinear transforms, as shown in Fig. 1.

The pdf in (15) depends on the parameter which is

assumed to be known and the parameters which can

be either known or unknown. To emphasize the case of unknown

parameters we will use the notation

In the following, we consider the two cases: 1) the fading

variances are known, and 2) the fading variances

are unknown.

A. Known Fading Variances

This case corresponds to the situation when the frequency es-

timator knows the power delay profile. It is rather an impractical

situation; however, it is characterized by an additional knowl-

edge of the channel and should lead to a smaller estimation error

than the second case. In some sense, we can consider this as

a lower bound of the frequency error for frequency estimation

with unknown fading variances considered in Section III-B.

By using (15), we can write the ML frequency estimate (14)

as

(17)

where

(18)

and . Thus, we have found the ML frequency estimator

for multipath fading channels with a sparse impulse response

when the probability of appearance of a path with a nonzero

amplitude at delay is known and variances of path am-

plitudes (or, the same, the parameters ) are also known.

This ML estimator is realized by the scheme in Fig. 1 where

and the nonlinear function is de-

fined in (18). This nonlinear function is specific to each path

and depends on the SNR of the multipath component. The

function is depicted in Fig. 2 for different values of the

parameters and . For a fixed , as decreases the range of

where the function is close to zero increases, i.e., the

smaller the probability of a nonzero path amplitude the higher

is the “cutoff” level of the function . For a fixed , as

increases the slope of the function increases; i.e., the

higher the SNR of a multipath signal component, the more the

component contributes to the output statistic.

It is interesting to consider a special case of which

means that all the path amplitudes have nonzero variances. In

this case, we obtain from (18) that

(19)

Fig. 2. Nonlinear function g (x; �) for different values of the parameters p
and �.

i.e., the function is now linear. The first addition in

does not depend on (i.e., on the frequency ) and,

therefore, it does not affect the frequency estimate ; it can be

omitted, and we can rewrite (17) as

(20)

where now

(21)

For this special case, the scheme in Fig. 1 does not have the

nonlinear functions and the coefficients are defined as in

(21). From (20) and (21), we see immediately that if is close

to zero then the th path will not contribute to the estimation

statistic.

The frequency estimate (20) is based on a linear weight

addition of the path periodograms. This estimate coincides with

that obtained in [2] for multipath Rayleigh-fading channels

with known fading statistics. Thus, the new frequency esti-

mator defined by (17) and (18) is a generalized ML frequency

estimator for multipath Rayleigh-fading channels with known

fading statistics.

B. Unknown Fading Variances

In the case of unknown fading variances, the frequency esti-

mator knows that the fading is Rayleigh, but it does not know the

path amplitude variances. This scenario is more practical than

that considered in Section III-A. In order to find the ML fre-

quency estimator under such an assumption, we have to maxi-

mize the function in (15) over the unknown parameters

, . Such a maximization gives (see [2,

App. 2])

(22)
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where

(23)

if

if
(24)

and . If (or, the same,

) then , i.e., the periodogram of

the th path does not contribute to the estimation statistic at

a frequency . Note that the threshold depends on the

noise variance and does not depend on the probability ; the

coefficient compensates for the energy of the pilot signal in

calculation of the DFT (16). The parameter defines the con-

tribution of the path periodogram if only it is higher than the

threshold. The function is depicted in Fig. 3 for different

values of the parameter . The smaller the larger is the range

of where the function is close to zero.

Thus, we have found the ML frequency estimator for multi-

path fading channels with a sparse impulse response when the

probability of appearance of a path with a nonzero amplitude

at delay is known, but the variances of path ampli-

tudes (or the parameters ) are unknown. This ML estimator

is also realized by the scheme in Fig. 1. The nonlinear function

is now defined in (23) and (24).

Again, we consider the special case which means that

all paths have nonzero variances of path amplitudes, but now

the variances are unknown. In this case, we get from (23) that

or [see (1)]. Thus, the particular

case leads to the known ML frequency estimator for

multipath Rayleigh-fading channels with unknown fading sta-

tistics [2], i.e., the new derived frequency estimator defined by

(22)–(24) is a generalized ML frequency estimator for multipath

Rayleigh-fading channels with unknown fading statistics.

IV. SIMULATION RESULTS

Our implementation of the frequency estimators is based on

a coarse and fine search of the peak of the combined statistic in

(17) or (22); the fast Fourier transform (FFT) algorithm for the

coarse search and the dichotomous algorithm for the fine search

are used [6].

The computational load of the implementation includes:

1) multiplication of the received signal by the pilot signal;

2) calculation of the DFTs for all possible delays;

3) dichotomous search;

4) calculation of path periodograms;

5) nonlinear processing.

The multiplication of the complex-valued received signal by

the complex-valued pilot signal requires 4 real multiplica-

tions. Calculation of the DFTs by using the FFT algorithm with

a zero-padding [7] requires approximately 4

multiplications and additions; the coefficient is usually

chosen within the interval . The dichotomous

search requires calculation of -point DFTs where

is the number of dichotomous iterations [6]; this results in

4 real multiplications and additions. Note that di-

chotomous iterations lead to improvement of the frequency

Fig. 3. Nonlinear function g (x) for different values of the parameters p.

resolution by 2 times in addition to the frequency resolution

of the coarse search FFT, providing an overall frequency res-

olution of . The overall frequency resolution

should be better than the expected CRLB [8]. The periodogram

calculation requires 2 real multiplications

and real additions. The nonlinear function is

calculated times; this can be done by using a

lookup table. We see that for large the computational load

is mainly due to calculation of FFTs. For large we obtain

4 real multiplications and additions

and addressing to a lookup table. For example,

for , , , and , the frequency

estimation requires 4.9 10 real multiplications and

additions and 1.2 10 addressing to a lookup table. If the

period of transmission of the pilot signal is as long as several

seconds (e.g., in underwater acoustic communications [9])

this algorithm can be exploited for real-time implementation.

However, in some scenarios, such a computational load may be

prohibitively large. If the frequency acquision range is narrow

simpler implementations based on techniques proposed in [10]

can be obtained.

We compare the frequency error as a function of SNR for

different nonlinear transforms in the following simulation

scenario. A binary maximum length sequence ( -sequence),

representing a pilot signal, is transmitted through a multipath

Rayleigh-fading channel with equal variances of independent

path amplitudes and additive white noise. The length of the se-

quence is , the delay uncertainty is , and the

probability of appearance of a path with a nonzero amplitude is

. We calculate the frequency error averaged over

Monte Carlo simulation trials

(25)

where is the true frequency and is

a frequency estimate in the th simulation trial, and
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. In our simulation, we used ; however, simulations

for other frequencies within the range have

shown results close to that presented in the following. In each

simulation trial, we normalize the complex envelope to

produce a required SNR; a discussion on calculation of SNR in

simulation trials for multipath fading channels can be found in

[2].

We consider the following ML frequency estimators.

1) Estimator for deterministic multipath channels [4], which

expects that all paths have unknown nonzero deter-

ministic amplitudes. The estimator performs a linear addi-

tion of path periodograms, and it is implemented by using

with .

2) Frequency estimator for multipath Rayleigh-fading chan-

nels [2]. This estimator expects that all paths have

nonzero amplitude variances and the variances are known.

The estimator performs a linear weight addition of path

periodograms and the weights depend on the SNRs

for the received multipath signal components. This esti-

mator is implemented by using with

.

3) Frequency estimator for multipath Rayleigh-fading chan-

nels with unknown variances of path amplitudes [2]. This

estimator expects that all paths have nonzero ampli-

tude variances, but the variances are unknown. This esti-

mator is implemented by using with

[this corresponds to ].

4) Frequency estimator for deterministic multipath channels

with a sparse impulse response [5]. This estimator expects

that among paths there are on average paths with

nonzero unknown deterministic amplitudes and the pa-

rameter is known. The estimator performs a nonlinear

transform of path periodograms and it is implemented by

using with .

5) Frequency estimator for multipath Rayleigh-fading chan-

nels with a sparse impulse response and known path

amplitude variances. This estimator expects that among

paths there are on average paths with nonzero

amplitude variances and the parameter and the vari-

ances are known. The estimator performs an addition

of nonlinearly transformed path periodograms. The non-

linear transforms depend on the SNRs of the received

multipath signal components. This estimator is imple-

mented by using with .

6) Frequency estimator for multipath Rayleigh fading chan-

nels with a sparse impulse response and unknown path

amplitude variances. This estimator expects that among

all paths there are on average paths with nonzero

amplitude variances, the parameter is known, but the

variances are unknown. The estimator sums nonlinearly

transformed path periodograms; it is implemented by

using with .

Figs. 4–6 show the dependence of the frequency error (25) on

SNR for the three nonlinear functions , , and ,

respectively. For each function, we consider the following

values of the parameter :

Fig. 4. Nonlinear function g (x). Dependency of the frequency error on SNR;
N = 255, M = 120, and p = 0:02.

Fig. 5. Nonlinear function g (x; �). Dependency of the frequency error on
SNR; N = 255, M = 120, and p = 0:02.

1) corresponding to ML frequency estimation in a

multipath channel with unknown path amplitudes which

are either deterministic (Fig. 4) or Gaussian random vari-

ables with known variances (Fig. 5) or Gaussian random

variables with unknown variances (Fig. 6);

2) ;

3) corresponding to the theoretical optimal

value of ;

4) .

Figs. 4–6 also show the CRLB for the frequency error in a

single path channel [7]:

SNR
(26)

We can conclude the following.
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Fig. 6. Nonlinear function g (x). Dependency of the frequency error on SNR;
N = 255, M = 120, and p = 0:02.

1) All the nonlinear functions provide very close minimal

SNR thresholds (between 5.5 and 6 dB) and the min-

imum is achieved at approximately .

2) The functions and with the parameter

provide about the same minimal SNR threshold in spite

of the fact that the frequency estimator with the function

uses more a priori information about the channel

(knowledge of the path amplitude variances) than the

estimator with the function . Thus, the use of the

frequency estimator with the function is preferable

because it requires less knowledge of the channel, while

providing approximately the same accuracy performance.

3) The estimators with the functions and demon-

strate a weak sensitivity to knowledge of the parameter .

The SNR threshold varies within approximately 0.5 dB

when the parameter varies within two orders: 0.2

0.002. It means that there is no necessity to know very pre-

cisely the expected number of nonzero paths; this feature

is useful for practical applications.

4) The frequency estimator optimized for multipath

Rayleigh-fading channels with known nonzero path

amplitude variances (i.e., when and

) demonstrates a poor accuracy performance. This

is because the estimator expects that all delays

contain paths with nonzero amplitude variances which

are equal to each other, while, in reality, the number of

such paths is on average only .

5) The frequency estimator optimized for deterministic mul-

tipath channels with unknown nonzero path amplitudes

(i.e., when and ) also demonstrates a

relatively poor accuracy performance; the SNR threshold

2.5 dB is about 3.5 dB higher than the minimum.

However, it is about 11 dB less than that of the esti-

mator for multipath Rayleigh fading channels with known

nonzero path amplitude variances.

6) At SNRs higher than the SNR threshold, all the estimators

demonstrate accuracy performance close to the CRLB.

Fig. 7. Nonlinear function g (x). Dependency of the frequency error on SNR;
N = 255, M = 120, and L = 2.

However, at SNRs higher than about 10 dB the frequency

error departs from the CRLB; this behavior is due to

nonzero autocorrelations of the pilot signal. This effect is

well seen in Fig. 5. Note that the pilot signal used in the

simulation possesses an autocorrelation with side lobes

as large as 7% of the main lobe.

We now consider a multipath channel with a fixed number

of multipath components and arbitrary continues delays

within a delay uncertainty interval . In each sim-

ulation trial, we choose random delays from a uniform distribu-

tion on . We also model the transmit and receive

filters with the root-raised cosine impulse response and a rolloff

factor of 0.22 [11]. This allows us to consider more realistic sce-

narios described by (11) and (12). Figs. 7 and 8 show the depen-

dence of the frequency error on SNR for the nonlinear function

with and ; note that simulation results in

Fig. 6 correspond to the average number of multipath compo-

nents which is between and . It can

be seen that the increase in the number of multipath components

from (Fig. 7) to (Fig. 8) increases the threshold

SNR by only 1 dB or less. We also see that results in Figs. 7 and

8 are very close to that in Fig. 6. Thus, despite that the channel

model used for derivation of the ML frequency estimator was

based on the assumptions of uncorrelated path amplitudes and

path delays being multiples of the sampling period, the simu-

lation results in Figs. 7 and 8 show that this estimator demon-

strates approximately the same performance in a more realistic

channel with correlated path amplitudes and fractional path de-

lays. Fig. 9 shows the dependence of the frequency error on the

estimated frequency for SNR dB. It can be

seen that, in a wide frequency range, the accuracy is close to the

CRLB in a single-path channel.

Thus, the use of a priori information about the mean number

of paths in the channel allows a significant improvement of the

accuracy performance relative to the case of . At high

SNRs, the variance of the frequency error is close to the CRLB.

The performance deterioration is not significant for nonoptimal



1718 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 5, SEPTEMBER 2004

Fig. 8. Nonlinear function g (x). Dependency of the frequency error on SNR;
N = 255, M = 120, and L = 3.

Fig. 9. Nonlinear function g (x). Dependency of the frequency error on the
estimated frequency; N = 255,M = 120, and L = 3.

choice of the parameter , which shows that the algorithm per-

formance is not very sensitive to this information.

V. CONCLUSION

We have obtained new ML frequency estimation algorithms

for multipath Rayleigh-fading channels with a sparse impulse

response when a probability of appearance of a path with a

nonzero amplitude at each possible delay within a timing uncer-

tainty interval is known, and the variances of path amplitudes

are either known or unknown. These estimators are based on

nonlinear transforms of path periodograms and the nonlinear

functions are different for the cases of known and unknown

fading statistics. Nonlinear functions allow the frequency

estimators to accumulate the periodograms of strong paths

rejecting weak paths. Frequency estimators with nonlinear

transforms of path periodograms were recently obtained for

both multipath channels possessing a sparse impulse response

with unknown deterministic path amplitudes [5] and multipath

Rayleigh-fading channels with unknown path amplitude vari-

ances [2]. Here, we show that the new nonlinear transforms

obtained give us generalized frequency estimation algorithms

for multipath fading channels, depending on the parameter ,

the probability of appearance of nonzero path amplitudes. In

particular, for they lead to known frequency estimators

for multipath Rayleigh-fading channels with either known or

unknown nonzero path amplitude variances.

The simulations have shown that all nonlinear functions

provide very close SNR thresholds, which are significantly

lower than that of estimators not accounting for the channel

sparseness. Our estimators also demonstrate a better accuracy

performance at high SNRs for a large timing uncertainty; the

frequency error approaches the CRLB for a one-path AWGN

channel. The accuracy performance of the estimators is not

very sensitive to knowledge of the channel sparseness; the

uncertainty in the average number of paths may be as large

as a factor of 10. The use of the nonlinear function is

preferable because it requires less knowledge of the channel,

while providing approximately the same accuracy performance

as the other estimators at optimal parameters, and the difference

of SNR thresholds for this function is minimal.

APPENDIX

PDF

In order to derive the ML frequency estimation algorithm,

we use the Bayesian approach by integrating out the nuisance

parameters and , . We can write

Re Im (27)

where Re and Im denote, respectively, the real and imag-

inary parts of a complex-valued number. The pdf

is defined by (7), the pdf is defined by (8). Then, we can

write

(28)

where the pdf is defined in (10).

We start our derivation for arbitrary noise and fading covari-

ance matrices and . Then, we will apply our assumption

that the matrices are diagonal to show at what stage they are im-

portant for the derivation. Here, we will use notations from [2].

Substituting (7) and (8) in (27) yields

Re Im (29)

where

(30)

(31)
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and . Integrating in (29)

results in (e.g., see [2, App. 1])

(32)

where

(33)

We now assume that the noise covariance matrix is diagonal:

, where is an identity matrix, i.e., the

noise samples are uncorrelated and have equal variances .

Then, from (30) and (31), using the identity , we

obtain and , where elements

of the vector are the DFTs

(34)

and is the correlation matrix of the transmitted

signal normalized by the noise variance.

We consider now the case of independent fluctuations of

path amplitudes, when the covariance matrix is diagonal:

diag . Let also be approximated by

a diagonal matrix diag where

. These

assumptions result in the following simplification.

1) The matrix is diagonal with the diagonal elements

, .

2) The matrix is diagonal with the diagonal

elements , .

3) The matrix is diagonal with the diag-

onal elements , .

4) The matrix is diagonal with the diagonal

elements , .

5) From (33) we have

(35)

Now, we can rewrite in (32) as

(36)

where

(37)

The factor depends on the random binary parameter

taking on a value of either or . If ,

then from (37), we obtain . If , we

obtain

(38)

Denoting , this value can be interpreted as an

SNR of th received multipath component. Then, (38) becomes

(39)

where and .

In order to find , we integrate out the nuisance param-

eters in . Accounting for (10), (36), and (39) from

(28), we finally obtain

(40)
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