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A Schema for Generic Process Tomography Sensors
Brian S. Hoyle, Senior Member, IEEE

Abstract—A schema is introduced that aims to facilitate the
widespread exploitation of the science of process tomography (PT)
that promises a unique multidimensional sensing opportunity.
Although PT has been developed to an advanced state, applica-
tions have been laboratory or pilot-plant based, configured on an
end-to-end basis, and limited typically to the formation of images
that attempt to represent process contents. The schema facilitates
the fusion of multidimensional internal process state data in terms
of a model that yields directly usable process information, either
for design model confirmation or for effective plant monitoring or
control, here termed a reality visualization model (RVM). A generic
view leads to a taxonomy of process types and their respective
RVM. An illustrative example is included and a review of typical
sensor system components is given.

Index Terms—Generic, interpretation, process tomography
(PT), reality visualization.

I. INTRODUCTION

T
HE application of sensors to industrial processes is clearly

based critically upon their value to the process goals.

A. Classical Single-Point Process Sensors

Simple processes, in which material distributions or phys-

ical conditions are generally homogeneous, are likely to be ob-

served satisfactorily by single-point sensors, whose parameter

estimates may effectively offer a general insight. Where pro-

cesses have more complex distributions of materials, physical

conditions, or both, such single-point estimates are likely to be

less reliable.

In more complex cases, a computational fluid dynamic (CFD)

model may be used to estimate the general process state through

single-point sensor data from a number of critical points. For ex-

ample, a process-mixing vessel may be observed by appropriate

sensors at one or two critical points, providing the process is in

a known operating state. Hence, valid use of the resulting model

will depend upon operation within a specific range, where the

selected observable parameters are sufficient. Thus, the progress

of the mixing could be sensed from a measurement of homo-

geneity at a key representative point. Where operation falls out-

side of these limits of validity, the intrinsic inferences that sup-

port the underlying CFD model may be false. In the mixing

example, a change in the density or temperature of the feed-

stock could induce a different dynamic mode such that the site

of sensor is longer representative of a general mean state.
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In generic terms, requirements for a typical industrial process

reveal global economic and environmental drivers, and local en-

gineering design- and process-control limitations. Fig. 1 illus-

trates this viewpoint in schematic form.

In this framework, processes are likely to be constrained to

operate within narrow ranges to ensure that design assumptions

for representative sensor data are fulfilled.

B. Multidimensional Process Sensors

In contrast, sensors based upon tomographic measurements

provide distinct advantages in offering two-dimensional (2-D)

and three-dimensional (3-D) state information. These are based

upon a number of sensing modalities that exploit a contrast fea-

ture in a process. Commonly used examples are electrical re-

sistance and capacitance [1]. A specific dataset can represent a

single-aspect view of the process, called a projection. Multiple

projections offer an inverse problem that may be solved to reveal

the process distribution in terms of the contrasting feature. This

process is typically called reconstruction. It is commonly car-

ried out in 2-D terms, to reveal a cross-sectional estimate, where

real-time constraints limit processing. Where 3-D information

is needed, multiple 2-D images may be combined through in-

terpolation, although a complete 3-D approach should ideally

be deployed [2].

Such process tomography (PT) sensors are, thus, able to sup-

port a process model over a wider and more flexible operating

range. Since the PT sensor observes the distributed reality, it

provides a robust foundation for estimation in contrast to that

based on an assumed model, used then to further estimate emer-

gent process information.

Environmental and economic pressures are producing an

increasing need for flexible, environmentally friendly, and

energy-efficient industrial processes. This applies across all

industrial processes: refinement of raw materials; production of

intermediate chemicals and materials; and final-stage produc-

tion of consumer, biochemical, pharmaceutical, and foodstuff

products. Tomorrow’s processes will, therefore, benefit from

an increased knowledge of their internal operation that multidi-

mensional sensors can deliver.

Although such intrinsic advantages are potentially valuable,

PT-based process monitoring clearly adds complexity and cost.

All monitoring subsystems must offer clear process benefits.

The background science of PT has reached relative maturity.

Williams and Beck provide an overview of the first phase of

development to 1995 [1].

Recent proceedings of the biennial World Congress in In-

dustrial Process Tomography for 1999, 2001, and 2003, pub-

lished by the Virtual Centre for Industrial Process Tomography

(www.vcipt.org), provide comprehensive details of more recent

developments. However, practically all papers deal either with

1530-437X/$20.00 © 2005 IEEE
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Fig. 1. Current generation generic industrial process, showing 1-D sensor data and key links between the process and its global and local drivers.

front-end issues, in essence offering new sensing mechanisms,

making better tomographs, or with constructing a composite

system tailored to a specific narrowly focused application.

The use of PT data to yield end-user process information has

been investigated in a range of specific applications: solid-liquid

mixing [3]; columns [4], [5]; and multicomponents flows [6].

Currently, PT applications are typically costly and incur long

development lead times. They are individually designed to ad-

dress specific and otherwise intractable sensing challenges. Sys-

tems are typically designed on an end-to-end base for laboratory

use and intended primarily to simply deliver image data. Where

interpretation is offered, it is constrained to a given set of inte-

grated functions, and the possibility of interchangeable modules

is not supported. To date, there are practically no widespread

applications of process sensors that reply upon embedded PT

technology.

This paper offers a schema or “proposed arrangement” of

the “essential form” (Oxford English Dictionary) which aims to

bring an application focus to the fore. An end-to-end and generic

view is taken. The schema proposed is the collection of applica-

tion classifiers, the set of identified common component types,

and the standardization of their modules and interfaces to enable

reuse and speedy realization.

II. GENERIC PT SENSORS

It is proposed that the widespread deployment of multidimen-

sional sensors to industrial processes rests upon two enabling

foundations: first, the multidimensional process data that PT is

able to provide; the second, here termed reality visualization

modeling (RVM), is, by definition, the complementary set of

processing methods needed to take internal process state data

and yield directly usable process information, either for design

model confirmation, or for effective plant control or monitoring.

The term is chosen as an intentional contrast with models based

upon computer simulation such as CFD.

A. Embedding Reality Visualization Modeling in Sensors

In detail, RVM is defined to include: data fusion processing

based upon a defined process topology; the following real-time

Fig. 2. Processing streams of PT data, data fusion, inferred models, and
interpreted results to estimate process descriptors from a flow and mixing
process, respectively (images courtesy of M. Wang and R. A.Williams).

estimation of statistical and deterministic models of the process

as required; and, finally, the use of inference techniques to yield

the real-world process data required to assess the performance

of the plant in terms of its objectives.

Fig. 2 illustrates the sequence of raw data fusion, model esti-

mation, and parameter inference to yield example-process per-

formance descriptors.

The left-hand vertical sequence of Fig. 2 illustrates the

processing of PT data from a pipeline-based solids conveyor.

Time-stamped, cross-sectional, slice estimations, such as the
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one shown at the top left of Fig. 2, are fused to reveal a four-

dimensional (4-D) record of the process state (including time),

shown pictorially at the left center. This data feeds a process

model that embodies its available physical regimes. This

internal pseudoimage data will be of interest only in design

studies. As indicated in the lower list of Fig. 2, such a model

may also deliver more operationally useful estimates of volu-

metric and mass flow rates.

In the general case, the multidimensional sensor will aim to

characterize the space in a process over its working period. In

this flow example, the PT sensing element may be a single cross-

sectional plane, since the process material is expected to flow

along the pipe through the plane.

The volume of the pipe within its influence may then be ap-

proximated by a sensing disc of voxels, of thickness , (of one

element along the axis) and the cross-sectional area . The total

number of voxels in the disc is ; individual voxels are referred

to by their index: 1 to . The approximation assumes that the

content of each voxel is homogeneous and represented by a di-

mensionless concentration index , having a value between 0

and 1. The PT sensing element is assumed to deliver an instan-

taneous estimate of the concentration value at all voxels in the

sensing disc, at the same time instant. Estimates are assumed to

be delivered at equal time intervals corresponding to sam-

pling times from to , a total of samples and a total

measurement period . Consistent with the assumption in re-

gard to the contents of each voxel, it is also assumed that the

dynamic properties of the material in each voxel are also con-

stant within the sampling interval.

Under these conditions, the instantaneous volume of mate-

rial contained within the th voxel at time may be expressed

as

(1)

The instantaneous total volume of material contained

within the sensing disc is then

(2)

Process design investigations may have an interest in the in-

stantaneous void fraction at the sensor cross section. If the total

volume of the sensing element disc is , then the instantaneous

void fraction is given by

(3)

The corresponding time sequence , obtained through the

known sampling interval, provides an indication of the flow dy-

namics. This will be useful in studies of flow regime and sta-

bility for pipeline transport systems, for example, to verify a

CFD model.

Where velocity information is available, either as a bulk value

or as distributed values, estimates of material flows can be made.

In certain types of flow, a representative velocity may be ob-

tained from the region between appropriate points, for example,

using Doppler sensing.

Where more precision is required, a correlation-based sensing

technique may be deployed. This may be realized using a corre-

lation-based sensing method. An auxiliary PT sensing element

is positioned upstream of the main sensor such that the rings

have a fixed axial spacing designed to allow the passage of flow

structures to be observed before they evolve significantly. A

typical arrangement [7] employs a set of regions (comprising

a number of voxels) over which mean concentrations values

are correlated with the mean values obtained from the corre-

sponding regions in the main downstream sensing element. The

resulting correlation function peak delay time for each region

may, thus, be obtained. Since the distance between the sensor

elements is fixed, the axial flow velocity for each region can

be simply calculated. This value is assumed for all voxels con-

tained in the region. Hence, from (1), the instantaneous volu-

metric flow rate through a given voxel is

(4)

Hence, during a sampling interval, the flow volume at the

given voxel is

(5)

From (4), the mean instantaneous volumetric flow rate at the

sensing plane is

(6)

Hence, from (5) and (6), the total flow volume over the

observation period may then be computed from the sampling

interval as

(7)

If the density of the material is known, and the density of the

transport medium, for example, air, is relatively insignificant,

then the instantaneous mass flow rate, at a given voxel is

(8)

From (6), the total integrated mass flow is then

(9)

In summary, this analysis illustrates two key stages: first, the

fusion of various sensor data, such as the concentration and flow

data to form the 4-D model; second, the derivation of interpre-

tive data that describes the operational behavior of the process.

The right-hand sequence of Fig. 2 shows at the top a cross-

sectional slice at one horizontal level in a process mixer. The

image is the corresponding intermediate results of a data fusion

process of several levels in pictorial terms.

Once again, an appropriate model can be used as a basis for its

interpretation to yield process performance descriptors. Hence,
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Fig. 3. Prototype industrial process deploying multidimensional data and
RVM data fusion and interpretation processing to support either design
verification or operation.

a 3-D concentration profile could allow the estimation of a ho-

mogeneity distribution. A fuzzy algorithm may then be used to

determine the mixing complete state. Such methods have been

used in the experimental application of a PT sensor to a phar-

maceutical process based upon mixing [8].

B. Generic Application of RVM to Sensors

Widespread application of multidimensional sensing will also

depend upon a new generic approach that embeds RVM to in-

tegrate raw PT data using appropriate data fusion methods and

interpretation models to reveal relevant process information, in

essence, generic RVM (GRVM). Such a generic approach will

enable the development of commercial off-the-shelf (COTS)

sub-systems to facilitate widespread usage, reliability, and sup-

port to users. In prototype processes, it will yield design ad-

vances from improved process knowledge. In production plants,

it will yield benefits from improved on-line process performance

information.

Some complex processes, whose behavior must be moni-

tored, may demand a range of different sensors, taking sensing

opportunities from different physical aspects of the process.

Thus, a flowing process may exploit the pressure drop across a

venturi to estimate bulk flow, an ultrasonic sensor may offer an

estimate of gas fraction, and a PT sensor may offer an estimate

of cross-sectional distribution.

The generic industrial process of Fig. 1 is augmented in Fig. 3,

with the inclusion of multidimensional sensing and the proposed

RVM data fusion and interpretation of process data to yield new

process insights.

The left-hand path of Fig. 3 illustrates the augmentation of the

basic process of Fig. 1 for a design study in which a pilot process

may be studied using a set of multidimensional and conven-

tional sensors and RVM techniques. In this case, the RVM-based

method may be expected to increase the precision with which

the process design model embeds the observed reality. This in-

creased understanding can then in turn be used to modify the

pilot process to better meet the plant objectives.

The right-hand path of Fig. 3 illustrates the contrasting ap-

plication of RVM in which the derived process descriptors are

now used for monitoring and control. In this case, the different

objectives of process throughout and nearness to the desired

process set point is likely to mean that different RVM methods

will be deployed. For example, in this case, the process de-

sign is nominally fixed and only controlled variables may be

changed.

Where such models exist, they can be posed to allow the esti-

mation of key parameters when specific space-time sensor data

is inserted. Known process boundary conditions can be used to

reduce the solution space.

In the most complex case, such an approach can be used to

realize the estimation of critical parameters where sensors must

be positioned at different points on the process (for engineering

reasons) and whose measurements apply to different points and

regions.

III. GRVM SENSOR DESIGN

In detail, the GRVM design is proposed as a three-step

process which forms part of the schema and embraces the

specification of multidimensional sensing and the selection of

appropriate RVM modules for the candidate process.

1) Systematic assessment of a candidate process based upon

Application Requirement: design or operation.

2) Select an appropriate Process Grouping from a taxonomy.

3) Select refined Model Variant for use for this candidate

process.

A. Application Requirement

This stage provides for a systematic assessment of a candi-

date process based upon application requirement: design or op-

eration.

A design requirement is one where internal information about

the process and its configuration is important for optimization

and model verification. The underlying process model will in-

clude features to represent the relatively wide range of design

parameters available at this stage. As illustrated in the solids

transport example of Section II-A, statistics of the void fraction

may be useful to assess the performance of particular prototype

plant designs.

In contrast, an operational requirement is one in which only

performance, for a specific fixed design, is of interest. In these

cases, the process model may be expected to be simpler and

based only upon parameters of interest in monitoring or con-

trol. In the pipeline example of Section II-A, a simplified multi-

dimensional sensor may simply indicate current mass flow rate

and total mass transport values.

B. Selection of Process Topology From a Taxonomy

The aim of this stage is to select an appropriate RVM that

characterizes the process behavior to a reasonable degree.

A number of classification bases have been considered, for

example, based upon the topology of the process in terms of the

dynamic motion of its contents. Process classification is well

known in chemical engineering. Here, the approach focuses

upon the multidimensional sensing opportunity offered, with a
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TABLE I
PROCESS GROUP TAXONOMY

pragmatic stance in regard to processes likely to benefit from

GRVM implementations. Based upon this viewpoint, industrial

processes of interest are classified into three generic groups, as

shown in Table I.

The Group I classification is based upon the characteristic of

predominant bulk movements in one direction, where a single

plane of tomographic sensor elements will suffice. This is ex-

emplified by single/multiphase (unidirectional) pipe flows, such

as the example of Section II-A.

Group II processes are classified by their need for multiple

planes of sensor elements, and where the process has some form

of forced agitation such that the motion of one phase predom-

inates. A typical example here is a mixer, as illustrated in the

second example of Section II-A.

Group III processes are, in essence, similar to those in

Group II, but are characterized by the motion of materials

through an often structurally complex matrix of fixed parts of

the equipment. A typical example here is a packed bed.

C. Model Variant Selection

In these examples, two application requirements classes are

defined, followed by three process group classes, a total of six

model variants. In each case variants can be defined as needed.

For example, the simple pipeline-based solids conveyor of Sec-

tion II-A offered two forms of flow data.

TABLE II
GRVM MODULAR FRAMEWORK

The total number of process models is expected to be modest

in terms of the power provided in addressing applications

speedily. In each case, tuning factors could be provided to allow

the model to be focused onto the process.

IV. ELEMENTS OF A GRVM SENSOR

To facilitate GRVM, an appropriately engineered PT sensor

system will be required. Specifically, access must be available

to select particular GRVM components.

A composite sensor designed on the principles described

above will typically be based upon the layered modules listed

in Table II. Modules C to E form the RVM components defined

in Section II.

For maximum impact and ease of application, COTS mod-

ules are desirable for all layers A–E in all applications. De-

fined layers between modules are required to enable this integra-

tion strategy. Although international standards (such as the ISO

seven-layer model for heterogeneous communication systems)

would provide the most solid foundation, corresponding com-

mercial standards are commonplace. Fig. 4 illustrates the var-

ious processing stages commonly used in tomographic sensor

systems.

A. Modal PT Sensing Module(s)

At first consideration, the most individual parts of a process

are likely to relate to the elements of a composite tomographic

sensing element. Purpose designed units may be required; how-

ever, significant mass demand is likely to stimulate the market
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Fig. 4. Data processing stages for single and multimodal sensing elements.

Fig. 5. Generic pipeline electrical resistance PT sensor element (courtesy of
Industrial Tomography Systems, Ltd.).

to source COTS products. For example, standard flanged units

with a composite tomographic sensor for direct installation in a

flow process are desirable for this purpose. An example is illus-

trated in Fig. 5.

Where composite sensor units are unsuitable, a lower level of

COTS sensor element parts, such as electrode assemblies, could

be envisaged to facilitate the construction of process containers

equipped with integral multidimensional sensors.

As indicated in Table II, it is convenient to consider this

element with its immediate driving electronics. In response to

a command from the modal data acquisition module-B, the

sensor element measurements are taken from the process and

buffered. A single projection or a complete set of projections

could be taken. A further command would pass the buffered

data to module B. To facilitate data fusion, projections data

must be time stamped.

The interface at this layer, from A to B, is a convenient elec-

tronic or logical form. Although various information technology

interfaces could be considered, including wireless solutions [9],

an ideal candidate for consideration is the IEEE 1451 Smart

Transducer Interface Standard [10] which also supports net-

working [11].

B. Modal PT Data Acquisition Module(s)

For each modal PT sensor element (and other non-PT sensor

elements), this module would command the data sampling from

the process and marshal results. Although this module is spe-

cific to a given modal sensor element, all sensor-mode specific

electronics are in layer A. Hence, layer B can be generic for all

sensor elements. A small range of generic modules could offer

the requisite performance levels to suit a wide set of applica-

tions, probably constrained mainly by real-time constraints and

their data acquisition rates.

The interface layer from layer B to C must provide a defined

time-stamped data format for the captured set of projections for

PT sensor elements, or for point samples values for other sensor

types.

A direct estimation of process distribution is possible where

appropriate process knowledge exists, for example, in a flow

process where a neural training algorithm can embed knowledge

of flow regimes in two and three-component flow systems [6].

This is illustrated in Fig. 4 by the direct feed of data from layer

B to D, bypassing the need for a more computationally costly

reconstruction process.

C. Reconstruction Processing Module(s)

This module is not required for non-PT sensor elements. A

range of 2-D and 3-D reconstruction algorithms have been de-

veloped for PT applications [2]. Simple methods, such as linear

back projection (LBP), are preferred when real-time constraints

limit processing time for appropriate embedded processing re-

sources. More accuracy can be gained, in exchange for com-

putational cost, from conjugate gradient and iterative methods

[12], [13].

Where the application is a design requirement (as defined

in Section III-A), real-time constraints may only apply to the

data collection, since final interpretation data is not required

in process real-time. In such cases, the reconstruction (and fol-

lowing processing) can be carried out off line. Although com-

putability is still a key issue, such applications typically pro-

vide more opportunity for use of more accurate reconstruction

algorithms.

A small number of reconstruction modules will be useful in

generic terms to satisfy a wide range of requirements. Their im-

plementation will depend upon the application requirement. A

flexible software library solution will be more attractive for a de-

sign requirement, where a variety of algorithms may be tested.

A firmware solution is likely to be the preferred choice for an
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operational requirement, where reliability and robustness will

be paramount.

The result of a reconstruction process is typically a 2-D or

3-D image dataset that represents the estimated distribution of

the contrasting feature at the time-stamped instant.

The interface layer from layer C to D must offer this time-

stamped 2-D/3-D data format.

D. Data Fusion Module

This module must fuse multiple data streams using time

stamping and physical fusion relationships. For example, Fig. 4

shows a process similar to the pipeline conveyor of Section

II-A. The auxiliary (chain line) flow sensing PT element data

must be combined with the main PT sensing element data. In

comparison with the previous example, the solids flow may be

assumed to move from right to left.

In other cases, data from multiple (PT and single-point) sen-

sors must be fused to offer a full insight into the process and

plant status [14].

A process model that will typically involve both time and

space dimensions will be required as a manifold to link the data

streams. The provision of absolute time references for sensor

data is needed and is supplied through layers A to C.

The spatial validity of a sensor is more difficult and complex

to define. However, an estimate of the spatial sensing field is

useful for each sensor. Thus simple, single-point sensing ele-

ments may measure a property over a small, but hopefully rep-

resentative, region. Wide-area sensing elements, such as PT el-

ements, can offer an estimate over a larger region within the

process. Co-location of sensors will ease the direct synchroniza-

tion of their data, even if their sensing regions are not identical.

The objective at this layer is to populate a representative spa-

tiotemporal process model, for example, the 4-D space and time

distribution model of the pipeline conveyor of Section II-A.

Stages D and E are linked in terms of their RVM processing

and hence no interface definition is required.

E. Interpretation Module

The objective of this layer is to derive an appropriate set of

process descriptors as the final reduced form of data for the ap-

plication. The conveyor example of Section II-A has provided

twin examples of descriptor data for both a design requirement

and an operational requirement.

Implementation of modules D and E will follow the applica-

tion requirement preferences noted for module C.

The final output format is designed to support the onward

application of the data. For a design requirement a full set of

diagnostic information is supplied. In this case, the format is

designed to support further performance data to be computed.

The format is likely to be arranged for archival convenience than

for real-time consideration of dataset size and transfer speed.

For an operational requirement selected, reduced data will be

needed to fulfill the control and monitoring needs of the process.

In this case, the dataset size and format are designed to support

operational process standards. A number of options are available

for consideration, for example, to comply with industry stan-

dards such as FieldBus (http://www.fieldbus.org).

F. Overview of Current Products

A number of PT products are available on the market. A de-

tailed product assessment is not appropriate here but it is useful

to indicate the extent to which products could be accommodated

within the schema proposed. A small number of companies cur-

rently offer products centered upon the two major electrical to-

mography modalities.

Process Tomography, Ltd., offers products supporting layers

A-C for electrical capacitance tomography (ECT). Layer C is

supported by a fast, on-line module integrated with layer B. A

process-intensive off-line layer C module is also available. De-

tails can be found at http://www.tomography.com. Their com-

ponents are used by a partner company, Tomoflow, Ltd., who

add off-line support for layers D and E for flow estimation. De-

tails are available at http://www.tomoflow.com.

Industrial Tomography Systems, Ltd., offer a range of

products based upon electrical resistance tomography and

ECT, including multimodal systems. Layers A–E are sup-

ported. At layer B, the company also offers certified intrin-

sically safe module for hazardous environments. Layer E

is supported, for example, through a generic package that

offers a heterogeneity-mixing index. Details are available at

http://www.itoms.com.

It is apparent that the various products already offer a partially

complementary set of modules and only minor modifications

would be required to support integrated configurations based on

the schema.

V. CONCLUSION

This paper has presented a schema to facilitate the mass in-

dustrial roll out of PT-based process sensor technology through

a strategic RVM approach. This harnesses multidimensional

data obtained from real processes with PT data fusion and inter-

pretation to yield relevant process-level information. Its generic

form GRVM offers a path to an efficient and speedy solution

for a candidate process. It can facilitate the standardized devel-

opment of new control techniques and new design models. This

approach, therefore, aims to assist process optimization and

intensification through generic methods that offer the prospect

of COTS technology.

Such technology will be based upon a modular approach.

Agreed public interface specifications may be useful if inter-

working is to be encouraged. The core system will be based

upon a generic platform. Variants will support particular process

classes and a small number of subclasses. Such variants can be

implemented in an appropriate form. For pilot design require-

ment studies, software libraries will offer a flexible set of re-

sources. For process control and monitoring operational require-

ment applications, an implementation based upon firmware will

be more appropriate.

The result will be to bring the application of multidimensional

sensing within the normal requirement specification and de-

tailed product configuration process of typical industrial prod-

ucts. This is, in contrast, to the current situation, in which appli-

cations are constrained in practice by the severe limitations of

research and development programs.
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