
This is a repository copy of Improved storage capacity in correlation matrix memories
storing fixed weight codes.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/68013/

Version: Accepted Version

Proceedings Paper:
Hobson, Stephen John and Austin, Jim orcid.org/0000-0001-5762-8614 (2009) Improved
storage capacity in correlation matrix memories storing fixed weight codes. In: Lecture
Notes in Computer Science. Lecture Notes in Computer Science . Springer , ICANN 2009 ,
pp. 728-736.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Improved storage capacity in correlation matrix

memories storing fixed weight codes

Stephen Hobson and Jim Austin

Advanced Computer Architectures Group
Department of Computer Science

University of York
Heslington

York, YO10 5DD, UK
{stephen,austin}@cs.york.ac.uk

Abstract. In this paper we introduce an improved binary correlation
matrix memory (CMM) with better storage capacity when storing sparse
fixed weight codes generated with the algorithm of Baum et al. [3]. We
outline associative memory, and describe the binary correlation matrix
memory— a specific example of a distributed associative memory. The
importance of the representation used in a CMM for input and output
codes is discussed, with specific regard to sparse fixed weight codes. We
present an algorithm for generating of fixed weight codes, originally given
by Baum et al. [3]. The properties of this algorithm are briefly discussed,
including possible thresholding functions which could be used when stor-
ing these codes in a CMM; L-max and L-wta. Finally, results generated
from a series of simulations are used to demonstrate that the use of L-
wta as a thresholding function provides an increase in storage capacity
over L-max.

Key words: associative memory, correlation matrix memory, storage
capacity, fixed weight codes, pattern recognition

1 Introduction

The fixed weight code generation algorithm of Baum et al. [3] has the benefit
of generating unique codes which are well separated in the pattern space, which
makes them suited for storage in a CMM. We will subsequently term the codes
generated from this algorithm Baum codes, for ease of reference. Recall of such
codes from a CMM requires the use of a thresholding function, and it is with the
nature of this function that this paper is concerned. L-max thresholding [1] has
been shown to be an effective thresholding function for fixed weight codes, and
has been applied to CMMs storing Baum codes [2]. However, L-max thresholding
fails to make use of all the constraints on Baum codes. A thresholding mechanism
which takes advantage of these constraints is able to provide an improved storage
capacity for a CMM which stores Baum codes.

2 Stephen Hobson and Jim Austin

2 Associative Memory

Traditional computer memories store data in a compartmentalised fashion, with
each stored item having a unique address. While this leads to perfect recall in
all cases where the correct address is known, any amount of error in the address
will result in a recall which bears no relation to the stored item. A contrasting
model of memory is distributed associative memory. In such a model, data items
are stored as pairs, with the presentation of the first member of the pair to the
memory resulting in the recall of the second. Rather than these associations
being stored in a single location in the memory, they are distributed across the
memory. This provides robustness in the presence of noise on the input, and
enables generalisation.

Such a memory serves a different purpose to a traditional memory. While
a standard computer memory is well suited to tasks such as storing a list of
tasks or events, it is less capable of “answering questions” [6]. Such a task would
require the question to be looked up in a list, which might contain the location of
the answer. In a distributed associative memory, the answer is retrieved simply
by presenting the question to the input. The recall operation does not require a
look-up algorithm, and so is a much more efficient operation.

3 Binary Correlation Matrix Memories

A Binary Correlation Matrix Memory (CMM) [8] is one example of a distributed
associative memory. It stores the correlations between input and output codes.
The memory is a one layer fully connected neural network. This means that the
weights can be viewed as an m × n matrix W , where m is the size of the input
vectors and n is the size of the output vectors. An example of such a memory is
shown in Fig. 1. Although it is possible to use a CMM with non-binary weights
[5], only the binary case will be considered in this paper.

Learning is achieved using an outer product of the input and output. These
matrices are combined using an OR function over all input output pairs to create
the weight matrix W .

W =

N∨

i=1

xiy
T
i (1)

Recall is achieved as shown in Equation. 2.

y = f [Wx] (2)

Here f is a thresholding function, which takes the activity output Wx and
converts it to a binary vector. For example, in their original paper Willshaw et
al. [8] suggested that the thresholding function could set all output nodes with
activity greater than the number of 1s in the input pattern x to 1. The choice
of this threshold function has a profound effect on the storage capability of the
network, as we shall see later.

Improved storage capacity in correlation matrix memories 3

Fig. 1. An example of a CMM with 8 input neurons, 8 output neurons and binary
weights.

4 Stephen Hobson and Jim Austin

When recalling a pattern from the memory, the resulting vector (before
thresholding) can be viewed as a signal (the original stored pattern) and some
noise (extra activity from overlaps with other learned codes).

4 Sparse Fixed Weight Coding

In a neural memory such as a CMM there is an intrinsic link between the data
representation used and the storage capability of the memory. Using different
encodings on the input and output of the memory will have different effects on
the storage capacity. In addition, the choice of threshold function will also relate
directly to the representation used.

Perhaps the simplest representation of all would be the use of unary output
codes (a single bit set to 1 in n bits). This provides a storage capacity of exactly n
code pairs. Each input code will be stored in exactly one column of the matrix,
and given a correct input code there will be no error on recall. However, the
fault tolerance capability of the network is lost, since the storage is no longer
distributed. It is necessary to use input and output codes with more than one
bit set to 1 to distribute storage over the network.

Furthermore, in order to maximise the storage capability of the network,
these codes should be sparsely coded. More specifically, the number of 1s in an
n bit code should be in the order of log n [7]. The number of 1s in an n bit code
is termed the weight of the code. An important property of the use of sparse
codes in a CMM is that the memory is capable of storing k > n codes (where k
is the number of pairs stored, and n is the number of input neurons), providing
a small amount of recall error is tolerated [7].

If codes with fixed weight are used, an alternative threshold function is avail-
able; L-max thresholding [1]. This sets the l neurons with the highest output ac-
tivity to 1 and the rest to 0, where l is the weight of the output code. Casasent and
Telfer [4] experimented with various output encodings, including Binary codes,
Hamming codes and fixed weight codes, albeit with analog input codes. They
found that in the presence of noise, fixed weight codes with L-max thresholding
gave the greatest storage capacity for a given code length.

It is important to have the ability to generate fixed weight codes in such a
fashion that the codes generated are guaranteed to be well separated in pattern
space. Baum et al. proposed an algorithm which generates fixed weight codes
which have a small amount of overlap [3]. The code is divided into l sections which
are relatively prime1 (coprime) in length, with each section i having length pi.
For example, a code of length 32 where l = 3 could be divided into sections of
length 16, 9 and 7. The size of l defines the weight of the code. To generate code
number c, we set the bit in position j as follows (where x is the code to output):

1 Two integers are relatively prime if they have no common factor other than 1. It
should be noted that the problem of generating a set of relatively prime numbers
which sum to a total is not trivial. However, a discussion of methods is beyond the
scope of this paper.

Improved storage capacity in correlation matrix memories 5

xc
j = 1 if j −

i−1∑

k=1

pk ≡ c (mod pi)

= 0 otherwise

(3)

Essentially what is happening is that a single bit will be set to 1 in each
section of the code. As subsequent codes are generated, the next bit in each
section will be set to 1 instead, wrapping around to the beginning of the section
when the end is reached. For example, Fig. 2 shows a code with n = 10 and
l = 3, taking p1 = 5, p2 = 3, p3 = 2.

1 0 0 0 0 1 0 0 1 0
0 1 0 0 0 0 1 0 0 1
0 0 1 0 0 0 0 1 1 0
0 0 0 1 0 1 0 0 0 1
0 0 0 0 1 0 1 0 1 0
1 0 0 0 0 0 0 1 0 1
0 1 0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 1 0
0 0 0 0 1 1 0 0 0 1
...

...
...

...
...

...
...

...
...

...

Fig. 2. An example of the generation of Baum codes. Here, l = 3 and p1 = 5, p2 =
3, p3 = 2, giving a code of length 10

Using this mechanism p1×p2× . . .×ps unique codes can be generated, which
is substantially fewer than it is possible to represent with a general fixed weight
coding scheme (n!

(n−l)!l!). However, the overlap between the codes is guaranteed

to be small, which improves recall accuracy if they are used in a CMM. Since the
method is deterministic, we can be certain about the amount of overlap between
generated codes. With no loss of generality we can consider a Baum code with
section lengths p1 < p2 < . . . < p3. The first p1 codes generated will have no
overlap at all. The first p1p2 overlap by at most 1 bit (a Hamming distance of at
least 2l−22). In their analysis Baum et al. [3] state that if

∏t

i=1 pi codes are used,
the minimum Hamming distance between any two codes will be d = 2(l− t+1).
For this reason, it is beneficial for pi ≈ n/l, since this maximises the product
between the section lengths pi, and hence the number of codes which can be
generated with minimal overlap.

2 The Hamming distance between two codes is the number of bits which differ between
them.

6 Stephen Hobson and Jim Austin

5 Improving the Storage Capacity

In the past the algorithm of Baum et al. [3] has been used to generate fixed
weight codes, with L-max used as the thresholding function [2]. This represents
an oversight, since L-max thresholding may produce output codes which are not
possible under the Baum algorithm. By constraining the threshold so that only
the codes generated by the algorithm are output, an increased storage capacity
can be achieved.

It has already been mentioned that the algorithm divides the code into a
series of sections. Baum et al. point out in the appendix to their paper that a
useful property of the algorithm is that there is exactly one 1 in each section of
the code. This means that a winner-takes-all (WTA) threshold can be applied to
each section of the code, rather than taking the l highest values from the whole
code, as we would with L-max [3]. This thresholding technique incorporates
more information about the output encoding into the thresholding function, and
therefore provides a more robust thresholding. We shall call this thresholding
technique L-wta.

6 Results

To demonstrate the improved storage capacity of a CMM when using L-wta
compared to L-max a series of simulations were conducted. The storage of a
CMM is affected by the size of the input and output codes, and also by the
weight of the coding system used. For this reason L-wta technique was compared
to L-max for a variety of coding systems. In each experiment an empty CMM was
created for the appropriate code sizes. The following steps were then undertaken.

1. Generate an input code according to the algorithm of Baum et al. [3] This
code will be unique.

2. Generate a random output code. This code is a random code from the entire
space of possible Baum codes for the given set of coprimes, and so may not
be unique.

3. Train the CMM using the generated input/output pair.
4. Present every input which the CMM has learnt and compare the correct

output to the actual output using L-max and L-wta.
5. If average error (defined below) exceeds 10% for all thresholding techniques

then exit, otherwise return to 1.

For each experiment these steps were run with twenty CMMs. A different
integer was used to seed the random generator for each CMM, resulting in dif-
fering output patterns being trained. After each iteration the average error was
calculated for all twenty CMMs. The recall error was defined as the percentage
of recalled patterns which contained an error in any bit. In order to measure the
performance of the thresholding techniques at a variety of error tolerances we
examine the number of codes learnt in each memory before recall error exceeded
0.1%, 1%, 5% and 10%.

Improved storage capacity in correlation matrix memories 7

Table 1. Experimental results when varying the size of the input code. All tables
show the number of codes learnt before errors at given levels. Codes are given in the
format length/weight. Note that in some cases code lengths are approximate. This is
due to the complexity of generating large sets of coprime numbers which sum to a
given target. Bold numbers show the percentage increase in storage capacity when
using L-wta rather than L-max.

InputOutput 0.1% error 1% error 5% error 10% error
code code L-maxL-wta % L-maxL-wta % L-maxL-wta % L-maxL-wta %

64/4 256/4 70 78 11.4 115 129 12.2 153 171 11.8 179 207 15.6

128/4 256/4 139 141 1.4 197 234 18.8 289 334 15.6 345 406 17.7

256/4 256/4 259 286 10.4 424 473 11.6 600 696 16.0 719 831 15.6

512/4 256/4 496 589 18.8 814 927 13.9 1182 1369 15.8 1416 1630 15.1

Table 2. Experimental results when varying the weight of the input code.

Input Output 0.1% error 1% error 5% error 10% error
code code L-maxL-wta % L-maxL-wta % L-maxL-wta % L-maxL-wta %

512/2 256/4 260 260 0.0 282 304 7.8 482 555 15.1 577 707 22.5

512/4 256/4 496 589 18.8 814 927 13.9 1182 1369 15.8 1416 1630 15.1

512/8 256/4 1023 1036 1.3 1453 1603 10.3 1811 1989 9.8 2028 2229 9.9

512/16 256/4 1186 1267 6.8 1408 1512 7.4 1673 1824 9.0 1829 1989 8.7

Table 3. Experimental results when varying the size of the output code.

InputOutput 0.1% error 1% error 5% error 10% error
code code L-maxL-wta % L-maxL-wta % L-maxL-wta % L-maxL-wta %

256/4 64/4 91 120 31.9 178 203 14.0 245 286 16.7 287 337 17.4

256/4 128/4 148 179 20.9 265 289 9.1 362 429 18.5 436 508 16.5

256/4 256/4 259 286 10.4 424 473 11.6 600 696 16.0 719 831 15.6

256/4 512/4 373 415 11.3 608 712 17.1 950 1099 15.7 1137 1327 16.7

Table 4. Experimental results when varying the weight of the output code.

InputOutput 0.1% error 1% error 5% error 10% error
code code L-maxL-wta % L-maxL-wta % L-maxL-wta % L-maxL-wta %

256/4 512/2 564 709 25.7 1259 1435 14.0 1932 2138 10.7 2310 2599 12.5

256/4 512/4 373 415 11.3 608 712 17.1 950 1099 15.7 1137 1327 16.7

256/4 512/8 257 267 3.9 353 400 13.3 495 569 14.9 580 677 16.7

256/4 512/16 71 89 25.4 138 157 13.8 197 222 12.7 219 266 21.5

8 Stephen Hobson and Jim Austin

Table 1 shows the results when the size of the input was varied, whilst size
and weight of the output code remained constant. Similarly, Table 2 shows the
results when the weight of the input code was varied. In both cases it can be
seen that the use of L-wta results in an increase of approximately 15% in storage
capacity. L-wta appears to provide the largest increase in storage over L-max
when the input code is sparse; that is, when the code size is increased or the
weight is decreased. This advantage appears less pronounced as the amount of
output error increases.

The case is similar when examining Tables 3 and 4. The effect of output
sparsity on the effectiveness of the technique is less clear. However, the storage
capacity when using L-wta is consistently a considerable improvement over that
achieved using L-max.

Fig. 3 shows two examples of the performance of the two thresholding tech-
niques as codes are trained into the memories. It can clearly be seen that as the
memory becomes increasingly saturated, the use of L-wta provides an increasing
benefit over L-max thresholding.

7 Summary

In summary, it has been demonstrated in this paper that when using codes
generated by the algorithm of Baum et al. [3] L-wta provides an increase in
storage capacity over thresholding using L-max, provided some error is tolerated.
This increase in storage capacity is generally in the order of 15%, but has been
observed to be as high as 30%.

While this paper has demonstrated the benefit of this thresholding technique
across a variety of conditions, a mathematical treatment of the technique is now
required.

References

1. J. Austin, T.Stonham. Distributed associative memory for use in scene analysis.
Image and Vision Computing 5, 251–260, 1987.

2. J. Austin, J. V. Kennedy and K. Lees. A neural architecture for fast rule matching.
In Artificial Neural Networks and Expert Systems Conference, 1995.

3. E. B. Baum, J. Moody, and F. Wilczek. Internal representations for associative
memory. Biological Cybernetics, 59(4):217–228, 1988.

4. D. Casasent, B. Telfer. High capacity pattern recognition associative processors.
Neural Networks, 5, 687–698, 1992.

5. J. Nadal , G. Toulouse. Information storage in sparsely coded memory nets. Network,
1, 61–74, 1990.

6. G. Palm. Neural Assemblies. Springer-Verlag, 1982.
7. G. Palm, F. Schwenker, F.T. Sommer and A. Strey. Neural associative memories

Associative processing and processors, 307–326, 1997.
8. D. J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-holographic as-

sociative memory. Nature, 222(7):960–962, 1969.

Improved storage capacity in correlation matrix memories 9

Fig. 3. Two comparisons of the storage capabilities of a CMM when using L-max and
L-wta. Dotted lines show the standard deviation of average recall error between runs
of the experiment. (top) Input codes had size 256 and weight 4. Output codes had size
512 and weight 4. (bottom) Input codes had size 512 and weight 16. Output codes had
size 256 and weight 4.

