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Abstract 
 

Terahertz pulsed imaging is a spectroscopic imaging modality using pulses of 

electromagnetic radiation (100 GHz to 10 THz), and there has been recent interest in studying 

biomedical specimens.  It is usual to display parametric images derived from the measured 

pulses. In this work, classification was achieved by applying multispectral clustering 

techniques to sets of parametric images.   It was hypothesised that adequate information for 

clustering was carried in a small number of parametric images, providing these were 

weighted by complementary physical properties. Materials prepared for histopathological 

examination were chosen because their condition remained stable during long imaging 

periods and because their dehydrated state led to greater penetration of the radiation.  Two 

specimens were examined in this pilot study, one of basal cell carcinoma and one of 

melanoma.  Unsupervised ISODATA classification using three selected parametric terahertz 

pulsed images was compared qualitatively with k-means classification using the shape of the 

whole time series, and with conventional stained microscope slides.  There was good 

qualitative agreement between the classifications. Classifications were consistent with the 

morphological appearances expected, but further work is required to determine if tumour 

discrimination is possible.   The results have implications for the future development of the 

technique as the need for only a small number of features could lead to considerably reduced 

acquisition times. 

 

Introduction 
 

Terahertz radiation is the part of the electromagnetic spectrum between the far infrared and 

microwave regions, often defined as 100 GHz to 10 THz (or 30 µm to 3 mm in wavelength).  
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There has been a recent surge of interest in using such radiation because of the development 

of new, relatively compact, methods of generating and detecting coherent terahertz 

radiation
1,2

.  Pulsed sources of radiation are ideal for spectroscopy
3,4

, and the use of terahertz 

frequency radiation for these investigations is attractive because in molecules the separations 

between rotational energy levels, and between vibrational energy levels,  correspond to this 

frequency band
5
.  It is also possible to form images using pulsed sources of terahertz 

radiation
6,7

.  Although such images have potential to display information about the spatial 

distribution of the spectroscopic data, there is a reduced frequency resolution compared with 

purely spectroscopic investigations.    

 

In intact samples, or for tissue in vivo however, the reduction in spectral resolution is not such 

a concern as would be the case for specially prepared samples.  This is because there is a 

possibility that strong water absorption may mask signature features from other molecules.  

Additionally, it is expected that smoothing of spectral features will arise from the presence of 

a mixture of several molecules, and because different chemical environments will exist even 

for a single molecule.   

 

The absence of strong spectral features means that an appropriate way to display image data 

is by using parametric images generated from the acquired data that consists of a time series 

at each pixel.  Parametric images are used in other areas of medical imaging.  For example in 

nuclear medicine, parametric images of amplitude and phase of ejection from the left 

ventricle can be obtained from cardiac multiple gated acquisitions (MUGA). In magnetic 

resonance imaging (MRI), parametric images are used to illustrate uptake of contrast medium 

in dynamic studies.  In terahertz pulsed imaging, a parametric image might show a parameter 

calculated in the time domain, such as the time delay for the peak of the pulse relative to a 
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reference pulse that has traversed the same path but with no sample present.  Parameters may 

also be calculated in the frequency domain, following Fourier transformation of the pulse.  

An example would be the transmittance, or relative intensities of sample and reference at a 

particular frequency, which is commonly used in spectroscopy and optics. Typical 

parameters, with explanations of how they relate to physical properties of a material, are 

described by LĘffler et al.
8
.    As many parameters may be used, each acquired data set can 

lead to a family of parametric images. 

 

If multiple parametric images are generated from each data set, it is then necessary to 

combine the information from the images in order to maximise the use of the information 

present.  This is a common problem in image analysis, and one solution is to use 

multispectral classification methods.  It is assumed that a particular class will be made up of 

members that have similar values for each of a number of features.  In a multi-dimensional 

feature space, all the members of a particular class will be clustered together.  In the case of 

parametric images, the features are the parameters and the feature values are the pixel values.  

Multispectral classification techniques work by assigning pixels to classes based on their 

similarity to other pixels already assigned to that class.  Such classifiers have been used very 

successfully with MRI data
9,10

 for classification in the brain.  In MRI, several different pulse 

sequences are used to obtain sets of images with different contrast properties, and this means 

that a registration step is often required before multispectral classification, to compensate for 

movement of the subject between the acquisitions.  Terahertz pulsed imaging data is even 

better suited to this sort of analysis.  There is no need for a registration step because the sets 

of images to be used come from a single scanning sequence and are thus in spatial 

registration.    For the optimisation of clustering in feature space, well separated clusters are 

desirable, and so ideally the images used should each be related to different physical 
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properties of the material.  Although several physical properties can affect the values of the 

parameters
8
, particular parametric images have greater dependence on a particular physical 

property, and such images should be valuable for clustering.   The choice of appropriate 

parametric images is discussed in the theory section below.   

 

Theory 

Multispectral classification 
 

In this article we develop the use of the parametric images in terahertz imaging by proposing 

that the information from separate parametric images be combined using multispectral 

classification.  Image analysis tools that can perform multispectral classification are readily 

available, and for these it is necessary to have generated two or more images that are spatially 

registered to one another.   Note that, more generally, clustering classification analysis can be 

performed without the explicit generation and display of images.  For example, to ensure that 

the entire shape of the pulse at each pixel was taken into account, the parameters used might 

be the set of time series amplitudes or the coefficients of the Fourier transform.  This would 

lead to a feature space where the number of dimensions was equal to the number of points or 

coefficients. 

 

Automated classifiers fall into two groups, supervised and unsupervised.  In the former,  

pixels known to belong to particular classes are used for initialisation, and all other pixels are 

assigned to classes on the basis of their similarity to members of this initial training set.    In 

contrast, unsupervised classifiers do not use a training set, though they are not entirely free of 

user input as it is necessary to define input parameters, to set stopping criteria for example.  

No training data were available for this work, so unsupervised classifiers were used.   
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Two similar algorithms were used.  The first of these was the ISODATA algorithm, 

originally described by Duda and Hart
11

.  It was chosen as it is available for unsupervised 

classification in the Analyze
TM

 biomedical image analysis software (AnalyzeDirect.com, 

Lenexa, Kansas, USA), and so could be readily applied to a small number of parametric 

images.  In the ISODATA algorithm, the starting locations for the class centroids are set to 

cover a broad range of feature space, and each pixel is put into the class whose centroid is 

closest (in Euclidean distance) in feature space.  Once each pixel has been assigned, the 

centroid locations are updated and the algorithm is repeated.  The stopping criterion is a set 

percentage of pixels that have changed class from the previous iteration.  The merge criterion 

allows small classes to be discarded and merged with the nearest class centroid, based on a 

user defined minimum separation for classes.  This minimum separation is called the 

threshold for the merge and is expressed as a distance in feature space.  Definition of clusters 

using Euclidean distance is justified where the feature space is isotropic with an even spread 

of data.   

 

In order to allow comparison with classifications based on information from a large number 

of features, such as the time series amplitudes, the widely used k-means clustering algorithm 

was employed.  The algorithm is unsupervised and broadly similar to the ISODATA 

approach, the main difference being that a pre-defined number of classes is found.   In the k-

means algorithm, pixels are assigned to one of k classes, whose centres are defined by the 

mean value of the feature vector for that class.  The initial k cluster centres are chosen 

randomly, then each pixel is assigned to the class to which it is nearest.  The mean value of 

the feature vector is re-calculated for each class and pixels re-assigned.  The algorithm is 

repeated until the calculated means remain unchanged. 
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Choice of parametric images for ISODATA algorithm 
 

Although the terahertz frequency band includes regions conventionally approached using the 

optical properties (300 GHz to 115 THz) or the dielectric properties (15 GHz to 300 GHz) of 

materials, in this work the behaviour was considered to be entirely optical in character. This 

is consistent with guidance on radiofrequency electromagnetic fields
12

, in which exposures 

are treated as quasi-optical for all frequencies over 6 GHz. Attenuation of terahertz radiation 

takes place by reflection, scattering and absorption.  If scattering may be neglected, then the 

refractive indices and linear absorption coefficients of the materials along the beam path will 

determine the degree of attenuation, as these properties determine the degree of reflection and 

absorption as defined by the Fresnel coefficients
13

.   For uniform thickness, single layer, 

geometry the pulse delay will be determined solely by the refractive index.  The pulse height 

will be strongly dependent on absorption coefficient, particularly if reflection losses are small 

compared with attenuation from absorption as is expected in this case.  In analogy to MRI, 

the two parametric images could be described as refractive index-weighted and absorption 

coefficient-weighted images � whilst the images do not map absolute values of refractive 

index and absorption coefficient, these are the parameters that affect the contrast most 

strongly.  A further time domain parameter that is simple to calculate is the full width at half 

maximum (FWHM) of the pulse.  This will be affected by both the refractive index 

(especially where the medium is strongly dispersive) and the absorption coefficient, and was 

chosen as the third image parameter because of its potential to provide complementary 

information.   

 

The purpose of this pilot study was to investigate the feasibility of using multispectral 

classifiers on pulsed terahertz datasets, to determine if classifications consistent with 
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expected tumour morphology could be generated from multispectral classification using the 

three complementary time domain features described above.  It was hypothesised that 

adequate information for clustering is carried in a small number of parametric images, 

providing these are weighted by complementary physical properties. As no reference 

classification was available, the validity of the classifications made using only three features 

was qualitatively assessed by comparison with those produced using a larger number of 

features.  The use of a small number of features is desirable as with suitably adjusted 

acquisition methods it could lead to considerably reduced acquisition times. 

 

Methods 
 

In this preliminary work materials prepared for histopathological examination, but sliced less 

thinly, were chosen.  This choice of prepared tissue was primarily because basic terahertz 

imaging equipment, as used in this work, is slow. Image acquisition could extend well over 

24 hours, a period during which the condition and hydration of untreated biological materials 

would be expected to change.  Tissue already prepared for microscopy had been treated by 

dehydration and fixed with formalin, so it was not expected that the physical properties 

would change during imaging.    The stability of the samples would also allow for repeat 

imaging on another date.  An associated benefit was that de-hydration of the tissue would 

lead to an increased depth of penetration of terahertz radiation compared with its untreated 

state, allowing the transmission mode of imaging to be used, which is simpler to analyse than 

the alternative reflection mode.  Diagnosis in histopathology is based on morphological 

appearance under the microscope.  Once samples have been stained with haematoxylin and 

eosin, which are taken up in varying degrees by different types of cell, different tumours have 

characteristic appearances.   It is known that contrast in terahertz images between tissues in 

the living body is strongly dependent upon the degree of hydration
14

.  However, if the water 
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is removed, as is the case in the samples used here, then the contrast may be more closely 

associated with the features identified by the pathologist, which are associated with the 

distribution of cell types.   This makes the samples particularly attractive for the application 

of classification techniques. 

Local research ethics committee approval was given to use human tissue in this study.  Two 

biopsy samples were chosen.  In each case they had previously been prepared in the routine 

manner by dehydration, formalin fixation and mounting in paraffin wax.  Diagnosis was 

made by the pathologist from a thin slice taken from the block of prepared tissue and the 

remaining tissue was then stored in case further samples were required for clinical purposes.  

One sample was diagnosed as a nodular basal cell carcinoma (BCC), the other as melanoma.  

In both cases a large group of cells within the dermis, displacing the normal structures of the 

skin, was seen (Figure 1).  In the case of the BCC a characteristic low cellularity, 

fibromyxoid stroma was seen separating the tumour from normal structures (Figure 1a 

arrowed). 

 

(a) (b) 

Figure 1.  Stained slides, magnification 2.5, used for diagnosis of  (a) BCC and (b) 

melanoma; these are from the same tissue samples but do not represent the same slice or area 

as the sample used to obtain the terahertz images.  In each case normal tissue appears lighter 
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than the tumour, and the epidermis is at the top of the image with the direction into the skin 

running from top to bottom.  The arrow indicates a characteristic low cellularity, fibromyxoid 

stroma separating the tumour from normal structures in the BCC. 

 

 

For this study a further, thicker slice (1 mm) was removed from the block and mounted in 

wax, for terahertz pulsed imaging.  As this was done at some time after the initial diagnosis it 

was not possible to spatially register the new slice to the microscope slides used for 

diagnosis.   

Pulsed terahertz imaging
15

 was performed using imaging equipment shown schematically in 

Figure 2.  The method used is the pump and probe technique, which is commonly applied in 

optical spectroscopy.  The beam of an ultrafast pulsed infrared laser is divided into two, and 

one part is used as the pump to generate terahertz pulses, while the other is part of a coherent 

detection scheme used to measure the amplitude of the terahertz electric field after 

transmission through the subject.  The optical delay line allows sampling in time of the 

terahertz pulse at each pixel, meaning that the total acquisition time increases as more time 

points are acquired, whilst raster scanning of the sample leads to an array of time series ready 

for the production of parametric images.  In each case 64 time points were acquired at 0.15 ps 

intervals, and a reference pulse was acquired in the same way through an area containing only 

the mounting wax.  For the melanoma a 7 x 7 mm area was imaged, with 39 pixels in each 

direction.  For the basal cell carcinoma, a 10 x 10 mm area was imaged with 56 pixels in each 

direction. The pixel size was 0.18 mm in both cases. 
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Figure 2.  Schematic layout of a terahertz pulsed imaging system in transmission mode.  The 

terahertz beam generated from an antenna or non-linear crystal is collimated and then focused 

on the sample using off axis parabola mirrors
15

. 

 

  

 

Three time domain parametric images were generated: (i) Pulse time delay relative to 

reference pulse (refractive index weighted),  (ii) pulse amplitude relative to reference pulse 

(absorption coefficient weighted) and (iii) the full width at half maximum of the pulse.  The 

feature space for these images was made suitable for the ISODATA method by re-scaling 

into the range 0 to 255. This meant that any merge threshold (distance in feature space) 

chosen would also be expressed as a value in the range 0 to 255. 
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Unsupervised ISODATA clustering with merging was applied to the groups of three images, 

using the Analyze
TM

 software.  For the first classification, a single merge threshold of 70 was 

used for the whole image.  A second set of classifications was obtained using the two stage 

merge process described below, so that small changes in composition within the tumour were 

identified without multiple classes also being defined in the background regions. The merge 

threshold of 70 was retained for the entire image except for the innermost region defined at 

this threshold.  For this region the merge threshold distance was halved to a value of 35 to 

highlight structural differences that may be of value for tumour discrimination.  For 

comparison, a classification using many features was performed using unsupervised k-means 

clustering (without any merging) on the full set of time series amplitudes of the two datasets; 

64 features were used and 8 classes were defined. 

Results 
 

The three time domain parametric images for the BCC and melanoma samples are shown in 

Figure 3.  The terahertz images show the tumour mass as an area of higher attenuation 

(Figure 3a), with particularly strong attenuation around the borders especially noticeable on 

the BCC image.  Further investigation will be needed to determine if the bright regions in the 

FWHM image of the BCC (Figure 3c), are associated with the characteristic clefts seen 

around BCC tumours.  
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(a) (b) (c) 

 

Figure 3. Time domain parametric images for the BCC (top row) and melanoma (bottom 

row) samples. The arrows indicate the location of the epidermis and direction into the skin.  

The reference pulse was transmitted through the wax surrounding the sample.  (a) Relative 

pulse amplitude, dark values represent high attenuation compared with the reference, which 

appears bright.  (b) Time delay relative to reference pulse, dark values represent small delay 

times compared with that of the reference pulse, brighter areas represent longer time delays 

(c) FWHM of pulse peak, dark values represent a pulse width similar to that of the reference 

pulse, brighter areas have larger FWHM. 

 

 

The classified images from the ISODATA algorithm are shown in Figures 4 and 5.  Boundary 

regions, shown in blue, have been classified in both cases.  These are several pixels in width 

and are unlikely to be fully explained by partial volume effects.  For the merge threshold used 

here, two regions were defined for the melanoma and three for the BCC.  Figure 5 shows the 

sub-classifications achieved within the innermost regions shown in Figure 4.  The internal 
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structure of the BCC is more organised than that of the melanoma, which is consistent with 

the appearances of the stained slides seen in Figure 1.    

 

Results from a k-means classification using time series features appear in Figure 6.  These 

show the same shapes as the ISODATA classification using three features, and for the BCC 

the well-defined internal structures are also seen.  There are more classes defined in the 

background regions of these images because the number of classes was fixed at eight, without 

the merging options used for the ISODATA algorithm. 

 

 

 

 

(a) (b) 

 

Figure 4. Classifications resulting from three parametric images, using the unsupervised 

ISODATA algorithm with a single merge step (threshold distance 70) (a) BCC (b) melanoma.   
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(a) (b) 

 

Figure 5.   Classifications resulting from three parametric images, using the unsupervised 

ISODATA algorithm with two merge steps.  A threshold of 35 was used to sub-classify the 

innermost region of each classification in Figure 4.   (a) BCC (b) melanoma.  

 

 

 

(a) (b) 

 

Figure 6.  Results of k-means clustering into eight classes using the 64 time series values.   

(a) BCC (b) melanoma  
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Discussion 
 

In spite of a surge of interest in biomedical applications for terahertz imaging and although 

such data have appeared in conference presentations, at the time of writing only one image of 

histopathologically prepared human tissue has appeared in the literature
16

.  This work 

demonstrated terahertz imaging of a human liver sample containing several tumours.  The 

appearances were consistent with our findings, with the tumours seen as regions of higher 

absorption in both a pulsed terahertz image (integrated from 0.2 to 0.5 THz) and continuous 

wave imaging at 230 GHz.  As the density of the metastases and normal tissue were 

measured to differ by only 5% to 10%, the authors concluded that the higher absorption was 

caused by differing chemical composition.  Only one parametric image was presented and no 

classification methods were applied.  Veterinary histopathology samples were used by LĘffler 

et al
8
 to demonstrate the various parameters that can be used for imaging.  They hypothesised 

that the enhanced boundary seen on certain parametric images of a mast cell tumour was the 

result of diffraction or scattering, and investigated the phenomenon further using the 

technique of dark-field imaging
17

.  The boundary regions seen in our classified images are 

consistent with these findings.  To establish if the feature is an artefact that may be ignored, 

or if in some cases it carries information that may help in tumour discrimination, will require 

further studies.  These may use a range of spatial resolutions and boundary properties, 

together with detection of radiation that has been scattered out of the incident direction.   

 

The larger of the two datasets presented here took 34 hours to acquire, using the optical delay 

line shown in Figure 2.  Developments in instrumentation have already led to reduced 

acquisition times
1
, but further reductions to allow real time imaging could be achieved by 

development of rapid imaging techniques that avoid the need to acquire the full time series at 

every pixel.  In the work presented here, there was good qualitative agreement between 
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classification using only the three features and classification using multiple features to 

represent the whole pulse.  This supports the hypothesis that adequate information for 

clustering is carried in a small number of parametric images, if these are weighted by 

complementary physical properties.  The results are encouraging for the development of a 

custom designed acquisition to determine values for the three parameters alone.  Furthermore, 

the concept of using weighted images for classification reduces the computational demands 

of the technique, compared with a method using absolute values of the physical properties.  

While it is possible to extract physical properties from image data
18,19

, this is computationally 

intensive.    

 

The absence of training data meant that it was necessary to use unsupervised classifiers in 

this work.  Supervised classifiers have previously been successfully applied to terahertz 

pulsed imaging data
20

, capitalising on the availability of large amounts of training data from 

chicken and beef.  Although such training data are not yet available for human tissue
21

, that 

work taken together with the results presented here, indicate that the methods show much 

promise, providing that clinically relevant differences between tissues exist. 

 

Effort was concentrated on three complementary time domain images, as they were suited to 

the direct application of multispectral techniques.  There is also potential for using frequency 

domain features, but pre-processing steps will be required to avoid artefacts occurring 

because of the differing levels of noise and differing spatial resolution in the images
22,16

. 

 

Terahertz images offer the possibility of providing information from deeper structures than 

currently available to the pathologist from stained slides.  Whilst the edges of the tumours 

appear to have been defined, it is necessary to confirm this experimentally.  Similarly, the 
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differences between tumour types that have been suggested in this pilot study require further 

investigation, and in particular it is essential to include location-specific diagnoses using one 

or more reference techniques, and samples of healthy tissue for comparison.   

 

Conclusions 
 

These results confirm that the families of images that can be generated from terahertz pulsed 

imaging data sets are amenable to multispectral classification, and that classification can be 

made using a subset of the total information available.  Further investigation is indicated. 
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Multispectral classification of THz images 

 

Figure captions 
 

Figure 1.  Stained slides, magnification 2.5, used for diagnosis of  (a) BCC and (b) 

melanoma; these are from the same tissue samples but do not represent the same slice or area 

as the sample used to obtain the terahertz images.  In each case normal tissue appears lighter 

than the tumour, and the epidermis is at the top of the image with the direction into the skin 

running from top to bottom.  The arrow indicates a characteristic low cellularity, fibromyxoid 

stroma separating the tumour from normal structures in the BCC. 

 

Figure 2.  Schematic layout of a terahertz pulsed imaging system in transmission mode.  The 

terahertz beam generated from an antenna or non-linear crystal is collimated and then focused 

on the sample using off axis parabola mirrors
15

. 

 

Figure 3. Time domain parametric images for the BCC (top row) and melanoma (bottom 

row) samples. The arrows indicate the location of the epidermis and direction into the skin.  

The reference pulse was transmitted through the wax surrounding the sample.  (a) Relative 

pulse amplitude, dark values represent high attenuation compared with the reference, which 

appears bright.  (b) Time delay relative to reference pulse, dark values represent small delay 

times compared with that of the reference pulse, brighter areas represent longer time delays 
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(c) FWHM of pulse peak, dark values represent a pulse width similar to that of the reference 

pulse, brighter areas have larger FWHM. 

 

Figure 4. Classifications resulting from three parametric images, using the unsupervised 

ISODATA algorithm with a single merge step (threshold distance 70) (a) BCC (b) melanoma.   

 

Figure 5.   Classifications resulting from three parametric images, using the unsupervised 

ISODATA algorithm with two merge steps.  A threshold of 35 was used to sub-classify the 

innermost region of each classification in Figure 5.   (a) BCC  (b) melanoma.  

 

Figure 6.  Results of k-means clustering into eight classes using the 64 time series values.   

(a) BCC (b) melanoma  
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