
������������	
���
���
	��
�� ���������	�
����
�����������������
����������������������������

���
������������
�������
����
���������� �

�������
�����������������������
�������	�	���
���	�����	������������
��������������

 ����
���!�"�����#� ����
�

��������
 ��$
��%�&�%�!���$%�'�%� 
�	�%�����������()*�+
�������
��,� ()-..,������/#��0�������#�����

+	�����
��
�����1�����
������������
�������	
������#��������+���# �#�����	���+����
!������
��!���+����-��.-*��/��2334�.-*5/6�6��

���	����#
��
�1�.-�.-���.���6*���

�	�����7������
�������
���	�����	������������
��������

	�
���
2��+��#�	
����#�����������
����������������������	�
��� �#�"��
	���1��%������������1���������0�#��������
��#����#�
���������������+���"��#
���
�#�#���#�
��	��� ��#��
��	��0�������#�%�
��
������������	��+����#�"��
����
����
	���1�������������	�"�������
��
�������1����� 
�#����+������
������������	�
#���
����#���/����
��
�����������8��0����
�������������#����#�"���������������
 �+���
��
�������������
��������������������
�#�
�
���������+��

��������
2���
��
���#���
����������������
�������������������
�" �����"�����
���9����%�	�������
��������"��
�+�����1��	�����7������
������������#��1���������
���� ����
�#���#���������
���
����������#��������:������
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Fast ignition requires a precise knowledge of fast electron propagation in a dense hydrogen plasma.
In this context, a dedicated HiPER (High Power laser Energy Research) experiment was performed
on the VULCAN laser facility where the propagation of relativistic electron beams through
cylindrically compressed plastic targets was studied. In this paper, we characterize the plasma
parameters such as temperature and density during the compression of cylindrical polyimide shells
Þlled with CH foams at three different initial densities. X-ray and proton radiography were used to
measure the cylinder radius at different stages of the compression. By comparing both diagnostics
results with 2D hydrodynamic simulations, we could infer densities from 2 to 11 g=cm3 and
temperatures from 30 to 120 eV at maximum compression at the center of targets. According to the
initial foam density, kinetic, coupled (sometimes degenerated) plasmas were obtained. The
temporal and spatial evolution of the resulting areal densities and electrical conductivities allow for
testing electron transport in a wide range of conÞgurations.VC 2011 American Institute of Physics.
[doi:10.1063/1.3578346]

I. INTRODUCTION

In the context of inertial conÞnement fusion (ICF), the
concept of fast ignition (FI) is based on a rapid (� 10 Ð 20 ps)
deposition of a high amount of energy (� 20 kJ) in a precisely
located small volume, the so-called hot-spot, within a com-
pressed DeuteriumÐTritium (DT) shell. Several approaches for
creating this hot-spot have been investigated in the past years.1,2

The most known one features a high intensity laser-generated
electron beam as an ignitor (electron FI).1 Here, the fast elec-
tron beam, generated out of the compressed core, has to propa-
gate over some 100l m from the critical density surface to the
compressed DT shell,3Ð5 where the electrons must efÞciently
deposit their energy. Crucial issues of this particular scheme
consist in the laser-to-electron conversion efÞciency and in the
electron transport through a highly overdense plasma.

To understand both points, numerous experiments were
realized using solid targets6Ð15 and a few with 1D laser-com-
pressed targets.18Ð20 These pioneering works lead to the estab-
lishment of scaling laws for the laser-to-electron energy

conversion efÞciency,7,9,10 the electron beam current average
velocity,6 and divergence.11,12,15,16 Other experiments were
devoted to measure the range, the collimation of these elec-
trons, and the way they lose their energy while propagating
through solid samples, either foils,8,9,13,14,17 wire targets,21,22 or
1D-compressed foils.18,19,23 Nonetheless, using solid or even
1D-compressed targets stronglylimits the area of investigation
to low temperatures (< 10 eV) and moderate densities
(< 5 g=cm3), which are far from the plasma parameters of the
compressed core of a driven ICF target (100 g=cm3, 300 eV).
In this context, laser-driven shock compression in 2D cylindri-
cal geometry, in direct24 or indirect drive,25 is a promising tech-
nique for creating higher density and temperature plasmas,
suitable for the next step of fast electron beam transport studies.

We report on an experimental work addressing two
goals. The Þrst one, presented in this article, consisted in
studying the cylindrical compression of plastic targets in
order to determine their temperature and density evolution
during the compression. The second goal, presented else-
where,26,27 was devoted to the understanding of fast electron
transport, generated by an intense laser beam, inside such
compressed plasmas. We aimed to propagate the fast

a)Author to whom correspondence should be addressed. Electronic mail:
Santos.Joao@celia.u-bordeaux1.fr.
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electrons in plasmas having different thermodynamic proper-
ties as those met in FI fusion targets, either in terms of the
degeneracy and coupling levels of a compressed DT core, or
in terms of the temperature and density levels of the imploded
plasma between the fast electron source (near the critical sur-
face) and the compressed core. These plasma parameters
were tuned by changing the initial density of the targets or
the delay between the compression and the intense laser
beams. This way, we tested plasmas with different conductiv-
ities producing different regimes of electron transport. The
design of the cylindrical targets was optimized using the 2D
hydrodynamic code CHIC (Code dÕHydrodynamique et dÕIm-
plosion du CELIA) from CELIA28,29 according to the VUL-
CAN laser characteristics. Two diagnostics were used for the
compression monitoring: x-ray and proton radiography.

The paper is organized as follows: we introduce the ex-
perimental setup in Sec.II , the radiative-hydrodynamic code
used to design and interpret the experiment in Sec.III , and
present the results of x-ray radiography in Sec.IV. The ex-
perimental results are compared to the hydrodynamic simu-
lations to infer plasma parameters in Sec.V.

II. EXPERIMENTAL SET-UP

A. Description of the laser and target configuration

The experiment was performed on the VULCAN
Nd:glass (k ¼ 1:053l m) laser facility at the Central Laser Fa-
cility of the Rutherford Appleton Laboratory (RAL) in the
United Kingdom. Four long-pulse (LP) laser beams (4� 70 J,
1 ns atk=2) were used to radially compress cylindrical targets
(see Fig.1). The four LP beams were symmetrically distrib-
uted around the cylindrical wall of the targets and focused
using hybrid phase plates. Thetop hat spots sizes were
150l m FWHM (full width at half maximum) giving a maxi-
mum intensity on target of 3.1014 W=cm� 2. The four LP laser
beams were synchronized with a 50 ps accuracy.

The targets were composed of a 200l m long, 220l m
diameter, and 20l m thick hollow polyimide cylinder (with a
densityqpoly ¼ 1:1g=cm3), calledtarget shell, Þlled with CH
polymerized at three different initial densities (q0 ¼ 0:1, 0.3,
and 1 g=cm3), calledtarget core. The cylinders were closed
on both sides by 20l m thick Ni and Cu foils placed, respec-
tively, at the front and at the rear side. For the fast electron
propagation study (not described here) a tube-shaped plastic-
coated gold shield was stuck onto the Ni foil to protect it

from the ablated plasma created by the LP lasers beams (see
Fig. 1).

B. Diagnostics setup

The x-ray side-on radiography30,31 diagnostic was
mainly devoted to the characterization of the plasma parame-
ters (density and temperature) of the 1 g=cm3 targets at dif-
ferent stages of the compression.

A short pulse (SP) laser beam (10 ps, 160 J at
k ¼ 1:064l m) was focused on a 25l m thick Ti foil placed
at d¼10 mm from the target. The focal spot was 20l m di-
ameter and the laser intensity on the foil 5.1018 W=cm� 2.
The fast electron population created by the laser propagates
into the solid target and generates Bremsstrahlung as well as
line radiation from atoms, including inner-shell recombina-
tion lines like Ka-radiation. These x-rays transversally
probed the cylinder during the compression. The transmitted
x-ray Ka-radiation (Ti-Ka � 4:5 keV) was selected via a
spherically bent quartz crystal (Quartz 203, 2d ¼ 2:749 �A,
Rc ¼380 mm) at the Þrst order Bragg incidence (hBragg

� 89:5
�
) located at a distanceL1¼210 mm from the tar-

get,32 as sketched in Fig.2. The cylindrical target was
imaged on the detector (Imaging Plate BAS-TR) located at
L2 � 2 m away from the crystal. The total magniÞcation of
the imaging system wascx� ray ¼ 10:7 and the spatial resolu-
tion, depending on the crystal quality, the x-ray source size,
the detector efÞciency, and most importantly on the noise
level, has been estimated toDx � 20l m on target. Both val-
ues were experimentally measured by imaging a calibrated
grid placed at the target chamber center. The foam Þlling the
polyimide cylinders was doped with 30% of Cl (in mass) to
increase its x-ray absorption and enhance the contrast of the
x-ray radiography images. A variable delays was introduced
between the SP and LP laser beams in order to probe the tar-
get at different compression stages (0< s < 3:5 ns). The
x-ray time of ßight can be considered negligible compared to
the laser jitter (0.1 ns) and the values ¼ 0 is taken as the be-
ginning of the LP laser beams interaction with the target.

A transverse point-projection proton radiography diag-
nostic33,34 was also implemented to monitor the compression
of the 0.1 g=cm3 targets. The proton backlighter source was
obtained using an other short pulse (SP) laser beam focused
on a 20l m thick gold foil. The energy of the proton thus
generated was in the range of 1 Ð 10 MeV. More details
about the setup of this diagnostic can be found in Ref.37.

FIG. 1. (Color online) Schematics of the compression with the four long
pulse beams (left) and of the cylindrical target (right). FIG. 2. (Color online) X-ray radiography setup.
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III. HYDRODYNAMIC SIMULATIONS OF THE
IMPLOSION

For both the experiment design and interpretation, cylindri-
cal implosions are simulated using the radiative-hydrodynamic
code CHIC (Refs.28 and29). It includes two-dimensional axi-
symmetric hydrodynamics based on a cell-centered Lagrangian
scheme, electron and ion conduction, thermal coupling, and
detailed radiation transport. In our case, the ionization and
opacity data are tabulated assuming a local thermodynamic
equilibrium (LTE), depending on the plasma parameters. The
equations of state implemented in the code are based on a
QEOS model35 or SESAME (Ref.36) tables. Laser propaga-
tion, refraction, and collisional absorption via inverse Brems-
strahlung are described by a 3D ray tracing algorithm. The
cylindrical compression was simulated for the different targets,
modeling the shell by a 1 g=cm3 CH hollow cylinder Þlled with
CH foam at the three different initial densities (q0 ¼ 0:1, 0.3,
and 1 g=cm3). The spatial proÞle of each 2x 0 LP laser beam is
Gaussian shaped,I laser � e�ð r=r0Þ2

, with r0 ¼ 80l m. The pulse
temporal shape is 1 ns ßattop with a rising time of 200 ps. The
density and temperature 2D maps were computed for each tar-
get during its compression. The computation has been realized
for laser energies 4� 30 , 4� 48 , and 4� 70 J to take into
account possible errors in the measurement of the experimental
laser energy, in energy losses by the focusing optics, in the
shape of the focal spots and in the way the laser absorption is
numerically described.

IV. EXPERIMENTAL RESULTS

Figure 3(b) displays a typical x-ray radiography of the
cylinder ats ¼ 2:2 ns, next to, for comparison, a photography
of the target before the shot [Fig.3(a)]. One can clearly see a
compression of the target. X-ray transmission proÞles are
extracted from radiographies for different delayss by doing a
lineout of the compressed part of the cylinder, as indicated by
the white arrows in Fig.3(b). Experimental radii (HWHM)
are estimated by Þtting these proÞles with supergaussian func-
tions of fourth order (for early times, i.e., when the cylinderÕs
boundaries are still sharp) or Gaussian functions (close to the

stagnation time, i.e., when the density gradients are less
steep).

Figure4 presents the radius measurements (red triangles)
of q0 ¼ 1 g=cm3 CH targets doped with 30% mass of Cl atoms
at different stages of the compression. These experimental val-
ues are corrected on the widening due to the limited resolution
of the imaging system: HWHMcorrected¼

�������������������������������
HWHM2 � Dx2

p
.

The curves in Fig.4 show the radii deduced from calculations
of x-ray transmission through the simulated target density pro-
Þles for different LP laser beam energies: 4� 30, 4� 48, and
4 � 70 J. X-ray transmissions are computed by assuming a
laminar ßow of x-rays transversally probing the imploding cyl-
inder at different times. The region where one expects a trans-
mission drop due to the Cl doping is the coreÐshell border.
Because the temperature is not very high in this region, one
can assume cold opacities for the calculation of x-ray transmis-
sion. The compressed target was modeled by time-dependent
2D density maps obtained from CHIC hydrodynamic simula-
tions (see Fig.7 in Sec.V). As stated in Sec.III , the compres-
sion laser energy is varied in the simulations in order to Þnd
the best match for the experimental points. The best agreement
is found for 4� 48 J. In this case, the maximum compression
occurs ats ¼ 2:56 0:1 ns (stagnation time), which is in fair
agreement with experimental values (red triangles).

For comparison it is also presented the radial evolution
of the denser zone (corresponding to the high density central
part, as mentioned in Fig.5) estimated directly from density
proÞles. The radius deduced from x-ray transmission proÞles
does not correspond to the compressed zone size. This is
mainly due to the Cl doping.

The effect of the Cl doping in the target core is demon-
strated in Fig.5. Here, the simulated radial x-ray transmis-
sion proÞles are shown for doped (dark-blue solid lines) and
nondoped (blue dotted lines)q0 ¼ 1 g=cm3 targets, respec-
tively (a) at the stagnation times ¼ 2:5 ns (i.e., at maximum
compression), and (b) ats ¼ 3 ns. We recall that these

FIG. 3. (a) Photography of the target (1g=cc polymerized CHþ 30% Cl
doping in mass) before compression and (b) x-ray radiography of the same
target during compression (ats ¼ 2:2 ns). The white arrows highlight the
compression region of the target. Both images have the same spatial scale.

FIG. 4. (Color online) Evolution of the target radius measured by x-ray radi-
ography (HWHMcorrected) for 1 g=cm3 targets with 30%-mass Cl doping (red
triangles), compared to simulated x-ray transmission proÞle radii for three
different LP laser beam energies: 4� 30 (gray dashed line), 4� 48 (blue
solid line), and 4� 70 J (black dotted line). The CH denser zone radius
given by the hydrodynamic simulation is also represented (dotted dashed
purple line).
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targets have a CH core and a polyimide shell of almost iden-
tical initial densities and that there is no Cl doping in the
shell. The gray background zones identify the extent of the
CH core, i.e., the zones including the Cl doping. One can
notice the dopant Cl atoms improve the contrast ratio
between the typical core and shell transmissions. The per-
centage of Cl doping was Þxed to 30%-mass to guarantee a
good transmission contrast (theoretical contrast:
Cth � Tmax=Tmin � 80) between the core and the imploding
shell. Experimentally the obtained contrastCexp was only 2,
partly due to the presence of a background noise covering
the radiography. When comparing to the density proÞles
(dashed green lines) for times around the target stagnation,
the compressed zone diameter is considerably smaller than
the CH core size (corresponding to the doped zone size): at
s ¼ 2:5 ns [Fig.5(a)] the compressed zone radius is� 20l m
(HWHM) and the radius deduced from the x-ray transmis-
sion proÞle is� 50l m. For times before and after the stagna-
tion the difference is much smaller,� 5 l m (HWHM), as it is
shown in Fig.5(b) for s ¼ 3 ns. These differences, that are
important for 1:2 ns< s < 3 ns (see also Fig.4), can be
explained by the heated plasma expansion: It is indeed only
at � s ¼ 1:2 ns (i.e., at the end of the laser pulse) that the rar-
efaction front reaches the CH core producing important den-
sity inhomogeneities in the Cl-doped zone, which makes the
transmission proÞles signiÞcantly different from the density
proÞles. After stagnation, the shock rebounds and tends to
homogenize the density. The density plateau thus generated
becomes increasingly broad (but less dense) and ends up, at
s � 3 � 3:5 ns, in including all the CH plasma, i.e., the entire
Cl-doped area. In fact, without Cl doping one could hope to
measure the real size of the compressed zone only at times
close to the maximum compression. But in this case the lim-
ited transmission contrast (Cth� 2:3) would induce large
measurement uncertainties. The use of the doping allows for
measuring the size of the CH core with a good accuracy for
any s and can be easily linked to hydrodynamic simulations
via x-ray transmission proÞle calculations.

The results about the proton radiography of 0.1 g=cm3

targets are reported by Volpeet al.37 The experimental
results are, in this case, compared to hydrodynamic simula-
tions coupled to MonteÐCarlo simulations assuming a

laser-on-target energy of 4� ð 456 5ÞJ as for the x-ray ra-
diography. A good agreement is found (cf. Fig.14 from
Ref. 37) meaning that hydrodynamic simulations are reli-
able for this energy. However, it is important to notice that
protons are subject to scattering and energy loss in the tar-
get. In the plasmas analyzed here, this effect may strongly
degrade the spatial resolution of the diagnostic and, there-
fore, it should be taken into account in the simulations and
experiments.

V. HYDRODYNAMIC EVOLUTION OF THE TARGETS

Good agreement between the results from hydrodynamic
simulations and the experimental measurements reported in
Previous section (cf. Fig.4, and Fig.14 from Ref. 37) pro-
vides conÞdence in the capacity of the hydrodynamic code
to estimate the target density and temperature at any time of
compression.

Figure6 shows the mesh ßow (r-s) diagrams given by
the hydrodynamic simulations for 4� 48 J of laser energy
on target. The red curves represent the boundary between
the core and the shell. Forq0 ¼ 0:1 g=cm3 [Fig. 6(a)], the
core radius is� 15l m at the stagnation and is equal to
50l m for 1 g=cm3 targets [Fig.6(c)]. The corresponding
temporal evolution of the core density and temperature aver-
aged over the entire CH core is shown in Figs.6(d)Ð6(f).
The peak mean density and peak mean temperature are
achieved at the stagnation timess ¼ 1:9 , 2.15, and 2.5 ns,
respectively forq0 ¼ 0:1, 0.3, and 1 g=cm3 targets. These
are coincident with the minimum core radius in the (r-s) dia-
grams. These values fairly agree with the experimental
results deduced, respectively, from proton radiography of
q0 ¼ 0:1 g=cm3 targets and from x-ray radiography of 1
g=cm3 targets. The mean temperature and density decrease
with q0 for all the three targets. Therefore, compression is
more efÞcient in the case of the 0.1 g=cm3 target where the
mean peak density at stagnation is 40 times greater than the
initial density. This has to be compared to those obtained for
0.3 g=cm3 and 1 g=cm3 targets where the achieved compres-
sion are only 13 and 3 times, respectively. In return, the
stagnation is longer for denser targets: It lasts� 0:3, � 0:5;
and � 1:5 ns, for q0 ¼ 0:1, 0.3, and 1 g=cm3, respectively.

FIG. 5. (Color online) Simulated trans-
mission proÞles ats ¼ 2:5 ns (left) and
s ¼ 3 ns (right) for q0 ¼ 1 g=cm3 tar-
gets, doped with 30% Cl in mass (blue
solid lines) or nondoped (blue dotted
lines). The corresponding simulated den-
sity proÞles are also plotted (green
dashed lines). The gray background
zones identify the zones containing Cl
doping.
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The CH core density and temperature at a radius of 5l m,
representative of the targets center, are shown in panels (g)Ð
(i). Here the local density and temperature maxima antici-
pate the respective stagnation times, as they correspond to
the moment when the compressing shock reaches the center
(i.e., 1.6, 1.7, and 2 ns for, respectively, 0.1, 0.3, and
1 g=cm3 targets). The temperature at the center can be con-
siderably high, but this corresponds to a very small volume
of matter. A second bounce is appreciable in the curves for
q0 ¼ 0:1 and 0.3 g=cm3 targets [Figs.6(g) and 6(h)]. It is
due to the shell inertia that is pushing the foam core. After a
Þrst shock convergence, the shell itself reaches the center
producing a second rise in the density and temperature. In
the case ofq0 ¼ 1 g=cm3, the initial core and shell density
being equal, the core is compressed only by the convergence
of a shock wave. The maximum central density (tempera-

ture) increases (decreases) with the core initial densityq0,
as expected.

The detailed 2D density and temperature maps obtained
for (a) 0.1 g=cm3, (b) 0.3 g=cm3, and (c) 1 g=cm3 targets at
their respective stagnation times are shown in Fig.7. The
graphs below the 2D plots represent the corresponding den-
sity and temperature proÞles along with the cuts at 45

�
, i.e.,

the direction of the probing proton or x-ray beams, and also
at 0

�
, i.e., along one of the LP laser beams. Differences

between the two proÞles are mostly appreciable for
q0 ¼ 0:1 g=cm3 [Figs. 7(a), 7(d), and 7(g)], where the 2D
density and temperature cloverleaf patterns are imprints of
the nonisotropic laser irradiation. This is due to the difference
between the initial densities of the foam and the shell. For
q0 ¼ 0:3 g=cm3 this effect is much less visible [Figs.7(b),
7(e), and7(h)] and practically nonexistent forq0 ¼ 1 g=cm3,

FIG. 6. (Color online) Hydrodynamic simulations mesh ßow diagrams for (a)q0 ¼ 0:1 g=cm3, (b) 0.3 g=cm3, and (c) 1 g=cm3 targets assuming 4� 48 J of
laser energy: The red curves represent the limit between the core and the shell. The plots below are the respective simulated temporal evolutions of the CH
core density (blue solid lines) and temperature (red dotted lines), averaged over the entire CH core material for plots (d)Ð(f), and taken at 5l m from the center
for plots (g)Ð(i).
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where the compression is almost isotropic [Figs.7(c), 7(f),
and7(i)].

The q0 ¼ 0:1 g=cm3 target exhibits a� 15l m radius
region containing a rather low density and high temperature
plasma [Fig.7(a)] issued from the CH core. Here the temper-
ature decreases with radius from 120 eV at the center to 80
eV and the density increases from 2 to 5 g=cm3. This region
is surrounded by a� 5 l m-thick denser (q � 11 g=cm3) and
colder (T � 30 eV) layer, corresponding to the imploded
shell. In the outer region appears a rarefaction plasma
extended over a few 10l m and then the underdense, hot
coronal plasma where the temperature rises considerably
from a radius� 30l m.

In the caseq0 ¼ 0:3 g=cm3, as the foam is denser, the
compression is less efÞcient. The plasma resulting from the
CH core is larger, extended up to a� 25l m radius. Both
core and shell are less compressed than in the previous case.
The plasma proÞles in the core are less steep, the tempera-
ture decreases with radius from 65 to 40 eV, and the density
increases from 2.5 to 4.5 g=cm3. The shell density is smaller

with q � 8 g=cm3, its thickness is reduced to a 2l m thick
layer.

In the caseq0 ¼ 1 g=cm3, the compression is even less
efÞcient. As the core and the shell have the same initial den-
sity, the compression is processed differently: In the two previ-
ous cases the shell is ßying and pushing the foam core, in the
present case the core is compressed only by the convergence
of a shock wave. One cannot distinguish between plasma
regions resulting from the core and the shell. One can see a
highly compressed region of� 20l m radius with temperature
decreasing with radius from 40 to 25 eV and density increas-
ing from 5 to 9 g=cm3, followed by the rarefaction plasma.

The described CH plasmas obtained at stagnation are
represented in an electron densityÐtemperature diagram (ne,
Te) in Fig. 8(a). They correspond to different plasma states
which one can identify to the zones of the diagram separated
by the curveC ¼ 1=NDe ¼ 1, C representing the plasma cou-
pling parameter andNDe the number of electrons in the
Debye sphere, and by the curveEF=Te¼1 where the Fermi
energy EF divided by the temperature is the quantum

FIG. 7. (Color online) Simulated density and temperature maps of (a) 0.1 g=cm3, (b) 0.3 g=cm3, and (c) 1 g=cm3 targets for 4� 48 J laser energy at the respec-
tive stagnation times 1.9, 2.15, and 2.5 ns. The plots below represent the respective density (blue solid line) and temperature (red dotted line) proÞles: Plots
(d)Ð(f) correspond to lineouts of the 2D maps at 45

�
, i.e., the probing direction, and (g)Ð(i) at 0

�
i.e., one of LP laser beams axis.
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degeneracy parameter: The resulting compressed plasmas
are kinetic, coupled or coupled and degenerated, respec-
tively, for q0 ¼ 0:1, 0.3, and 1 g=cm3 targets.

In the context of FI studies, these three targets were used
in a second phase of the experiment to study the fast electron
transport in compressed matter.26 The fast electrons were gen-
erated by the interaction of an intense laser pulse (SP) at nor-
mal incidence into the Ni foil at one of the cylinder
extremities (see Fig.1) and propagated along the cylinder
axis. The electron transport was studied in the warm and
dense plasmas described above. The fast electrons were
injected at different stages of the compression by varying the
delay between the LP and SP laser beams. It is important to
discuss here how the obtained plasmas are suited to fast elec-
tron transport studies in the FI scenario. For comparison we
plotted in the (ne, Te) diagram of Fig.8(a) two points corre-
sponding to the DT plasmas at stagnation obtained in a simu-
lated implosion of a HiPER baseline target.3,38 The orange
circle corresponds to the 20l m radius core issued from the
DT gas contained in the capsule and the gray circle to the
imploded cryogenic DT shell. The plasma density and temper-
ature ranges achieved in our experiment are far from those of
the compressed DT designed for FI, but yet we produced plas-
mas with equivalent coupling and degeneracy parameters.
Besides, as one can see in Fig.8(b), the (q, T) range achieved
at stagnation in our cylindrical compressions (the region with
gray background pointed by the top arrow) corresponds to a
region located in the rarefaction plasma between the critical
density (where fast electrons are generated) and the com-
pressed shell (where they are supposed to depose their energy
to ignite the fuel), at a distance� 60� 70l m from it.

We comment here the difference in the cylindrical im-
plosion of our targets and the spherical ignition designs. In
our experiments the fast electrons cross dense plasma zones
having radii only slightly bigger than the electron source (15
to 40l m HWHM). In this case, the radius of the compressed
shell exterior surface is only 20l m and the underdense and
hot corona from the ablated material appears at a radius� 35
Ð 40l m. The fast electrons propagation will be affected not

only by the plasma radial inhomogeneities inside the CH
core but also, and probably in a more important way for the
q0 ¼ 0:1 and 0.3 g=cm3 targets at stagnation, by the presence
of the denser and colder imploding shell, with sharp temper-
ature and density gradients at both interior and exterior shell
surfaces perpendicular to the electron propagation direction.

Besides, the structure of the targets is changing with time,
so according to the SP beam delay relative to the LP beams (s),
the fast electrons will cross the targets of varying areal density
qL, with L the length of the cylinders. They are injected close
to the cylinder axis (within a pointing precision of6 10l m)
and, therefore, will cross cold and noncompressed material for
early times and warm and compressed material for times closer
to the respective stagnation time: One can see in Figs.6(g)Ð6(i)
that the center of the cylinders is still on its initial state for
s < 1:6, < 1:7, and< 2 ns for, respectively, theq0 ¼ 0:1, 0.3,
and 1 g=cm3 cases. This implies that the central zone crossed
by the electrons is highly resistive at early times and becomes a
conducting plasma behind the convergent shock at later times.
At any time there will be radialresistivity gradients at the
shock front (before stagnation) and at the target borders. These
regions are converging with time and are likely to inßuence
fast electron trajectories, as soon as those gradients appear at
distances comparable to the fast electron beam radius.

The results of the fast electron transport and its interpre-
tation are beyond the scope of this paper and will be reported
in an upcoming paper.

VI. CONCLUSION

We report on the preparatory phase of an experiment on
fast electron transport in warm and dense plasmas. The
cylindrically imploded plastic targets were characterized by
measuring the target size during compression, by using two
diagnostics: x-ray and proton radiography. The experimental
data are well reproduced by hydrodynamic simulations
coupled to calculations of the proton or x-ray transmission
through the imploded targets. Both diagnostics have limita-
tions in spatial resolution. In the case of proton radiography

FIG. 8. (Color online) (a) Diagram (ne, Te) showing the three different plasma zones obtained at the central region of the cylindrical targets at stagnation
according to initial densityq0 of the CH core. For comparison are plotted the points representing the required conditions for the compressed DT fuel in the
HiPER design for FI. The solid line corresponds to the coupling parameterC ¼ 1 and the dashed line to the quantum degeneracy parameterEF=Te¼1. (b)
Density (dashed blue line) and temperature (solid green line) in the baseline HiPER target at the moment of stagnations ¼ 11:12 ns (Refs.3 and37). The gray
zone (also indicated by the arrow on the top) corresponds to the (q, T) range achieved in our cylindrical compression experiment.
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as described by Volpe,37 scattering and slowing down of pro-
tons in the compressed target induce a reduction of spatial
and temporal resolution. The resolution of the x-ray radiogra-
phy is better because it is not affected by scattering and also
the chlorine atoms used as dopants in the target core improve
the contrast between the imploded core and the shell. Taking
into account the experimental resolution and using 2D hydro-
dynamic simulations, it is possible to estimate the spatial and
temporal temperature and density evolution of the imploding
targets. Several target conÞgurations were obtained to test the
fast electron transport.26 The values of density and tempera-
ture obtained at stagnation are representative of the plasma
domains encountered in FI compressed targets3,38 at 200l m
beyond the critical density surface, in the fast electron trans-
port region [see Fig.8(b)]. The plasma conditions created in
this experiment allow for more detailed simulations of the
fast electron transport due to a better understanding of the
physical processes in warm and dense matter.
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