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Improved Determination of -Factor and Resonant

Frequency by a Quadratic Curve-Fitting Method

M. P. Robinson and J. Clegg

Abstract—The -factor and peak frequency of resonant phenomena give
useful information about the propagation and storage of energy in an elec-
tronic system and therefore its electromagnetic compatibility performance.

However, the calculation of by linear interpolation of a discrete fre-
quency response to obtain the half-power bandwidth can give inaccurate re-

sults, particularly if the data are noisy or the frequency resolution is low. We
describe a more accurate method that makes use of the Lorentzian shape of

the resonant peaks and involves fitting a second-order polynomial to the re-
ciprocal power plotted against angular frequency. We demonstrate that this
new method requires less than one quarter the number of frequency points

as the linear method to give comparable accuracy in . The new method
also gives comparable accuracy for signal-to-noise ratios that are approx-

imately 8 dB greater. It is also more accurate for determination of peak
frequency. Examples are given both from measured frequency responses

and from simulated data obtained by the transmission line matrix method.

Index Terms—Electromagnetic compatibility (EMC) measurements, in-
terpolation, -factor, resonance, resonant frequency.

I. INTRODUCTION

Resonant phenomena are encountered in the field of electromagnetic

compatibility (EMC) when the dimensions of circuit boards, cables,

screened enclosures, and other structures are large compared to the fre-

quencies of interest. Although the Q-factors of these resonances are

often neglected, they are actually of great significance because they

describe the energy absorption and hence the height of the peaks in

the frequency response. These are often more important than the exact

frequencies of the resonances.Q is important in the energy-balance ap-

proach that Hill et al. take to characterizing the shielding effectiveness

of large enclosures [1], while Dawson et al. have extracted peak pa-

rameters from frequency responses in order to validate computational

Manuscript received May 13, 2004; revised September 1, 2004.
The authors are with the Physical Layer Group, Department of Electronics,

University of York, York YO10 5DD, U.K.
Digital Object Identifier 10.1109/TEMC.2005.847411

Fig. 1. Simulated frequency response of electric field strength in a screened
room, showing how a linear interpolation leads to an overestimate of half-power
bandwidth. (Solid line) Interpolated response. (Dotted line) “True” response.

electromagnetic (CEM) models [2]. The Q-factors of the individual

modes are key parameters in the design of stirred-mode chambers and

other reverberant environments [3]. Measurements of the changes in

Q-factors and resonant frequencies are used to characterize the con-

tents of shielded enclosures bymeans of the resonant perturbation tech-

nique [4]. In many cases, the data are obtained by either simulation or

computer-controlled instrumentation, and consist of scalar values of

voltage, electric field, etc. at discrete frequency points.

A simple and well-known method of calculating the Q from a peak

in a frequency response is to find the maximum power, divide it by

two, find the bandwidth at half-power, and divide this into the resonant

frequency. This “traditional” method was well suited to analogue in-

strumentation that gives a continuous curve on a display as an output,

and to graphical calculation techniques. However, with discrete fre-

quency points and numerical calculations it can lead to errors in the

resonant frequency, and more so in Q-factor, particularly if the sam-

pled frequency points are sparse. This is because it is unlikely that a

frequency point will lie exactly on the peak, so the peak power is un-

derestimated, the bandwidth overestimated, and the Q is too low. Fur-

ther errors come from linear interpolation between points—the method

used in many automated network analyzers (ANAs). This is illustrated

in Fig. 1, which shows how the bandwidth is overestimated owing to

the poor frequency resolution. In this example, it is about 85% too high,

and the peak frequency is also in error by 21 kHz.

A better approach is to use more of the points near the peak to im-

prove accuracy. A technique that applies this idea to transmission (S21)

measurements of theQ of a cavity is described admirably by Leong and

Mazierska [5]. Their method involves fitting a circle to complex S21
values plotted on a Smith Chart, and removes the effects of cables, con-

nectors, and mismatches to give an accurate determination ofQ-factors

in the range 103–107. It is well-suited to precision metrology, in a setup

where phase information is available. In the field of EMC, however, we

often have to use scalar instruments or deal with data which could have

been recorded alongside phase information but was not. There are often

practical limits to the smallness of the frequency step. In computational

electromagnetics, results from time-domain simulations are converted

to the frequency domain by Fourier transforms giving discrete points.

To improve the resolution means running the model for longer, which

0018-9375/$20.00 © 2005 IEEE
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can often take several hours. So we need a method of improving on the

linear-interpolation method without needing more points.

In this correspondence, we describe a quadratic curve-fitting method

of obtaining both Q and resonant frequency, and we compare it with

linear interpolation for measurements and numerical simulation. We

consider the effects of sparse data and poor signal-to-noise ratio (SNR)

on each method.

II. CALCULATION OF PEAK PARAMETERS

A. Frequency Response of an Oscillator

The standard theory of an oscillator shows that the power P devel-

oped in a resonant system such as a tuned circuit or shielded enclosure

is given by
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which is a quadratic in ! with coefficients given by
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Algebraic manipulation of these expressions gives the required reso-

nant angular frequency and Q, and also the peak power P0
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A plot of 1=P against ! should therefore be a parabola, and by fitting

a second-order polynomial to values of 1=P and ! we can determine

theQ-factor and the resonant frequency fres = !0=2� from (5). For a

frequency response describing voltage or electric field, we should plot

the reciprocal of the square against !.

Suitable routines for the curve-fitting are provided by many data

analysis programs such as Matlab [6]. Algorithms are also available

for those who prefer a do-it-yourself approach, such as the linear least

squares method described by Press et al. [7]. This method uses singular

value decomposition of the matrix before solving the linear set of equa-

tions for the coefficients of the fitting curve. This is because quite often

the matrix can be close to singular and by using the singular value de-

composition this problem can be overcome.

The question arises of howmany points to include in the curve fitting

stage. Empirically we have found that the most effective algorithm is to

Fig. 2. Data created by selecting every fourth point from the full dataset.

Fig. 3. Frequency response modified by the addition of Gaussian noise at
30 dB relative to the peak power.

start at the maximum power Pm, then in the positive direction continue

to include points until a point is reachedwhereP < 0:5Pm, then repeat

for the negative direction. This guarantees that there will be at least

three data points, which is necessary for fitting a quadratic.

The new method takes about 12 times longer to compute the param-

eters than does the linear-interpolation method, with the exact differ-

ence depending on the number of points between the half-power limits.

However in most situations the run-time of either method is likely to

be insignificant compared to the time taken acquiring the data or per-

forming the numerical simulations.

B. Measured Data

To evaluate the quadratic-fit technique we used measured data from

the frequency response of a screened room, loaded with “contents” (ac-

tually a human subject) in order to reduce the Q to a value typical of

many EMC situations. The data were obtained with an ANA coupled

to small monopole antennas in the roof of the chamber, giving an S21
measurement. We extracted 205 points close to the fundamental res-

onance of the chamber at approximately 59 MHz. The bandwidth is
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TABLE I
MEAN AND RANGE OF -FACTOR AND RESONANT FREQUENCY AS CALCULATED BY THE LINEAR-INTERPOLATION AND QUADRATIC CURVE-FIT METHODS,

AS A FUNCTION OF FREQUENCY STEP SIZE

TABLE II
MEAN AND RANGE OF -FACTOR AND RESONANT FREQUENCY AS CALCULATED BY THE LINEAR-INTERPOLATION AND QUADRATIC CURVE-FIT

METHODS, AS A FUNCTION OF SIGNAL-TO-NOISE RATIO (REFERENCED TO PEAK POWER)

approximately 84 kHz, and the Q is therefore 700. The linear-inter-

polation and quadratic-fit methods were implemented in Matlab [6],

using the function “polyfit.” This gives the coefficients of the quadratic

by means of a least mean squares algorithm. With a small frequency

step of 1.25 kHz and high SNR, this initial data yields similar values

of peak frequency and Q for the two methods.

To investigate the effect of increasing the frequency step, we “de-

populated” the initial data by picking every nth value. An example is

shown in Fig. 2, in which every fourth point has been chosen, thus in-

creasing the step to 5 kHz. Clearly there are n ways of doing this for

each value of n. We selected n = 1; 2; 4; 8; 16; 32; and 64; and created

up to 16 new datasets for each value. We then used the linear-interpo-

lation and quadratic-fit methods to calculate peak frequency and Q.

To explore the effect of poor SNR, we took the above datasets, and

added Gaussian noise to each data point, at levels of �60 to �20 dB

referenced to the power at the peak. An example is shown in Fig. 3

where the SNR is �30 dB. We repeated the procedure 20 times for

each SNR value. As before we compared the values of peak frequency

and Q as obtained by the two methods.

C. Numerical Modeling

To compare the twomethods further, we performed a numerical sim-

ulation of the screened room using the transmission line matrix (TLM)

method. This is a time-domain simulation which essentially gives the

impulse response of the room; the frequency response may then be

obtained by a Fourier transform. For our simulations we modeled an

empty room, and increased the losses by making the reflection coeffi-

cients of the walls equal to �0.999 rather than �1. This gives a Q of

approximately 1200, a bandwidth of 49 kHz, and a resonant frequency

of 59.315 MHz.

With a grid size of 50 mm, it was necessary to run the model for

1:05 � 10
6 time steps in order to get a frequency resolution of 11.4

kHz. This took 42 h on a computer with an Athlon 2100XP processor.

To produce datasets with larger frequency steps, we took the time re-

sponse and truncated it, to give durations of 1/2, 1/4, 1/8, 1/16, and

1/32 of the original response, and correspondingly larger frequency

steps of up to 370 kHz.We then calculated the peak frequency andQ of

each frequency response using the linear-interpolation and quadratic-fit

methods.

III. RESULTS

Table I shows the values of Q-factor as calculated by the linear-in-

terpolation and quadratic-fit methods, with the frequency step ranging

from 1.25–80 kHz. For each method the spread of Q values increases

with frequency step. However the range of values for the quadratic-fit

method is much less than for the linear-interpolation method. At a fre-

quency step of 80 kHz, which is similar to the bandwidth of the reso-

nance (84 kHz), the range is 27 for the improved method but 420 for

linear interpolation. The quadratic-fit method gives comparable accu-

racy for frequency step sizes that are four to five times greater.

Table I also shows a similar comparison for the peak frequency. At

a frequency step of 80 kHz, the ranges of fres are 73 and 0.5 kHz for

the linear and quadratic methods, respectively. The linear method can

only locate the peak to a precision of plus or minus half the step size,

while the quadratic-fit method, which uses more points, can locate the

peak much more precisely.
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Fig. 4. -factor and resonant frequency of TLM simulation, calculated by the
quadratic-fit (o) and linear-interpolation (+) methods, as a function of frequency
step size. (a) -factor. (b) Resonant frequency.

Table II shows the values of Q-factor as calculated by the linear-in-

terpolation and quadratic-fit methods, as the SNR is increased from

�60 to �20 dB relative to the peak power. As might be expected,

the spread of Q values increases with SNR for each method. How-

ever, the quadratic-fit method is superior in both precision and accu-

racy. At an SNR of �30 dB the range of Q values is 220 for the

quadratic method and 360 for linear interpolation. We estimate that

the quadratic-fit method gives comparable ranges in Q-factor for SNR

values that are 8 dB higher. Furthermore the linear method underesti-

mates the bandwidth of the resonance, givingQ values that are too high

(mean 746), while the mean of the Q values at an SNR of �30 dB is

706, i.e., still close to the “true” value of 701.

Table II also shows the effect of increasing SNR on the peak fre-

quency. The quadratic-fit method again shows superior performance.

The range of values of fres at an SNR of �20 dB is 15 kHz for the

quadratic method, which is similar to the range of values for the linear

method at an SNR of �40 dB.

In Fig. 4(a), the Q-factors obtained from the TLM simulation using

the two methods are plotted against frequency step. Fig. 4(b) shows

the corresponding plots for resonant frequency. It can be seen that for

the linear-interpolation method the values of Q and peak frequency

begin to deviate from their “true” values at a frequency step of approx-

imately 15 kHz, while the quadratic-fit method maintains accuracy up

to a step size of about 100 kHz. Note that this is approximately twice

the half-power bandwidth of 49 kHz. As the frequency step for TLM

is inversely proportional to the run time, these results show that a sim-

ulation followed by linear-interpolation would need to be run for six to

seven times as long as one using the quadratic method.

IV. CONCLUSION

The quadratic curve-fitting method of obtaining peak parameters is

better than the simple linear method, because it is less sensitive to poor

frequency resolution and to the effects of Gaussian noise. The need

to apply a polynomial-fitting algorithm is not a disadvantage because

this can be done very quickly on a modern computer. The quadratic-fit

method will give more accurate values of Q-factor and resonant fre-

quency from existing data, and will enable newmeasurements and sim-

ulations to be performed with less stringent requirements on frequency

resolution and signal-to-noise.
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