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Abstract Successful analysis of the models used in Model-

Driven Development requires the ability to synthesise the 

results of analysis and automatically integrate these results 

with the models themselves. This paper presents a 

reversible template language called XRound which 

supports round-trip transformations between models and 

the logic used to encode system properties. A template 

processor that supports the language is described, and the 

use of the template language is illustrated by its application 

in an analysis workbench, designed to support analysis of 

security properties of UML and MOF-based models. As a 

result of using reversible templates, it is possible to 

seamlessly and automatically integrate the results of a 

security analysis with a model. 

Keywords Model-Driven Development, Template 

Processing, UML, Security Analysis  

 

1. Introduction 

Transformations are a critical component of Model-

Driven Development, particularly in the Model-Driven 

Architecture (MDA) [1]. To this end, the 

Query/Views/Transformations (QVT) [2] standard has 

been developed, in order to provide a precise mechanism 

for describing  transformations between models.  

QVT transformations can be unidirectional (i.e., from 

one metamodel to a second not necessarily different 

metamodel) or bidirectional (i.e., reversible between two 

metamodels). The former is of critical importance in 

MDA, e.g., for transforming platform independent models 

(PIMs) into platform specific models (PSMs). The latter is 

vital for supporting round-trip engineering, and also 

rigorous analysis of models: the results of a logical 

analysis (e.g., correctness, timing analysis, security 

analysis) may need to be reflected in the source of a 

transformation. For example, a static analysis may be 

applied to a PSM, resulting in changes being made to that 

PSM. These changes may need to be reflected in the 

original PIM. 

Limited tool support currently exists for bidirectional 

transformations; key state of the art is summarised in 

Section 2. Bidirectional transformations can be awkwardly 

implemented by the sequential application of 

unidirectional transformations, but this is not entirely 

satisfactory because information – e.g., detailed 

representations of platforms, model element identities – 

may be lost after each unidirectional transformation is 

applied. This will particularly be the case with 

transformations that are reused from libraries in 

unexpected ways. More generally, it is difficult to ensure 

round-trip consistency in a sequence of unidirectional 

transformations. 

This paper describes a new template-based language, 

called XRound, for specifying bidirectional transformations 

between models of arbitrary languages. Moreover, the 

paper presents powerful tool support for this language that 

implements bidirectional transformations, particularly to 

support merging of the results of model analysis with an 

original model. XRound and its tool support are both 

illustrated in the context of a case study demonstrating a 

particular form of model analysis, namely security risk 

analysis (explained in Section 1.1). General lessons 

learned about model analysis and using XRound in the 

context of merging analysis results with models are also 

extracted and discussed. 

1.1 Context and contribution 

Given a model of a system, such as a Unified Modelling 

Language (UML) or Matlab/Simulink/Stateflow model, we 

can apply tools to analyse the model, to determine if it has 

desirable properties. A variety of analyses are possible and 

are used in practice, particularly consistency checking (e.g., 

does the information contained in one UML diagram 

contradict that contained in a second diagram), timing 

(e.g., is the worst-case execution time for a system 

satisfactory), failures (e.g., does the system mitigate for a 

particular class of fault) and security. We illustrate the use 

of XRound and bidirectional transformations in the context 

of security risk analysis in this paper. 

Security risk analysis is concerned with discovering 

threat paths in a system which allow potential attackers to 

access system assets. Concrete security objectives are in 

the form of specific unwanted outcomes to particular assets 



(e.g. integrity of particular data); however, the analysis 

process is forced to consider all possible threat paths to 

each asset, and this requires an efficient analytic tool.  

The basic idea behind any form of model analysis is as 

follows. A model (e.g., in UML) is annotated with 

properties. In the case of security risk analysis, the 

properties attached to a model are predicates: facts that are 

true, or that we wish to assert, about the model (examples 

follow in the sequel). These properties are collected by an 

analytic tool, which then processes them and returns 

results. The results of analysis may be additional properties 

that need to be integrated with the original model, e.g., 

new security requirements that have been added to control 

threats, failure modes for collections of components, 

worst-case execution time for a subsystem. This 

integration is generally quite difficult, especially because 

engineers may need to use different tools for modelling 

(e.g., a UML tool) and specialised analyses.  

The usual solution for lightweight tool integration of 

this form is template processing. A template processing 

system applies a template to a data model via a template 

processor, resulting in the extraction and formatting of the 

data for some particular application. An example of a 

template language is XSLT, which is used for transforming 

XML documents, usually into text or HTML.    

This is an attractive solution, since it allows designers to 

use their preferred modelling environment, and does not 

necessarily require a complete definition of the languages 

supported by that environment (e.g., a complete UML 

metamodel). It is also preferable from the tool software 

perspective; for example, type checking of properties can 

be implemented once within the analytic tool, rather than 

in each UML environment. It is also attractive from the 

perspective of compatibility with the traditional principles 

and practices of MDA and MDD. MDA, for example, 

operates in terms of application of model transformations 

to elaborate models, add platform details, remove details, 

and eventually generate code. Template processing is 

another mechanism for model transformation; in particular, 

when applied to security analysis (as we do in this paper), 

template processing supports the concept of in-place 

transformation, which updates a model to include new 

(security) information. Thus, a template processing 

approach to model analysis adds no additional complexity 

to typical MDA/MDD processes, and in addition helps to 

support domain experts (e.g., security engineers) in their 

efforts. 

Template processing provides an important bridge 

between different tools, but the currently available 

solutions are unable to support the reverse path of unifying 

the output data back into its original source. Round-trip 

engineering of analysis results back into the UML is 

therefore not straightforward with a conventional template 

processor, but is an important requirement for specialist 

analytic tools, 

XRound is designed to overcome this problem. Its 

objective is to maintain the advantages of template 

processing, including simple scripting of data 

transformations and independence between input and 

output applications, while supporting bidirectional 

transformations. This language and its supporting template 

processor allow model analysis tools to import Extensible 

Markup Language (XML) models with a source-specific 

metamodel, and re-generate the XML when the analysis 

model is changed. The security analysis workbench 

application described in Section 7 is one such application: 

a specialised analysis tool that imports UML models in the 

XML Metadata Interchange (XMI) format, and uses a 

bidirectional transformation to merge its results into the 

original XMI model.  

The contribution of this paper is to describe the XRound 

language, its motivation, its relationship with standard 

template processing, and how it supports bidirectional 

transformations via so-called reversible templates. 

Additionally, the implementation and use of the XRound 

language is shown to be feasible by presenting a 

supporting template processor and a practical application. 

XMLSource, a Java-based template processor for XRound, 

is described in both system and implementation terms, and 

the successful use of XRound in security analysis is 

discussed.  General lessons learned about supporting 

different kinds of model analysis are also synthesised in 

the conclusions. 

We commence with an overview of related work on 

transformations and model merging, and then in Section 3 

discuss the notion of a reversible template, which is at the 

foundation of XRound. The required processing for 

reversible templates is presented. Section 4 presents 

XRound itself, and Section 5 illustrates the language with 

several small examples. Section 6 summarises the template 

processor that supports XRound, and section 7 explains the 

use of XRound in supporting security analysis. We then 

discuss lessons learned, conclusions, and future work. 

2. Related Work 

There is substantial related work on model 

transformation, model merging, and template-based 

techniques that is relevant to the approach presented in this 

paper. We now review this work. 

2.1 Transformations 

Transformations are a critical component of Model-

Driven Development, particularly in the MDA [1]. The 

MOF (Meta-Object Facility) 2.0 QVT standard [2] has 

been developed in order to provide a precise, flexible 

mechanism for modelling transformations. QVT provides 

the means for declaratively capturing both unidirectional 

and bidirectional model transformations. These can be 

independent (i.e., the result model is not linked with the 

source model after transformation) or dependent. 

Dependent transformations aim at supporting a similar 

approach to the reversible templates applied in this paper; 

we are unaware of any QVT tool support for dependent 

transformations at this stage. QVT aims to support a 



variety of scenarios for transformation. Regeneration and 

reconciliation of transformation results is most similar to 

what is intended for the reversible templates we present. 

Tools for supporting transformations have been 

developed. Of note amongst these are the Atlas 

Transformation Language (ATL) [3], XMF-Mosaic [4], 

Yet-Another Transformation-Language (YATL) [5], 

VIATRA2 [6] and Epsilon [7]. These languages and tools 

are all targeted at Model Driven Development. There are 

also transformation tools outside of the Object 

Management Group (OMG) standards; for example, the 

TXL [8] framework has some similarities to QVT, though 

it has been predominantly targeted at programming 

language transformation. In this sense, TXL has some 

similarities to the model-to-text proposals, such as 

MOFScript [9]. 

The generative programming community has made use 

of template-based techniques to implement transformations 

[10], and tools have emerged, including Velocity [11] or 

Java Emitter Templates (JET) [12]. These are generally 

unidirectional transformations aimed at minimizing the 

amount of code that needs to be rewritten in a code 

generation process. 

Tratt's Converge meta-programming language [13] has 

also been used successfully to implement a transformation 

language, in this case as a domain-specific language.  Tratt 

also describes a change propagating transformation, also 

implemented using Converge, wherein updates made to the 

source model are automatically propagated to the target 

model. A similar approach to change propagating 

transformations is considered by Alanen and Porres in their 

Coral system [14]. They describe their tool architecture in 

detail, focusing on its activation mechanisms, which have 

some similarity to the architecture of the template engine 

described in this paper. 

Hu et al describe a programmable editor for developing 

structured documents (typically XML) based on 

bidirectional transformations [15]. Their intent is to allow 

operations to be applied to a document view, and to have 

an editor automatically derive a consistent document 

source along with a transformation to produce the view. In 

this manner, consistency is guaranteed by construction. 

They define a new (declarative) language for describing 

transformation rules, and implement a view updating 

scheme (similar to those from the database community) 

which reflects view modifications on the underlying 

repository. 

2.2 Model merging 

A model management operation related to 

transformation is model merging (sometimes referred to as 

model composition, weaving, or unification). Merging 

models is the process of integrating two or more models – 

often representing parts of the same system – into a 

unified, consistent, single model. Model merging is related 

to database schema merging. A generic approach to model 

merging was described by Pottinger [16]. Approaches to 

model merging targeted at Model-Driven Development 

have begun to appear. The Atlas Model Weaver (AMW) 

[17], which makes use of ATL, is one of the first generic 

prototypes. It makes use of a weaving model to describe 

correspondences between model elements (e.g., which 

elements are to be merged). The Epsilon Merging 

Language (EML) is a rule-based language which allows 

models to be compared (to identify correspondences), and 

elements to be thereafter merged [7]. Pierce et al’s [18] 

research on data synchronisation is strongly related to 

model merging and composition, as it focuses on the more 

general problem of synchronising XML documents via bi-

directional transformations. It is targeted specifically at 

efforts to ensure view consistency for tree-structured data, 

but does not propose a concrete language for 

transformations and updates, nor has it been applied 

directly to security analysis. By contrast, the work in the 

DEGAS project explored security analysis in the context of 

the Choreographer platform [19], but they did not present a 

concrete transformation language as well. 

Model merging could be used to solve the problem of 

combining the results of an analysis of models with the 

models themselves. For example, a set of EML rules could 

be written that identify where the results of analysis should 

be inserted into a source model, and a second set of rules 

written that describe the results of the merging process. 

The main difference between the approach offered by 

model merging, and the approach in this paper, is that any 

such merging rules will focus on integrating the results of 

analysis with source models. The approach we present in 

this paper allows one set of templates to be written which 

support both source-to-target generation (i.e., producing a 

model to be analyzed) and target-to-source generation. 

Conceptually, using a model merging approach and using 

reversible templates are equivalent.  

2.3 Security analysis 

There has been some related work on model-based 

security analysis, beyond what we have mentioned in 

Sections 2.1 and 2.2. 

Related to model merging and model transformation is 

aspect-oriented modeling and weaving. Models of cross-

cutting concerns (called aspects) are woven with system 

models via an automated process. The application of 

aspect-oriented modeling to security analysis is considered 

by Petriu et al [20] and Houmb et al [21]. These 

approaches differ from the work presented in this paper by 

focusing more on the development of security artifacts and 

supporting analysis, rather than being able to reflect the 

results of analysis in system models. 

Breu et al consider security analysis in the context of 

MDA [22]. They model security requirements using UML 

diagrams and focus on using transformations to generate 

security artefacts for web services systems. Jurjens [23] 

has presented an approach to building security-critical 

systems using UML, and provides tool support for 

automated verification. Brændeland [24] has explored 

security analysis for component-based systems. The focus 

of the work in this paper is more on the infrastructure 



needed to support different kinds of security analysis 

without being restricted to specific tools and metamodels, 

on supporting the analysis of security risk in the system 

design process, rather than reasoning about security 

functionality, and on being able to support reflection of the 

results of analysis automatically in models.  

3. Processing Overview 

This section introduces the key concepts behind a 

reversible template, and then describes how the required 

processing functions motivate the overall structure of the 

template language. 

3.1 The system context 

The original motivation for reversible template 

processing was to enable the analysis and round-trip 

updating of XMI representations of UML models produced 

using proprietary design tools. However, the template 

processor and the XRound language are general XML 

transformation tools, a typical application of which is 

shown in Fig 1. 
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Fig. 1 Reversible template processing architecture 

 

In Fig 1, an application is required to process and 

modify an XML model, which is normally managed by a 

proprietary tool. The application could directly manage the 

reference XML document, but this would dedicate the 

application to a proprietary metamodel.  The purpose of 

the reversible transformation is to decouple the application 

from the tool-specific metamodel, by specifying a template 

which allows the application to import elements of the 

XML model, and also update that model to be consistent 

with changes made by the application.  

One benefit of using a template, as opposed to 

automating the transformation between two meta-models, 

is that only partial metamodels need to be specified; in 

other words, only the elements of the proprietary model 

required for the application need to be understood. The 

benefit of using a single template to specify a bidirectional 

transformation is consistency: only a single document is 

needed to specify the relationship between the application 

and the proprietary metamodel. 

The relationship between the template processor and the 

application is an application programming interface (API), 

in which the application is a client of the template 

processor.  Facts about the model are predicates, which are 

exchanged between the template processor (see section 6, 

below) and the application. 

Three main functions must be supported by the template 

processor; they are: 

• validation: to check that the format of the XML 

document is compatible with the supplied XRound 

template; 

• import: to read the XML document, and provide the 

application with the predicates specified in the template; 

and 

• export: to update the XML document to be consistent 

with predicates held by the application. 

One implementation of the template processor is 

described in section 6; the following sections describe the 

principles of reversible templates in more detail.  

3.2 Bidirectional Transformations and Model 

Unification 

Template processing is usually a one-way operation as 

shown in Fig. 2: the template processor locates elements in 

the input tree and publishes them, suitably formatted.  

In the case of XML data, the input to the template 

processor is a tree; the output may be XML, or it may be 

published in another format such as text or HTML. 

Conventional templates are capable of expressing arbitrary 

computation, but their fundamental structure is still to 

navigate to selected nodes in the input tree, extract 

information, and produce suitably formatted output. The 

benefit of a template over a standard programming 

language is usually that it is tailored to the particular type 

of input and output required. 
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Fig. 2 Conventional template processing 

Reversible templates defined in XRound are similar in 

structure to existing templates, but encapsulate a 

fundamentally different type of operation: unification. The 

operation of a reversible template is shown in Fig. 3. 
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Fig. 3 The template unification process 

A reversible template navigates to elements in the input 

tree, in a similar way to a conventional template, but it also 

references values that are shared with the application. The 

fundamental operation is to match, or unify, values in the 

source tree with values in an application predicate. 

Unification allows values to be determined from either the 

source tree, or the application predicate, or if values are set 

in both, to ensure that they are consistent. For example, in 

Fig. 3 the first value is not known in the source, but is 

available in a predicate; the opposite is true for the second 

value; and the third is the same in both source and 

predicate, so this unification succeeds.  

The underlying unification process determines the 

design of the template language; each part of the template 

identifies a unification slot, and the fundamental operation 

is ‘match’, which is to unify the slot with either the XML 

input tree, or the application predicate.  

Unification is conceptually straightforward, but 

designing a template language that exploits this process 

does present some problems, including:   

• The source navigation for a reversible processor is not 

quite the same as a conventional template processor, 

because is has to unify input nodes that do not exist. For 

example, in Fig. 3 it is not simply the case that the input 

node does not have the first value set, but that the whole 

node (A.1.1) is missing. The template language must 

allow the programmer to specify which nodes are 

allowed to be missing, and which areas in the source 

tree are fixed. In XRound, nodes that may be missing 

are marked as mutable, and can be created by the 

template processor. 

• Because either nodes in the input tree, or attributes 

within nodes, may be missing, it is not always possible 

to select nodes based on an attribute value, as in an 

Xpath [25] expression; it is necessary to unify nodes 

that are present while certain attribute values within the 

node are missing. In XRound this problem is solved by 

a general constraint mechanism, which constrains 

unification slots to specified values. Constraints are also 

unified as part of the matching process and can 

therefore be used to specify the types of predicate that 

can be generated, constrain XML node selection, and 

determine application predicates to be unified. 

The underlying unification process determines some 

features that are needed in a reversible template language: 

the specification of unification slots and constraints. The 

next section describes template processing functions, and 

how they are supported. 

3.3 Template Processing 

This section describes the operation of template 

processing in sufficient detail to motivate the clause 

structure of the XRound template language.  Section 6 

describes the template processor in more detail.   

The previous section described template-based 

unification, and this places some requirements on the top-

level sections of the template language, which are known 

as the clauses. Essentially a clause must: 

• specify a number of unification slots; 

• allow the specification of constraining values for each 

slot; and 

• unify values in the XML input and/or in application 

predicates with slot values and constraints. 

In order to allow for a separate verification section, and 

also to allow the user to distinguish parts of the XML input 

that should be fixed, as opposed to those that may be 

rewritten, three types of clause are defined in XRound: 

• validate 

• structure 

• roundtrip 

A validate clause specifies validation checks, a 

structure clause references elements of the XML input that 

should not be modified, and a roundtrip clause includes 

input nodes that may be modified when the XML is 

regenerated from application predicates. The value of the 

structure clause is that it allows some performance 

optimisations compared to roundtrip clauses, because it 

does not have to account for missing nodes. However, it is 

not the case that all nodes visited by roundtrip clauses can 

or should be re-written; nodes that can be updated are 

specifically identified in XRound by a mutable attribute. 

The three processing functions described in section 3.1 

are now described: 

Validation. Validation can be used to make any checks that 

the programmer requires, but its primary aim is to ensure 

that the template and the XML input are compatible. A 

particular template will apply to a limited range of source 

tools and versions; validation clauses in the template are 

used to make any measurements on the XML input data 

that are necessary to check that XML document is 

compatible with the template. 

After the XML input and the template have been 

successfully opened and parsed, each validate clause is 

executed, and each must succeed for the validation to 

succeed. No other clauses are executed during validation, 

and the validation clauses are not executed as part of any 

other processing. 



Import. The import operation is similar to normal template 

processing, it is used to assemble predicates from the XML 

input and provide them to the client application. 

Any structure clauses are first executed, followed by 

roundtrip clauses.  Each clause is unified with constraints 

specified within the clause, but not with any application 

predicates. The clauses have one or more publish attributes 

that mark completion; when these are reached the 

unification slots within the clause are checked and, if 

complete, a predicate is exported to the client.  

Export. The export operation merges predicates from the 

client application back into the XML input, then saves the 

result. The purpose of the operation is to update the XML 

representation with any changes that have been made by 

the application, without the need for the application to 

manage the specific XML metamodel, and without the 

need to write different templates for input and output 

processing. 

The first processing stage executes all the structure 

clauses in the template; although this will not result in any 

updates to the XML output, it is necessary because it may 

build reference information that is used later (see 

Performance Management, below).  There are two further 

processing stages, the second removes mutable nodes, 

assuming that nodes no longer present in the application 

have been deleted intentionally, and the third re-builds 

nodes from the application predicates. In both cases, the 

operation (remove, build) takes place only for mutable 

nodes that have been encountered during a successful 

unification of a roundtrip template clause. The values 

written to the rebuilt nodes are obtained from the 

unification slots in the template, and so may contain values 

from the application predicates, from the XML input, and 

from clause constraints. 

 In summary, the process that allows a template to be 

interpreted in both directions is unification; this has 

implications for the types of navigation that can be carried 

out within a template and determines the need for other 

structure in each clause: unification slots and constraints. 

The three key operations of validation, import and export 

are supported by the clause structure in XRound, allowing 

the programmer to specify validation checks (validate), 

elements of the XML that should not change (structure), 

and parts of the XML model that may be modified 

(roundtrip). 

4. The XRound Language 

This section describes the complete XRound language. 

It begins by describing how an XRound template is 

organised in terms of clauses and how they support 

unification slots, constraints, and transformations. This is 

followed by a discussion of other types of constraint, and 

additional language features, including those that support 

performance management and debugging. 

4.1  Basic Template Structure 

The top-level structure of the template language is given 

in the abbreviated XML Document Type Definition (DTD) 

in Table 1.  

 

 

Table 1 Abbreviated XRound Document Type Description 

<!ELEMENT tpl.template ((tpl.validate|tpl.structure|tpl.roundtrip)* )> 
 
<!ELEMENT tpl.validate ((tpl. declare|tpl.constraint)*,tpl.specification+)>  
<!ATTLIST tpl.validate  length  CDATA #IMPLIED  
         auxLength CDATA #IMPLIED> 
 
<!ELEMENT tpl.stucture ((tpl. declare|tpl.constraint)*,tpl.specification+)> 
          
<!ELEMENT tpl.roundtrip  
 ((tpl. declare|tpl.constraint|tpl.uniqueName)*,tpl.specification+)> 
 
<!ELEMENT tpl.declare> 
<!ATTLIST tpl.declare  position  CDATA #REQUIRED> 
         name  CDATA #REQUIRED> 
 
<!ELEMENT tpl.constraint (tpl.value+)> 
<!ATTLIST tpl.constraint position  CDATA #REQUIRED> 
 
<!ELEMENT tpl.uniqueName (tpl.value+)> 
<!ATTLIST tpl.uniqueName position  CDATA #REQUIRED> 
 
<!ELEMENT tpl.value (#PCDATA)> 

… 

 



An XRound template is a well-formed XML document 

containing three node types that may occur in any number 

and any order: tpl.validate, tpl.structure and tpl.roundtrip. 

These are the clauses introduced in the previous section. 

Attributes in each clause node specify the number of 

unification slots (length + auxLength), which may be 

indexed as an array in the subsequent template (e.g. 

position = “0”). The slots are divided into two types, the 

first (specified by length) are mapped directly to an 

application predicate; the second (specified by auxLength) 

are auxiliary variables used during template processing.  It 

is necessary to index the predicate as an array, to ensure 

that the order is specified for the application; however, it is 

also possible refer to unification slots by name, for the 

purpose of readability. This is the purpose of the 

tpl.declare statement, which may occur within any of the 

three main node types. The scope of such a declaration is 

the node (template clause) in which it occurs, and it allows 

any attribute that would specify a unification slot number 

to use the declared name as an alternative (e.g. position = 

“UML_CLASS”). 

Each clause may have any number of constraints; each 

constraint has a position attribute that specifies the 

associated unification slot, and a number of values.   

Because the round trip process can generate nodes that 

were not previously part of the XML input, it is sometimes 

necessary to generate new unique names. For example, 

unique identifiers (xmi.id) may be needed for UML 

elements in XMI models. tpl.uniqueName specifies that a 

unification slot will be filled with a unique name that is 

generated by the template processor, if it is not otherwise 

defined by the unification process.  

A clause therefore specifies the unification space, or 

number of slots, and gives constrained values to those 

slots. One or more specification nodes in each clause 

determine the correspondence between the XML input and 

unification slots in the template, and hence the application 

predicates. 

The remainder of the language is presented as constructs 

and examples, rather than a DTD; this is because 

specification nodes may quote from the DTD of the source 

XML document, modified with additional optional 

attributes; the resulting DTD for the XRound would 

therefore either be application specific, or unhelpfully 

contain extensive provision for “any” nodes.  

4.2 Template Specifications 

A template specification is well-formed XML; unlike 

some template languages it follows a tree structure, rather 

than a sequence. Depth in the tree indicates subsequent 

operations and breadth allows the specification of 

alternatives. There are three types of node in a template 

specification: Source Nodes, Navigation Nodes, and 

Matching Nodes.  Certain XRound attributes may appear 

in more than one type of node, so these will be summarised 

before specification nodes are described. 

4.2.1 Generic Attributes 

Generic attributes may appear in several different node 

types; they are used to control the behaviour of the 

template processor.  

A publish attribute can appear anywhere in a 

specification tree, and its effect is to test if unification is 

complete, and if so mark that result as successful. Table 2 

illustrates the use of this attribute. 

Table 2 The publish attribute 

<first> 
 <second publish=”TRUE”/> 
 <third> 
  <fourth publish=”TRUE”/> 
</third></first> 

 

The specification in Table 2 would find all instances of 

first…second and first…third…fourth that unified. (first, 

etc, are not of course valid node names.)   

A tpl.mutable attribute specifies that the sub-tree 

beneath the node in which this attribute is set can be 

removed or re-written when predicates from the client 

application are exported back into the XML document. 

This attribute may only occur in source or navigation 

nodes, within roundtrip clauses; Section 5.2 provides an 

example that illustrates the use of tpl.mutable.  

Two other attributes may appear anywhere within an 

XRound template, they are tpl.debug and tpl.message. 

Their primary function is for template debugging, and their 

use is described in section 4.5, below. 

4.2.2 Source Nodes 

Source nodes name a node type in the XML input 

document. They cause the template to evaluate all nodes of 

that name from the current position in the XML document. 

A typical template is therefore interspersed with node 

names from the source document, together with statements 

specific to the template language. 

4.2.3 Navigation nodes 

The XRound language supports four types of navigation 

statement: 

• select: evaluate all nodes with a given name; 

• selectfromChildren: evaluate child nodes; 

• moveUp: move up in the XML document tree; and 

• selectRegisteredNode: evaluate registered nodes. 

Selection statements result in the evaluation of all the 

selected nodes. The selectRegisteredNodes statement is 

concerned with performance management, which is 

discussed in section 4.4, below; examples of the other three 

statements are given in Table 3. 



Table 3 Navigation statements  

<tpl.select node="UML:ClassifierRole"> 

 
<tpl.selectFromChildren    
 node="UML:AssociationEnd"  
 position="0"> 
 

<tpl.moveUp steps="2”> 

 

A tpl.select node evaluates all nodes in the input tree 

with the specified node name; the example in Table 3 

selects all UML:ClassifierRole nodes in the XML input 

document. 

A tpl.selectFromChildren node selects child nodes from 

the present position in a specified order. Each occurrence 

of tpl.selectFromChildren specifies the position (i.e. index) 

and name of the child node to be selected. In this example 

the first occurrence of a UML:AssociationEnd node is 

selected. Note that there is no need for the template 

language to have a named statement that evaluates all child 

nodes of a given name, since that function is provided by 

directly quoting a source node. 

The tpl.moveUp node moves the present position in the 

XML document tree up by the specified number of steps.  

4.2.4 Matching Nodes 

There is a single match node, tpl.match,  within the 

template language; it instructs the template processor to 

unify an element in the XML input tree with the specified 

unification slot, any previously specified constraints, and 

depending upon the process mode, a predicate retrieved 

from the client application. The type of matching carried 

out is controlled by the nodeType attribute, which may take 

one of four values: 

• TEXT_NODE 

• ATTRIBUTE_NODE 

• MULTIPLE_TEXT 

• MULTIPLE_ATTRIBUTE 

Text matching unifies with a text node, and attribute 

matching unifies with a selected attribute from the current 

node. Multiple matching parses a given text element or 

attribute into components, and unifies with one of the 

components. Table 4 gives examples of the four matching 

options. 

 

Each tpl.match node specifies the index of the 

unification slot that must be matched (position), as either 

an index or a declared name. The relationship between the 

unification slots and the client predicates is fixed, so this 

does not need to be specified separately. The node to be 

matched from the XML input is always the current node, 

reached by the last navigation. The first two match types 

unify the value of node text data, or an attribute by name, 

respectively. The ‘multiple’ variants add the ability to 

decompose an XML value into components, and match one 

of those components with a unification slot. 

A multiple text or attribute node type unifies one value 

in a list of separated values. These are used in situations 

where the XML text string (text node or attribute) is 

composite, and must be decomposed for the application. 

For example, given the attribute myLunch=”fish,chips”, 

the example above would correctly match the number of 

values in the attribute (length=”2 “) and attempt to unify 

the value ‘chips’ (tagIndex=”1”) with the template slot 3.  

One use of this feature is to pack and unpack UML tags 

with compound value elements, recorded in XMI as single 

text nodes. 

This is the core of the reversible template language. 

Other language features include additional forms of 

constraint, and the support of performance management 

and debugging. These will be discussed in the following 

sections, after which the core language will be illustrated 

with worked examples.  

4.3 Further types of Constraint 

The primary means of constraining processing is via 

constrained unification. (See Sections 3.2 and 4.)  In brief, 

tpl.constraint may be used to specify a list of values for a 

unification slot. Any valid entries for the slot must be 

consistent with the corresponding value in the XML 

document, the value in the application predicate, and also 

take one of the specified constraint values.  

There are two other types of constraint supported by 

XRound:  

• selection by a constant, which avoids the need to use 

auxiliary unification slots just to specify constants; and  

• constraint matching, which allows more complex 

constraints than can be achieved using the primary 

constraint mechanism.

Table 4 Matching Options 

<tpl.match  nodeType="TEXT_NODE" position="0"> 
 
<tpl.match  nodeType="ATTRIBUTE_NODE" attribute="name" position="1"> 
 
<tpl.match  nodeType="MULTIPLE_TEXT" tagIndex="1“ length="2“ position="3" > 
 
<tpl.match  nodeType="MULTIPLE_ATTRIBUTE" attribute="myLunch“ tagIndex="1“ length="2“  
  position="3" > 

 



Table 5 Constraint by a constant 

<tpl.roundtrip length="1" auxLength="1"> 
<tpl.declare position="1" name=”constrain_true”> 
<tpl.constraint position="1"> 
    <tpl.value>true</tpl.value> 
</tpl.constraint> 
... 
<tpl.match  nodeType="TEXT_NODE" position="constrain_true"> 
 

---- alternatively --- 
 
<tpl.match  nodeType="TEXT_NODE" text="true"> 

 

4.3.1 Selection by a constant 

It is feasible to specify a constant using an auxiliary 

unification slot; however, there are cases where constraint 

by a constant is an aid to template readability. The syntax 

is to replace the position attribute in a match statement, 

with text=”value”, as shown in Table 5. 

Table 5 illustrates two ways of ensuring that a text node 

has the value ‘true’. In the first an additional unification 

slot is declared, given a meaningful name, and constrained 

to the value ‘true’; the slot is then referenced as required. 

The second uses constraint by a constant, in which the 

value is specified as needed. Even without the name 

declaration, the first is considerably longer. Of course, 

writing constants where they are needed is not always the 

best programming practice, and either can be used as 

appropriate. This is essentially a syntactic shortcut, which 

does not modify the underlying unification mechanism; 

however, it cannot be used where a specific unification slot 

is necessary; for example, to share a constant such as a 

predicate name with the application. 

XML documents often include elements of the form 

name=”nnn”  value=”vvv”; where the name of interest to 

the application is a constant, this form of constraint is 

particularly effective in this case.  

4.3.2 Constraint Matching 

The unification process described in Section 3.2 

constrains unification slots independently; however, there 

are instances where it is necessary to accommodate 

dependencies between variables.  

For example, consider the need to check tool names and 

version numbers to verify that a template is able to process 

the supplied XML; for example, a template may be able to 

accommodate XML generated from the tools and versions 

given in Table 6. 

 

 

 

Table 6 Example of pair-wise constraints 

tool = “uml_A”    version = “1.2” 
tool = “uml_A”    version  = “1.2a” 
tool = “xmi_uml”   version  = “15” 

 

The core language would be able to extract the tool 

name and constrain it to uml_A or xmi_uml, and similarly 

extract the version number. However, an additional form 

of constraint is needed to correlate the tool to its version. 

This is achieved by index matching, which specifies that 

two unification slots must be matched by a constraint at the 

same position in each constraint list. The syntax is given in 

Table 7: 

Table 7 Index matching syntax 

<tpl.matchConstraintIndex  
 position="..."  
 position2="..."> 

 

The two positions index unification slots, as usual, and 

the constraint specifies that the two slots must be filled 

with constraints from the same position in each constraint 

array. For example, the template in Table 8 implements the 

version checking requirement in Table 6. 

The match statements in Table 8 unify the selected 

attributes with the possible values for tool and version, and 

the additional matchConstraintIndex test ensures that only 

valid pairs of values are permitted.   

Although this function is limited to pairwise 

comparisons, it can be used to implement constraints of 

any order. 



Table 8 Version checking template 

<tpl.validate auxLength="2"> 
<tpl.constraint position="0"> 
 <tpl.value> uml_A </tpl.value> 
 <tpl.value> uml_A </tpl.value> 
 <tpl.value> xmi_uml </tpl.value> 
</tpl.constraint> 
<tpl.constraint position="1"> 
    <tpl.value> 1.2 </tpl.value> 
 <tpl.value> 1.2a </tpl.value> 
 <tpl.value> 15 </tpl.value> 
</tpl.constraint> 
<tpl.specification> 
 ... 
   <tpl.match nodeType="ATTRIBUTE_NODE" attribute=”tool” position="0"> 
   <tpl.match nodeType="ATTRIBUTE_NODE" attribute=”version” position="1"> 
   <tpl.matchConstraintIndex  
  position="0" position2="1"> 
   ... 

 

4.4 Performance Management 

The main performance problem in template processing 

is the need to repeatedly scan all the nodes in a document. 

This problem can be seen in the roundtrip example in 

Table 13, in Section 5.2, below. A reference to an xmi.id is 

obtained from a node of interest, but in order to find the 

class name that corresponds to the reference it is necessary 

to scan the entire document for UML:Class nodes. Since 

Classes are in user-defined packages they can occur at any 

level of the XMI hierarchy, so it is not feasible to limit the 

search size by navigating from the tree root. 

The types of node that are revisited in this way are often 

a relatively limited number of fixed design points; in the 

UML example these are primarily the classes and objects. 

If it were possible to simply remember the location of 

these nodes then these auxiliary searches could be made 

much more efficient. This, quite simply, is what the 

performance management statements in XRound 

implement. There are two statements, one that records 

fixed points, and one that navigates to previously recorded 

nodes. The syntax for these statements is given in Table 9. 

Table 9 Performance management syntax 

<tpl.registerNode/> 
.... 
<tpl.selectRegisteredNode  
    node="..."> 

 

The registerNode statement records the current node, 

and the selectRegisteredNode statement can then be used 

to search just those nodes that have been registered for a 

given node type. 

In the example of Section 5.2, each UML:Class could 

be registered, allowing the set to be revisited later without 

the need to search the entire document tree. Instead of 

searching the document tree with a select statement, the 

selectRegisteredNode could be used; the result is the same, 

but considerably faster.  

The only restriction on the use of these statements is 

that mutable nodes cannot be registered, and that nodes 

must be registered before they can be selected. Clauses in 

the template are executed in order, so normal practice is to 

register nodes in early structure clauses; these nodes can 

then be referenced in the remainder of the template.  

The value of these performance features is model and 

template specific. However, the parsing performance of a 

real system model indicates the effectiveness of node 

registration. The system design used for test purposes is a 

high level model of an industrial distributed system, which 

was analyzed using the security analysis application 

described in Section 7 [26].  The size of the UML model1, 

and comparative parsing times2, are given in Table 10. 

Table 10. Example of performance management benefit 

Model Characteristics 

XML File Size 1.9 MB

Total Number of Classes 142 

Total Number of Associations 296 

Template Processing Performance 

Elapsed time with registered classes 2.1 s 

Elapsed time without registered classes 36.4 s 

Additional complete model searches 

without registered classes 

751 

 

The template used to process this model registers only 

the class nodes, and this simple strategy results in a 

substantial performance benefit (from 36.4 seconds to 2.1 

seconds). A select operation, as opposed to a 

selectRegisteredNode operation, forces the template 

processor to check every node in the model for the 

specified attribute (e.g. class name), and without 

                                                           
1 The number of classes and associations in table 1 are slightly 

higher than those that may be inferred from the published case 

study [26]; the difference is that these are for the whole model, 

not just the system design elements discussed in the study.  
2 Measured on a 2.81 GHz Pentium 4-based machine with 1GB of 

RAM. 



registration this results in 751 additional full model 

searches. A major contribution to this cost is the 

processing of associations; when an association is 

encountered, the template references the class at each end 

to obtain class names from the xmi.id attributes specified in 

the association node. A similar operation is required to 

associate tags with classes. Not all templates would need to 

dereference IDs in this way, but this is a relatively 

common requirement, and the performance management 

features described here make these dereferencing 

operations much more economical. 

4.5 Debugging 

Finally, there are two important features in the language 

that aid template debugging: message and debug attributes, 

which are generic attributes that can be added to any node. 

Their syntax is given in Table 11. 

Table 11 Generic debugging attributes 

tpl.message=”.. message text ..” 
 
tpl.debug=”TRUE” 

 

The message attribute can be included in any node, and 

sets a message for the template tree below that node. If any 

errors are issued during the processing of that template 

sub-tree, then the message will be included in the error 

report. It is good programming practice to include 

messages in every clause header; they provide useful 

comments and invaluable narrowing of the problem space 

when an error is reported.  

The debug attribute is not intended to be a permanent 

feature of a template. Whenever a node is encountered 

with this attribute, the following information is printed: 

• the current message (see above); 

• the current predicate, which may not be fully defined; 

• the template node that requested the printout; 

• attributes of the template node; 

• the current document node; and 

• the attributes of the current document node. 

This provides a compact summary of the current status 

of the template processor, and is sufficiently informative to 

trace the behaviour of a template without needing the 

complete processor status; in particular, it allows the 

unification process to be monitored. In practice, however, 

this level of detail is rarely required; it is often sufficient to 

know that a particular node in the template is reached.  

When a template fails, the most common problem is 

detecting the node that failed to match the document, so 

the most common use of this debugging feature is to probe 

where a template succeeds or fails. 

5 Examples 

This section provides three examples of template 

clauses, which demonstrate how well the template 

language is able to hide round-trip processing complexity. 

The examples are drawn from templates that support 

roundtrip analysis of the security of UML system models, 

where the UML design tool uses XMI as its export format.  

The first two examples illustrate structure and roundtrip 

clauses; the third is a roundtrip clause for the same 

application, but a different source metamodel. 

5.1 A structure clause 

Table 12 presents a complete structure clause, which 

extracts UML Class names with given stereotypes. 

There are two unification slots in the template, and these 

correspond directly to a client predicate with two values. 

The constraint section of this clause limits the first slot 

position to the values ‘data’ or ‘service’. 

 

 

Table 12 A structure clause 

<tpl.structure length="2"> 
  <tpl.constraint position="0"> 
    <tpl.value>data</tpl.value> 
    <tpl.value>service</tpl.value> 
  </tpl.constraint> 
  <tpl.specification> 
    <tpl.select node="UML:Class"> 
    <tpl.match nodeType="ATTRIBUTE_NODE" attribute="name" position="1"> 
    <UML:ModelElement.stereotype> 
    <UML:Stereotype> 
    <tpl.match nodeType="ATTRIBUTE_NODE" attribute="name" position="0" publish="TRUE"/> 
                                     
</UML:Stereotype></UML:ModelElement.stereotype></tpl.match></tpl.select> 
</tpl.specification></tpl.structure>



Table 13 Mutable document nodes 

<!—Slots:      (tagname      1st_value className   2nd_value)  (xmi.id)        --> 
<!—Client use: (PermitAccess fromClass  inClass   toOperation)                 --> 
 
<tpl.roundtrip length="4" auxLength="1" tpl.message=”Processing Access Controls”> 
  <tpl.declare position=”0” name=”PERMIT_ACCESS”/> 
  <tpl.declare position=”1” name=”VAL_1”/> 
  <tpl.declare position=”2” name=”IN_CLASS”/> 
  <tpl.declare position=”3” name=”VAL_2”/> 
  <tpl.declare position=”4” name=”XMI.ID”/> 
  <tpl.constraint position="PERMIT_ACCESS"> 
    <tpl.value>PermitAccess</tpl.value> 
  </tpl.constraint> 
  … 
<tpl.specification> 
  ... 
  <UML:TaggedValue tpl.mutable="TRUE"> 
  <tpl.match nodeType="ATTRIBUTE_NODE" attribute="tag" position="PERMIT_ACCESS"> 
  <tpl.match nodeType="MULTIPLE_ATTRIBUTE" attribute="value" tagIndex="0"  
        length="2" position=”VAL_1”> 
  <tpl.match nodeType="MULTIPLE_ATTRIBUTE" attribute="value" tagIndex="1"  
        length="2" position=”VAL_2” > 
  <tpl.match nodeType="ATTRIBUTE_NODE" attribute="modelElement" position=”XMI.ID” > 
    <tpl.selectNode node="UML:Class"> 
    <tpl.match nodeType="ATTRIBUTE_NODE" attribute="xmi.id" position=”XMI.ID”> 
    <tpl.match nodeType="ATTRIBUTE_NODE" attribute="name" position=”IN_CLASS”  
   publish="TRUE"> 
  … 

The specification searches all the nodes in the XML 

input for UML:Class nodes. For each node of this type it 

extracts the name attribute, which is unified with the 

second unification slot. The template then searches child 

nodes for the stereotype (UML:ModelElement.stereotype 

/UML:Stereotype) and unifies the attribute name of the 

stereotype with first unification slot. Of course, this slot is 

constrained, so the only values that succeed are ‘data’ or 

‘service’. The effect of this clause, therefore, is to search 

the XML input for UML:Class nodes with a stereotype of 

‘data’ or ‘service’ and, depending on mode, publish 

predicates of the form (data|service,name).  The form of 

this template is very similar to other template languages, 

demonstrating that although reversible templates are 

theoretically quite different to conventional templates, their 

programming form can be made familiar. 

Although the structure of the XRound language is a full 

XML tree, the normal page layout of the template is 

procedural, except in sections where the tree structure 

needs to be exposed.  This aids comprehension for those 

familiar with other template languages. 

5.2 Mutable nodes 

The specification of mutable nodes is essentially the 

same; Table 13 shows part of a roundtrip template clause 

for the same application. 

The comments at the start of this extract describe the 

use of the unification slots, and the resulting application 

predicate; these names are then declared as aliases for the 

slot positions and later used to define positions. This 

template matches an XMI tag, which references a UML 

class. The name of the tag is PermitAccess and the tag 

value has two separated components (e.g. PermitAccess = 

”subject,object”). The application predicate contains the 

same information as the tag, but also includes the name of 

the class in which the tag was declared (inClass). The first 

four template slots correspond to the values in the 

application predicate, and the fifth is used for the xmi.id 

which references the UML class. The header to this clause 

specifies the number of unification slots, and constrains the 

first to the single value ‘PermitAccess’. Note that since this 

constrained value is part of the predicate exchanged with 

the application, the use of constants, as described in section 

4.3.1, is not appropriate.  

The specification navigates directly from the document 

root (XMI) to a tagged value, which is marked as mutable. 

This specifies that any tagged values that match this clause 

will be re-written on export. This navigation identifies all 

possible tagged values, but only those that unify as far as 

the ‘publish’ attribute at the end of this fragment will be 

rewritten. 

The next three match statements unify the three 

elements of the tag (name plus two values) with their 

respective slots. An important feature of this language is 

that these statements are able to extract data from the XML 

source and publish them to the client application, and also 

obtain predicates from the client and update the XML 

source, depending upon the operational mode of the 

template processor.  

The fourth match operation unifies the modelElement 

attribute value with an auxiliary slot in the unification 

template (i.e. one that is not part of the application client’s 

predicate). This value is the xmi.id of the class to which the 

tag is related; selectNode then navigates to the 

corresponding class by selecting all the class nodes in the 

XML input, and selecting the one with the correct xmi.id. 

This involves searching the entire input tree in order to 



dereference a single xmi.id; a more economical approach is 

described in section 4.4. 

The final match statement unifies the class name 

associated with this xmi.id with the third template slot. At 

this point the publish attribute tests if the unification 

process is complete, causing publication to the client, or 

the addition of a node to the XMI document, depending 

upon the direction of processing.  

In order to write a template, such as the fragment in 

table 13, it is necessary to understand the relevant parts of 

the source metamodel, and the predicates required by the 

application. However, the programmer’s view of the 

process is one of selecting model elements, and specifying 

how predicates are assembled; these are essentially the 

only operations that are exposed. This is therefore very 

similar to standard template processing, where the template 

specifies location and format. The only features in this 

fragment that indicate that it is reversible are ‘mutable’ 

attributes, which show which nodes can be modified. The 

programmer must understand that nodes marked as 

mutable must be fully defined in the application predicates  

(see section 6.2.2), but in most other respects the semantics 

of bidirectional processing are hidden from the template 

programmer, who is still able to think of the reversible 

template as little more than a ‘select and publish’ script. 

(Limitations to processing transparency are illustrated in 

sections 5.3 and discussed in section 8.3.) 

One notable feature of this fragment is the relative lack 

of constraint checking. In this application the two 

component values in the tag are known types, the first 

corresponding to a class of a known stereotype, with a 

navigable association to the class in which the tag appears, 

and the second to an operation within that class. It would 

be quite straightforward to use the template to check that 

these values correspond to correct types. However, there 

are good reasons for avoiding these checks at this stage. 

Firstly, the template is specific to the tool that generated 

the XML input, but given that the template processor 

delivers tool-independent predicates, the type checking 

could be coded once, in the application, rather than 

separately for each supported tool. The application is able 

to give meaningful messages about type problems in the 

application domain, because the predicates adequately 

describe the model from an application perspective. For 

example, if a predicate specified a security access 

permission to a non-existent user role, this problem could 

be meaningfully described to the user. 

This argument also mitigates against the use of the 

UML Object Constraint Language (OCL) for application-

specific type checking, since constraints written within the 

UML will be specific to a proprietary UML metamodel 

and file structure. Of course, there is likely to be valuable 

type-checking within the UML model for constraints that 

are not related to the analysis domain, and which may not 

be fully exposed to the application.  

There is also a second consideration, which is that in its 

normal operation the template processor will often fail to 

unify, since it will attempt to match nodes and predicates 

that are not compatible. If constraint checking is included 

in the template, then badly constructed types will not unify, 

and will not be passed to the application. However, the 

result of a constraint failure in a template processor is 

silence, whereas constraint failures in the application can 

generate meaningful type warnings to the user. The 

programming philosophy is therefore to specify the 

minimum in the template language, consistent with 

establishing an accurate relationship between the XML 

input and application predicates, and to carry out more 

application-specific type checking in the application. 

5.3 A contrasting XML metamodel 

The previous sections provided examples of template 

clauses from a real application; since this application 

supports multiple UML tools, it is possible to contrast 

Table 13 with the template for a different UML source. 

This provides insight into the extent of the differences 

between proprietary metamodels, and the role of the 

template in hiding the application from such differences. 

Table 14 delivers the same predicate to the application 

as Table 13, but for XML documents produced from a 

different proprietary design tool. Both tools support UML 

2 and use XMI as a common exchange format; they are not 

identified here since they are both are well regarded 

propriety tools, and identifying them would invite 

comparisons based only on one aspect of their metamodels. 

The template in Table 13 extracts a complete tag from 

one area of the model, and then looks up the referenced 

xml.id to obtain the associated class name. The structure of 

the XMI corresponding to the template in Table 14 is quite 

different; it is the tag definition, not the class definition 

that is identified with the xmi.id. Here, the document is 

first searched for a tag specification, in order to extract the 

xmi.id for the required tag name (“PermitAccess”). The 

instance of a tag is in a sub-tree within the UML:Class to 

which it is attached; the tag information is extracted, and 

the template finally checks that the tag identifier (xmi.id) in 

the class matches the required definition. 

This example illustrates the power of the reversible 

template. From the user perspective both source tools carry 

out the same function, and both export XMI models. The 

metamodels are radically different, but these differences 

are only visible in the template definition; from the 

application perspective the difference is hidden, and the 

analysis tool is able to use either source. 



Table 14 Mutable document node for a contrasting XMI source 

<tpl.specification> 
  ... 
  <UML:TagDefinition> 
    <tpl.match nodeType="ATTRIBUTE_NODE" attribute="name" position=”PERMIT_ACCESS”> 
    <tpl.match nodeType="ATTRIBUTE_NODE" attribute="xmi.id" position=”XMI.ID”> 
  <tpl.selectRegisteredNode node="UML:Class"> 
    <tpl.match nodeType="ATTRIBUTE_NODE" attribute="name" position=”IN_CLASS”>  
    <UML:ModelElement.taggedValue tpl.mutable="TRUE">       
      <UML:TaggedValue> 
        <UML:TaggedValue.dataValue> 
          <tpl.match nodeType="MULTIPLE_TEXT" tagIndex="0" length="2" position=”VAL_1”> 
          <tpl.match nodeType="MULTIPLE TEXT" tagIndex="1" length="2" position=”VAL 2” >           
        <tpl.moveUp steps="1">  
          <UML:TaggedValue.type> 
            <UML:TagDefinition>         
              <tpl.match nodeType="ATTRIBUTE_NODE" attribute="xmi.idref"   
         position=”XMI.ID”  publish="TRUE"> 
  … 

To support this metamodel it is necessary to regenerate 

tag definitions, as well as the instances of tags. The 

fragment in Table 14 regenerates instances of tags, 

provided the definitions are present. Roundtrip clauses in 

the template language are executed in the order in which 

they appear, so in the complete template there is an 

additional clause to extract or regenerate tag definitions. 

The template language therefore has the ability to 

regenerate models where mutable nodes are mutually 

dependent, as opposed to simply add or subtract leaf nodes. 

However, in these more complex examples, bidirectional 

processing is not fully transparent to the template 

programmer, who must take into account the order in 

which the XML model will be regenerated.  

6  A Template Processor 

The previous sections describe the XRound template 

language; this section describes a practical template 

processor which is able to interpret the language, and 

provide the operations of validation, import and export 

(round-tripping) of models. The programmatic interface to 

the template processor is described, showing how template 

processing is integrated with an application, followed by a 

brief account of its architecture. This section aims to 

demonstrate the feasibility of practical processors to 

support the XRound language, rather than give a full 

account of implementation issues. 

6.1 Template Processor Overview 

The XMLSource template processor is a Java class that 

encapsulates an XML file and allows its client application 

to import and export predicates from and to an XML 

document. The design of the processor is given in Fig. 4; 

although its initial application was to roundtrip XMI 

documents, there is nothing XMI-specific in XRound, or in 

this processor. 

 

 

XMLSource

+ (File, File, XMLMessage)

+ transform(PublishHandler) : void

+ saveAs(ExportInterface, File) : void

+ getWorkingFile() : File

+ isValid() : boolean

«interface»

ExportInterface

+ getPredicateIterator(String[]) : Iterator

«interface»

PublishHandler

+ publishPredicate(String[]) : void

«interface»

XMLMessage

+ writeXMLMessage(String) : void

XMLSource

 

Fig. 4 XMLSource: an XRound Template Processor 

The XRound processor is a single class, XMLSource, 

which encapsulates an XML file whose name is provided 

to the constructor. Three interfaces are defined in the 

package, and these call-backs are provided by the 

application client to allow the processor to import and 

export predicates.  

Predicates are represented as arrays of Strings, such as 

{class,foo}, which describe features in the XML input that 

are required by the application. The processor supports 

three transform operations: validation, import and export. 

(See Section 3 for further detail.) 

Validation. Validation allows the user to check that the 

template and the input model are compatible. The 

XMLSource constructor takes three parameters, the 

reference XML File, the Template File, and a message 

interface. (The Java File class encapsulates a file name.) 

The message interface is used to pass certain error 



messages back to the application, particularly those that 

report inconsistencies between the template and the XML 

input. A message interface is used in preference to a 

thrown exception, since it allows a sequence of messages 

to be reported during processing, which is valuable during 

template debugging. 

The initialization process parses both the Template and 

the XML input file, and executes the section of the 

template which is used to validate the input. Methods are 

provided to allow the client application to check that the 

validation was successful (isValid) and to retrieve the 

name of the XML input file (getWorkingFile). 

Import. A single method, transform, runs the import 

process, which extracts predicates from the XML input, as 

specified by the template, and publishes them to the client 

application. As each predicate is constructed the 

PublishHandler interface provided by the application 

client is called to transfer the predicate to the client. 

Export. A single output method (saveAs) is provided to 

export predicates from the client application to a named 

XML file. The output filename is provided by the client, 

together with an interface (ExportInterface) which allows 

XMLSource to obtain predicates from the application. This 

callback is slightly more functional than the other 

interfaces, but is still straightforward: the client is provided 

with an incomplete predicate, which is an array of Strings, 

some elements of which may be null. The client responds 

with an iterator, which encapsulates predicates matching 

this template.  

The saveAs method updates the reference XML input 

with predicates obtained from the application, and then 

writes the result to the named file. File naming strategies 

and backup files, etc, are determined by the client 

application. 

Because the input XML is encapsulated by the template 

processor, there is no need for the complete XML tree to 

be exported to the application; the transformation therefore 

includes only the features required by the application. 

An important feature of the template processor is its 

straightforward client interface; this is a direct result of the 

reversible template model, since: 

• The application needs to obtain only the predicates that 

it requires for its function, the rest of the input XML 

remains hidden. 

• The application interface is independent of the tool used 

to generate the XML: any tool differences are accounted 

for in the template. 

• The template includes an explicit validation section that 

is run at initialisation. 

A discussion of how the three operations relate to the 

template specification is presented in section 3.3; the 

remainder of this section describes implementation issues. 

6.2 Template Processor Implementation 

The template processor is based around a core recursive 

structure which alternates between navigating the template, 

then implementing template instructions, often by 

traversing the document tree; this core architecture is 

shown in Fig 5. 

The document which is traversed by the template 

processor is always the XML input model, and this model 

is retained until it is updated by round-trip processing. In 

this way any elements of the XML input model that are not 

transferred to and from the application as predicates are 

retained.  

Each of the main public methods (the constructor, 

transform() and saveAs() ) sets a processing mode and then 

calls processDocument() once for each clause to be 

processed. The processing modes used for each method 

and clause type are listed in table 15.  
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Fig. 5 Template processor core architecture 



Table 15 Processing modes and associated clause types 

Method Clause Mode 

XMLSource 

constructor 

validate validation 

transform() structure forward 

transform() roundtrip forward 

saveAs() roundtrip clean 

saveAs() roundtrip reverse 

testPublish() see text reverse2 

 

The processing modes primarily condition the behaviour 

of the testPublish() method, which is used to check if a 

unification has succeeded, together with some 

modifications to the behaviour of the core recursive cycle, 

most notably success and failure handling.  

The processing of validation and forward modes is 

straightforward; the processDocument() method reads the 

header, constraints, and declarations from a template 

clause, builds the recursive context and then calls 

processStructureTemplate() for each specification within 

the clause. The processing is carried out by a recursive 

loop between processStructureTemplate(), which selects 

the next template node, and processStructureDocument(), 

which carries out the template instruction, often by 

selecting the next position in the XML input document.  

The calling parameters of these methods are identical, 

consisting of a recursive context which represents the 

current position in the combined template and document 

trees; the main elements of this context are: 

• the processing mode; 

• the template tree node; 

• the document tree node; 

• the Predicate object (see unification, below); 

• the current debug message; and 

• a node list (see roundtrip processing, below). 

processStructureDocument() is essentially a case 

statement for each of the possible template operations, 

each of which is implemented in a separate method; the 

only method of architectural interest is testPublish(), which 

is invoked whenever a publish attribute is encountered in 

the template. Its behaviour depends on mode. In validation 

and forward modes it checks for a completed unification, 

and if this succeeds it either returns success, or publishes a 

predicate to the application using a callback interface, 

respectively. Interesting aspects of the implementation are 

the management of unification, and the use of the core 

processing architecture for round-trip processing.  

6.2.1 Unification 

Unification is straightforwardly encapsulated in an inner 

class (Predicate), with the number of unification slots set 

by its constructor. Class methods include: 

• addConstraint: specify a constraint on a slot; 

• addvalue: unify a given value with a slot; 

• getPredicate: unify and return predicate; 

• indexMatch: check index between pair of slots. 

In general, unification is performed as each new value is 

added, returning success or failure; however, the use of the 

getPredicate() accessor allows the class to defer the 

unification of constraints, including the generation of 

unique names, if required. 

6.2.2 Round-trip processing 

Round-trip processing updates the XML document to be 

compatible with the model held by the application; model 

updating is only carried out in areas of the model that are 

identified by nodes in roundtrip template clauses which are 

marked as mutable. Two passes of the complete template 

are made, the first cleans the retained XML input 

document by removing mutable nodes, and the second 

(reverse) regenerates any such nodes that are present in the 

application model. All other elements of the XMI input 

document are preserved. This imposes a constraint on the 

template programmer, that the contents of mutable nodes 

must be preserved in the application predicates. 

Constructing the processing in this way allows the 

application to signal that nodes should be completely 

deleted from the model, simply by deleting the relevant 

predicate(s). 

In both modes, the processStructureDocument() method 

records the context of mutable document nodes; this node 

list is built as part of the recursive context, and eventually 

passed to the testPublish() method. Essentially, nodes are 

recorded as potentially mutable, but no action is taken until 

unification is confirmed. 

In the clean mode, testPublish() uses the node list to 

build a list of document nodes to be deleted; they are 

actually deleted after the whole template has been 

processed.  

A similar process is used to regenerate mutable modes; 

however, the generation of new nodes is slightly more 

complex. If testPublish() determines that a unification is 

successful, then the recursive context contains a node list 

which must be created. This is achieved by re-entering the 

main recursive loop, once for each new node, using the 

mode Reverse2; this provides processStructureDocument() 

with sufficient information to rebuild any nodes that are 

missing. This re-entrant recursive structure has proved to 

be an elegant and economical solution for reverse 

processing. 

7. A Practical Application in 

Security Analysis 

The XRound language and template processor have 

been successfully used to support security analysis of 

UML models. This section briefly describes this practical 

experience.  



7.1 The application background 

The Security Analyst Workbench (SAW) supports risk-

based security analysis and design; analysis, is concerned 

with determining the risks in a system, and security design, 

is the specification of control requirements that mitigate 

those risks. SAW is part of a suite of models, analysis 

methods and tools known as the Security Design Analysis 

framework (SeDAn) [27]; the framework will not be 

described here, however, its use in industrial applications 

[26] necessitated competent tool support. 

Security risks are potential threat paths through a 

system, from attackers to assets; to carry out risk analysis it 

is necessary to assemble a single system model, which 

includes: 

• the functional design of the system; 

• security requirements (such as access controls) that 

specify how the system is protected; 

• system users, including administrative organizations; 

• security goals, and unwanted outcomes for specific 

assets (e.g. loss of integrity of a particular data item), 

and their impact in business terms; and 

• attackers, their goals, and the likelihood of attack. 

One objective of the Security Analyst Workbench is to 

integrate security design with standard system engineering 

practice; for this reason these elements of the system 

model are divided into three main categories: 

• the functional design, which is a standard engineering 

design in UML, usually in the form of a Platform 

Independent Model; 

• security requirements, which are attached to 

components in the system design and become 

specialised properties of the design model; and 

• the security environment (attackers, security goals, asset 

concerns etc) which is specified in an auxiliary model. 

The security analyst uses a standard functional system 

design, builds a complementary specification of the 

security environment, and then analyses the resulting 

model for risks. Security requirements are specified to 

manage the risks, and these become part of the functional 

specification to be implemented.   

The specification of security requirements is a design 

activity: the process of establishing a protection strategy 

involves choices about the placement and type of security 

requirements; risk analysis informs that choice, it does not 

automate it. As a result, SAW provides a richer and more 

interactive set of user functions than are suggested by 

‘analysis’, and many of these functions are concerned with 

interactively managing security requirements.  

There are therefore two equally important functions for 

the security analysis tool: risk analysis and requirements 

management. The latter involves creating and testing new 

model properties within the analysis tool, resulting in the 

need to update the UML documentation.   Security analysis 

in practice [26] and requirements specification [28] are 

described in more detail elsewhere.  

7.2 Model Management Requirements 

The Security Analyst Workbench (SAW) is a 

specialised analysis tool, which uses a system design 

expressed in UML and created using a separate design 

tool. Security requirements are set and modified during 

analysis, and these must eventually be reflected in the 

reference system design.  

The issues exposed in this way will be common to many 

specialized analytic tools; they include: 

• a separate specialized and ephemeral model on which 

the actual analysis is conducted; 

• the need for model management facilities within the 

analysis tool; and  

• the need to propagate property changes back into the 

primary UML documentation. 

The solution adopted for SAW is to use XMI as its 

persistent model format, and furthermore, to use whatever 

UML metamodel is native to the user’s development 

environment. The import and export mechanism between 

XMI and the analysis model must be readily adapted to 

different UML sources, and must ensure consistency in the 

round-trip operation. These requirements are well 

supported by, respectively, a template processor, and a 

single template specification that can be used for 

processing in both directions, thus ensuring round-trip 

consistency.  

The XMLSource template processor has successfully 

supported SAW through several iterations, in which new 

functionality has been added, including new model 

properties and new templates for different proprietary 

UML design tools.  Our practical experience is that even 

well regarded tools conforming to XMI may have 

considerable differences in their metamodels, confirming 

the need for an import/roundtrip mechanism that decouples 

the application from the source metamodel.  A practical 

example of this problem is presented in section 5. 

Given the performance management features in 

XRound, the performance of the template processor is 

dominated by the time taken to open and read XML 

documents, rather than template processing. From the 

overall system perspective the user experience is 

considerably enhanced by using a reversible template: 

model properties can be changed and tested within the 

analysis tool. If, instead, a unidirectional import process 

was used, it would be necessary to change properties in the 

UML design tool and re-transform the model for analysis 

to evaluate the effect of each change; this would represent 

a considerable processing overhead to change and test 

model properties, which is inconsistent with the need for 

iterative analysis.  

The design philosophy for XRound was to create a 

minimal set of features consistent with a practical language 

and add more complex (e.g. higher order) features if they 

could be shown to be necessary. The design iterations in 

SAW have tested the language specification by adding new 

model properties, requiring different parts of the source 

metamodels to be regenerated, and by accommodating 



different proprietary source metamodels. This has been 

achieved without significant addition to the core language, 

although it has been necessary to remove some 

implementation restrictions in the template processor3. The 

programming philosophy of minimising the type checking 

carried out by the template (see section 5.2 for discussion 

and rationale) is perhaps one reason why a relatively 

simple template language has proved sufficient. 

In summary, practical experience has demonstrated the 

need for a programmable approach to roundtrip 

transformation of models, and the effectiveness of the 

XRound template language.  

7.3 Worked Example 

This section provides a simple worked example in 

which a Platform Independent Model is enhanced with a 

description of its security environment, a security policy 

established and tested, and the UML system model updated 

with the resulting security requirements. The purpose of 

the example is to illustrate how reversible processing is 

used to support a security workflow.  For readers interested 

in more technical details, accounts of requirements 

modelling [28] and analysis [29] are published elsewhere, 

and a full account of the metamodels, profiles and security 

requirements is also available [27]. 

The system fragment used in this example is shown in 

Fig. 6; it specifies an office system, with business data 

(OfficeData) which is managed by a service 

(OfficeServer). In this example the service provides only 

one operation (update), to allow a manager to modify the 

data. The service is normally accessed by an internal client 

(Home) to which business managers have access. The 

complete system also has connectivity to the internet, 

which may include services (FreeSoftware) that provide 

access to software of unknown provenance (Games) and 

publicly available clients (PublicAccess). Of course, the 

actual system would have many more operations, this 

limited functionality is chosen to limit the number of 

security requirements needed for the sake of example. 

The stereotypes in this system denote entities that 

provide a business service (<<service>>), services that 

may be directly accessed by users (<<client>>), and an 

association stereotype (<<managed>>4) that indicates that 

data is bound to a particular service.  

This is a Platform Independent Model, since no 

commitment to an implementation has been given: the 

services could be implemented by people, business 

departments or, more usually, some form of information 

system. Specifically, no binding between services and 

platforms or platform types is assumed.  

                                                           
3 For example, the first release of XMISource did not support 

tpl.moveup within mutable nodes. 
4 This is used to distinguish between different objectives for data 

protection in security modelling, but does not play a part in this 

example, because the characterisation of different threat paths 

is not described here, see references for more information. 

«client»

PublicAccess

+ refresh(String) : String

«client»

Home

+ refresh(String) : String

«service»

FreeSoftware

+ getSoftware(String) : Games

«service»

OfficeServer

+ update(OfficeData) : boolean

Games OfficeData

«manages» «manages»

 
Fig. 6 Example System 

 

Security risk analysis involves finding paths from 

attackers to assets of concern, where the concern is to 

avoid a particular unwanted outcome. Before the 

security characteristics of features of this system can be 

analysed it is necessary to specify the security 

environment in which the system operates, including the 

identification of potential attackers and associated 

assets. The security environment effectively forms the 

baseline assumptions for the security analysis, so it must 

also be recorded with the system documentation in the 

UML model; an example of such an environmental 

specification is given in Fig. 7. 

 

«userRole»
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«organisation»

HomeOrg

«organisation»

Public
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OfficeData
 

Fig. 7 Security Environment 

 

Fig. 7 specifies the organisations (the target business 

HomeOrg, and the Public), and their associated user roles 

(Manager, Guest). This system has a single security goal 

(BusinessIntegrity) which is linked via an association class 

(DataIntegrity)5 to the only asset of concern (OfficeData), 

which appears in the system model. Much of this 

information is usually available in system requirements 

                                                           
5 The purpose of the association class is not evident in this 

example; it carries attributes that are specific to assets or 

groups of assets, such as the impact of the attack.  



documents or use cases, and generally does not need to be 

created specifically for security purposes; however, the 

attackers also need to be identified together with their 

objectives. In this example the Guest user may attack the 

BusinessIntegrity goal, meaning that any assets linked to 

that goal may become the target of attack. Attacks may 

originate with user roles, organisations or outsiders, all of 

which can be modelled similarly.  

It is evident from the security environment and the 

system design that some security requirements will be 

needed, in particular access controls that prevent Guest 

users of the PublicAccess client using the update() 

operation to modify OfficeData. Since the system model 

has not been bound to particular platforms it is also 

necessary to record the assumption that the Home client is 

situated within the business, specifically that Guest users 

do not have access to this management client. This will 

become a constraint on how the system is bound to 

platforms, and is described as Deployment Constraint. In 

this example the constraint must specify that the Home 

client is never bound to a Public platform – i.e. one 

administered outside the business.  

This informal analysis suggests the need for the security 

policy given in table 16. 

Table 16 Initial Security Policy 

Home 
 Deployment Constraint: Public 

OfficeServer 
 Access Constraint: from PublicAccess 
 client to any operation 

The security analyst has a choice at this point, the policy 

can be recorded manually in the system design, by adding 

tags that will in due course constrain the implementation 

and operation of the system, or they can be added using the 

security analysis application. The latter is provided with an 

interactive capability for setting and changing policies, so 

this is often more convenient, but either is possible.  

The next step is to check that this policy is sufficient, 

and for that purpose the XMI representation of the UML 

model is imported into the analysis tool, using a template 

as described in this paper. The XMI6 representation of this 

example contained 1479 lines of XML, but the security 

related elements were encoded in just 50 predicates. The 

XMI contains a wealth of information about the specific 

UML tool, its working properties, and diagram layouts that 

are not needed for security analysis. 

The security analysis tool is able to carry out a range of 

different analysis functions, but the most basic is to 

determine if there are any threat paths in the system.  This 

analysis discovered an unanticipated threat, shown in table 

17.  

 

 

                                                           
6 This XMI was generated using the Enterprise Architect UML 

tool. 

Table 17 Analysis Result 

DataIntegrity path trace: 

Operation PublicAccess.refresh(in)   
called from: Guest 

Operation FreeSoftware.getSoftware(in)              
called from: PublicAccess 

OperationFreeSoftware.getSoftware(return)           
called from: Home 

Operation OfficeServer.update(in)               
called from: Home 

Managed Data OfficeServer/OfficeData 

Essentially, Guest users are able to modify Games 

software, which is then imported by the Home client, and 

is able to subvert the integrity of the business system: a 

relatively common attack scenario.  

Normally, access policies are located at the service and 

manage the access from remote clients; however, this 

threat requires the Home client to ensure that it does not 

access potentially dangerous external data: the constraint 

must be enforced by the client, not the service. This type of 

policy is distinguished as a RefuseToAccess requirement, 

because its implementation is likely to be different from 

normal access control policies.  

The analyst adds the RefuseToAccess policy to the 

model using the interactive policy editor which is part of 

the security analysis tool, and then re-runs the threat 

analysis to check that there are no remaining threat paths in 

the system.  Practical experience has resulted in both the 

policy management and analysis functions being combined 

within a single analysis tool, because in complex systems 

the analyst may need to try a range of different security 

strategies before deciding on a coherent policy. In many 

proprietary UML tools, exporting a UML model as XMI is 

relatively slow, so testing security policy variations by 

changing and exporting the UML model is not consistent 

with an interactive security design workflow. 

When the analyst has decided that the security policy is 

appropriate, the requirements established in the analysis 

tool are re-integrated into the UML model, using the same 

reversible template that was used to extract the data for 

analysis. 

Security requirements established in the security 

analysis tool are added as tags to relevant classes within 

the UML model, in order to constrain their 

implementation. The tags resulting from the security 

requirements described above are are given in table 18. 

(Access permissions are also added to the other services 

for completeness, but this is outside the scope of this 

discussion.) 



Table 18 Security Tags Added to System Model 

Home Client 

NoDeploy = Public 

RefusetoAccess=FreeSoftware.getSoftware 

OfficeServer 

PermitAccess=Home, ALL_OPERATIONS 

... 

The forgoing example has described the security 

analysis and design cycle. In this case three different types 

of security requirement have been recorded in the PIM, 

and these are used in different ways in the subsequent 

implementation lifecycle. Deployment constraints limit 

how the PIM can be bound to concrete platforms; access 

permissions will be carried forward in the implementation 

and be issued as policies to be interpreted by access 

management infrastructure; and Access Refusals are 

similarly carried forward to be used as infrastructure 

policies, but are distinguished since they will be 

implemented by a different architectural binding.   

This example has illustrated how security analysis and 

design is integrated into Model Driven Development, and 

how this is facilitated by the reversible template language. 

The analysis and design process described here has been 

implemented and used in practice; the automated use of 

these security requirements within the development 

lifecycle is planned as future work. 

8. Limitations 

Practical limits arise from variability in XML source 

metamodels, the scope of the template language, and the 

implementation of the template processor. 

8.1 Source metamodels 

Differences in metamodels between UML tools is a well 

known problem, was one of the main motivating factors in 

the design of XRound, and has been mentioned at several 

points in the paper. Different templates are required for 

different UML tools, but the use of a reversible template 

isolates the application logic from this variability. The 

XML import behaviour of tools can also vary in detail; for 

example, some tools regenerate missing xmi.id fields, 

where others fail. The design of a template may therefore 

go beyond the need to understand (part of) the source 

metamodel. Although this is an inconvenience, it has not 

yet proved a major problem, or required tool-specific 

language features. 

8.2 Language features 

There are two aspects of the language that could be 

considered as candidates for enhancement: 

• the performance management mechanism; and 

• the unification scheme. 

The performance management mechanism is essentially 

a cache, so it is natural to ask if the cache could be built 

transparently, without user involvement. Such a 

mechanism would be feasible; however, allowing explicit 

performance management in the language allows finer 

control by the user than would be possible in an automated 

system. For example, an automated cache would need to be 

conservative in the sense that it would need to cache all 

possible nodes of a given type, whereas it may be possible 

for a programmer to be more selective. In summary, 

automated caching is a possible enhancement to the 

template processor, but even with such a feature it is 

desirable to retain the performance management elements 

in the language. 

The unification scheme could be enhanced to allow 

more sophisticated forms of logic; for example: 

• allowing more general logical constraints on unification; 

and  

• regular expressions for matching or extracting of 

elements of an attribute or text value.  

More general unification constraints were not designed 

into the language at the outset because of the programming 

philosophy, discussed in section 5.2. In brief, the 

programming objective is to avoid complex type checking 

in the template, since it is better implemented in the 

application.  

In XML the fields (attributes and text fields) should 

already be atomic; however, it was evident from the first 

applications that the atomicity of XML fields cannot be 

relied on, so some mechanism is required to identify 

components within fields. Any component matching 

mechanism, however, must also be able to allow the fields 

to be incrementally recreated, when the XML is 

regenerated, and this is not a property of an arbitrary 

regular expression. The simple component parsing 

approach in the language was designed to allow roundtrip 

reconstruction of such fields. The design of regular 

expression languages that allow incremental pattern 

building as well as extraction is an open question.  

In brief, it is possible to envisage new language features 

that offer more logical complexity; however, any such 

features need to be reversible, and their design is not 

therefore straightforward. Practical experience has not yet 

indicated the need for such features.  

8.3 Template processor 

 The problem of interdependent mutable nodes was 

mentioned in section 5.3; in this example a tag definition 

within a UML class could not be created unless there was a 

tag declaration elsewhere in the XML document to bind a 

tag name to an xmi.id. The language is able to support 

constructs of this type, so the models created in the 

roundtrip can be modified in structure, not merely by the 

addition or removal of leaf nodes. However, this process is 

not transparent to the programmer, who must order the 

roundtrip clauses to ensure that the document can be built 

incrementally.  



It would be desirable for the template processor to 

implement a more transparent approach to rebuilding more 

complex models; unfortunately there are open technical 

problems in achieving this. For example, it is not clear that 

the detection and resolution of cyclic dependencies 

between mutable nodes is feasible within reasonable 

complexity bounds. Future development in this problem 

area is likely to inform the template processor, rather than 

the language itself. 

9. Conclusion 

XRound adds a new dimension to the template 

processing of XML models: the ability to transform data in 

both directions with a single descriptive template. 

Reversible template processing solves the problem of 

maintaining independence between XML source 

documents and analytic tools, while retaining the benefit of 

easily scripted transformations. Reversible templates could 

provide a clean implementation mechanism for 

bidirectional transformations specified in QVT, and could 

help in the definition and implementation of model 

merging languages as well. 

This paper outlines the requirements of specialised 

analytic tools, the theory behind reversible templates, and 

presents a mature template language, XRound. This 

language is supported by a template processor, and 

includes performance management and debugging 

facilities. 

The examples presented here illustrate the extent that 

the underlying semantics of unification and reversible 

transformation are hidden from the template programmer, 

who is usually able to think of the template as a ‘select and 

publish’ script. 

The language and its processor have been used in 

practice to support security analysis. The application is a 

specialised analytic tool which supports the rigorous 

security risk analysis of UML models, usually PIMs, and 

provides an environment in which the user can 

interactively set and test security requirements. Properties 

established during analysis are re-integrated into the 

engineering documentation (i.e., the UML models) using a 

bidirectional transformation specified by the XRound 

template language. The use of XRound has isolated the 

need to support different source metamodels from the 

analysis application. 

Practical experience to date has not indicated any major 

weaknesses in the language or the processor; however, 

section 8 discusses a number of possible enhancements to 

the language or processor, such as the use of regular 

expressions to match XML fields, or improving the 

transparency of bidirectional processing. Because of the 

requirements of bidirectional processing these options are 

research questions, rather than simple language 

enhancements, highlighting the need for further research 

into reversible programming constructs. 

References 

[1] Model Driven Architecture (MDA), Object 

Management Group, Specification ormsc/01-07-01, 

2005. 

[2] Meta Object Facility (MOF) 2.0 

Query/View/Transformation Specification, Object 

Management Group, Specification ptc/07-07-07, 

2007. 

[3] ATL : Atlas Transformation Language, ATLAS group 

(LINA & INRIA), available at 

http://www.eclipse.org/gmt/atl/doc/ (accessed January 

2007), 2005. 

[4] XMF Reference Guide, Xactium Ltd, UK, 2005. 

[5] O. Patrascoiu, YATL:Yet Another Transformation 

Language, Proceedings of the 1st European MDA 

Workshop (MDA-IA), available at 

http://www.cs.kent.ac.uk/pubs/2004/1829 (accessed 

January 2008), 2004, pp. 83-90. 

[6] A. Balogh, D. Varro, Advanced Model Transformation 

Language Constructs in the VIATRA2 Framework, 

Proceedings of the Symposium on Applied 

Computing (SAC'06) - Model Transformation Track, 

ACM Press, 2006, pp. 1280-1287. 

[7] D. S. Kolovos, R. F. Paige, F. A. C. Polack, The 

Epsilon Object Language (EOL), Proceedings of the 

European Conference on Model Driven Architecture - 

Foundations and Applications, Springer, Lecture 

Notes in Computer Science Vol 4066, 2006. 

[8] J. R. Cordy, I. H. Carmichael, R. Halliday, The TXL 

Programming Language, Version 10.5, Software 

Technology Laboratory, Queen's University at 

Kingston, Ontario, available at 

http://www.txl.ca/ndocs.html (accessed January 

2008), 2007. 

[9] MOF Model to Text Transformation Language RFC, 

Object Management Group, Specification ad/04-04-

07, 2007. 

[10] J. Manning, Code Generation in Action, Manning 

Publications, 2003. 

[11] Velocity User Guide, Ja-Jakarta Project, available at 

http://www.jajakarta.org/velocity/velocity-

1.4/docs/vtl-reference-guide.html (accessed January 

2008), 2007. 

[12] Eclipse's Java Emitter Templates (JET), IBM, 2004. 

[13] L. Tratt, The Converge Programming Language, 

Department of Computer Science, King’s College 

London, Technical report TR-05-01, 2005. 

[14] M. Alanen, I. Porres, The Coral Modelling 

Framework, Proceedings of the 2nd Nordic Workshop 

on the Unified Modeling Language NWUML'2004, 

Turku Centre for Computer Science, General 

Publication Vol 35, 2004. 

[15] Z. Hu, S.-C. Mu, M. Takeichi, A Programmable 

Editor for Developing Structured Documents Based 

on Bidirectional Transformations, Proceedings of the 

ACM SIGPLAN 2004 Symposium on Partial 

Evaluation and Program Manipulation, ACM Press, 

2004. 

[16] R. A. Pottinger, Merging Models Based on Given 

Correspondences, Proceedings of the 29th 

International Conference on Very Large Data Bases 

(VLDB), Morgan Kaufmann, 2003, pp. 826-837. 



[17] M. Didonet Del Fabro, B. Jean, J. Frédéric, B. Erwan, 

G. Guillaume, AMW: A Generic Model Weaver, 

Proceedings of the IDM'05, Premières Journées sur 

l'Ingénierie Dirigée par les Modèles, 2005. 

[18] J. Foster, M. Greenwald, J. Moore, B. Pierce, A. 

Schmitt, Combinators for Bi-directional Tree 

Transformations, ACM Transactions on Programming 

Languages and Systems. 29(3) (2007). 

[19] M. Buchholtz, S. Gilmore, V. Haenel, C. Montangero, 

End-to-end integrated security and performance 

analysis on the DEGAS Choreographer platform, 

Proceedings of the Formal Methods 2005, Springer-

Verlag, Lecture Notes in Computer Science Vol 3582, 

2005. 

[20] D. Petriu, et al., Performance Analysis of Security 

Aspects in UML Models, Proceedings of the Sixth 

International Workshop on Software Performance 

(WOSP 2007), ACM  Press, New York, USA, 2007, 

pp. 91-102. 

[21] S. H. Houmb, G. Georg, J. Jurjens, R. France, An 

Integrated Security Verification and Security Design 

Trade-off Analysis Approach, in: H. Mouratidis and 

P. Giorgini (Eds.), Integrating Security and Software 

Engineering, IGI Global, 2006. 

[22] R. Breu, M. Hafner, B. Weber, A. Novak, Model 

Driven Security for Inter-organizational Workflows in 

e-Government, in: E-Government: Towards Electronic 

Democracy, Springer Berlin, 2005, pp. 122-133. 

[23] J. Jürjens, Secure Systems Development with UML, 

Springer Berlin, 2005. 

[24] G. Brændeland, K. Stølen, Using model-based 

security analysis in component-oriented system 

development, Proceedings of the 2nd ACM Workshop 

on Quality of Protection (QoP '06), ACM Press, New 

York, USA, 2006, pp. 11-18. 

[25] J. Clark, XSL Transformations (XSLT) Version 1.0, 

W3C, Recommendation  1999. 

[26] H. Chivers, M. Fletcher, Applying Security Design 

Analysis to a Service Based System, Software 

Practice and Experience: Special Issue on Grid 

Security. 35(9) (2005) 873-897. 

[27] H. Chivers, Security Design Analysis, in Department 

of Computer Science. 2006, The University of York: 

York, UK. p. 484. 

[28] H. Chivers, J. Jacob, Specifying Information-Flow 

Controls, Proceedings of the Second International 

Workshop on Security in Distributed Computing 

Systems (SDCS) (ICDCSW'05), IEEE Computer 

Society, 2005, pp. 114-120. 

[29] H. Chivers, Information Modeling for Automated 

Risk Analysis, Proceedings of the 10th IFIP Open 

Conference on Communications and Multimedia 

Security (CMS 2006), 2006. 

 

 


