
This is a repository copy of XRound:A reversible template language and its application in
model-based security analysis.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/54730/

Version: Submitted Version

Article:

Chivers, Howard Robert orcid.org/0000-0001-7057-9650 and Paige, Richard F.
orcid.org/0000-0002-1978-9852 (2009) XRound:A reversible template language and its
application in model-based security analysis. Information and Software Technology. pp.
876-893.

https://doi.org/10.1016/j.infsof.2008.05.006

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

XRound: A Reversible Template Language and its

application in Model-Based Security Analysis

Howard Chivers and Richard F. Paige

Department of Information Systems, Cranfield University, Shrivenham, UK.

Department of Computer Science, University of York, UK.

hrchivers@iee.org, paige@cs.york.ac.uk

Abstract Successful analysis of the models used in Model-

Driven Development requires the ability to synthesise the

results of analysis and automatically integrate these results

with the models themselves. This paper presents a

reversible template language called XRound which

supports round-trip transformations between models and

the logic used to encode system properties. A template

processor that supports the language is described, and the

use of the template language is illustrated by its application

in an analysis workbench, designed to support analysis of

security properties of UML and MOF-based models. As a

result of using reversible templates, it is possible to

seamlessly and automatically integrate the results of a

security analysis with a model.

Keywords Model-Driven Development, Template

Processing, UML, Security Analysis

1. Introduction

Transformations are a critical component of Model-

Driven Development, particularly in the Model-Driven

Architecture (MDA) [1]. To this end, the

Query/Views/Transformations (QVT) [2] standard has

been developed, in order to provide a precise mechanism

for describing transformations between models.

QVT transformations can be unidirectional (i.e., from

one metamodel to a second not necessarily different

metamodel) or bidirectional (i.e., reversible between two

metamodels). The former is of critical importance in

MDA, e.g., for transforming platform independent models

(PIMs) into platform specific models (PSMs). The latter is

vital for supporting round-trip engineering, and also

rigorous analysis of models: the results of a logical

analysis (e.g., correctness, timing analysis, security

analysis) may need to be reflected in the source of a

transformation. For example, a static analysis may be

applied to a PSM, resulting in changes being made to that

PSM. These changes may need to be reflected in the

original PIM.

Limited tool support currently exists for bidirectional

transformations; key state of the art is summarised in

Section 2. Bidirectional transformations can be awkwardly

implemented by the sequential application of

unidirectional transformations, but this is not entirely

satisfactory because information – e.g., detailed

representations of platforms, model element identities –

may be lost after each unidirectional transformation is

applied. This will particularly be the case with

transformations that are reused from libraries in

unexpected ways. More generally, it is difficult to ensure

round-trip consistency in a sequence of unidirectional

transformations.

This paper describes a new template-based language,

called XRound, for specifying bidirectional transformations

between models of arbitrary languages. Moreover, the

paper presents powerful tool support for this language that

implements bidirectional transformations, particularly to

support merging of the results of model analysis with an

original model. XRound and its tool support are both

illustrated in the context of a case study demonstrating a

particular form of model analysis, namely security risk

analysis (explained in Section 1.1). General lessons

learned about model analysis and using XRound in the

context of merging analysis results with models are also

extracted and discussed.

1.1 Context and contribution

Given a model of a system, such as a Unified Modelling

Language (UML) or Matlab/Simulink/Stateflow model, we

can apply tools to analyse the model, to determine if it has

desirable properties. A variety of analyses are possible and

are used in practice, particularly consistency checking (e.g.,

does the information contained in one UML diagram

contradict that contained in a second diagram), timing

(e.g., is the worst-case execution time for a system

satisfactory), failures (e.g., does the system mitigate for a

particular class of fault) and security. We illustrate the use

of XRound and bidirectional transformations in the context

of security risk analysis in this paper.

Security risk analysis is concerned with discovering

threat paths in a system which allow potential attackers to

access system assets. Concrete security objectives are in

the form of specific unwanted outcomes to particular assets

(e.g. integrity of particular data); however, the analysis

process is forced to consider all possible threat paths to

each asset, and this requires an efficient analytic tool.

The basic idea behind any form of model analysis is as

follows. A model (e.g., in UML) is annotated with

properties. In the case of security risk analysis, the

properties attached to a model are predicates: facts that are

true, or that we wish to assert, about the model (examples

follow in the sequel). These properties are collected by an

analytic tool, which then processes them and returns

results. The results of analysis may be additional properties

that need to be integrated with the original model, e.g.,

new security requirements that have been added to control

threats, failure modes for collections of components,

worst-case execution time for a subsystem. This

integration is generally quite difficult, especially because

engineers may need to use different tools for modelling

(e.g., a UML tool) and specialised analyses.

The usual solution for lightweight tool integration of

this form is template processing. A template processing

system applies a template to a data model via a template

processor, resulting in the extraction and formatting of the

data for some particular application. An example of a

template language is XSLT, which is used for transforming

XML documents, usually into text or HTML.

This is an attractive solution, since it allows designers to

use their preferred modelling environment, and does not

necessarily require a complete definition of the languages

supported by that environment (e.g., a complete UML

metamodel). It is also preferable from the tool software

perspective; for example, type checking of properties can

be implemented once within the analytic tool, rather than

in each UML environment. It is also attractive from the

perspective of compatibility with the traditional principles

and practices of MDA and MDD. MDA, for example,

operates in terms of application of model transformations

to elaborate models, add platform details, remove details,

and eventually generate code. Template processing is

another mechanism for model transformation; in particular,

when applied to security analysis (as we do in this paper),

template processing supports the concept of in-place

transformation, which updates a model to include new

(security) information. Thus, a template processing

approach to model analysis adds no additional complexity

to typical MDA/MDD processes, and in addition helps to

support domain experts (e.g., security engineers) in their

efforts.

Template processing provides an important bridge

between different tools, but the currently available

solutions are unable to support the reverse path of unifying

the output data back into its original source. Round-trip

engineering of analysis results back into the UML is

therefore not straightforward with a conventional template

processor, but is an important requirement for specialist

analytic tools,

XRound is designed to overcome this problem. Its

objective is to maintain the advantages of template

processing, including simple scripting of data

transformations and independence between input and

output applications, while supporting bidirectional

transformations. This language and its supporting template

processor allow model analysis tools to import Extensible

Markup Language (XML) models with a source-specific

metamodel, and re-generate the XML when the analysis

model is changed. The security analysis workbench

application described in Section 7 is one such application:

a specialised analysis tool that imports UML models in the

XML Metadata Interchange (XMI) format, and uses a

bidirectional transformation to merge its results into the

original XMI model.

The contribution of this paper is to describe the XRound

language, its motivation, its relationship with standard

template processing, and how it supports bidirectional

transformations via so-called reversible templates.

Additionally, the implementation and use of the XRound

language is shown to be feasible by presenting a

supporting template processor and a practical application.

XMLSource, a Java-based template processor for XRound,

is described in both system and implementation terms, and

the successful use of XRound in security analysis is

discussed. General lessons learned about supporting

different kinds of model analysis are also synthesised in

the conclusions.

We commence with an overview of related work on

transformations and model merging, and then in Section 3

discuss the notion of a reversible template, which is at the

foundation of XRound. The required processing for

reversible templates is presented. Section 4 presents

XRound itself, and Section 5 illustrates the language with

several small examples. Section 6 summarises the template

processor that supports XRound, and section 7 explains the

use of XRound in supporting security analysis. We then

discuss lessons learned, conclusions, and future work.

2. Related Work

There is substantial related work on model

transformation, model merging, and template-based

techniques that is relevant to the approach presented in this

paper. We now review this work.

2.1 Transformations

Transformations are a critical component of Model-

Driven Development, particularly in the MDA [1]. The

MOF (Meta-Object Facility) 2.0 QVT standard [2] has

been developed in order to provide a precise, flexible

mechanism for modelling transformations. QVT provides

the means for declaratively capturing both unidirectional

and bidirectional model transformations. These can be

independent (i.e., the result model is not linked with the

source model after transformation) or dependent.

Dependent transformations aim at supporting a similar

approach to the reversible templates applied in this paper;

we are unaware of any QVT tool support for dependent

transformations at this stage. QVT aims to support a

variety of scenarios for transformation. Regeneration and

reconciliation of transformation results is most similar to

what is intended for the reversible templates we present.

Tools for supporting transformations have been

developed. Of note amongst these are the Atlas

Transformation Language (ATL) [3], XMF-Mosaic [4],

Yet-Another Transformation-Language (YATL) [5],

VIATRA2 [6] and Epsilon [7]. These languages and tools

are all targeted at Model Driven Development. There are

also transformation tools outside of the Object

Management Group (OMG) standards; for example, the

TXL [8] framework has some similarities to QVT, though

it has been predominantly targeted at programming

language transformation. In this sense, TXL has some

similarities to the model-to-text proposals, such as

MOFScript [9].

The generative programming community has made use

of template-based techniques to implement transformations

[10], and tools have emerged, including Velocity [11] or

Java Emitter Templates (JET) [12]. These are generally

unidirectional transformations aimed at minimizing the

amount of code that needs to be rewritten in a code

generation process.

Tratt's Converge meta-programming language [13] has

also been used successfully to implement a transformation

language, in this case as a domain-specific language. Tratt

also describes a change propagating transformation, also

implemented using Converge, wherein updates made to the

source model are automatically propagated to the target

model. A similar approach to change propagating

transformations is considered by Alanen and Porres in their

Coral system [14]. They describe their tool architecture in

detail, focusing on its activation mechanisms, which have

some similarity to the architecture of the template engine

described in this paper.

Hu et al describe a programmable editor for developing

structured documents (typically XML) based on

bidirectional transformations [15]. Their intent is to allow

operations to be applied to a document view, and to have

an editor automatically derive a consistent document

source along with a transformation to produce the view. In

this manner, consistency is guaranteed by construction.

They define a new (declarative) language for describing

transformation rules, and implement a view updating

scheme (similar to those from the database community)

which reflects view modifications on the underlying

repository.

2.2 Model merging

A model management operation related to

transformation is model merging (sometimes referred to as

model composition, weaving, or unification). Merging

models is the process of integrating two or more models –

often representing parts of the same system – into a

unified, consistent, single model. Model merging is related

to database schema merging. A generic approach to model

merging was described by Pottinger [16]. Approaches to

model merging targeted at Model-Driven Development

have begun to appear. The Atlas Model Weaver (AMW)

[17], which makes use of ATL, is one of the first generic

prototypes. It makes use of a weaving model to describe

correspondences between model elements (e.g., which

elements are to be merged). The Epsilon Merging

Language (EML) is a rule-based language which allows

models to be compared (to identify correspondences), and

elements to be thereafter merged [7]. Pierce et al’s [18]

research on data synchronisation is strongly related to

model merging and composition, as it focuses on the more

general problem of synchronising XML documents via bi-

directional transformations. It is targeted specifically at

efforts to ensure view consistency for tree-structured data,

but does not propose a concrete language for

transformations and updates, nor has it been applied

directly to security analysis. By contrast, the work in the

DEGAS project explored security analysis in the context of

the Choreographer platform [19], but they did not present a

concrete transformation language as well.

Model merging could be used to solve the problem of

combining the results of an analysis of models with the

models themselves. For example, a set of EML rules could

be written that identify where the results of analysis should

be inserted into a source model, and a second set of rules

written that describe the results of the merging process.

The main difference between the approach offered by

model merging, and the approach in this paper, is that any

such merging rules will focus on integrating the results of

analysis with source models. The approach we present in

this paper allows one set of templates to be written which

support both source-to-target generation (i.e., producing a

model to be analyzed) and target-to-source generation.

Conceptually, using a model merging approach and using

reversible templates are equivalent.

2.3 Security analysis

There has been some related work on model-based

security analysis, beyond what we have mentioned in

Sections 2.1 and 2.2.

Related to model merging and model transformation is

aspect-oriented modeling and weaving. Models of cross-

cutting concerns (called aspects) are woven with system

models via an automated process. The application of

aspect-oriented modeling to security analysis is considered

by Petriu et al [20] and Houmb et al [21]. These

approaches differ from the work presented in this paper by

focusing more on the development of security artifacts and

supporting analysis, rather than being able to reflect the

results of analysis in system models.

Breu et al consider security analysis in the context of

MDA [22]. They model security requirements using UML

diagrams and focus on using transformations to generate

security artefacts for web services systems. Jurjens [23]

has presented an approach to building security-critical

systems using UML, and provides tool support for

automated verification. Brændeland [24] has explored

security analysis for component-based systems. The focus

of the work in this paper is more on the infrastructure

needed to support different kinds of security analysis

without being restricted to specific tools and metamodels,

on supporting the analysis of security risk in the system

design process, rather than reasoning about security

functionality, and on being able to support reflection of the

results of analysis automatically in models.

3. Processing Overview

This section introduces the key concepts behind a

reversible template, and then describes how the required

processing functions motivate the overall structure of the

template language.

3.1 The system context

The original motivation for reversible template

processing was to enable the analysis and round-trip

updating of XMI representations of UML models produced

using proprietary design tools. However, the template

processor and the XRound language are general XML

transformation tools, a typical application of which is

shown in Fig 1.

Proprietary
XML Tool

Template
Processor

Tool-Independent
Client Application

XML

Application-Specific
Predicates
(foo, bar ...)

Tool-Specific
Template

XML
Document
(Tool-Specific
metamodel)

XRound
Template
Language

Fig. 1 Reversible template processing architecture

In Fig 1, an application is required to process and

modify an XML model, which is normally managed by a

proprietary tool. The application could directly manage the

reference XML document, but this would dedicate the

application to a proprietary metamodel. The purpose of

the reversible transformation is to decouple the application

from the tool-specific metamodel, by specifying a template

which allows the application to import elements of the

XML model, and also update that model to be consistent

with changes made by the application.

One benefit of using a template, as opposed to

automating the transformation between two meta-models,

is that only partial metamodels need to be specified; in

other words, only the elements of the proprietary model

required for the application need to be understood. The

benefit of using a single template to specify a bidirectional

transformation is consistency: only a single document is

needed to specify the relationship between the application

and the proprietary metamodel.

The relationship between the template processor and the

application is an application programming interface (API),

in which the application is a client of the template

processor. Facts about the model are predicates, which are

exchanged between the template processor (see section 6,

below) and the application.

Three main functions must be supported by the template

processor; they are:

• validation: to check that the format of the XML

document is compatible with the supplied XRound

template;

• import: to read the XML document, and provide the

application with the predicates specified in the template;

and

• export: to update the XML document to be consistent

with predicates held by the application.

One implementation of the template processor is

described in section 6; the following sections describe the

principles of reversible templates in more detail.

3.2 Bidirectional Transformations and Model

Unification

Template processing is usually a one-way operation as

shown in Fig. 2: the template processor locates elements in

the input tree and publishes them, suitably formatted.

In the case of XML data, the input to the template

processor is a tree; the output may be XML, or it may be

published in another format such as text or HTML.

Conventional templates are capable of expressing arbitrary

computation, but their fundamental structure is still to

navigate to selected nodes in the input tree, extract

information, and produce suitably formatted output. The

benefit of a template over a standard programming

language is usually that it is tailored to the particular type

of input and output required.

Value 2

Value 1

Value 3

Input Tree

A.1 A.2

A.1.1

A.1.2

A

Template Output

navigate A.1.1
print text
…
navigate A.2
print text
…
navigate A.1.2
print text

Value 1

Value 2

Value 3

Fig. 2 Conventional template processing

Reversible templates defined in XRound are similar in

structure to existing templates, but encapsulate a

fundamentally different type of operation: unification. The

operation of a reversible template is shown in Fig. 3.

Value 2

???

Value 3

Input Tree

A.1
A.2

A.1.1

A.1.2

A

Unifying
Template

Application
Predicate

navigate A.1.1
match p.1
()
...
navigate A.2
match p.2
()
…
navigate A.1.2
match p.3
()

Value 1

Value 2

Value 3

p.1 = Value 1

p.3 = Value 3

p.2 = ???

Fig. 3 The template unification process

A reversible template navigates to elements in the input

tree, in a similar way to a conventional template, but it also

references values that are shared with the application. The

fundamental operation is to match, or unify, values in the

source tree with values in an application predicate.

Unification allows values to be determined from either the

source tree, or the application predicate, or if values are set

in both, to ensure that they are consistent. For example, in

Fig. 3 the first value is not known in the source, but is

available in a predicate; the opposite is true for the second

value; and the third is the same in both source and

predicate, so this unification succeeds.

The underlying unification process determines the

design of the template language; each part of the template

identifies a unification slot, and the fundamental operation

is ‘match’, which is to unify the slot with either the XML

input tree, or the application predicate.

Unification is conceptually straightforward, but

designing a template language that exploits this process

does present some problems, including:

• The source navigation for a reversible processor is not

quite the same as a conventional template processor,

because is has to unify input nodes that do not exist. For

example, in Fig. 3 it is not simply the case that the input

node does not have the first value set, but that the whole

node (A.1.1) is missing. The template language must

allow the programmer to specify which nodes are

allowed to be missing, and which areas in the source

tree are fixed. In XRound, nodes that may be missing

are marked as mutable, and can be created by the

template processor.

• Because either nodes in the input tree, or attributes

within nodes, may be missing, it is not always possible

to select nodes based on an attribute value, as in an

Xpath [25] expression; it is necessary to unify nodes

that are present while certain attribute values within the

node are missing. In XRound this problem is solved by

a general constraint mechanism, which constrains

unification slots to specified values. Constraints are also

unified as part of the matching process and can

therefore be used to specify the types of predicate that

can be generated, constrain XML node selection, and

determine application predicates to be unified.

The underlying unification process determines some

features that are needed in a reversible template language:

the specification of unification slots and constraints. The

next section describes template processing functions, and

how they are supported.

3.3 Template Processing

This section describes the operation of template

processing in sufficient detail to motivate the clause

structure of the XRound template language. Section 6

describes the template processor in more detail.

The previous section described template-based

unification, and this places some requirements on the top-

level sections of the template language, which are known

as the clauses. Essentially a clause must:

• specify a number of unification slots;

• allow the specification of constraining values for each

slot; and

• unify values in the XML input and/or in application

predicates with slot values and constraints.

In order to allow for a separate verification section, and

also to allow the user to distinguish parts of the XML input

that should be fixed, as opposed to those that may be

rewritten, three types of clause are defined in XRound:

• validate

• structure

• roundtrip

A validate clause specifies validation checks, a

structure clause references elements of the XML input that

should not be modified, and a roundtrip clause includes

input nodes that may be modified when the XML is

regenerated from application predicates. The value of the

structure clause is that it allows some performance

optimisations compared to roundtrip clauses, because it

does not have to account for missing nodes. However, it is

not the case that all nodes visited by roundtrip clauses can

or should be re-written; nodes that can be updated are

specifically identified in XRound by a mutable attribute.

The three processing functions described in section 3.1

are now described:

Validation. Validation can be used to make any checks that

the programmer requires, but its primary aim is to ensure

that the template and the XML input are compatible. A

particular template will apply to a limited range of source

tools and versions; validation clauses in the template are

used to make any measurements on the XML input data

that are necessary to check that XML document is

compatible with the template.

After the XML input and the template have been

successfully opened and parsed, each validate clause is

executed, and each must succeed for the validation to

succeed. No other clauses are executed during validation,

and the validation clauses are not executed as part of any

other processing.

Import. The import operation is similar to normal template

processing, it is used to assemble predicates from the XML

input and provide them to the client application.

Any structure clauses are first executed, followed by

roundtrip clauses. Each clause is unified with constraints

specified within the clause, but not with any application

predicates. The clauses have one or more publish attributes

that mark completion; when these are reached the

unification slots within the clause are checked and, if

complete, a predicate is exported to the client.

Export. The export operation merges predicates from the

client application back into the XML input, then saves the

result. The purpose of the operation is to update the XML

representation with any changes that have been made by

the application, without the need for the application to

manage the specific XML metamodel, and without the

need to write different templates for input and output

processing.

The first processing stage executes all the structure

clauses in the template; although this will not result in any

updates to the XML output, it is necessary because it may

build reference information that is used later (see

Performance Management, below). There are two further

processing stages, the second removes mutable nodes,

assuming that nodes no longer present in the application

have been deleted intentionally, and the third re-builds

nodes from the application predicates. In both cases, the

operation (remove, build) takes place only for mutable

nodes that have been encountered during a successful

unification of a roundtrip template clause. The values

written to the rebuilt nodes are obtained from the

unification slots in the template, and so may contain values

from the application predicates, from the XML input, and

from clause constraints.

 In summary, the process that allows a template to be

interpreted in both directions is unification; this has

implications for the types of navigation that can be carried

out within a template and determines the need for other

structure in each clause: unification slots and constraints.

The three key operations of validation, import and export

are supported by the clause structure in XRound, allowing

the programmer to specify validation checks (validate),

elements of the XML that should not change (structure),

and parts of the XML model that may be modified

(roundtrip).

4. The XRound Language

This section describes the complete XRound language.

It begins by describing how an XRound template is

organised in terms of clauses and how they support

unification slots, constraints, and transformations. This is

followed by a discussion of other types of constraint, and

additional language features, including those that support

performance management and debugging.

4.1 Basic Template Structure

The top-level structure of the template language is given

in the abbreviated XML Document Type Definition (DTD)

in Table 1.

Table 1 Abbreviated XRound Document Type Description

<!ELEMENT tpl.template ((tpl.validate|tpl.structure|tpl.roundtrip)*)>

<!ELEMENT tpl.validate ((tpl. declare|tpl.constraint)*,tpl.specification+)>
<!ATTLIST tpl.validate length CDATA #IMPLIED
 auxLength CDATA #IMPLIED>

<!ELEMENT tpl.stucture ((tpl. declare|tpl.constraint)*,tpl.specification+)>

<!ELEMENT tpl.roundtrip
 ((tpl. declare|tpl.constraint|tpl.uniqueName)*,tpl.specification+)>

<!ELEMENT tpl.declare>
<!ATTLIST tpl.declare position CDATA #REQUIRED>
 name CDATA #REQUIRED>

<!ELEMENT tpl.constraint (tpl.value+)>
<!ATTLIST tpl.constraint position CDATA #REQUIRED>

<!ELEMENT tpl.uniqueName (tpl.value+)>
<!ATTLIST tpl.uniqueName position CDATA #REQUIRED>

<!ELEMENT tpl.value (#PCDATA)>

…

An XRound template is a well-formed XML document

containing three node types that may occur in any number

and any order: tpl.validate, tpl.structure and tpl.roundtrip.

These are the clauses introduced in the previous section.

Attributes in each clause node specify the number of

unification slots (length + auxLength), which may be

indexed as an array in the subsequent template (e.g.

position = “0”). The slots are divided into two types, the

first (specified by length) are mapped directly to an

application predicate; the second (specified by auxLength)

are auxiliary variables used during template processing. It

is necessary to index the predicate as an array, to ensure

that the order is specified for the application; however, it is

also possible refer to unification slots by name, for the

purpose of readability. This is the purpose of the

tpl.declare statement, which may occur within any of the

three main node types. The scope of such a declaration is

the node (template clause) in which it occurs, and it allows

any attribute that would specify a unification slot number

to use the declared name as an alternative (e.g. position =

“UML_CLASS”).

Each clause may have any number of constraints; each

constraint has a position attribute that specifies the

associated unification slot, and a number of values.

Because the round trip process can generate nodes that

were not previously part of the XML input, it is sometimes

necessary to generate new unique names. For example,

unique identifiers (xmi.id) may be needed for UML

elements in XMI models. tpl.uniqueName specifies that a

unification slot will be filled with a unique name that is

generated by the template processor, if it is not otherwise

defined by the unification process.

A clause therefore specifies the unification space, or

number of slots, and gives constrained values to those

slots. One or more specification nodes in each clause

determine the correspondence between the XML input and

unification slots in the template, and hence the application

predicates.

The remainder of the language is presented as constructs

and examples, rather than a DTD; this is because

specification nodes may quote from the DTD of the source

XML document, modified with additional optional

attributes; the resulting DTD for the XRound would

therefore either be application specific, or unhelpfully

contain extensive provision for “any” nodes.

4.2 Template Specifications

A template specification is well-formed XML; unlike

some template languages it follows a tree structure, rather

than a sequence. Depth in the tree indicates subsequent

operations and breadth allows the specification of

alternatives. There are three types of node in a template

specification: Source Nodes, Navigation Nodes, and

Matching Nodes. Certain XRound attributes may appear

in more than one type of node, so these will be summarised

before specification nodes are described.

4.2.1 Generic Attributes

Generic attributes may appear in several different node

types; they are used to control the behaviour of the

template processor.

A publish attribute can appear anywhere in a

specification tree, and its effect is to test if unification is

complete, and if so mark that result as successful. Table 2

illustrates the use of this attribute.

Table 2 The publish attribute

<first>
 <second publish=”TRUE”/>
 <third>
 <fourth publish=”TRUE”/>
</third></first>

The specification in Table 2 would find all instances of

first…second and first…third…fourth that unified. (first,

etc, are not of course valid node names.)

A tpl.mutable attribute specifies that the sub-tree

beneath the node in which this attribute is set can be

removed or re-written when predicates from the client

application are exported back into the XML document.

This attribute may only occur in source or navigation

nodes, within roundtrip clauses; Section 5.2 provides an

example that illustrates the use of tpl.mutable.

Two other attributes may appear anywhere within an

XRound template, they are tpl.debug and tpl.message.

Their primary function is for template debugging, and their

use is described in section 4.5, below.

4.2.2 Source Nodes

Source nodes name a node type in the XML input

document. They cause the template to evaluate all nodes of

that name from the current position in the XML document.

A typical template is therefore interspersed with node

names from the source document, together with statements

specific to the template language.

4.2.3 Navigation nodes

The XRound language supports four types of navigation

statement:

• select: evaluate all nodes with a given name;

• selectfromChildren: evaluate child nodes;

• moveUp: move up in the XML document tree; and

• selectRegisteredNode: evaluate registered nodes.

Selection statements result in the evaluation of all the

selected nodes. The selectRegisteredNodes statement is

concerned with performance management, which is

discussed in section 4.4, below; examples of the other three

statements are given in Table 3.

Table 3 Navigation statements

<tpl.select node="UML:ClassifierRole">

<tpl.selectFromChildren
 node="UML:AssociationEnd"
 position="0">

<tpl.moveUp steps="2”>

A tpl.select node evaluates all nodes in the input tree

with the specified node name; the example in Table 3

selects all UML:ClassifierRole nodes in the XML input

document.

A tpl.selectFromChildren node selects child nodes from

the present position in a specified order. Each occurrence

of tpl.selectFromChildren specifies the position (i.e. index)

and name of the child node to be selected. In this example

the first occurrence of a UML:AssociationEnd node is

selected. Note that there is no need for the template

language to have a named statement that evaluates all child

nodes of a given name, since that function is provided by

directly quoting a source node.

The tpl.moveUp node moves the present position in the

XML document tree up by the specified number of steps.

4.2.4 Matching Nodes

There is a single match node, tpl.match, within the

template language; it instructs the template processor to

unify an element in the XML input tree with the specified

unification slot, any previously specified constraints, and

depending upon the process mode, a predicate retrieved

from the client application. The type of matching carried

out is controlled by the nodeType attribute, which may take

one of four values:

• TEXT_NODE

• ATTRIBUTE_NODE

• MULTIPLE_TEXT

• MULTIPLE_ATTRIBUTE

Text matching unifies with a text node, and attribute

matching unifies with a selected attribute from the current

node. Multiple matching parses a given text element or

attribute into components, and unifies with one of the

components. Table 4 gives examples of the four matching

options.

Each tpl.match node specifies the index of the

unification slot that must be matched (position), as either

an index or a declared name. The relationship between the

unification slots and the client predicates is fixed, so this

does not need to be specified separately. The node to be

matched from the XML input is always the current node,

reached by the last navigation. The first two match types

unify the value of node text data, or an attribute by name,

respectively. The ‘multiple’ variants add the ability to

decompose an XML value into components, and match one

of those components with a unification slot.

A multiple text or attribute node type unifies one value

in a list of separated values. These are used in situations

where the XML text string (text node or attribute) is

composite, and must be decomposed for the application.

For example, given the attribute myLunch=”fish,chips”,

the example above would correctly match the number of

values in the attribute (length=”2 “) and attempt to unify

the value ‘chips’ (tagIndex=”1”) with the template slot 3.

One use of this feature is to pack and unpack UML tags

with compound value elements, recorded in XMI as single

text nodes.

This is the core of the reversible template language.

Other language features include additional forms of

constraint, and the support of performance management

and debugging. These will be discussed in the following

sections, after which the core language will be illustrated

with worked examples.

4.3 Further types of Constraint

The primary means of constraining processing is via

constrained unification. (See Sections 3.2 and 4.) In brief,

tpl.constraint may be used to specify a list of values for a

unification slot. Any valid entries for the slot must be

consistent with the corresponding value in the XML

document, the value in the application predicate, and also

take one of the specified constraint values.

There are two other types of constraint supported by

XRound:

• selection by a constant, which avoids the need to use

auxiliary unification slots just to specify constants; and

• constraint matching, which allows more complex

constraints than can be achieved using the primary

constraint mechanism.

Table 4 Matching Options

<tpl.match nodeType="TEXT_NODE" position="0">

<tpl.match nodeType="ATTRIBUTE_NODE" attribute="name" position="1">

<tpl.match nodeType="MULTIPLE_TEXT" tagIndex="1“ length="2“ position="3" >

<tpl.match nodeType="MULTIPLE_ATTRIBUTE" attribute="myLunch“ tagIndex="1“ length="2“
 position="3" >

Table 5 Constraint by a constant

<tpl.roundtrip length="1" auxLength="1">
<tpl.declare position="1" name=”constrain_true”>
<tpl.constraint position="1">
 <tpl.value>true</tpl.value>
</tpl.constraint>
...
<tpl.match nodeType="TEXT_NODE" position="constrain_true">

---- alternatively ---

<tpl.match nodeType="TEXT_NODE" text="true">

4.3.1 Selection by a constant

It is feasible to specify a constant using an auxiliary

unification slot; however, there are cases where constraint

by a constant is an aid to template readability. The syntax

is to replace the position attribute in a match statement,

with text=”value”, as shown in Table 5.

Table 5 illustrates two ways of ensuring that a text node

has the value ‘true’. In the first an additional unification

slot is declared, given a meaningful name, and constrained

to the value ‘true’; the slot is then referenced as required.

The second uses constraint by a constant, in which the

value is specified as needed. Even without the name

declaration, the first is considerably longer. Of course,

writing constants where they are needed is not always the

best programming practice, and either can be used as

appropriate. This is essentially a syntactic shortcut, which

does not modify the underlying unification mechanism;

however, it cannot be used where a specific unification slot

is necessary; for example, to share a constant such as a

predicate name with the application.

XML documents often include elements of the form

name=”nnn” value=”vvv”; where the name of interest to

the application is a constant, this form of constraint is

particularly effective in this case.

4.3.2 Constraint Matching

The unification process described in Section 3.2

constrains unification slots independently; however, there

are instances where it is necessary to accommodate

dependencies between variables.

For example, consider the need to check tool names and

version numbers to verify that a template is able to process

the supplied XML; for example, a template may be able to

accommodate XML generated from the tools and versions

given in Table 6.

Table 6 Example of pair-wise constraints

tool = “uml_A” version = “1.2”
tool = “uml_A” version = “1.2a”
tool = “xmi_uml” version = “15”

The core language would be able to extract the tool

name and constrain it to uml_A or xmi_uml, and similarly

extract the version number. However, an additional form

of constraint is needed to correlate the tool to its version.

This is achieved by index matching, which specifies that

two unification slots must be matched by a constraint at the

same position in each constraint list. The syntax is given in

Table 7:

Table 7 Index matching syntax

<tpl.matchConstraintIndex
 position="..."
 position2="...">

The two positions index unification slots, as usual, and

the constraint specifies that the two slots must be filled

with constraints from the same position in each constraint

array. For example, the template in Table 8 implements the

version checking requirement in Table 6.

The match statements in Table 8 unify the selected

attributes with the possible values for tool and version, and

the additional matchConstraintIndex test ensures that only

valid pairs of values are permitted.

Although this function is limited to pairwise

comparisons, it can be used to implement constraints of

any order.

Table 8 Version checking template

<tpl.validate auxLength="2">
<tpl.constraint position="0">
 <tpl.value> uml_A </tpl.value>
 <tpl.value> uml_A </tpl.value>
 <tpl.value> xmi_uml </tpl.value>
</tpl.constraint>
<tpl.constraint position="1">
 <tpl.value> 1.2 </tpl.value>
 <tpl.value> 1.2a </tpl.value>
 <tpl.value> 15 </tpl.value>
</tpl.constraint>
<tpl.specification>
 ...
 <tpl.match nodeType="ATTRIBUTE_NODE" attribute=”tool” position="0">
 <tpl.match nodeType="ATTRIBUTE_NODE" attribute=”version” position="1">
 <tpl.matchConstraintIndex
 position="0" position2="1">
 ...

4.4 Performance Management

The main performance problem in template processing

is the need to repeatedly scan all the nodes in a document.

This problem can be seen in the roundtrip example in

Table 13, in Section 5.2, below. A reference to an xmi.id is

obtained from a node of interest, but in order to find the

class name that corresponds to the reference it is necessary

to scan the entire document for UML:Class nodes. Since

Classes are in user-defined packages they can occur at any

level of the XMI hierarchy, so it is not feasible to limit the

search size by navigating from the tree root.

The types of node that are revisited in this way are often

a relatively limited number of fixed design points; in the

UML example these are primarily the classes and objects.

If it were possible to simply remember the location of

these nodes then these auxiliary searches could be made

much more efficient. This, quite simply, is what the

performance management statements in XRound

implement. There are two statements, one that records

fixed points, and one that navigates to previously recorded

nodes. The syntax for these statements is given in Table 9.

Table 9 Performance management syntax

<tpl.registerNode/>
....
<tpl.selectRegisteredNode
 node="...">

The registerNode statement records the current node,

and the selectRegisteredNode statement can then be used

to search just those nodes that have been registered for a

given node type.

In the example of Section 5.2, each UML:Class could

be registered, allowing the set to be revisited later without

the need to search the entire document tree. Instead of

searching the document tree with a select statement, the

selectRegisteredNode could be used; the result is the same,

but considerably faster.

The only restriction on the use of these statements is

that mutable nodes cannot be registered, and that nodes

must be registered before they can be selected. Clauses in

the template are executed in order, so normal practice is to

register nodes in early structure clauses; these nodes can

then be referenced in the remainder of the template.

The value of these performance features is model and

template specific. However, the parsing performance of a

real system model indicates the effectiveness of node

registration. The system design used for test purposes is a

high level model of an industrial distributed system, which

was analyzed using the security analysis application

described in Section 7 [26]. The size of the UML model1,

and comparative parsing times2, are given in Table 10.

Table 10. Example of performance management benefit

Model Characteristics

XML File Size 1.9 MB

Total Number of Classes 142

Total Number of Associations 296

Template Processing Performance

Elapsed time with registered classes 2.1 s

Elapsed time without registered classes 36.4 s

Additional complete model searches

without registered classes

751

The template used to process this model registers only

the class nodes, and this simple strategy results in a

substantial performance benefit (from 36.4 seconds to 2.1

seconds). A select operation, as opposed to a

selectRegisteredNode operation, forces the template

processor to check every node in the model for the

specified attribute (e.g. class name), and without

1 The number of classes and associations in table 1 are slightly

higher than those that may be inferred from the published case

study [26]; the difference is that these are for the whole model,

not just the system design elements discussed in the study.
2 Measured on a 2.81 GHz Pentium 4-based machine with 1GB of

RAM.

registration this results in 751 additional full model

searches. A major contribution to this cost is the

processing of associations; when an association is

encountered, the template references the class at each end

to obtain class names from the xmi.id attributes specified in

the association node. A similar operation is required to

associate tags with classes. Not all templates would need to

dereference IDs in this way, but this is a relatively

common requirement, and the performance management

features described here make these dereferencing

operations much more economical.

4.5 Debugging

Finally, there are two important features in the language

that aid template debugging: message and debug attributes,

which are generic attributes that can be added to any node.

Their syntax is given in Table 11.

Table 11 Generic debugging attributes

tpl.message=”.. message text ..”

tpl.debug=”TRUE”

The message attribute can be included in any node, and

sets a message for the template tree below that node. If any

errors are issued during the processing of that template

sub-tree, then the message will be included in the error

report. It is good programming practice to include

messages in every clause header; they provide useful

comments and invaluable narrowing of the problem space

when an error is reported.

The debug attribute is not intended to be a permanent

feature of a template. Whenever a node is encountered

with this attribute, the following information is printed:

• the current message (see above);

• the current predicate, which may not be fully defined;

• the template node that requested the printout;

• attributes of the template node;

• the current document node; and

• the attributes of the current document node.

This provides a compact summary of the current status

of the template processor, and is sufficiently informative to

trace the behaviour of a template without needing the

complete processor status; in particular, it allows the

unification process to be monitored. In practice, however,

this level of detail is rarely required; it is often sufficient to

know that a particular node in the template is reached.

When a template fails, the most common problem is

detecting the node that failed to match the document, so

the most common use of this debugging feature is to probe

where a template succeeds or fails.

5 Examples

This section provides three examples of template

clauses, which demonstrate how well the template

language is able to hide round-trip processing complexity.

The examples are drawn from templates that support

roundtrip analysis of the security of UML system models,

where the UML design tool uses XMI as its export format.

The first two examples illustrate structure and roundtrip

clauses; the third is a roundtrip clause for the same

application, but a different source metamodel.

5.1 A structure clause

Table 12 presents a complete structure clause, which

extracts UML Class names with given stereotypes.

There are two unification slots in the template, and these

correspond directly to a client predicate with two values.

The constraint section of this clause limits the first slot

position to the values ‘data’ or ‘service’.

Table 12 A structure clause

<tpl.structure length="2">
 <tpl.constraint position="0">
 <tpl.value>data</tpl.value>
 <tpl.value>service</tpl.value>
 </tpl.constraint>
 <tpl.specification>
 <tpl.select node="UML:Class">
 <tpl.match nodeType="ATTRIBUTE_NODE" attribute="name" position="1">
 <UML:ModelElement.stereotype>
 <UML:Stereotype>
 <tpl.match nodeType="ATTRIBUTE_NODE" attribute="name" position="0" publish="TRUE"/>

</UML:Stereotype></UML:ModelElement.stereotype></tpl.match></tpl.select>
</tpl.specification></tpl.structure>

Table 13 Mutable document nodes

<!—Slots: (tagname 1st_value className 2nd_value) (xmi.id) -->
<!—Client use: (PermitAccess fromClass inClass toOperation) -->

<tpl.roundtrip length="4" auxLength="1" tpl.message=”Processing Access Controls”>
 <tpl.declare position=”0” name=”PERMIT_ACCESS”/>
 <tpl.declare position=”1” name=”VAL_1”/>
 <tpl.declare position=”2” name=”IN_CLASS”/>
 <tpl.declare position=”3” name=”VAL_2”/>
 <tpl.declare position=”4” name=”XMI.ID”/>
 <tpl.constraint position="PERMIT_ACCESS">
 <tpl.value>PermitAccess</tpl.value>
 </tpl.constraint>
 …
<tpl.specification>
 ...
 <UML:TaggedValue tpl.mutable="TRUE">
 <tpl.match nodeType="ATTRIBUTE_NODE" attribute="tag" position="PERMIT_ACCESS">
 <tpl.match nodeType="MULTIPLE_ATTRIBUTE" attribute="value" tagIndex="0"
 length="2" position=”VAL_1”>
 <tpl.match nodeType="MULTIPLE_ATTRIBUTE" attribute="value" tagIndex="1"
 length="2" position=”VAL_2” >
 <tpl.match nodeType="ATTRIBUTE_NODE" attribute="modelElement" position=”XMI.ID” >
 <tpl.selectNode node="UML:Class">
 <tpl.match nodeType="ATTRIBUTE_NODE" attribute="xmi.id" position=”XMI.ID”>
 <tpl.match nodeType="ATTRIBUTE_NODE" attribute="name" position=”IN_CLASS”
 publish="TRUE">
 …

The specification searches all the nodes in the XML

input for UML:Class nodes. For each node of this type it

extracts the name attribute, which is unified with the

second unification slot. The template then searches child

nodes for the stereotype (UML:ModelElement.stereotype

/UML:Stereotype) and unifies the attribute name of the

stereotype with first unification slot. Of course, this slot is

constrained, so the only values that succeed are ‘data’ or

‘service’. The effect of this clause, therefore, is to search

the XML input for UML:Class nodes with a stereotype of

‘data’ or ‘service’ and, depending on mode, publish

predicates of the form (data|service,name). The form of

this template is very similar to other template languages,

demonstrating that although reversible templates are

theoretically quite different to conventional templates, their

programming form can be made familiar.

Although the structure of the XRound language is a full

XML tree, the normal page layout of the template is

procedural, except in sections where the tree structure

needs to be exposed. This aids comprehension for those

familiar with other template languages.

5.2 Mutable nodes

The specification of mutable nodes is essentially the

same; Table 13 shows part of a roundtrip template clause

for the same application.

The comments at the start of this extract describe the

use of the unification slots, and the resulting application

predicate; these names are then declared as aliases for the

slot positions and later used to define positions. This

template matches an XMI tag, which references a UML

class. The name of the tag is PermitAccess and the tag

value has two separated components (e.g. PermitAccess =

”subject,object”). The application predicate contains the

same information as the tag, but also includes the name of

the class in which the tag was declared (inClass). The first

four template slots correspond to the values in the

application predicate, and the fifth is used for the xmi.id

which references the UML class. The header to this clause

specifies the number of unification slots, and constrains the

first to the single value ‘PermitAccess’. Note that since this

constrained value is part of the predicate exchanged with

the application, the use of constants, as described in section

4.3.1, is not appropriate.

The specification navigates directly from the document

root (XMI) to a tagged value, which is marked as mutable.

This specifies that any tagged values that match this clause

will be re-written on export. This navigation identifies all

possible tagged values, but only those that unify as far as

the ‘publish’ attribute at the end of this fragment will be

rewritten.

The next three match statements unify the three

elements of the tag (name plus two values) with their

respective slots. An important feature of this language is

that these statements are able to extract data from the XML

source and publish them to the client application, and also

obtain predicates from the client and update the XML

source, depending upon the operational mode of the

template processor.

The fourth match operation unifies the modelElement

attribute value with an auxiliary slot in the unification

template (i.e. one that is not part of the application client’s

predicate). This value is the xmi.id of the class to which the

tag is related; selectNode then navigates to the

corresponding class by selecting all the class nodes in the

XML input, and selecting the one with the correct xmi.id.

This involves searching the entire input tree in order to

dereference a single xmi.id; a more economical approach is

described in section 4.4.

The final match statement unifies the class name

associated with this xmi.id with the third template slot. At

this point the publish attribute tests if the unification

process is complete, causing publication to the client, or

the addition of a node to the XMI document, depending

upon the direction of processing.

In order to write a template, such as the fragment in

table 13, it is necessary to understand the relevant parts of

the source metamodel, and the predicates required by the

application. However, the programmer’s view of the

process is one of selecting model elements, and specifying

how predicates are assembled; these are essentially the

only operations that are exposed. This is therefore very

similar to standard template processing, where the template

specifies location and format. The only features in this

fragment that indicate that it is reversible are ‘mutable’

attributes, which show which nodes can be modified. The

programmer must understand that nodes marked as

mutable must be fully defined in the application predicates

(see section 6.2.2), but in most other respects the semantics

of bidirectional processing are hidden from the template

programmer, who is still able to think of the reversible

template as little more than a ‘select and publish’ script.

(Limitations to processing transparency are illustrated in

sections 5.3 and discussed in section 8.3.)

One notable feature of this fragment is the relative lack

of constraint checking. In this application the two

component values in the tag are known types, the first

corresponding to a class of a known stereotype, with a

navigable association to the class in which the tag appears,

and the second to an operation within that class. It would

be quite straightforward to use the template to check that

these values correspond to correct types. However, there

are good reasons for avoiding these checks at this stage.

Firstly, the template is specific to the tool that generated

the XML input, but given that the template processor

delivers tool-independent predicates, the type checking

could be coded once, in the application, rather than

separately for each supported tool. The application is able

to give meaningful messages about type problems in the

application domain, because the predicates adequately

describe the model from an application perspective. For

example, if a predicate specified a security access

permission to a non-existent user role, this problem could

be meaningfully described to the user.

This argument also mitigates against the use of the

UML Object Constraint Language (OCL) for application-

specific type checking, since constraints written within the

UML will be specific to a proprietary UML metamodel

and file structure. Of course, there is likely to be valuable

type-checking within the UML model for constraints that

are not related to the analysis domain, and which may not

be fully exposed to the application.

There is also a second consideration, which is that in its

normal operation the template processor will often fail to

unify, since it will attempt to match nodes and predicates

that are not compatible. If constraint checking is included

in the template, then badly constructed types will not unify,

and will not be passed to the application. However, the

result of a constraint failure in a template processor is

silence, whereas constraint failures in the application can

generate meaningful type warnings to the user. The

programming philosophy is therefore to specify the

minimum in the template language, consistent with

establishing an accurate relationship between the XML

input and application predicates, and to carry out more

application-specific type checking in the application.

5.3 A contrasting XML metamodel

The previous sections provided examples of template

clauses from a real application; since this application

supports multiple UML tools, it is possible to contrast

Table 13 with the template for a different UML source.

This provides insight into the extent of the differences

between proprietary metamodels, and the role of the

template in hiding the application from such differences.

Table 14 delivers the same predicate to the application

as Table 13, but for XML documents produced from a

different proprietary design tool. Both tools support UML

2 and use XMI as a common exchange format; they are not

identified here since they are both are well regarded

propriety tools, and identifying them would invite

comparisons based only on one aspect of their metamodels.

The template in Table 13 extracts a complete tag from

one area of the model, and then looks up the referenced

xml.id to obtain the associated class name. The structure of

the XMI corresponding to the template in Table 14 is quite

different; it is the tag definition, not the class definition

that is identified with the xmi.id. Here, the document is

first searched for a tag specification, in order to extract the

xmi.id for the required tag name (“PermitAccess”). The

instance of a tag is in a sub-tree within the UML:Class to

which it is attached; the tag information is extracted, and

the template finally checks that the tag identifier (xmi.id) in

the class matches the required definition.

This example illustrates the power of the reversible

template. From the user perspective both source tools carry

out the same function, and both export XMI models. The

metamodels are radically different, but these differences

are only visible in the template definition; from the

application perspective the difference is hidden, and the

analysis tool is able to use either source.

Table 14 Mutable document node for a contrasting XMI source

<tpl.specification>
 ...
 <UML:TagDefinition>
 <tpl.match nodeType="ATTRIBUTE_NODE" attribute="name" position=”PERMIT_ACCESS”>
 <tpl.match nodeType="ATTRIBUTE_NODE" attribute="xmi.id" position=”XMI.ID”>
 <tpl.selectRegisteredNode node="UML:Class">
 <tpl.match nodeType="ATTRIBUTE_NODE" attribute="name" position=”IN_CLASS”>
 <UML:ModelElement.taggedValue tpl.mutable="TRUE">
 <UML:TaggedValue>
 <UML:TaggedValue.dataValue>
 <tpl.match nodeType="MULTIPLE_TEXT" tagIndex="0" length="2" position=”VAL_1”>
 <tpl.match nodeType="MULTIPLE TEXT" tagIndex="1" length="2" position=”VAL 2” >
 <tpl.moveUp steps="1">
 <UML:TaggedValue.type>
 <UML:TagDefinition>
 <tpl.match nodeType="ATTRIBUTE_NODE" attribute="xmi.idref"
 position=”XMI.ID” publish="TRUE">
 …

To support this metamodel it is necessary to regenerate

tag definitions, as well as the instances of tags. The

fragment in Table 14 regenerates instances of tags,

provided the definitions are present. Roundtrip clauses in

the template language are executed in the order in which

they appear, so in the complete template there is an

additional clause to extract or regenerate tag definitions.

The template language therefore has the ability to

regenerate models where mutable nodes are mutually

dependent, as opposed to simply add or subtract leaf nodes.

However, in these more complex examples, bidirectional

processing is not fully transparent to the template

programmer, who must take into account the order in

which the XML model will be regenerated.

6 A Template Processor

The previous sections describe the XRound template

language; this section describes a practical template

processor which is able to interpret the language, and

provide the operations of validation, import and export

(round-tripping) of models. The programmatic interface to

the template processor is described, showing how template

processing is integrated with an application, followed by a

brief account of its architecture. This section aims to

demonstrate the feasibility of practical processors to

support the XRound language, rather than give a full

account of implementation issues.

6.1 Template Processor Overview

The XMLSource template processor is a Java class that

encapsulates an XML file and allows its client application

to import and export predicates from and to an XML

document. The design of the processor is given in Fig. 4;

although its initial application was to roundtrip XMI

documents, there is nothing XMI-specific in XRound, or in

this processor.

XMLSource

+ (File, File, XMLMessage)

+ transform(PublishHandler) : void

+ saveAs(ExportInterface, File) : void

+ getWorkingFile() : File

+ isValid() : boolean

«interface»

ExportInterface

+ getPredicateIterator(String[]) : Iterator

«interface»

PublishHandler

+ publishPredicate(String[]) : void

«interface»

XMLMessage

+ writeXMLMessage(String) : void

XMLSource

Fig. 4 XMLSource: an XRound Template Processor

The XRound processor is a single class, XMLSource,

which encapsulates an XML file whose name is provided

to the constructor. Three interfaces are defined in the

package, and these call-backs are provided by the

application client to allow the processor to import and

export predicates.

Predicates are represented as arrays of Strings, such as

{class,foo}, which describe features in the XML input that

are required by the application. The processor supports

three transform operations: validation, import and export.

(See Section 3 for further detail.)

Validation. Validation allows the user to check that the

template and the input model are compatible. The

XMLSource constructor takes three parameters, the

reference XML File, the Template File, and a message

interface. (The Java File class encapsulates a file name.)

The message interface is used to pass certain error

messages back to the application, particularly those that

report inconsistencies between the template and the XML

input. A message interface is used in preference to a

thrown exception, since it allows a sequence of messages

to be reported during processing, which is valuable during

template debugging.

The initialization process parses both the Template and

the XML input file, and executes the section of the

template which is used to validate the input. Methods are

provided to allow the client application to check that the

validation was successful (isValid) and to retrieve the

name of the XML input file (getWorkingFile).

Import. A single method, transform, runs the import

process, which extracts predicates from the XML input, as

specified by the template, and publishes them to the client

application. As each predicate is constructed the

PublishHandler interface provided by the application

client is called to transfer the predicate to the client.

Export. A single output method (saveAs) is provided to

export predicates from the client application to a named

XML file. The output filename is provided by the client,

together with an interface (ExportInterface) which allows

XMLSource to obtain predicates from the application. This

callback is slightly more functional than the other

interfaces, but is still straightforward: the client is provided

with an incomplete predicate, which is an array of Strings,

some elements of which may be null. The client responds

with an iterator, which encapsulates predicates matching

this template.

The saveAs method updates the reference XML input

with predicates obtained from the application, and then

writes the result to the named file. File naming strategies

and backup files, etc, are determined by the client

application.

Because the input XML is encapsulated by the template

processor, there is no need for the complete XML tree to

be exported to the application; the transformation therefore

includes only the features required by the application.

An important feature of the template processor is its

straightforward client interface; this is a direct result of the

reversible template model, since:

• The application needs to obtain only the predicates that

it requires for its function, the rest of the input XML

remains hidden.

• The application interface is independent of the tool used

to generate the XML: any tool differences are accounted

for in the template.

• The template includes an explicit validation section that

is run at initialisation.

A discussion of how the three operations relate to the

template specification is presented in section 3.3; the

remainder of this section describes implementation issues.

6.2 Template Processor Implementation

The template processor is based around a core recursive

structure which alternates between navigating the template,

then implementing template instructions, often by

traversing the document tree; this core architecture is

shown in Fig 5.

The document which is traversed by the template

processor is always the XML input model, and this model

is retained until it is updated by round-trip processing. In

this way any elements of the XML input model that are not

transferred to and from the application as predicates are

retained.

Each of the main public methods (the constructor,

transform() and saveAs()) sets a processing mode and then

calls processDocument() once for each clause to be

processed. The processing modes used for each method

and clause type are listed in table 15.

processDocument(...)

processStructureTemplate(...) processStructureDocument(...)

testPublish(...)

For each clause set up context:
unification, & constraints

new
specification

Find new
template
position

Process template statement
Select new document position

Check if unification
is complete

Re-enter to modify
Document

Fig. 5 Template processor core architecture

Table 15 Processing modes and associated clause types

Method Clause Mode

XMLSource

constructor

validate validation

transform() structure forward

transform() roundtrip forward

saveAs() roundtrip clean

saveAs() roundtrip reverse

testPublish() see text reverse2

The processing modes primarily condition the behaviour

of the testPublish() method, which is used to check if a

unification has succeeded, together with some

modifications to the behaviour of the core recursive cycle,

most notably success and failure handling.

The processing of validation and forward modes is

straightforward; the processDocument() method reads the

header, constraints, and declarations from a template

clause, builds the recursive context and then calls

processStructureTemplate() for each specification within

the clause. The processing is carried out by a recursive

loop between processStructureTemplate(), which selects

the next template node, and processStructureDocument(),

which carries out the template instruction, often by

selecting the next position in the XML input document.

The calling parameters of these methods are identical,

consisting of a recursive context which represents the

current position in the combined template and document

trees; the main elements of this context are:

• the processing mode;

• the template tree node;

• the document tree node;

• the Predicate object (see unification, below);

• the current debug message; and

• a node list (see roundtrip processing, below).

processStructureDocument() is essentially a case

statement for each of the possible template operations,

each of which is implemented in a separate method; the

only method of architectural interest is testPublish(), which

is invoked whenever a publish attribute is encountered in

the template. Its behaviour depends on mode. In validation

and forward modes it checks for a completed unification,

and if this succeeds it either returns success, or publishes a

predicate to the application using a callback interface,

respectively. Interesting aspects of the implementation are

the management of unification, and the use of the core

processing architecture for round-trip processing.

6.2.1 Unification

Unification is straightforwardly encapsulated in an inner

class (Predicate), with the number of unification slots set

by its constructor. Class methods include:

• addConstraint: specify a constraint on a slot;

• addvalue: unify a given value with a slot;

• getPredicate: unify and return predicate;

• indexMatch: check index between pair of slots.

In general, unification is performed as each new value is

added, returning success or failure; however, the use of the

getPredicate() accessor allows the class to defer the

unification of constraints, including the generation of

unique names, if required.

6.2.2 Round-trip processing

Round-trip processing updates the XML document to be

compatible with the model held by the application; model

updating is only carried out in areas of the model that are

identified by nodes in roundtrip template clauses which are

marked as mutable. Two passes of the complete template

are made, the first cleans the retained XML input

document by removing mutable nodes, and the second

(reverse) regenerates any such nodes that are present in the

application model. All other elements of the XMI input

document are preserved. This imposes a constraint on the

template programmer, that the contents of mutable nodes

must be preserved in the application predicates.

Constructing the processing in this way allows the

application to signal that nodes should be completely

deleted from the model, simply by deleting the relevant

predicate(s).

In both modes, the processStructureDocument() method

records the context of mutable document nodes; this node

list is built as part of the recursive context, and eventually

passed to the testPublish() method. Essentially, nodes are

recorded as potentially mutable, but no action is taken until

unification is confirmed.

In the clean mode, testPublish() uses the node list to

build a list of document nodes to be deleted; they are

actually deleted after the whole template has been

processed.

A similar process is used to regenerate mutable modes;

however, the generation of new nodes is slightly more

complex. If testPublish() determines that a unification is

successful, then the recursive context contains a node list

which must be created. This is achieved by re-entering the

main recursive loop, once for each new node, using the

mode Reverse2; this provides processStructureDocument()

with sufficient information to rebuild any nodes that are

missing. This re-entrant recursive structure has proved to

be an elegant and economical solution for reverse

processing.

7. A Practical Application in

Security Analysis

The XRound language and template processor have

been successfully used to support security analysis of

UML models. This section briefly describes this practical

experience.

7.1 The application background

The Security Analyst Workbench (SAW) supports risk-

based security analysis and design; analysis, is concerned

with determining the risks in a system, and security design,

is the specification of control requirements that mitigate

those risks. SAW is part of a suite of models, analysis

methods and tools known as the Security Design Analysis

framework (SeDAn) [27]; the framework will not be

described here, however, its use in industrial applications

[26] necessitated competent tool support.

Security risks are potential threat paths through a

system, from attackers to assets; to carry out risk analysis it

is necessary to assemble a single system model, which

includes:

• the functional design of the system;

• security requirements (such as access controls) that

specify how the system is protected;

• system users, including administrative organizations;

• security goals, and unwanted outcomes for specific

assets (e.g. loss of integrity of a particular data item),

and their impact in business terms; and

• attackers, their goals, and the likelihood of attack.

One objective of the Security Analyst Workbench is to

integrate security design with standard system engineering

practice; for this reason these elements of the system

model are divided into three main categories:

• the functional design, which is a standard engineering

design in UML, usually in the form of a Platform

Independent Model;

• security requirements, which are attached to

components in the system design and become

specialised properties of the design model; and

• the security environment (attackers, security goals, asset

concerns etc) which is specified in an auxiliary model.

The security analyst uses a standard functional system

design, builds a complementary specification of the

security environment, and then analyses the resulting

model for risks. Security requirements are specified to

manage the risks, and these become part of the functional

specification to be implemented.

The specification of security requirements is a design

activity: the process of establishing a protection strategy

involves choices about the placement and type of security

requirements; risk analysis informs that choice, it does not

automate it. As a result, SAW provides a richer and more

interactive set of user functions than are suggested by

‘analysis’, and many of these functions are concerned with

interactively managing security requirements.

There are therefore two equally important functions for

the security analysis tool: risk analysis and requirements

management. The latter involves creating and testing new

model properties within the analysis tool, resulting in the

need to update the UML documentation. Security analysis

in practice [26] and requirements specification [28] are

described in more detail elsewhere.

7.2 Model Management Requirements

The Security Analyst Workbench (SAW) is a

specialised analysis tool, which uses a system design

expressed in UML and created using a separate design

tool. Security requirements are set and modified during

analysis, and these must eventually be reflected in the

reference system design.

The issues exposed in this way will be common to many

specialized analytic tools; they include:

• a separate specialized and ephemeral model on which

the actual analysis is conducted;

• the need for model management facilities within the

analysis tool; and

• the need to propagate property changes back into the

primary UML documentation.

The solution adopted for SAW is to use XMI as its

persistent model format, and furthermore, to use whatever

UML metamodel is native to the user’s development

environment. The import and export mechanism between

XMI and the analysis model must be readily adapted to

different UML sources, and must ensure consistency in the

round-trip operation. These requirements are well

supported by, respectively, a template processor, and a

single template specification that can be used for

processing in both directions, thus ensuring round-trip

consistency.

The XMLSource template processor has successfully

supported SAW through several iterations, in which new

functionality has been added, including new model

properties and new templates for different proprietary

UML design tools. Our practical experience is that even

well regarded tools conforming to XMI may have

considerable differences in their metamodels, confirming

the need for an import/roundtrip mechanism that decouples

the application from the source metamodel. A practical

example of this problem is presented in section 5.

Given the performance management features in

XRound, the performance of the template processor is

dominated by the time taken to open and read XML

documents, rather than template processing. From the

overall system perspective the user experience is

considerably enhanced by using a reversible template:

model properties can be changed and tested within the

analysis tool. If, instead, a unidirectional import process

was used, it would be necessary to change properties in the

UML design tool and re-transform the model for analysis

to evaluate the effect of each change; this would represent

a considerable processing overhead to change and test

model properties, which is inconsistent with the need for

iterative analysis.

The design philosophy for XRound was to create a

minimal set of features consistent with a practical language

and add more complex (e.g. higher order) features if they

could be shown to be necessary. The design iterations in

SAW have tested the language specification by adding new

model properties, requiring different parts of the source

metamodels to be regenerated, and by accommodating

different proprietary source metamodels. This has been

achieved without significant addition to the core language,

although it has been necessary to remove some

implementation restrictions in the template processor3. The

programming philosophy of minimising the type checking

carried out by the template (see section 5.2 for discussion

and rationale) is perhaps one reason why a relatively

simple template language has proved sufficient.

In summary, practical experience has demonstrated the

need for a programmable approach to roundtrip

transformation of models, and the effectiveness of the

XRound template language.

7.3 Worked Example

This section provides a simple worked example in

which a Platform Independent Model is enhanced with a

description of its security environment, a security policy

established and tested, and the UML system model updated

with the resulting security requirements. The purpose of

the example is to illustrate how reversible processing is

used to support a security workflow. For readers interested

in more technical details, accounts of requirements

modelling [28] and analysis [29] are published elsewhere,

and a full account of the metamodels, profiles and security

requirements is also available [27].

The system fragment used in this example is shown in

Fig. 6; it specifies an office system, with business data

(OfficeData) which is managed by a service

(OfficeServer). In this example the service provides only

one operation (update), to allow a manager to modify the

data. The service is normally accessed by an internal client

(Home) to which business managers have access. The

complete system also has connectivity to the internet,

which may include services (FreeSoftware) that provide

access to software of unknown provenance (Games) and

publicly available clients (PublicAccess). Of course, the

actual system would have many more operations, this

limited functionality is chosen to limit the number of

security requirements needed for the sake of example.

The stereotypes in this system denote entities that

provide a business service (<<service>>), services that

may be directly accessed by users (<<client>>), and an

association stereotype (<<managed>>4) that indicates that

data is bound to a particular service.

This is a Platform Independent Model, since no

commitment to an implementation has been given: the

services could be implemented by people, business

departments or, more usually, some form of information

system. Specifically, no binding between services and

platforms or platform types is assumed.

3 For example, the first release of XMISource did not support

tpl.moveup within mutable nodes.
4 This is used to distinguish between different objectives for data

protection in security modelling, but does not play a part in this

example, because the characterisation of different threat paths

is not described here, see references for more information.

«client»

PublicAccess

+ refresh(String) : String

«client»

Home

+ refresh(String) : String

«service»

FreeSoftware

+ getSoftware(String) : Games

«service»

OfficeServer

+ update(OfficeData) : boolean

Games OfficeData

«manages» «manages»

Fig. 6 Example System

Security risk analysis involves finding paths from

attackers to assets of concern, where the concern is to

avoid a particular unwanted outcome. Before the

security characteristics of features of this system can be

analysed it is necessary to specify the security

environment in which the system operates, including the

identification of potential attackers and associated

assets. The security environment effectively forms the

baseline assumptions for the security analysis, so it must

also be recorded with the system documentation in the

UML model; an example of such an environmental

specification is given in Fig. 7.

«userRole»

Guest

«organisation»

HomeOrg

«organisation»

Public

«securityGoal»

BusinessIntegrity

«assetConcern»

DataIntegrity

«userAttack»

FakeData

«userRole»

Manager

Access::

OfficeData

Fig. 7 Security Environment

Fig. 7 specifies the organisations (the target business

HomeOrg, and the Public), and their associated user roles

(Manager, Guest). This system has a single security goal

(BusinessIntegrity) which is linked via an association class

(DataIntegrity)5 to the only asset of concern (OfficeData),

which appears in the system model. Much of this

information is usually available in system requirements

5 The purpose of the association class is not evident in this

example; it carries attributes that are specific to assets or

groups of assets, such as the impact of the attack.

documents or use cases, and generally does not need to be

created specifically for security purposes; however, the

attackers also need to be identified together with their

objectives. In this example the Guest user may attack the

BusinessIntegrity goal, meaning that any assets linked to

that goal may become the target of attack. Attacks may

originate with user roles, organisations or outsiders, all of

which can be modelled similarly.

It is evident from the security environment and the

system design that some security requirements will be

needed, in particular access controls that prevent Guest

users of the PublicAccess client using the update()

operation to modify OfficeData. Since the system model

has not been bound to particular platforms it is also

necessary to record the assumption that the Home client is

situated within the business, specifically that Guest users

do not have access to this management client. This will

become a constraint on how the system is bound to

platforms, and is described as Deployment Constraint. In

this example the constraint must specify that the Home

client is never bound to a Public platform – i.e. one

administered outside the business.

This informal analysis suggests the need for the security

policy given in table 16.

Table 16 Initial Security Policy

Home
 Deployment Constraint: Public

OfficeServer
 Access Constraint: from PublicAccess
 client to any operation

The security analyst has a choice at this point, the policy

can be recorded manually in the system design, by adding

tags that will in due course constrain the implementation

and operation of the system, or they can be added using the

security analysis application. The latter is provided with an

interactive capability for setting and changing policies, so

this is often more convenient, but either is possible.

The next step is to check that this policy is sufficient,

and for that purpose the XMI representation of the UML

model is imported into the analysis tool, using a template

as described in this paper. The XMI6 representation of this

example contained 1479 lines of XML, but the security

related elements were encoded in just 50 predicates. The

XMI contains a wealth of information about the specific

UML tool, its working properties, and diagram layouts that

are not needed for security analysis.

The security analysis tool is able to carry out a range of

different analysis functions, but the most basic is to

determine if there are any threat paths in the system. This

analysis discovered an unanticipated threat, shown in table

17.

6 This XMI was generated using the Enterprise Architect UML

tool.

Table 17 Analysis Result

DataIntegrity path trace:

Operation PublicAccess.refresh(in)
called from: Guest

Operation FreeSoftware.getSoftware(in)
called from: PublicAccess

OperationFreeSoftware.getSoftware(return)
called from: Home

Operation OfficeServer.update(in)
called from: Home

Managed Data OfficeServer/OfficeData

Essentially, Guest users are able to modify Games

software, which is then imported by the Home client, and

is able to subvert the integrity of the business system: a

relatively common attack scenario.

Normally, access policies are located at the service and

manage the access from remote clients; however, this

threat requires the Home client to ensure that it does not

access potentially dangerous external data: the constraint

must be enforced by the client, not the service. This type of

policy is distinguished as a RefuseToAccess requirement,

because its implementation is likely to be different from

normal access control policies.

The analyst adds the RefuseToAccess policy to the

model using the interactive policy editor which is part of

the security analysis tool, and then re-runs the threat

analysis to check that there are no remaining threat paths in

the system. Practical experience has resulted in both the

policy management and analysis functions being combined

within a single analysis tool, because in complex systems

the analyst may need to try a range of different security

strategies before deciding on a coherent policy. In many

proprietary UML tools, exporting a UML model as XMI is

relatively slow, so testing security policy variations by

changing and exporting the UML model is not consistent

with an interactive security design workflow.

When the analyst has decided that the security policy is

appropriate, the requirements established in the analysis

tool are re-integrated into the UML model, using the same

reversible template that was used to extract the data for

analysis.

Security requirements established in the security

analysis tool are added as tags to relevant classes within

the UML model, in order to constrain their

implementation. The tags resulting from the security

requirements described above are are given in table 18.

(Access permissions are also added to the other services

for completeness, but this is outside the scope of this

discussion.)

Table 18 Security Tags Added to System Model

Home Client

NoDeploy = Public

RefusetoAccess=FreeSoftware.getSoftware

OfficeServer

PermitAccess=Home, ALL_OPERATIONS

...

The forgoing example has described the security

analysis and design cycle. In this case three different types

of security requirement have been recorded in the PIM,

and these are used in different ways in the subsequent

implementation lifecycle. Deployment constraints limit

how the PIM can be bound to concrete platforms; access

permissions will be carried forward in the implementation

and be issued as policies to be interpreted by access

management infrastructure; and Access Refusals are

similarly carried forward to be used as infrastructure

policies, but are distinguished since they will be

implemented by a different architectural binding.

This example has illustrated how security analysis and

design is integrated into Model Driven Development, and

how this is facilitated by the reversible template language.

The analysis and design process described here has been

implemented and used in practice; the automated use of

these security requirements within the development

lifecycle is planned as future work.

8. Limitations

Practical limits arise from variability in XML source

metamodels, the scope of the template language, and the

implementation of the template processor.

8.1 Source metamodels

Differences in metamodels between UML tools is a well

known problem, was one of the main motivating factors in

the design of XRound, and has been mentioned at several

points in the paper. Different templates are required for

different UML tools, but the use of a reversible template

isolates the application logic from this variability. The

XML import behaviour of tools can also vary in detail; for

example, some tools regenerate missing xmi.id fields,

where others fail. The design of a template may therefore

go beyond the need to understand (part of) the source

metamodel. Although this is an inconvenience, it has not

yet proved a major problem, or required tool-specific

language features.

8.2 Language features

There are two aspects of the language that could be

considered as candidates for enhancement:

• the performance management mechanism; and

• the unification scheme.

The performance management mechanism is essentially

a cache, so it is natural to ask if the cache could be built

transparently, without user involvement. Such a

mechanism would be feasible; however, allowing explicit

performance management in the language allows finer

control by the user than would be possible in an automated

system. For example, an automated cache would need to be

conservative in the sense that it would need to cache all

possible nodes of a given type, whereas it may be possible

for a programmer to be more selective. In summary,

automated caching is a possible enhancement to the

template processor, but even with such a feature it is

desirable to retain the performance management elements

in the language.

The unification scheme could be enhanced to allow

more sophisticated forms of logic; for example:

• allowing more general logical constraints on unification;

and

• regular expressions for matching or extracting of

elements of an attribute or text value.

More general unification constraints were not designed

into the language at the outset because of the programming

philosophy, discussed in section 5.2. In brief, the

programming objective is to avoid complex type checking

in the template, since it is better implemented in the

application.

In XML the fields (attributes and text fields) should

already be atomic; however, it was evident from the first

applications that the atomicity of XML fields cannot be

relied on, so some mechanism is required to identify

components within fields. Any component matching

mechanism, however, must also be able to allow the fields

to be incrementally recreated, when the XML is

regenerated, and this is not a property of an arbitrary

regular expression. The simple component parsing

approach in the language was designed to allow roundtrip

reconstruction of such fields. The design of regular

expression languages that allow incremental pattern

building as well as extraction is an open question.

In brief, it is possible to envisage new language features

that offer more logical complexity; however, any such

features need to be reversible, and their design is not

therefore straightforward. Practical experience has not yet

indicated the need for such features.

8.3 Template processor

 The problem of interdependent mutable nodes was

mentioned in section 5.3; in this example a tag definition

within a UML class could not be created unless there was a

tag declaration elsewhere in the XML document to bind a

tag name to an xmi.id. The language is able to support

constructs of this type, so the models created in the

roundtrip can be modified in structure, not merely by the

addition or removal of leaf nodes. However, this process is

not transparent to the programmer, who must order the

roundtrip clauses to ensure that the document can be built

incrementally.

It would be desirable for the template processor to

implement a more transparent approach to rebuilding more

complex models; unfortunately there are open technical

problems in achieving this. For example, it is not clear that

the detection and resolution of cyclic dependencies

between mutable nodes is feasible within reasonable

complexity bounds. Future development in this problem

area is likely to inform the template processor, rather than

the language itself.

9. Conclusion

XRound adds a new dimension to the template

processing of XML models: the ability to transform data in

both directions with a single descriptive template.

Reversible template processing solves the problem of

maintaining independence between XML source

documents and analytic tools, while retaining the benefit of

easily scripted transformations. Reversible templates could

provide a clean implementation mechanism for

bidirectional transformations specified in QVT, and could

help in the definition and implementation of model

merging languages as well.

This paper outlines the requirements of specialised

analytic tools, the theory behind reversible templates, and

presents a mature template language, XRound. This

language is supported by a template processor, and

includes performance management and debugging

facilities.

The examples presented here illustrate the extent that

the underlying semantics of unification and reversible

transformation are hidden from the template programmer,

who is usually able to think of the template as a ‘select and

publish’ script.

The language and its processor have been used in

practice to support security analysis. The application is a

specialised analytic tool which supports the rigorous

security risk analysis of UML models, usually PIMs, and

provides an environment in which the user can

interactively set and test security requirements. Properties

established during analysis are re-integrated into the

engineering documentation (i.e., the UML models) using a

bidirectional transformation specified by the XRound

template language. The use of XRound has isolated the

need to support different source metamodels from the

analysis application.

Practical experience to date has not indicated any major

weaknesses in the language or the processor; however,

section 8 discusses a number of possible enhancements to

the language or processor, such as the use of regular

expressions to match XML fields, or improving the

transparency of bidirectional processing. Because of the

requirements of bidirectional processing these options are

research questions, rather than simple language

enhancements, highlighting the need for further research

into reversible programming constructs.

References

[1] Model Driven Architecture (MDA), Object

Management Group, Specification ormsc/01-07-01,

2005.

[2] Meta Object Facility (MOF) 2.0

Query/View/Transformation Specification, Object

Management Group, Specification ptc/07-07-07,

2007.

[3] ATL : Atlas Transformation Language, ATLAS group

(LINA & INRIA), available at

http://www.eclipse.org/gmt/atl/doc/ (accessed January

2007), 2005.

[4] XMF Reference Guide, Xactium Ltd, UK, 2005.

[5] O. Patrascoiu, YATL:Yet Another Transformation

Language, Proceedings of the 1st European MDA

Workshop (MDA-IA), available at

http://www.cs.kent.ac.uk/pubs/2004/1829 (accessed

January 2008), 2004, pp. 83-90.

[6] A. Balogh, D. Varro, Advanced Model Transformation

Language Constructs in the VIATRA2 Framework,

Proceedings of the Symposium on Applied

Computing (SAC'06) - Model Transformation Track,

ACM Press, 2006, pp. 1280-1287.

[7] D. S. Kolovos, R. F. Paige, F. A. C. Polack, The

Epsilon Object Language (EOL), Proceedings of the

European Conference on Model Driven Architecture -

Foundations and Applications, Springer, Lecture

Notes in Computer Science Vol 4066, 2006.

[8] J. R. Cordy, I. H. Carmichael, R. Halliday, The TXL

Programming Language, Version 10.5, Software

Technology Laboratory, Queen's University at

Kingston, Ontario, available at

http://www.txl.ca/ndocs.html (accessed January

2008), 2007.

[9] MOF Model to Text Transformation Language RFC,

Object Management Group, Specification ad/04-04-

07, 2007.

[10] J. Manning, Code Generation in Action, Manning

Publications, 2003.

[11] Velocity User Guide, Ja-Jakarta Project, available at

http://www.jajakarta.org/velocity/velocity-

1.4/docs/vtl-reference-guide.html (accessed January

2008), 2007.

[12] Eclipse's Java Emitter Templates (JET), IBM, 2004.

[13] L. Tratt, The Converge Programming Language,

Department of Computer Science, King’s College

London, Technical report TR-05-01, 2005.

[14] M. Alanen, I. Porres, The Coral Modelling

Framework, Proceedings of the 2nd Nordic Workshop

on the Unified Modeling Language NWUML'2004,

Turku Centre for Computer Science, General

Publication Vol 35, 2004.

[15] Z. Hu, S.-C. Mu, M. Takeichi, A Programmable

Editor for Developing Structured Documents Based

on Bidirectional Transformations, Proceedings of the

ACM SIGPLAN 2004 Symposium on Partial

Evaluation and Program Manipulation, ACM Press,

2004.

[16] R. A. Pottinger, Merging Models Based on Given

Correspondences, Proceedings of the 29th

International Conference on Very Large Data Bases

(VLDB), Morgan Kaufmann, 2003, pp. 826-837.

[17] M. Didonet Del Fabro, B. Jean, J. Frédéric, B. Erwan,

G. Guillaume, AMW: A Generic Model Weaver,

Proceedings of the IDM'05, Premières Journées sur

l'Ingénierie Dirigée par les Modèles, 2005.

[18] J. Foster, M. Greenwald, J. Moore, B. Pierce, A.

Schmitt, Combinators for Bi-directional Tree

Transformations, ACM Transactions on Programming

Languages and Systems. 29(3) (2007).

[19] M. Buchholtz, S. Gilmore, V. Haenel, C. Montangero,

End-to-end integrated security and performance

analysis on the DEGAS Choreographer platform,

Proceedings of the Formal Methods 2005, Springer-

Verlag, Lecture Notes in Computer Science Vol 3582,

2005.

[20] D. Petriu, et al., Performance Analysis of Security

Aspects in UML Models, Proceedings of the Sixth

International Workshop on Software Performance

(WOSP 2007), ACM Press, New York, USA, 2007,

pp. 91-102.

[21] S. H. Houmb, G. Georg, J. Jurjens, R. France, An

Integrated Security Verification and Security Design

Trade-off Analysis Approach, in: H. Mouratidis and

P. Giorgini (Eds.), Integrating Security and Software

Engineering, IGI Global, 2006.

[22] R. Breu, M. Hafner, B. Weber, A. Novak, Model

Driven Security for Inter-organizational Workflows in

e-Government, in: E-Government: Towards Electronic

Democracy, Springer Berlin, 2005, pp. 122-133.

[23] J. Jürjens, Secure Systems Development with UML,

Springer Berlin, 2005.

[24] G. Brændeland, K. Stølen, Using model-based

security analysis in component-oriented system

development, Proceedings of the 2nd ACM Workshop

on Quality of Protection (QoP '06), ACM Press, New

York, USA, 2006, pp. 11-18.

[25] J. Clark, XSL Transformations (XSLT) Version 1.0,

W3C, Recommendation 1999.

[26] H. Chivers, M. Fletcher, Applying Security Design

Analysis to a Service Based System, Software

Practice and Experience: Special Issue on Grid

Security. 35(9) (2005) 873-897.

[27] H. Chivers, Security Design Analysis, in Department

of Computer Science. 2006, The University of York:

York, UK. p. 484.

[28] H. Chivers, J. Jacob, Specifying Information-Flow

Controls, Proceedings of the Second International

Workshop on Security in Distributed Computing

Systems (SDCS) (ICDCSW'05), IEEE Computer

Society, 2005, pp. 114-120.

[29] H. Chivers, Information Modeling for Automated

Risk Analysis, Proceedings of the 10th IFIP Open

Conference on Communications and Multimedia

Security (CMS 2006), 2006.

