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Posterior analysis of random taste coefficients in air

travel behaviour modelling

Stephane Hess∗

Institute for Transport Planning and Systems, ETH Zürich, and Institute of
Transport and Logistics Studies, The University of Sydney

Abstract

Increasing use is being made of random coefficients structures, such as
Mixed Logit, in the analysis of air travel choice behaviour. These models
have the advantage of being able to retrieve random variations in sensitivi-
ties across travellers. An important issue however arises in the computation
of willingness to pay indicators, such as the valuation of travel time savings,
on the basis of randomly distributed coefficients. Indeed, with the stan-
dard approach of using simulation of the ratios across random draws, major
problems can be caused by outliers, leading to biased trade-offs, which in
turn lead to major issues in policy analyses. Here, a different approach is
explored, making use of individual-specific draws from the random distribu-
tions, conditioned on the observed sequence of choices for each respondent.
An analysis making use of stated preference data for airport and airline
choice confirms the advantages of the approach using conditional draws,
producing much more realistic distributional patterns for a range of willing-
ness to pay indicators.

KEYWORDS: air travel choice behaviour, mixed logit, taste heterogeneity,
individual-specific taste coefficients

1 Introduction

Air travel behaviour research has seen a flurry of activity over recent years, with
analysts increasingly making use of advanced discrete choice methods when rep-
resenting complex air travel choice processes. These mathematical models not
only enable researchers to explicitly recognise the multi-dimensional nature of
the choice processes but also allow for a representation of the correlation along
and between these various dimensions of choice. Furthermore, the most recent
batch of models also allow for a representation of random variations in behaviour
across respondents1.

∗Corresponding author: stephane.hess@ivt.baug.ethz.ch
1For an in-depth discussion of discrete choice methods, see Train (2003).
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Existing applications range from the choice of air as a mode of travel (González-
Savignat, 2004), to the choice of airport in multi airport regions (Pels et al., 2001,
2003; Pathomsiri et al., 2004; Basar and Bhat, 2004), the choice of airline or fare
class (Proussaloglou and Koppelman, 1995; Chin, 2002), and the choice of access
mode Monteiro and Hansen (1997); Psaraki and Abacoumkin (2002). A number
of authors have explicitly recognised the multi-dimensional structure of the choice
process, looking for example at the joint choice of airport and airline (Bondzio,
1996) or even the choice of an airport, airline and access mode triplet (Hess
and Polak, 2006a). Increasingly, researchers also make use of the more advanced
model structures available, for a representation of random taste heterogeneity
across travellers, or the multi-dimensional correlation between alternatives shar-
ing sub-choices along some of the choice dimensions (Hess and Polak, 2006b).

While the majority of studies of air travel choice behaviour make use of re-
vealed preference (RP) data, an increasing number of analyses are now carried
out on stated preference (SP) data2. While posing certain problems in terms of
response quality (Louviere et al., 2000), studies using SP data have the advantage
of being based on accurate records of all information presented to respondents,
which is not generally the case with RP data. As such, it should come as no
surprise that SP studies are generally more successful in retrieving significant
effects for crucial factors such as air fares and frequent flier benefits.

One point of interest in studies of travel behaviour is the representation of
variations in choice behaviour across travellers in the form of different sensitivities
to changes in explanatory variables, such as air fares and access time. Given the
limitations of a purely deterministic approach (e.g. segmentation), modellers
increasingly rely on a random representation of these variations in tastes. The
mixed multinomial logit (MMNL) model (Train, 2003) is increasingly being used
in studies of travel behaviour, including in the area of aviation (Hess and Polak,
2005b,a).

Despite their popularity, important issues arise with the use of random coeffi-
cients models, such as MMNL. Not only are they far more expensive to estimate
and apply (Bhat, 2001; Hess et al., 2006), but there is a need to make an a
priori choice of mixing distribution for each random coefficient, where the ma-
jority of applications rely exclusively on the normal distribution. The choice of
distribution not only has potentially significant impacts on model performance
and behaviour, but also leads to issues in interpretation, especially in the context
of trade-offs between two randomly distributed coefficients (Hensher and Greene,
2003; Hess et al., 2005). Indeed, the distribution of such trade-offs generally needs

2Examples of this include the work of Bradley (1998), Algers and Beser (2001), Adler et al.
(2005) and Hess et al. (2007).
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to be obtained using simulation methods, producing a large number of pairs of
draws, and calculating the average of the ratio between draws across all pairs.
Even when taking into account correlation between the two randomly distributed
coefficients, the presence of outliers (very large or small values) for one or both
of the coefficients will lead to extreme values in the simulation of the ratio. This
can lead to an overestimation of the range for the distribution of the ratio, while
potentially also biasing the mean value.

Here, we take another look at the interpretation of results obtained from
MMNL models in the context of air travel behaviour research, making use of
conditional rather than estimated distributions3.

2 Methodology

The MMNL model assumes that tastes vary randomly across respondents ac-
cording to some pre-specified distributions. Here, we let β be a vector of taste
coefficients that are jointly distributed according to f (β | Ω), where Ω is a vec-
tor of distributional parameters to be estimated. Let Yn give the sequence of
observed choices for respondent n, and let L (Yn | β) give the probability of ob-
serving this sequence of choices with a specific value for β. Then it can be seen
(Train, 2003) that the probability of observing the specific value of β given the
choices of respondent n is:

K (β | Yn) =
L (Yn | β) f (β | Ω)∫

β L (Yn | β) f (β | Ω) dβ
(1)

We replace the continuous formulation by a discrete approximation using summa-
tion over a very high number of draws. A mean for the conditional distribution
for respondent n is then obtained as:

β̂n =
∑R

r=1 [L (Yn | βr) βr]∑R
r=1 L (Yn | βr)

, (2)

where βr with r = 1, . . . , R are independent multi-dimensional draws with equal
weight from f (β | Ω) at the estimated values for Ω.

With the help of β̂n, it is possible to calculate a single value for each trade-off
per respondent, and distributional statistics across respondents can be obtained
straightforwardly. Here, we compare the findings obtained using this approach

3For applications of this approach in other areas of travel behaviour research, see for example
Revelt and Train (1999), Sillano and Ortúzar (2004) and Greene et al. (2005).
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c©2005, Resource Systems Group, Inc.

Figure 1: Example screen-shot for SP survey

with those when using simulation across random draws to approximate the distri-
bution of the ratio. Even with this approach, some risk of bias remains. Indeed,
by calculating an individual-specific trade-off on the basis of a ratio of means of
the two individual-specific conditional distributions, we disregard any informa-
tion on the variance of the distributions for each individual. A more accurate
approach would make use of simulation of the ratio across the conditional distri-
butions. This, however, would again lead to problems with outlying values.

3 Data

The analysis makes use of SP data collected via the Internet by Resource Systems
Group in the US (Resource Systems Group Inc., 2003). Specifically, we make use
of the 2005 version of the survey, with a sample of 4, 136 observations collected
from 517 travellers.

Prior to the SP survey, information was collected on a traveller’s most recent
air trip, along with detailed socio-demographic information. Each traveller is then
faced with 8 binomial choices, where in each case, a choice is offered between the
current, or RP alternative, and an alternative option, the SP alternative. While
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the attributes of the RP alternative remain fixed across the 8 choice sets, those of
the SP alternative are varied according to an experimental design. The airports
and airlines used for the SP alternatives are selected on the basis of information
gathered from respondents in terms of a ranking of the airports and airlines
available to them.

Aside from the airport and airline names, from which access times can be
inferred, the attributes used to describe the alternatives in the SP survey include
flight time, the number of connections, the air fare, the arrival time (used to
calculate schedule delays), the aircraft type, and the on-time performance of the
various services. Access cost was not included (in the absence of an actual spec-
ification of the mode choice dimension), and no choice is given between different
travel classes; this can be regarded as an upper-level choice, taken before the
actual air journey choices. An example of one choice situation is shown in Figure
1.

Certain doubts as to the response quality arise in the context of SP studies
(Louviere et al., 2000). However, in the face of problems with the quality of RP
data in air transport, any SP disadvantages are outweighed by the quality of the
data on availabilities and explanatory variables. Furthermore, the design used
here is simple enough so as not to place too big a cognitive burden on respondents,
while still being complex enough to approximate a real-world choice process.

4 Main modelling analysis

Models were jointly estimated on all 4, 136 observations, as opposed to using a
segmentation along a socio-demographic dimension such as trip purpose. This is
mainly motivated by the poor results obtained when segmenting the data, with
very low levels of statistical significance for some of the parameters. Furthermore,
no significant interactions with income or other continuous socio-demographic
attributes were observed.

4.1 Model specification

All attributes are specified to enter the utility function in a linear fashion, such
that the observed utility for the RP alternative is given by:

URP = β current

+ β access time · access timeRP + β air fare · air fareRP + βflight time · flight timeRP

+ βOTP · OTPRP + β 1 connection · δ1 connection,RP + β 2 connections · δ2 connections,RP

+ β standard FF · δstandard FF,RP + β elite FF · δelite FF,RP + β closest airport · δclosest airport,RP

(3)
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where β parameters are to be estimated from the data. The meaning of the first
four entries in Equation 3 should be clear. The fifth parameter, βOTP, relates
to the on-time performance (in percentage points) of an alternative. The two
dummy variables δ1 connection,RP and δ2 connections,RP are set to 1 for flights with
one and two connections respectively, while δstandard FF,RP and δelite FF,RP are set
to 1 if the respondent holds standard or elite frequent flier (FF) membership
with the current airline. Finally, δclosest airport,RP is set to 1 if the airport used in
the RP alternative is that closest to the respondent’s home. The utility function
for the SP alternative is specified in a similar fashion, with the absence of the
RP constant (β current), and with SP as opposed to RP values for the various
attributes and dummy variables. The specification used is by no means complete
in terms of attributes included, as well as in their treatment (purely linear).

Two types of model were estimated on the data, a basic MNL structure, and
a more advanced MMNL model4. In the MMNL model, the likelihood is specified
with the integration carried out over sequences of choices for the same respon-
dent as opposed to individual choices (Train, 2003), leading to an assumption of
constant tastes across replications for the same respondent. To further account
for SP effects in terms of serial correlation across observations for the same re-
spondent, an individual-specific SP factor is included in the utility functions5.
With Vn,i giving the observed utility for alternative i and respondent n, we have:

Un,RP = Vn,RP + εn,RP + ϕ ξRP

Un,SP = Vn,SP + εn,SP + ϕ ξSP, (4)

where εn,RP and εn,SP are the usual type I extreme value terms, distributed iden-
tically and independently over alternatives and observations. The two additional
terms ξRP and ξSP are normally distributed random variables with a mean of zero
and a standard deviation of 1, distributed independently across alternatives and
individuals, but not across observations for the same individual. In conjunction
with the multiplication by ϕ, this specification allows for an individual-specific
effect that is shared across alternatives. The inclusion of this term can in general
be expected to lead to an upwards correction of the standard errors (Ortúzar
et al., 2000).

4Both are coded in Ox 4.2 (Doornik, 2001), where specific code was also written for the
calculation of the means of the conditional distributions.

5The author would like to thank Andrew Daly for this suggestion.
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4.2 Results

The results for the two models are summarised in Table 16. All coefficients in the
MNL model are statistically significant and of the expected sign. In the MMNL
model, the estimate for ϕ is highly significant, indicating the presence of a sig-
nificant individual-specific effect. Additionally, significant levels of random taste
heterogeneity are retrieved for four coefficients; β access time, β air fare, βflight time

and β closest airport. A Normal distribution was used for all four coefficients. This
is a major assumption (Hess et al., 2005), but is consistent with the overwhelm-
ing majority of other studies, hence allowing us to provide general conclusions
in comparisons between the results obtained with the estimated and conditional
distributions. Levels of correlation between different random taste coefficients
were negligible, such that in the final estimation, the coefficients were treated as
independent.

In terms of model fit, the MMNL model obtains a very significant improve-
ment in log-likelihood (LL) of 187.77 units over the MNL model, at the cost of
just 5 additional parameters. As expected, there is a drop in significance levels
for almost all parameters when compared with the MNL models, as a result of the
inclusion of the individual-specific error component. Nevertheless, all estimates
still attain high levels of statistical significance.

6During the review stage of this paper, both anonymous referees raised concerns about the
use of excessive precision in the presentation of the results, specifically with a view to using
four decimal places. It seems important to clarify something at this point. It should be clear
that the use of four decimal places when working with large values is different from the use of
four decimal places when working with small values. The average absolute value for the MNL
estimates in Table 1 is only 0.3727. With all coefficients estimated very robustly, the use of
four decimal places is in this case warranted. Indeed, by reducing the precision for individual
coefficients to three decimal places, the valuation of savings in flight time from the MNL model
would reduce from $16.92/hour to $15/hour, a drop by more than 11%. A reduction to two
decimal places is not even possible, with the estimate for some coefficients being smaller than
1 · 10−2. The small parameter estimates are a results of the comparatively large values for the
associated attributes. An alternative approach would have consisted of rescaling the attribute
values by a factor of 1

10
or 1

100
, which would have enabled the use of a lower level of precision

in the parameter estimates, as they would have been rescaled upwards by the same factor.
However, the results would have been identical, and preference was given to the approach used
here such that the air fare coefficient for example relates to an attribute expressed in dollars
and not cents.
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MNL MMNL
Null LL: -2,866.86 -2,866.86

Final LL: -1,436.19 -1,248.42
adj.ρ2 0.4955 0.5593

est. asy.t-rat. est. asy.t-rat.
β current 0.7562 12.07 1.0546 8.11

µ -0.0072 -8.07 -0.0112 -6.22β access time (min)
σ - - 0.0085 2.69
µ -0.0156 -21.47 -0.0330 -15.39β air fare ($)
σ - - 0.0165 8.54
µ -0.0044 -8.56 -0.0129 -8.16βflight time (min)
σ - - 0.0109 8.93

βOTP (%) 0.0084 6.35 0.0150 5.23
β 1 connection -0.6608 -6.78 -0.7197 -3.77
β 2 connections -0.8956 -3.74 -1.0981 -2.50
β standard FF 0.2254 2.22 0.4827 2.71

β elite FF 0.7248 3.08 1.0315 2.51
µ 0.4287 5.12 0.9533 5.84β closest airport
σ - - 0.9099 2.80
ϕ - - 0.7052 5.51

Table 1: Estimation results for MNL and MMNL models

5 Estimated distributions versus distribution of con-
ditional means

5.1 Distribution of marginal utility coefficients

The mean of the conditional distribution for each of the four random taste co-
efficients (β access time, β air fare, βflight time and β closest airport) is obtained for each
respondent, using the approach set out in Equation 2. Summary statistics across
these 517 values are then calculated for each of the four coefficients, and these
are compared with the corresponding statistics for the estimated distributions in
Table 2.

With the use of the Normal distribution, the range for the estimated distribu-
tion is unbounded for all four coefficients. This is not the case for the distribution
of the conditional means, and the much narrower range is reflected in the sig-
nificantly lower standard deviations, especially for β access time and β closest airport.
The mean, on the other hand, is almost exactly the same whether working with
the conditional or estimated distributions. Finally, differences arise in the prob-
ability of counter-intuitively signed coefficients. With the unbounded nature of
the Normal distribution, we obtain significant probabilities of counter-intuitively
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air access flight closest
β

fare time time airport
mean -0.0330 -0.0112 -0.0129 0.9533

std.dev 0.0165 0.0085 0.0109 0.9099
Prob(< 0) 97.71% 90.64% 88.21% 14.74%

es
ti

m
at

ed
Prob(> 0) 2.29% 9.36% 11.79% 85.26%

min. -0.0525 -0.0214 -0.0260 -0.0967
max. -0.0059 -0.0052 0.0162 1.7632
mean -0.0331 -0.0112 -0.0129 0.9596

std.dev. 0.0099 0.0023 0.0059 0.2868
Perc(< 0) 100.00% 100.00% 96.71% 0.19%co

nd
.

m
ea

ns

Perc(> 0) 0.00% 0.00% 3.29% 99.81%

Table 2: Summary statistics for estimated distributions and distributions of con-
ditional means for four randomly distributed taste coefficients

signed values for β access time, βflight time and β closest airport. But, when working
with the conditional means, a non-zero share of counter-intuitively signed coeffi-
cient values is only obtained for βflight time, where this is however small enough to
be ignored. The fact that the distributions of the conditional means thus offer no
conclusive evidence of counter-intuitively signed coefficient values supports the
argument of Hess et al. (2005) that estimates showing high shares of such values
are often affected by the distributional assumptions. The findings in the table are
reflected in a graphical representation of the cumulative distribution functions for
the four coefficients (Figure 2), showing a much narrower range when working
with the conditional means, along with a much lower incidence of sign violations.

In the presence of individual-specific draws for each of the four randomly
distributed coefficients, it is possible to test for correlation between the distribu-
tions of conditional means for these coefficients7. The results of this process are
summarised in Table 3, that shows the correlations for the various pairs of coef-
ficients, along with the associated p-values. It can be seen that significant levels
of correlation exist for all pairs of coefficients, except between βaccess time and
βflight time. This is a striking result because no meaningful correlation between
the distributions for individual coefficients could be retrieved in the unconditional
estimation.

The results show negative correlation between βair fare and βaccess time, indi-
cating that respondents with a higher fare sensitivity have a lower access time
sensitivity. This is consistent with intuition, and explains why low-cost airlines
are able to attract passengers to outlying airports. A similar situation of negative
correlation is found between βair fare and βflight time, suggesting that respondents

7The author would like to thank John Rose for this suggestion.
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Figure 2: Estimated distributions and distributions of conditional means for four
randomly distributed taste coefficients

βaccess time βair fare βflight time βclosest airport

corr. 1 -0.35 0.07 -0.52βaccess time
p-val. - 0.00 0.10 0.00
corr. -0.35 1 -0.32 0.43βair fare

p-val. 0.00 - 0.00 0.00
corr. 0.07 -0.32 1 -0.10βflight time

p-val. 0.10 0.00 - 0.02
corr. -0.52 0.43 -0.10 1βclosest airport

p-val. 0.00 0.00 0.02 -

Table 3: Correlation in distribution of conditional means of marginal utility co-
efficients

with greater spending power are more concerned about flight time than respon-
dents with low spending power. For pairwise comparisons involving βclosest airport,
the positive sign needs to be taken into account. As such, the negative correla-
tion between βaccess time and βclosest airport shows that, as expected, respondents
with a higher access time sensitivity also have a greater preference for the closest
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mean. std.dev. P(> 0) P(< 0)
βaccess time vs βair fare 17.53 891.56 88.66% 11.34%
βflight time vs βair fare 43.19 1,296.74 86.82% 13.18%

β1 connection vs βair fare 36.01 1,098.26 97.74% 2.26%
β2 connections vs βair fare 54.94 1,675.76 97.74% 2.26%
βclosest airport vs βair fare 44.61 1,722.63 83.63% 16.37%
βstandard FF vs βair fare 24.15 736.55 97.74% 2.26%

βelite FF vs βair fare 51.61 1,574.12 97.74% 2.26%
βOTP vs βair fare 75.08 2,290.00 97.74% 2.26%

βair fare vs βaccess time -2.62 476.20 88.66% 11.34%
βstandard FF vs βaccess time -60.97 6,922.34 90.58% 9.42%

βelite FF vs βaccess time -130.30 14,794.14 90.58% 9.42%
β1 connection vs βaccess time -90.91 10,321.76 90.58% 9.42%
β2 connections vs βaccess time -138.70 15,749.34 90.58% 9.42%

Table 4: Summary statistics for estimated distributions for various trade-offs

airport. Similarly, the positive correlation between βair fare and βclosest airport in-
dicates that respondents with more spending power have a greater preference for
the closest airport. Finally, there is low negative correlation between βflight time

and βclosest airport, suggesting that respondents with a higher flight time sensi-
tivity have a greater preference for the closest airport (i.e., higher access time
sensitivity).

5.2 Distribution of trade-offs

We now move on to the distribution of trade-offs between the various coefficients.
Thirteen trade-offs are used, looking at the willingness to accept increases in air
fare or access time in return for improvements along some other dimension. The
results of this calculation are shown in Table 4 for the estimated distributions,
and Table 5 for the distribution of the conditional means. When working with the
estimated distributions, the ratios are calculated using simulation over 100, 000
independent draws from the various distributions.

A question arises in the simulation of the ratios over draws produced from
the Normal distribution. Indeed, the infinite range of the distribution means that
positive as well as negative numbers are used in the simulation, while values very
close to zero are also included. The latter leads to problems for the coefficient
used in the denominator, resulting in extreme values and an inflated range for
the distribution of the ratio. A possible approach is to censor the distribution of
the coefficients by removing the upper and lower percentile points, to guarantee
a unique sign and the absence of values very close to zero (Hensher and Greene,
2003). This approach is however not only very arbitrary, but also leads to a loss of
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mean std.dev. Perc(> 0) Perc(< 0)
βaccess time vs βair fare 23.81 14.51 100.00% 0.00%
βflight time vs βair fare 28.07 22.45 96.71% 3.29%

β1 connection vs βair fare 24.96 12.81 100.00% 0.00%
β2 connections vs βair fare 38.09 19.55 100.00% 0.00%
βclosest airport vs βair fare 34.50 22.25 99.81% 0.19%
βstandard FF vs βair fare 16.74 8.59 100.00% 0.00%

βelite FF vs βair fare 35.78 18.36 100.00% 0.00%
βOTP vs βair fare 52.05 26.71 100.00% 0.00%

βair fare vs βaccess time 3.18 1.47 100.00% 0.00%
βstandard FF vs βaccess time 45.45 11.92 100.00% 0.00%

βelite FF vs βaccess time 97.13 25.47 100.00% 0.00%
β1 connection vs βaccess time 67.77 17.77 100.00% 0.00%
β2 connections vs βaccess time 103.40 27.11 100.00% 0.00%

Table 5: Summary statistics for distributions for various trade-offs using condi-
tional means

information by artificially reducing the true standard deviation of the individual
coefficients. While acceptable in the case of just a few percentile points, such
as for β air fare, the need to possibly remove over 10 percentile points from both
ends of the distribution for β access time, βflight time and β closest airport to maintain
balance means the resulting trade-offs underestimate the variation to such an
extent that they are themselves unreliable. As such, all draws were included in
the simulation.

The effects of the extreme values on the simulation of the trade-offs are clearly
visible from Table 4, with a hugely inflated range for the trade-offs when com-
pared with the ratios obtained with the conditional means (Table 5). Further-
more, there are issues in terms of sign violations, especially for WTP measures
involving a random numerator, or trade-offs using the access time coefficient in
the denominator. The biggest problems arise for the willingness to accept in-
creases in access time. Here, the inclusion of positive draws for β access time, along
with draws close to zero, distorts the distribution of the trade-off to such an ex-
tent that the mean values of the trade-offs are negative even though around 90%
is in fact positive.

The above discussion highlights the problems that arise when working with the
estimated distributions as opposed to making use of means from the conditional
distributions. The latter problems only arise for a single trade-off, namely when
looking at the WTP for reductions in flight time, where there is a 3.3% probability
of a negative WTP. The 0.2% probability of a negative WTP for using the closest
airport is negligible.

Comparing the results from Table 4 and Table 5, we can see that the differ-
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Figure 3: Distribution of the valuation of travel time savings (VTTS) with un-
conditional estimates and conditional mean estimates

ences are not restricted to sign violations or the range of the distribution, but do
also extend to the mean values. As a further illustration of the differences between
the approaches using the estimated distributions and conditional means, Figure
3 compares the cumulative distribution functions for the WTP for reductions in
access time. The plot not only shows the much narrower range when making use
of the conditional means, but also highlights the sign violations resulting from
using the estimated distributions.

The evidence thus far shows that trade-offs calculated on the basis of con-
ditional means are more reliable, even though some risk of bias remains. This
approach is adopted for the remainder of the paper. As a first step, we look at a
graphical representation of the distribution of the trade-offs, with density func-
tions for the various WTP measures in the first two rows in Figure 4, while the
last row in the figure shows the density functions for the various trade-offs using
access time in the denominator. For all 13 trade-offs, there is clear evidence of
significant levels of heterogeneity across respondents. All trade-offs have a longer
tail to the right, where the degree of asymmetry varies across trade-offs.

In a direct comparison of related trade-offs, we observe a slightly higher WTP
for reductions in flight time than for reductions in access time, along with a longer
tail to the right. Similarly, there is a higher WTP for a reduction from two to no
connections, than the corresponding reduction from one connection to a direct
flight, along with a longer tail. The ratio however is not of the order of 2 : 1,
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Business Vacation VFR(i)

min. 6.49 6.63 6.05
max. 113.70 63.17 99.17
mean 29.69 21.62 23.01

β access time vs β air fare ($/hour)

std.dev. 21.90 9.79 12.98

(i)VFR = visiting friends or relatives

Table 6: Distribution of VTTS by purpose segment

justifying the use of two separate coefficients for the two levels of connection.
Finally, there is a higher WTP for elite FF benefits than for standard FF benefits,
along with a longer tail for the former.

When looking at the willingness to accept increases in access time, we observe
a significant level of heterogeneity for the willingness to travel to more distant
airports in return for lower fares, with travellers at the upper end of the distribu-
tion being part of the target market for low-cost airlines operating from regional
airports. Respondents are also willing to travel to more outlying airports in
return for frequent flier benefits, where the willingness is greatest for elite mem-
bers, along with greater variation. The same applies in the case of respondents’
willingness to travel to outlying airports in return for direct flights.

For reasons of interpretation, it is preferable to link the variations in tastes
and choice behaviour to socio-demographic attributes of the respondents. Ex-
tensive attempts were made to establish a link between the distribution of the
various trade-offs (as well as individual coefficients) and attributes such as trip
purpose, respondents’ income and trip distance. Initially, regression models were
estimated; however, while they indicate some form of interaction, the levels of sig-
nificance of the estimated parameters are below any reasonable level of confidence.
The most convincing results are obtained by a very basic posterior analysis that
segmented the population according to trip purpose. The main findings show a
higher access time sensitivity for business travellers, along with a lower air fare
sensitivity. Table 6 shows the differences between the three population segments
for the distribution of the VTTS. Along with a higher mean value, there is a
greater spread in the business segment, with the narrowest distribution being for
holiday travellers.

5.3 Reestimation of models with conditional means

A reestimation of the models imports the conditional means for the four random
taste coefficients8, so that only the remaining six coefficients, along with ϕ, are

8I.e., using the most likely values of the coefficients for each respondent.
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estimated9. To allow for the potential differences in scale between the original
model and the reestimated model, a rescaling parameter λ was associated with
the imported coefficients. The utility function for the RP alternative in the
reestimated model is given by:

URP = β current + βOTP · OTPRP + β 1 connection · δ1 connection,RP + β 2 connections · δ2 connections,RP

+ β standard FF · δstandard FF,RP + β elite FF · δelite FF,RP + λ · β̃ access time · access timeRP

+ λ · β̃flight time · flight timeRP + λ · β̃ air fare · air fareRP + λ · β̃ closest airport · δclosest airport,RP

(5)

The individual-specific values for β̃ access time, β̃ air fare, β̃flight time and β̃ closest airport

are imported, while λ is estimated in addition to β current, βOTP, β 1 connection,
β 2 connections, β standard FF and β elite FF.

The results are summarised in Table 7. When compared with the uncondi-
tional model in Table 1, there is a remarkable increase in model fit by 565.82
units, showing the greater level of accuracy that is obtained when working with
individual-specific coefficients rather than using integration over the sample-wide
distribution. The aim behind this is however not simply to reveal this improve-
ment in model fit, but to test for the potential impact on the remaining coef-
ficients. All six β coefficients remain statistically significant, and still take the
correct sign. Similarly, ϕ is still statistically significant, and the additional scale
parameter λ is significantly larger than 1.

When using these new estimates in a recalculation10 of the trade-offs from
Table 5, significant differences are observed for those trade-offs involving at least
one fixed coefficient, as a result of the reduction in the estimated values for the
five relevant coefficients. Table 8 shows results for the MNL model alongside those
obtained with the conditional draws for the simple MMNL model (MMNLC1),
and those obtained with the conditional draws for the MMNL model estimated
with imported conditional draws (MMNLC2). The differences between MMNLC1

and MMNLC2 are especially significant for the trade-offs involving β 1 connection

or β 2 connections, where there is a clear decline when compared to the old values.
Finally, it can be seen from Table 8 that there are also important differences
between the MNL trade-offs and the MMNL trade-offs, showing the effects of
not allowing for random taste heterogeneity, where, for example, in the MNL
models, and contrary to what is observed with the MMNL models, the WTP for
reductions in access time is greater than that for reductions in flight time.

9There is little gain from using conditional draws for the serial correlation terms ϕ ξRP and
ϕ ξSP, with the resulting draws being essentially no different from a value of zero.

10The recalculation also accounts for the differences in scale retrieved through the estimation
of λ.
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Null LL: -2,866.86
Final LL: -682.60

adj.ρ2 0.7591

est. asy.t-rat.
δcurrent 1.0961 11.35

βaccess time conditionals
βair fare conditionals

βflight time conditionals
βOTP 0.0168 7.21

β1 connection -0.5342 -4.51
β2 connections -0.7745 -2.30

βelite FF 1.0843 3.02
βstandard FF 0.4873 3.10

βclosest airport conditionals
ϕ 0.3634 3.21
λ 1.3449 21.43

Table 7: Reestimation of model with imported conditional means

6 Conclusions

This paper has discussed the issue of the computation of trade-offs such as willing-
ness to pay indicators in the analysis of air travel choice behaviour. Specifically, it
looked at the scenario where some taste coefficients follow a random distribution.
The analysis confirms that when using simulation of these ratios over random
draws from the appropriate distributions, the presence of extreme values in the
draws can lead to biased estimates of the mean and spread of the trade-offs. The
problems caused by these outliers are so severe that the resulting trade-offs have
little practical use for policy making.

The study shows that the problems with biased trade-offs largely disappear
when calculating the ratios on the basis of individual-specific coefficient values
conditioned on given travellers’ observed choices. These findings are consistent
with those of Greene et al. (2005). Furthermore, unlike with the unconditional
distributions, it was possible to retrieve significant and meaningful patterns of
correlation between the distributions of conditional means for the four randomly
distributed coefficients.
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