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Abstract

The aim of this study was to identify and quantify potential regional and 

directional variations in the quasistatic uniaxial mechanical properties of the passive 

urinary bladder wall. Overall, the lower body and trigone regions demonstrated the 

highest degree of directional anisotropy, whereas the ventral region demonstrated 

the least directional anisotropy. Significant regional anisotropy was found only along 

the apex-to-base direction. The dorsal and ventral regions demonstrated a 

significantly increased distensibility along the apex-to-base direction compared to the 

other bladder regions, whereas the trigone and lower body regions demonstrated the 

least distensibility. The trigone, lower body and lateral regions also demonstrated the 

highest tensile strength both at regional and directional level. The study detected 

significant regional and directional anisotropy in the mechanical properties of the 

bladder and correlated this anisotropy to the distended and non-distended tissue 

histioarchitecture and whole organ mechanics. By elucidating the inhomogeneous 

nature of the bladder, the results from this study will aid the regional differentiation of 

bladder treatments in terms of partial bladder replacement with suitable natural or 

synthetic biomaterials, as well as the development of more realistic constitutive 

models of bladder wall biomechanics and improved computational simulations to 

predict deformations in the natural and augmented bladder.

* Abstract
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Introduction

A variety of congenital and acquired conditions result in bladder dysfunction 

with consequent debilitating incontinence, which affects approximately 400 million 

people worldwide. In the majority of cases, a decrease in compliance is caused by 

thickening of the bladder wall due to smooth muscle cell hypertrophy and increased 

connective tissue deposition [1]. This may arise due to increased distension of the 

bladder wall (e.g. due to bladder outlet obstruction), which may directly or indirectly 

act as a stimulus for hypertrophy and hyperplasia [2,3,4,5]. Furthermore, neuropathic 

disease or trauma can induce significant alterations in the neural control of the 

bladder, which in turn can cause substantial changes in bladder function. These 

functional changes can produce severe alterations in the structure, thickness, 

compliance and biomechanics of the bladder wall [6,7,8]. Currently, the major 

surgical solution to restore lost function due to trauma, neurogenic or vascular 

dysfunction, or cancer is bladder augmentation surgery. Bowel is most commonly 

used in various procedures of neobladder replacement, such as augmentation 

enterocystoplasty or substitution enterocystoplasty. However, its use is not without 

long-term complications [9,10,11], suggesting that the materials used for the repair 

may be inadequate. In fact, rupture of the repaired bladder wall is known to occur in 

~5% of cases [12].The lack of an entirely satisfactory clinical procedure has led 

researchers to pursue alternative bladder replacement materials involving tissue 

engineering techniques [13,14].

Ideal materials for complete or partial bladder replacement should possess both 

biological compatibility, to promote cellular and tissue integration, and mechanical 

reliability. In order to design more appropriate long-term surgical repair procedures 

and develop materials for bladder reconstruction, and indeed to gain an insight into 

* Manuscript
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the disease processes that lead to bladder dysfunction, it is necessary to 

characterize and quantify the fundamental mechanical properties of the normal 

bladder at the mesoscale-tissue level and correlate them to both whole organ 

mechanics and tissue histioarchitecture. Quantitative linking of the mechanics to 

bladder histioarchitecture will also help to elucidate the repercussion of cellular and 

molecular level alterations on bladder function [15]. Along these lines, studies have 

correlated alterations in myosin isoform and collagen type content to force 

development in bladder muscle strips [16,17] or to urodynamics data [18,19]. Such 

correlations are important not only for interpreting structural/functional changes in 

studying patterns of bladder dysfunction, but also to predict the fate of replacement 

materials when exposed to the local normal or pathological mechanical loading in the 

bladder wall in vivo.

In addition to the active contraction of the detrusor smooth muscle, the bladder 

demonstrates nonlinear elastic, viscous and plastic mechanical properties 

[20,21,22,23,24,25,26], depending on the boundary conditions. However, during 

normal physiological filling rates bladder deformation can be considered quasistatic

[27], whereas neural and contractile effects are minimal [28]. Over the years, several 

mathematical models have been developed in an effort to predict the stress-strain 

behaviour of the bladder wall. Most of these models assume isotropy, homogeneity, 

incompressibility and a spherical shape for the bladder wall [22,29,30,31]. Although 

the assumptions of a spherical shape and incompressibility can give a relatively good 

description of bladder mechanics during filling [32], it is questionable how descriptive 

are the assumptions of isotropy and homogeneity for the bladder wall. The bladder 

demonstrates a considerable inherent inhomogeneity in its material properties [33],

and as a result, it does not stretch equally in all directions, demonstrating areas of 
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higher stretching and, subsequently, higher stress. In spite of this, relatively little is 

known about the anisotropic mechanical properties of the bladder wall in terms of 

direction or region, and only a meagre few studies have focused on this issue

[34,35]. As a first step towards the development of tissue engineered bladder repair 

materials, the authors performed the first regional and directional mechanical 

characterisation of the urinary bladder. In particular, the objective of this study was to 

identify and quantify potential regional and directional variations in the passive 

mechanical properties of the bladder wall and correlate these variations to its 

histioarchitecture and whole organ mechanics. By elucidating the inhomogeneous 

nature of the bladder, the aim of this work was to consider the implications for

developing suitable natural or synthetic biomaterials for bladder augmentation.

Materials & Methods

Specimen procurement & dissection

Intact bladders from 16-week-old commercial male pigs were collected from a

local abattoir and transported to the laboratory on ice in transport medium [Hanks’ 

balanced salt solution without Ca++ and Mg++ (HBSS, Invitrogen, Paisley, UK) 

containing 10 mM HEPES, pH 7.6 (Invitrogen) and 10 KIU/ml Aprotinin (Trasylol, 

Bayer, Berkshire, UK)] [36]. The absence of calcium in the solution helped ensure

that the bladders were in an inactivated state and that no spontaneous contractions 

would occur during testing. Prior to testing, the bladders were sized by photographing 

them in their deflated/non-distended state (Figure 1). The recorded images of the 

bladders were calibrated and the maximum bladder width along the circumferential 

direction was measured using an image analysis software (Image Pro PlusTM, 

MediaCybernetics®). The average size of the bladders used in this study was 68 ± 

11.7 mm (mean ± 95% confidence interval, n = 6).
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The bladders were subsequently dissected along the apex-to-base line, as 

show in Figure 2a, and samples were isolated from the dorsal, trigone, lateral, ventral 

and lower body regions of the wall, as well as along the apex-to-base (longitudinal) 

and transverse (circumferential) directions (Figure 2b). For the purpose of the 

biomechanical characterization, specimens measuring 205 mm were isolated using 

a purpose-built block cutter [37]. From each bladder, one apex-to-base and one 

transverse specimen were isolated from each one of the five anatomical regions. 

Samples from the five anatomical regions and along the two directions were also 

harvested for histological examination. Following isolation, the specimens were 

stored in transport medium and tested either biomechanically or histologically within 

6 hours from slaughter.

Histological characterisation

Histological examination was performed on samples harvested along the apex-

to-base and transverse directions from the five anatomical regions of the bladder 

wall, in order to analyse the general histioarchitecture, as well as the amount and 

orientation of elastin, collagen and smooth muscle. The samples were retrieved 

either from the procured empty bladders and fixed in 10% (v/v) neutral buffered 

formalin (NBF), or from a bladder that had been distended to the mean physiological 

capacity with 500 ml of 10% (v/v) NBF. Post-fixation, distended and non-distended 

samples were dehydrated and embedded in paraffin wax. Histological sections were 

stained with either Miller’s stain to evaluate the content and distribution of elastin, 

Van Gieson’s stain to evaluate the distribution of collagen and smooth muscle, or 

with haematoxylin and eosin (H&E) [38]. The stained sections were examined under 

light microscopy and photographed.

Biomechanical characterisation
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Bladder wall strips were subjected to low-strain rate uniaxial tensile loading to 

failure in order to investigate potential regional variations in the passive stress strain-

behaviour of the bladder wall. In addition, the directional anisotropy of the bladder 

wall was investigated by testing specimens along the apex-to-base and transverse 

directions. In total, 10 test groups of 6 specimens each were studied. Prior to testing, 

the thickness of the samples was measured at 6 points along their long axis using a 

gauge with a resolution of 0.01 mm (Mitutoyo, Andover, UK), and their average 

thickness (t) was recorded. Subsequently, the samples were mounted onto a 

purpose-built titanium holder. The holder was supported by a removable aluminium 

bracket that allowed alignment of the two holder grips, defined the gauge length of 

the specimens, and ensured that no load was imposed on the specimen until the 

start of the test [37]. The gauge length of the specimens was defined by a 10 mm 

wide central block separating the two holder parts and screwed onto the bracket.

Once a sample was clamped onto the holder, the holder with the supporting bracket 

was secured to a Howden tensile machine and the bracket was removed. Prior to 

loading to failure, the specimens were preconditioned under cyclic loading using a 

double-ramp wave function at a rate of 10 mm/min. A preconditioning regime of 10 

cycles was sufficient to produce a steady-state load-elongation response from the 

samples. Following preconditioning, the samples were sequentially stretched to 

failure at a rate of 10 mm/min. All testing was conducted in physiologic saline (0.9% 

w/v NaCl) and at room temperature. Total testing time was approximately 3 min per 

specimen. During testing, load data from the load cell and specimen extension data 

from the stroke of the cross-head of the tensile testing machine was acquired at a 

rate of 20Hz.
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In order to obtain an accurate measure of the tissue gauge length, the tensile 

machine was set to produce a specimen preloading of 0.02 N before the operating 

program started to acquire any data. Therefore, zero extension was taken at the 

point where a load of 0.02 N was detected. The final gauge length (Lo) of the 

specimen was calculated as the initial gauge length (10 mm) plus the extension that 

was needed to produce the specified preloading. Failure was taken to occur when 

the first decrease in load was detected during extension. The mode of failure 

observed was middle section necking and rupture for all of the specimens tested. 

The recorded load (F) and specimen extension data (L) from the loading to failure 

phase of each specimen was converted to stress and strain. Stress () was defined 

in the Lagrangian sense as F/unloaded cross-sectional area, whereas the 

percentage in-plane axial strain () was defined as (L/Lo)100% [39]. The calculated 

stress-strain responses obtained for the specimens of each group were averaged 

over the number of specimens in each group (n = 6) using a mathematical analysis 

software package (Origin v6.0, Microbal).  Moreover, the stress-strain behaviour of

each specimen was analyzed by means of six parameters. These have been 

described elsewhere [37] and included the elastin (El-E) and collagen (Col-E) phase 

slopes, transition stress (trans) and strain (trans), ultimate tensile strength (uts) and 

failure strain (uts). The biomechanical parameters were analyzed by one-way 

analysis of variance (ANOVA) and the individual means from each group were 

compared using the Student’s t-test to calculate the minimum significant difference at 

the 95% and 99% confidence levels.

In an attempt to link the passive mesoscale-tissue mechanical properties of the 

bladder wall obtained from the uniaxial tensile tests with the mechanics of the whole 

bladder, the calculated stress-strain data was converted to bladder intraluminal 
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pressure-bladder volume relationships using the law of Laplace for a thin-walled 

sphere. While no complete survey of bladder shapes was performed, the reports of 

the shapes of normal bladders tend to describe spherical bladders [40] and prolate 

spheroidal bladders [33]. Although these models are only rough approximations of 

the real bladder shape, it was deemed sufficient to use the spherical bladder 

assumption, together with the assumptions of homogeneity and isotropy entailed by 

the law of Laplace, to generate a qualitative correlation between mesoscale-tissue 

and organ scale properties. The purpose of this analysis was to examine how the 

whole bladder mechanics change if the regional and directional anisotropy inherent in 

the bladder wall is not taken into consideration.

The law of Laplace for a segment of homogeneous thin-walled sphere relates 

the internal pressure (P) applied to the segment, to its thickness (t) and radius (R), 

and the membrane stress () in the segment, according to [41]:

R

2t
P

σ
    (1)

Assuming an un-pressurised bladder ark segment of angle  and radius Ro, its 

original undeformed length is 
oo

RL .When the segment is pressurised by an 

internal pressure P, its radius increases to R. In addition, its length increases by L, 

generating an axial membrane stress () along its length. The length of the 

pressurised segment is  RLL
o

L . Consequently, the radius R of the 

pressurised segment can be estimated by:




 1
o

o

o
L

LL

R

R
   (2)

Lo represents the un-stretched gauge length of the tissue specimens (final gauge 

length, allowing for the preloading of 0.02 N) used in the uniaxial tensile tests,
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whereas the ratio L/Lo is the in-plane axial strain () in the segment and represents 

the strain calculated from the uniaxial tensile tests for the tissue strips. Therefore, the

internal bladder pressure was calculated according to: 

 
1R

2t
P

o

σ
   (3)

The membrane stress , produced by the stretch L in the bladder segment, 

represents the corresponding axial tensile stress calculated for the tissue strips under 

uniaxial tension. Moreover, the volume of the bladder, corresponding to the in-plane 

axial strain in the bladder segment, was estimated from the volume of the sphere and 

employing equation (2):

   33
11

3

4  
o

3

o
VVRV    (4)

The internal diameter of the bladder was assumed to be 68 mm (R = 34 mm), which 

was the averaged maximum width measured along the circumferential direction of 

the bladders used in the testing (Figure 1). Moreover, the bladder thickness was 

assumed to be the averaged group thickness of the bladder strips tested under 

uniaxial tension.

Results

Histological characterisation

The results of the structural analysis of the bladder wall, obtained from the 

histological staining of samples from the dorsal, ventral, lateral lower body, and 

trigone regions, as well as along the apex-to-base and transverse directions, are 

illustrated in Figure 3 for the non-distended bladders, and Figure 4 and Figure 5 for 

the bladder fixed while distended to 500 ml. Examination of the regional bladder 

histioarchitecture revealed that elastin was generally sparse in the bladder wall. 
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Nevertheless, among the five regions investigated, the samples retrieved from the 

dorsal, ventral and lateral regions contained the most elastin, whereas the samples 

from the lower body region contained the least amount of elastin (Figure 3). In all 

regions, elastin appeared to be oriented predominantly in the transverse 

(circumferential) direction (Figure 5). In the ventral region, elastin seemed to be

concentrated in the lower half/serosa region, whereas the trigone region appeared to 

contain a scattering of elastin bundles. The detrusor muscle was most compact 

within the trigone region (Figure 3), but it was difficult to distinguish any discernible 

patterns of orientation that would discriminate one region from another. Samples 

retrieved from the lower body and trigone regions of the distended bladder were

structurally the least affected by distension, retaining thickness and a convoluted 

urothelium (Figure 4). Upon distension, the dorsal, lateral and ventral regions 

reduced in thickness and the local urothelium was flattened. Miller’s elastin staining 

showed the presence of elastin in vessel walls (Figure 5). Van Gieson’s staining 

showed that the muscle bundles in the dorsal, lateral and ventral regions of the 

distended bladder were more compacted than in the trigone and lower body regions, 

reflecting the increased distension of these regions and the subsequent 

reorganisation of the ECM. This supports the observations in the non-distended 

bladder that the dorsal, ventral and lateral regions contained the most elastin and the 

lower body region the least. Elastin provides the recoiling mechanism in the tissues 

and it is usually present in regions of tissues which are subjected to increased 

deformations. Van Gieson’s staining also revealed that the lateral, lower body and 

trigone regions expressed an increased network of collagen compared to the dorsal 

and ventral regions (Figure 5).
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Biomechanical characterisation

During uniaxial tensile loading to failure, the site of specimen failure was within

the central region of the specimens, whereas there was no evidence of specimen 

slippage within the grips of the holder. The acquired force and elongation data for 

each specimen tested was converted to stress and strain, respectively, and the 

averaged apex-to-base and transverse stress-strain behaviours for each of the five 

regional groups were plotted on the same chart in order to examine the potential 

directional anisotropy of the bladder wall. These results are illustrated in Figure 6.

The average biomechanical parameters obtained from the stress-strain behaviours of 

the specimens in each of the test groups are gathered in Figure 7. All groups 

demonstrated the typical quasistatic stress-strain behaviour of soft tissues comprising 

an initial linear region (elastin phase) followed by a secondary prolonged linear 

region (collagen phase) before failure. Comparatively to other soft tissues [37], the 

elastin phase of all groups was much shorter than the extent of the collagen phase, 

depicting the reduced amount of elastin in the bladder wall, relatively to its content in 

other ECM structures, observed under histological examination.

Overall, the specimens retrieved along the transverse direction from all regions, 

appeared to be more compliant, suggesting increased levels of deformation for the 

same levels of applied stress (Figure 6). However, significant directional anisotropy 

was present only in the stress-strain behaviour of the lateral, lower body, and trigone 

regions. Specifically, the lateral region showed significantly increased collagen phase 

slope (p = 0.027) and ultimate tensile strength (p = 0.013) along the apex-to-base 

direction (Figure 7). Statistically significant increase along the apex-to-base direction 

were also observed in the collagen phase slope (p = 0.003), transition stress (p = 

0.027) and ultimate tensile strength (p = 0.036) of the lower body region. The trigone 
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region presented a significant increase in the collagen phase slope (p = 0.004) and 

significant decrease in the transition (p = 0.026) and failure (p = 0.021) strains in the 

apex-to-base direction. In contrast, the dorsal region demonstrated the least 

directional anisotropy, being in fact, quite isotropic in the whole range of its stress-

strain behaviour (p > 0.05). In between the two extremes, the ventral region also 

demonstrated a degree of directional anisotropy, which was limited to a decrease in 

the transition strain (p = 0.013) of the apex-to-base direction.

In order to produce a quantitative comparison of the degree of directional 

anisotropy between the five anatomical regions, the ratio of the collagen phase 

slopes between the apex-to-base and transverse direction groups of each of the five 

regions was calculated and presented in Table 1. These ratios indicated that the 

lower body region expressed the highest degree of anisotropic behaviour, with a

collagen phase slope along the apex-to-base direction more than 3 times bigger than 

the one along the transverse direction. The smallest ratios were calculated for the 

dorsal and ventral regions, which demonstrated similar collagen phase slopes along 

their apex-to-base and transverse directions. 

Analysis of the biomechanical parameters also revealed significant regional 

anisotropy in the bladder wall. However, this anisotropy was confined only in the 

apex-to-base direction between the five anatomical regions (Figure 7). Statistically 

significant differences were found in all biomechanical parameters studied except for 

the case of the elastin phase slope. In the extra-physiological stress range (collagen 

phase) significant differences were observed in the collagen phase slopes of the 

dorsal and ventral regions which were reduced compared to the trigone region (p = 

0.020), and the lateral (p = 0.043), lower body (p = 0.006) and trigone regions (p = 

0.001), respectively. This indicated a significantly increased compliance of the dorsal 
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and ventral compared to the other bladder regions. Moreover, the ultimate tensile 

strength of the ventral region was significantly reduced compared to the lateral (p = 

0.028) and lower body (p = 0.046) regions, whereas the transition stress of the lower 

body was significantly increased compared to the dorsal region (p = 0.483). With 

regards to the extensibility of the bladder wall, the trigone region was the least 

distensible, demonstrating significantly reduced transition and failure strains 

compared to the dorsal (p = 0.005 & 0.004), ventral (p = 0.017 & 0.012), lateral (p = 

0.001 & 0.002), and lower body (p = 0.001 & 0.004) regions. The combined findings 

of this study with regards to the regional anisotropy of the bladder wall along the 

apex-to-base direction are illustrated in Figure 8, which illustrates the variation of the 

collagen phase slope, ultimate tensile strength, transition strain  and failure strain  

over the five anatomical regions investigated.

The mesoscale-tissue mechanical properties obtained from the uniaxial tensile 

tests were correlated to whole bladder mechanics by converting the stress-strain 

behaviour of each specimen in each of the ten test groups to a pressure-volume 

response. The purpose was to predict pressure-volume relationships for the whole 

organ, assuming a regionally and directionally isotropic, homogeneous and spherical 

bladder. Subsequently, the converted pressure-volume results for each specimen 

were averaged over the number of specimens in each group and plotted for the

physiological bladder volume interval, which was assumed to be ≈ 500 ml (Figure 9). 

In essence, these pressure-volume relationships represent the behaviour of the 

whole bladder assuming that its mechanical properties are uniform and identical to 

the properties of each of the individual test groups. Analysis of these results indicated 

that there were significant differences in the slopes of the pressure-volume profiles 

calculated individually for each specimen and averaged for the specimens in each 
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group (Figure 10). The slope of the model employing the properties of the trigone 

region along the apex-to-base direction was significantly increased compared to the 

dorsal (apex-to-base, p = 0.046), ventral (transverse, p = 0.047), lower body (apex-

to-base, transverse; p = 0.034 & 0.016, respectively), and trigone (transverse, p = 

0.047) models.

Discussion

The aim of this study was to investigate the homogeneity and anisotropy of the 

passive urinary bladder with regards to the mechanical properties and 

histioarchitecture of the bladder wall. This was the first study, to the knowledge of the 

authors, which used uniaxial mechanical testing to investigate the regional and 

directional anisotropy of the urinary bladder, and to correlate the mesoscale-tissue 

mechanical properties to the whole organ pressure-volume behaviour. Over the 

years, the quasistatic mechanical properties of the bladder have been characterised 

utilising tensile loading tests [34,35,42,43,44] and in vivo studies [44,45,46,47]. In 

vivo whole organ testing cannot directly determine bladder wall tissue properties due 

to regional differences, and can be affected by neural influences and intrinsic muscle 

activity, as well as other concomitant variables such as non-uniform wall stress 

distribution and external loading by the pelvic organs [35]. Tensile loading tests on 

bladder wall samples have focused on uniaxial [32,42,43] or biaxial [34,35] protocols. 

Admittedly, biaxial mechanical testing produces a more physiological loading state as 

the bladder wall is loaded in all three dimensions in vivo. In addition, phenomena 

such as mechanical cross-coupling, describing how the stress level in one direction 

can affect the stress-strain behaviour in the other, which can be important in studying 

biaxial tissues, can be better appreciated under biaxial testing. An improvement to 

the existing testing methodology would be to employ biaxial testing alongside the 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

14

uniaxial protocol. Nevertheless, uniaxial testing is an attractive investigation tool 

because it localises the investigation to a very small area of the organ from which a 

tissue sample can be isolated and subjected to controlled stress states. This is a 

particularly well suited approach when investigating anisotropic behaviour of tissues. 

Since the purpose of this study was not to fully characterise the mechanical 

properties of the bladder in terms of a constitutive three-dimensional model, in which 

case a biaxial testing protocol would be more appropriate, but to investigate its 

potential anisotropy and inhomogeneity, it was deemed appropriate to use uniaxial 

tensile testing. 

The regional and directional anisotropy of the bladder has attracted surprisingly 

little attention over the years. A meagre few studies have focused on the anisotropy 

of the mechanical properties of the bladder [34,35], and even these have 

concentrated on the directional anisotropy. In addition to the directional anisotropy, 

this study also identified a regional anisotropy inherent in the mechanical properties 

of the bladder wall. Moreover, the magnitudes of the biomechanical parameters 

calculated in this study were comparable to those reported by others for porcine 

bladder tissue [42], considering the differences in experimental protocols, as well as 

in the methods used to estimate tissue thickness which have a direct impact on the 

magnitude of the estimated stress. With regards to the directional anisotropy, the 

specimens retrieved along the transverse direction from all regions appeared to be 

more compliant (increased transition and failure strains, reduced collagen phase 

slopes) compared to the apex-to-base specimens. The increased compliance along 

the transverse direction, which was more profound in the extra-physiological 

mechanical properties, indicated that at the organ level the bladder distends more in 

this direction than along the apex-to-base one. Within the physiological distension 
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limits (up to approximately the transition point of the stress-strain curve), the 

increased compliance observed along the transverse direction was supported by the 

histological results, which indicated that elastin was predominantly oriented in the 

transverse direction (Figure 5). Elaborating, elastin provides the recoiling mechanism 

in the tissues and it is most abundant in tissues, or regions of tissues, subject to 

increased stretching during physiological function [48]. Directional anisotropy was 

also observed in the ultimate tensile strength of the specimens, with the specimens 

retrieved along the transverse direction from all regions achieving lower strengths 

than the apex-to-base specimens. The difference, though, was significant only in the 

lateral and lower body regions. Overall, the lower body demonstrated the highest 

degree of directional anisotropy, whereas the dorsal and ventral region demonstrated 

the least directional anisotropy (Figure 6 & Table1). 

Significant regional anisotropy in the bladder wall was found only along the 

apex-to-base direction (Figure 7 & 8). The lack of any significant regional anisotropy 

along the transverse direction indicates that the organ experiences a rather uniform 

circumferential expansion. Statistically significant differences were found in all 

biomechanical parameters except in the slope of the elastin phase. The dorsal and 

ventral regions demonstrated a significantly increased compliance along the 

longitudinal direction compared to the other bladder regions, as indicated by the 

reduced collagen phase slope and transition stress, and increased transition and 

failure strain of these regions. The reduced transition stress of these regions 

indicates that they can reach their transition point, at which the collagen and smooth 

muscle fibres have uncrimped and begin to bear all the applied load, with less effort 

(less pressure) than the other regions. As a complementary effect, the significantly 

increased transition strain of the dorsal and ventral regions, as well as of the lateral 
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region, compared to the trigone, indicates that with the same effort (same pressure) 

these regions are prone to deform more than the trigone in the apex-to-base 

direction. In fact, the trigone region demonstrated the least distensibility, experiencing 

the lowest transition and failure strains and the highest collagen phase slope in both 

directions (although not significantly so in the transverse) compared to the other 

regions (Figure 7 & 8). The second highest collagen phase slope and lowest failure 

strain was demonstrated by the lower body region. The findings of the increased 

compliance of the dorsal, ventral and lateral regions compared to the trigone and 

lower body regions were supported by the increased elastin network found in these 

regions, as well as by the fact that histological samples retrieved from the lower body 

and trigone regions of the distended bladder were structurally the least affected by 

distension. The trigone, lower body and lateral regions also demonstrated the highest 

tensile strength both at regional and directional level. This can be attributed to the 

increased networks of collagen, the main function of which in connective tissues is to 

withstand tension, as well as to the thicker layers of muscle, observed in these 

regions under histological examination. 

The directional and regional anisotropy in the mesoscale-tissue mechanical 

properties of the bladder was inherited in the whole organ mechanics when the 

stress-strain behaviours of the different regions were used to model pressure-volume 

relationships for the whole organ. The purpose was to investigate whether 

mesoscale-tissue mechanical properties can be translated to meaningful whole organ 

mechanics, given an appropriate model for the bladder shape and how the wall 

stretch is distributed in the bladder wall. The assumptions of a spherical geometry, 

homogeneity and anisotropy do not constitute a realistic bladder model.

Nevertheless, this model was sufficient to examine how the whole pressure-volume 
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relationship of bladder changes if the mechanical properties of a particular bladder 

region are adopted as universal bladder properties. Although these results were at 

best estimates based on assumptions of homogeneity, and only descriptive of whole 

bladder mechanics, they were indicative of the inherent regional and directional 

anisotropy present in the bladder. The modelled pressure-volume profiles were in 

general agreement with similar data obtained from bladder cystometry [49]. However,

there was a considerable scatter among the results of the individual regions and 

directions. The scatter ranged from a model describing a bladder that offers 

considerable resistance to deformation, by employing the results of the trigone region 

along the apex-to-base direction, to a bladder that is quite compliant and offers little 

resistance to deformation, by employing the results of the ventral region along the 

transverse direction. Moreover, the pressure-volume models verified the lack of any 

significant anisotropy along the transverse direction of the anatomical regions, with 

the models assuming the properties of the transverse regional groups clustering 

together, towards the compliant bladder region.

Conclusions

This study detected significant regional and directional anisotropy in the 

quasistatic uniaxial mechanical properties of the passive urinary bladder and 

correlated this anisotropy to the distended and non-distended tissue 

histioarchitecture and whole organ mechanics. The experimental protocol used to 

evaluate the mesoscale mechanical properties of the bladder by employing uniaxial 

tensile testing was effective in detecting bladder anisotropy. Differences between 

isotropic and anisotropic behaviour can become important in regions of high stress 

and in bladder augmentation surgery that changes the natural shape and boundary 

conditions of the bladder. In general, the results from this study will aid the regional 
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differentiation of bladder treatments in terms of partial bladder replacement, as well 

as the development of more realistic constitutive models of bladder wall 

biomechanics and improved computational simulations to predict deformations in the 

natural and augmented bladder.
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Figure 6
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Figure 7
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Figure 8
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1

Figure Captions

Figure 1: Bladder sizing. Bladder width was measured along the transverse line.

Figure 2: Bladder dissection and sample localization. (a) Schematic of bladder in the anterior-posterior plane; (b) 

Cut-opened porcine bladder showing the anatomical map of the five anatomical regions investigated

Figure 3: Staining of full thickness samples retrieved from the dorsal (D), ventral (V), lateral (L), lower body (LB) 

and trigone (T) regions of non-distended bladder (luminal side up). Bar: 250 m.

Figure 4: H & E staining of full thickness samples retrieved from the dorsal (D), ventral (V), lateral (L), lower body 

(LB) and trigone (T) regions of distended bladder (4  magnification).

Figure 5: Staining of full thickness samples retrieved from the dorsal (D), ventral (V), lateral (L), lower body (LB) 

and trigone (T) regions of distended bladder. Bar: 250 m.

Figure 6: Regional mean stress-strain behaviour of the bladder wall along the apex-to-base and transverse 

directions (error bars indicate the 95% confidence intervals, n = 6): a) dorsal; b) ventral; c) lateral; d) lower body; 

e) trigone. 

Figure 7: Regional mean biomechanical parameters of the bladder wall along the apex-to-base and transverse 

directions (error bars indicate the 95% confidence intervals, n = 6):  a) elastin phase slope (El-E); b) collagen 

phase slope (Col-E); c) transition stress (trans); d) ultimate tensile strength (uts); e) transition strain (trans); f) 

failure strain (uts). Connectors indicate significant (p<0.05) regional difference between originator column and end 

arrow column.

Figure 8: Regional topographic map of the urinary bladder showing the variation of the mean collagen phase 

slope (Col-E), ultimate tensile strength (uts), transition strain (trans), and failure strain (uts) over the five 

anatomical regions investigated, and along the apex-to-base direction. These results correspond to the results 

presented in Figure 6.

Figure 9: Mean pressure-volume profiles calculated from the stress-strain behaviour of the dorsal (D), ventral (V), 

lateral (L), lower body (LB), and trigone (T) bladder regions along the apex-to-base and transverse directions 

(mean ± 95% confidence interval, n = 6).

Figure 10: Average slopes of the pressure-volume profiles for the dorsal, ventral, lateral, lower body, and trigone 

models (error bars indicate the 95% confidence intervals, n = 6). Connectors indicate significant difference.

Captions



Table 1

Ratios of Col-E between the apex-to-base and transverse direction groups.

Bladder Region: Dorsal Ventral Lateral Lower Body Trigone

Col-E Ratio      : 1.4 1.2 2.5 3.1 2.5

Table


