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Abstract. Alloys of silicon (Si), germanium (Ge) and tin (Sn) are continuously
attracting research attention as possible direct band gap semiconductors with
prospective applications in optoelectronics. The direct gap property may be brought
about by the alloy composition alone or combined with the influence of strain, when an
alloy layer is grown on a virtual substrate of different composition. In search for direct
gap materials, the electronic structure of relaxed or strained Ge1−xSnx and Si1−xSnx

alloys, and of strained Ge grown on relaxed Ge1−x−ySixSny, was calculated by the
self-consistent pseudo-potential plane wave method, within the mixed-atom supercell
model of alloys, which was found to offer a much better accuracy than the virtual
crystal approximation. Expressions are given for the direct and indirect band gaps
in relaxed Ge1−xSnx, strained Ge grown on relaxed SixGe1−x−ySny, and for strained
Ge1−xSnx grown on a relaxed Ge1−ySny substrate, and these constitute the criteria for
achieving a (finite) direct band gap semiconductor. Roughly speaking, good-size (up
to ∼0.5 eV) direct gap materials are achievable by subjecting Ge or Ge1−xSnx alloy
layers to an intermediately large tensile strain, but not excessive because this would
result in a small or zero direct gap (detailed criteria are given in the text). Unstrained
Ge1−xSnx bulk becomes a direct gap material for Sn content of > 17%, but offers
only smaller values of the direct gap, typically ≤0.2 eV. On the other hand, relaxed
SnxSi1−x alloys do not show a finite direct band gap.

PACS numbers: 71.20.Mq, 71.15.-m, 71.22.+i
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1. Introduction

Recent years have witnessed a widespread use of optoelectronic devices. This technology

relies on direct band gap III-V materials like GaAs, which is expensive and highly toxic.

An interesting alternative would be a direct gap alloy based on group IV materials Si,

Ge, and Sn, which are generally compatible with silicon technology, and this has been

widely investigated. However, early studies of epitaxial SiGeSn alloys have revealed

the difficulties of their growth, with the exception of Si1−xGex binary alloys. With

large lattice mismatch between α-Sn (6.489 Å) and Ge (5.646 Å) or Si (5.431 Å),

approximately 15% and 17% respectively, and the instability of cubic α-Sn above 13o

C, bulk alloys with Sn cannot be readily grown [1]. Furthermore, because of a lower

surface free energy of alpha-tin and germanium, there can be segregation on the surface

[2]. These difficulties have been overcome by low temperature molecular beam epitaxy

(MBE), which has enabled epitaxial growth of e.g. strained Ge1−xSnx superlattices [3]

and random Ge1−xSnx alloys [4] on a Ge substrate. However, these are not expected to

show an indirect-direct transition [1], because of their compressive strain: it is presently

believed that a direct gap can only appear in tensilely strained or relaxed Ge1−xSnx,

e.g. [5]. Further advances were made by ultra-high-vacuum chemical vapor deposition

(UHV-CVD) and uniform homogeneous relaxed Ge1−xSnx alloys with x < 0.2 have

been grown on silicon[6, 7]. Experimental investigations revealed significant changes

in optical constants and redshifts in the interband transition energy as x varied [8],

indicating wide tunability of the band gap of these alloys.

The binary GeSn and ternary SiGeSn alloys are considered to be very prospective

materials for infrared detectors, as pointed at by Soref and Perry [9], who used

linear interpolation scheme to calculate the electronic band structure and optical

properties of Ge1−x−ySixSny alloys and concluded that these will be tunable direct

band gap semiconductors. Furthermore, both the direct and indirect band gap in

Ge decrease with tensile strain, but the former (initially 140 meV above) does so

faster, eventually delivering a direct gap material. Therefore, one can use strained

Ge, grown on ternary Ge1−x−ySixSny alloys [10, 11]. There have since been a number of

theoretical investigations of the electronic structure of SiGeSn alloys and the influence

of composition fluctuations. For instance, using the tight-binding method within the

virtual crystal approximation (VCA), the bowing parameter bGeSn value of 0.30 eV [12]

for Ge1−xSnx was calculated, while another, pseudopotential based calculation [13] gave

the value of -0.40 eV. The latter also predicted that Ge1−xSnx alloys become direct

gap materials, with 0.55 > Eg > 0 eV for 0.2 < x < 0.6. The results for bGeSn

are quite remote from each other (even in sign), and both grossly deviate from the

experimental value, bGeSn= 2.8 eV [1, 5]. This clearly indicates that VCA cannot explain

the behaviour of disordered Ge1−xSnx alloys [14], although it is considered reasonably

accurate for Si1−xGex. In order to take into account the alloy disorder effects, the

Coherent Potential Approximation (CPA) was employed for Si1−xGex alloys. According

to Chibane et al. [15], who used the model developed by Zunger et al. [16], the
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calculated optical band gap gap bowing is in good agreement with experiment for small

Sn contents. However, so far there is no theoretical model which properly describes

the optical properties of GeSiSn alloys in a wide range of compositions. The aim of

this work is to theoretically explore various possibilities of achieving tunable direct

gap semiconductors based on group IV materials, and to investigate the composition

dependence of their electronic and optical properties.

2. Computational method

For band structure calculation of SiGeSn alloys we use the charge self-consistent

pseudopotential Xα method. It finds the self-consistent solution of the Schrödinger

equation, with the lattice constituents described by ionic pseudopotential formfunctions.

Compared to the first-principles density functional theory in the local density

approximation [17, 18], which perform the total energy minimization, the Xα method

is able to reproduce the electronic structure (i.e. the band gaps, or optical properties

of semiconductors) with very good accuracy, without any additional schemes like GW

approximation or “scissors correction” as are employed in total energy approaches. On

the other hand, this method would not deliver the ground state properties (e.g. the

atomic coordinates relaxation, or lattice constant bowing) very accurately, though these

can be externally supplied to the calculation. Since our interest in this work are the

electronic properties, the Xα method was adopted, and experimentally obtained lattice

parameters were used where avilable. The calculation starts with the construction of

the effective potential, including the pseudopotential, the Hartree potential and the

exchange-correlation potential

Veff (r) = Vps + VHartree(r) + Vxc(r), (1)

where VHartree (r) =
∫ e2n(ŕ)

|r−ŕ| dŕ, and n (r) is the real-space electron density. The Hartree

potential is evaluated in momentum space

VHartree(q) = 4πe2n (q)

q2
, (2)

where q is the wave vector and n (q) are the Fourier coefficients of charge density. This

is evaluated in two steps. First, the density was computed on a 16 × 16 × 16 grid

of the simple unit cell in real space. Second, the fast Fourier transform was used to

transform from n (r) to n (q). The exchange-correlation potential was evaluated in a

similar manner. The local exchange-correlation potential of the Slater type has been

chosen, defined as

Vxc(q) = −α
3

2
e2

(
3

π

) 1
3

[n (q)]
1
3 , (3)

where [n (q)]
1
3 are the Fourier coefficients of the cube root of charge density. Based on

the approximation of Slater [19], α is a constant which Schlüter et al. [20] have set to

0.79. The calculation of this potential was similar to the calculation of n (q), except
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that the cube root of n (r) on the cubic grid was taken before transforming from [n (r)]
1
3

to [n (q)]
1
3 by fast Fourier transform. The Vxc(q) was then evaluated using Eq. (3). As

for the pseudopotential, we have used the same form as Srivastava [21],

Vps(q) =

(
b1

q2

)
(cos(b2q) + b3) exp(−b4q

4), (4)

with the parameters for Si, Ge, and Sn given in Table 1. These are slightly readjusted

values from those given in Ref. [21], as dictated by a larger energy cutoff, and a different

method of integration over the Brillouin zone, used in this work.

Parameter Si Ge Sn

b1(Ry) -1.213 -1.032 0.401

b2 0.785 0.758 1.101

b3 -0.335 -0.345 0.041

b4 0.020 0.024 0.018

Table 1. Parameters of the pseudopotential of Si, Ge and α-Sn

The electronic structure is found by solving the Kohn-Sham equation (in atomic

units ~ = 2me = e2

2
= 1):

[−∇2 + Veff (r)
]
ψn (k; r) = εn (k; r) ψn (k; r) , (5)

which is done using the self-consistent pseudopotential plane waves method [22], with a

kinetic energy cutoff of 24 Ry, the value which gives good convergence of the calculation.

The improved linear tetrahedral method [23] was used for integration over the Brillouin

zone, with 34 k-points in the irreducible wedge. The convergence of the self-consistent

calculation was considered to be adequate when the total energy of the system was

stable to within 10−3 Ry. In these calculations we do not account for the spin-orbit

coupling, because it would double the size of the problem while not being essential for

the aim of this work, which is to find whether the smallest band gap is direct or indirect

(and this is determined only by the behaviour of the conduction band). Including the

spin-orbit coupling would bring slight quantitative corrections in the calculated values

of band gaps (with the ionic pseudopotential formfunctions re-adjusted to reproduce the

known experimental values for elemental Si, Ge and Sn in this case), but this would not

affect the predicted direct-indirect crossover points. Similar conclusion on a relatively

small influence of spin-orbit coupling on the topic of interest here has been drawn in

[24], based on empirical pseudopotential calculations in the Ge-Sn alloy.

The calculated band structure of bulk Si, Ge, and α-Sn are given in Fig. 1, with the

band gap of Si (Ge) being 1.2 eV (0.71 eV), while α-Sn has zero direct band gap. The

longitudinal (ml) and transverse effective mass (mt) for the X-valley in Si are 0.87m0

and 0.22m0. Similarly, the L-valley in Ge has ml =1.68m0 and mt =0.16m0. All these

are in very good agreement with the published values, indicating that the parameters

can be reliably used for further calculations.
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Figure 1. Electronic band structure of Si, Ge, and α-Sn.

3. Alloy models and their validity

Alloy properties can be evaluated either within the virtual crystal approximation (VCA)

with identical, average-composition atoms populating the lattice sites of the minimum-

volume crystalline unit cell, or by populating individual lattice sites only with pure

element atoms, in proportion to the alloy composition (“mixed atom method”), in which

case one has to use a supercell, with increased volume. The former is simpler but may

be grossly inaccurate in some cases. The latter approach is more realistic, accounting for

the effects of disorder and composition fluctuations, but becomes computationally very

demanding as the supercell size increases. In this work we used the cubic unit cell with

4 minimum-volume zinc-blende unit cells. This choice enables the binary compositions

with 12.5% composition step to be investigated, e.g. the A0.25B0.75 alloy is obtained

by putting 2 atoms of A and 6 atoms of B in lattice sites. There are different ways

for placement of these 8 atoms, each having somewhat different band structure, and

the alloy band structure is calculated by averaging over all the possibilities. Within

the mixed-atom supercell approach, some care is necessary when “unfolding” the band

structure to identify (resolve) the energies at the Γ and X points of the Brillouin zone

in the minimum-volume unit cell representation (both are folded onto the supercell Γ

point). The lattice constant of an alloy can be estimated from Vegard’s law [25]

a0(x)AB = (1− x)aA
0 + xaB

0 , (6)

where aA
0 and aB

0 are the lattice constants of elemental crystals of atoms A and B

respectively, and a more accurate expression (with bowing) was taken where available.
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The first set of test calculations, using both methods, was done for the Si1−xGex

alloy. In case of VCA, the pseudopotential was taken to vary linearly between the two

constituents [26], i.e.

V (q)SiGe = (1− x)V (q)Si + xV (q)Ge (7)

where V (q)Si and V (q)Ge are the pseudopotentials of elemental Si and Ge. By the same

token, the energy band gap between the top of the valence band at Γ and point g =X,

L, or Γ in the conduction band of a binary alloy within the VCA may be expected to

be ESiGe
g = (1 − x)ESi

g + xEGe
g , but the alloy disorder and other effects make this just

the first approximation, and a more accurate dependence is

ESiGe
g = (1− x)ESi

g + xEGe
g + bSiGex (1− x) , (8)

where bSiGe is a bowing parameter, and the VCA and the mixed-atom method may give

quite different values.
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Figure 2. The band gaps of Si1−xGex at X and L points, calculated within the
VCA and the mixed-atom method, together with data from the literature (a –
Ref. [27], b – Ref. [28]).

The calculated band gaps of Si1−xGex are shown in Fig. 2. We find that the

gaps for the X and L valleys, calculated by the mixed atom method, are EX =

0.108x2 + 0.267x + 0.881 eV and EL = 0.335x2 + 0.738x + 0.724 eV. Therefore, the

bowing parameter of this alloy is 0.33 eV for the Ge content x >0.70 (where the L

valley is the lowest), and 0.11 eV for x <0.70 (where the X valley is the lowest). These

values are in good agreement with the calculations of S. Krishnamurthy et al. [27], who

get the bowing parameters of 0.169 eV and 0.331 eV for the gaps at X and L, and the
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experimental value for the gap at X, of 0.206 eV [28] (no bowing of the gap at L point

was reported in [28]). On the other hand, the VCA predicts 0.01 eV for x > 0.75 and

-0.04 eV otherwise.

We have also performed calculations for the (100)-tetragonally distorted (biaxially

strained) Si1−xGex alloys, i.e. grown on a relaxed Si1−yGey substrate. The lateral lattice

constant a‖(x) equals that of the substrate, and in the perpendicular direction it is [29]

a⊥(x) = a0(x)

(
1− 2

c12(x)

c11(x)

a− a0(x)

a0(x)

)
, (9)

where c11 and c12 are the elastic constants [30, 31], given in Table 2 for Si, Ge, and α-Sn,

and approximated by Vergard’s law for the alloys,

Si Ge Sn

c11(Mbar) 1.67 1.32 0.69

c12(Mbar) 0.65 0.494 0.29

Table 2. Elastic constants c11 and c12 of Si, Ge, and α-Sn.

c(x)AB = (1− x)cA + xcB, (10)

where c represents either c11 or c12.

Figure 3. The minimum band gap, in eV, of strained Si1−xGex grown on
relaxed Si1−yGey.
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The results of the calculation for strained Si1−xGex grown on relaxed Si1−yGey,

Fig. 3, show that the minimum energy gap (of the X valleys parallel to the interface,

region B on figures) can be written as EXq (x, y) = 1.069− 0.425x + 0.533y− 0.152x2−
0.324y2, and for the perpendicular X valley (region A on figures) as EX⊥ (x, y) =

1.056 + 0.250x − 0.087y − 0.208x2 − 0.316y2, whereas the energy gap for the L valley

(region C) is EL (x, y) = 1.532− 0.739x + 0.185y− 0.075x2− 0.417y2. These results are

in good agreement with calculations of Rieger and Vogl [31]: e.g. for strained Si1−xGex

grown on Si, with x =0, 0.125, and 0.25 we calculate the band gaps of 1.07, 1.02, and 0.95

eV, respectively, to be compared with 1.07, 1.04, and 1.0 eV [31]. They are also in good

agreement with experimental results [32]: 1.17, 1.05, and 0.97 eV. For strained materials

it is also worth comparing the deformation potentials. The computational method used

in this work, and the conditions (strain along the [001] axis), allow meaningful extraction

of:: the uniaxial deformation potential b for the valence band at Γ, the sum of valence

and conduction band (at Γ) hydrostatic deformation potentials av +ac, and the uniaxial

deformation potential Ξ∆
u of the X (i.e. ∆) valley of the conduction band. We find

av + ac = −6.8 (−11.5) eV, and b = −3.75 (−4.10) eV for Si(Ge), compared to

−5.10 (−9.50) eV and −2.10 (−2.90) eV, respectively, for Si(Ge) given in [33]. For Ξ∆
u

we find 11.4 (11.0) eV for Si(Ge), compared to the theoretical values of 9.16 (9.42) eV

for Si(Ge) and the experimental value of 8.70 eV for Si, stated in [34]. All these indicate

reasonable accuracy of the present method for both strained and unstrained alloys.

4. Results and discussion

In search for direct tunable gap semiconductors, in this section we consider the relaxed

Ge1−xSnx alloy, strained Ge grown on relaxed GezSixSny substrate, where z = 1−x−y,

strained Ge1−xSnx grown on relaxed Ge1−ySny, and the relaxed Si1−xSnx alloy.

4.1. Relaxed Ge1−xSnx alloys

In studying of the composition dependence of the band structure of unstrained Ge1−xSnx

alloy, it is important to note the strong bowing effect in the lattice constant of this alloy,

that should be taken into account, even though the size of this effect is not very well

known. According to the experimental data for Ge1−xSnx from Ref. [35], the lattice

constant is given by

aGeSn(x) = aSnx + θSnGex(1− x) + aGe(1− x), (11)

where θSnGe = 0.166 Å, although its validity has been experimentally established only

for the Sn content ≤0.2 [35]. Previous calculations [15] have predicted slightly larger

value of the bowing parameter, ≈0.3 Å, though still in reasonable agreement with the

experiment. In our calculations, however, the experimental value was used.

From Fig. 4, which shows the results obtained within the VCA, the Sn content

dependence of the band gap for the L valley is EL = 0.34x2−0.91x+0.71, and for the Γ

valley it is EΓ = 0.78x2 − 2.00x + 0.87. The optical (band gap) bowing parameters are
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Figure 4. The minimum band gap of relaxed Ge1−xSnx for Γ and L valleys,
calculated within the VCA and within the mixed atom method. A couple of
available experimental values are also displayed (a – Ref. [37], b – Ref. [5]).

clearly much smaller than the above experimental value [1, 5], again showing that the

VCA cannot properly predict the composition dependence of the electronic structure of

Ge1−xSnx alloys. On the other hand, the results presented Fig. 4, obtained within the

mixed atom method, show that the relaxed Ge1−xSnx alloy has the indirect-to-direct

band gap transition at a Sn content of approximately 0.17, with the band gaps for the

L and Γ valleys given by EL = 2.28x2 − 2.85x + 0.72 and EΓ = 2.49x2 − 3.76x + 0.88,

respectively. The bowing parameter of relaxed Ge1−xSnx alloys is thus 2.49 eV, in

good agreement with experiment [5]. The calculated EΓ in Fig. 4 is also in very good

agreement with the measured value (0.41 eV) for x = 0.14 from Ref. [1]. For x = 0.04,

however, their measurement (0.74 eV) shows a somewhat large discrepancy, both in

respect to other experiments with similar compositions and to our calculations. The

Sn content of 17% for the indirect-to-direct gap transition is also in general agreement

with (i.e. in between) the values reported elsewhere, of 15% [36] and 20% [24]. It

should also be noted, when comparing theoretical and experimental values for the direct

band gap, that the optical measurements of this gap are quite difficult because of small

total absorption of actual samples, and measurements necessarily contain a degree of

uncertainty.

Finally, it is of interest to compare the calculated and (easier to measure) optical

band gap at the L point (E1). For the Ge1−xSnx alloy with x =0, 0.125, and 0.25 we

find the values of 1.91, 1.414, and 0.99 eV, respectively, and the bowing parameter 2.18
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eV, in reasonable agreement with 2.12, 1.83, and 1.60 eV, and the bowing parameter

1.65 eV, reported in [14].

4.2. Strained Ge on relaxed Ge1−x−ySixSny alloys

This system is currently believed to be of great practical interest, since it offers a direct

band gap in Ge at a reasonable level of strain (>1.8%) as well as type-I heterostructure

[11] (of importance for realisation of quantum well structures), together with a small

thermal expansion mismatch between the two materials [6]. This level of strain is

considered acceptable for growth of good quality layers, provided they are below the

critical thickness [6] (the same limitation applies to strained Ge1−xSnx grown on relaxed

Ge1−ySny, considered in the next subsection).

In the electronic structure calculations the lattice constant of Ge1−x−ySixSny alloys

was taken to depend on the Si content (x) and Ge content (y) as [35]

aGeSiSn(x, y) = aGe +4SiGex + θSiGe(1− x)

+4SnGey + θSnGey(1− y), (12)

where 4SiGe = aSi − aGe, 4SnGe = aSn − aGe, and θSiGe = −0.026 Å.

Figure 5. Band gap energy (in eV) of strained Ge grown on relaxed
Ge1−x−ySixSny alloys.

The band gap for the L valley is was now found to be described as EL (x, y) =

0.723+0.564x−2.352y +0.189xy−0.074x2 +0.068y2, while the band gap for Γ valley is

EΓ (x, y) = 0.880+0.929x−3.807y−0.160xy−0.078x2 +0.937y2, where x and y denote

the content of Si and Sn, respectively. The line defined by EL = EΓ in the x-y plane is
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the boundary between regions where the band gap of strained Ge is direct or indirect.

A direct band gap is achieved for sufficiently large tensile strain of Ge, achievable by

growing it on appropriate Ge1−x−ySixSny alloy substrate, as given in Fig. 5.

4.3. Strained Ge1−xSnx on relaxed Ge1−ySny alloys

For this calculation one needs the elastic constants for the GeSn alloy. This was

estimated by linear interpolation, since no quadratic correction parameter for this

alloy is known. The band gap for the L valley is now found to be described by

EL (x, y) = 0.672− 1.794x− 1.181y + 8.780xy− 2.958x2 − 3.925y2, and for the Γ valley

by EΓ (x, y) = 0.782 − 1.483x − 2.577y + 8.216xy − 1.653x2 − 1.866y2, where x and y

denote the Sn content in strained Ge1−xSnx layer and in relaxed Ge1−ySny substrate,

respectively. Here again we find the region in the parameter space that corresponds

to a direct band gap semiconductor, achieved by the combined influence of material

composition and tensile strain, Fig. 6.

Figure 6. The minimum band gap (in eV) of strained Ge1−xSnx grown on
relaxed Ge1−ySny alloys.

4.4. Relaxed Si1−xSnx alloys

In this calculation the lattice bowing parameter of the alloy lattice constants of SiSn

alloys was set to zero. Its value has not been experimentally determined, and (although

it may seem a bit surprising in view of a very large difference in atomic radii) the very
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recent LDA calculations [38] predict a negligible deviation of SiSn alloy lattice constant

from the Vegard’s law.
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Figure 7. The minimum energy band gap (in eV) of relaxed Si1−xSnx alloy,
calculated within the VCA and within the mixed atom method.

Within the mixed atom method, the band gaps for the L and X valleys in

relaxed Si1−xSnx alloy were found to be given by EL (x) = 1.837 − 4.860x + 3.124x2

and EX (x) = 1.281 − 1.399x + 0.772x2, respectively, while the band gap for the Γ

valley is EΓ (x) = 3.315 − 7.316x + 3.715x2, where x is the Sn content (Fig. 7). On

the other hand, the VCA calculation gives the band gaps for L, X and Γ valleys

as EL (x) = 1.768 − 2.549x + 0.925x2, EX (x) = 1.244 − 0.691x + 0.100x2, and

EΓ (x) = 3.042 − 5.588x + 2.193x2, respectively. Therefore, the VCA predicts the

indirect-to-direct band gap transition in the relaxed Si1−xSnx when the Sn content

exceeds approximately 0.55, while the (more accurate) mixed atom method does not

show any such transition. This finding may be contrasted to the indication given in

the recent work [38] that the direct-indirect crossover in SiSn occurs at approx 25% Sn.

This was reached using the LDA and (in contrast to our calculation) accounting for the

atomic position relaxation, but in order to overcome the well-known LDA shortcomming

in the bandgap prediction the “scissors” correction was employed, which itself brings in

a degree of uncertainty. It is therefore fair to conclude that the question of the direct

band gap in SiSn alloy is still open.
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5. Conclusion

Using local density functional theory and the self-consistent pseudo-potential plane

wave method we have explored some important properties of GeSiSn alloys, relevant

for optoelectronic applications. In particular, we have studied relaxed Ge1−xSnx alloys,

strained Ge grown on relaxed Ge1−x−ySixSny alloys, strained Ge1−xSnx grown on relaxed

Ge1−ySny alloys and relaxed SnxSi1−x alloys. These were modelled by the mixed atom

method, the accuracy of which proved to be far better than that of the virtual crystal

approximation, using the available experimental data for comparison. Band structure

calculations show that relaxed Ge1−xSnx alloys have an indirect-to-direct band gap cross-

over at a Sn content of ≈0.17, with the bowing parameter equal to 2.49 eV. Furthermore,

calculations for strained Ge on relaxed Ge1−x−ySixSny ternary alloys, and for strained

Ge1−xSnx grown on relaxed Ge1−ySny alloys, give the range of the substrate compositions

and Sn content which lead to direct band gap materials. In contrast, within the mixed-

atom approach the SnxSi1−x alloys never show a finite direct band gap (while the VCA

calculation does predict it).
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