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On the formation of cyclones and anticyclones in a

rotating fluid
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2
Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom.

It is commonly observed that the columnar vortices which dominate the large scales

in homogeneous, rapidly rotating turbulence are predominantly cyclonic. This has

prompted us to ask how this asymmetry arises. To provide a partial answer to this we

look at the process of columnar vortex formation in a rotating fluid, and in particular,

we examine how a localized region of swirl (an eddy) can convert itself into a columnar

structure by inertial wave propagation. We show that, when the Rossby number (Ro) is

small, the vortices evolve into columnar eddies through the radiation of linear inertial

waves. When the Rossby number is large, on the other hand, no such column is

formed. Rather, the eddy bursts radially outward under the action of the centrifugal

force. There is no asymmetry between cyclonic and anticyclonic eddies for these two

regimes. However, cyclones and anticyclones behave differently in the intermediate

1Corresponding author; e-mail: binod@earth.leeds.ac.uk
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regime of Ro ∼ 1. Here we find that the transition from columnar vortex formation

to radial bursting occurs at lower values of Ro for anticyclones, with the transition

for anticyclones occurring at Ro ∼ 0.5, and that for cyclones at Ro ∼ 2. Thus, in

a homogeneous turbulence experiment conducted at, say, Ro = 1, we would expect

to see more cyclones than anticyclones. The reason for this asymmetry at Ro ∼ 1 is

explained.

1 Introduction

The motivation for this work stems from the observation that, typically, many more cyclones

than anticyclones are observed in homogeneous, rapidly rotating turbulence. While we do

not study turbulence here, but rather a more idealized, deterministic problem, it may be

worth reviewing briefly the evidence from these turbulent flows.

It is well-known that the large scales in rapidly rotating turbulence tend to be dominated

by columnar vortices aligned with the rotation axis (see, for example, Hopfinger et al1 and

Davidson et al2). In freely-decaying, homogeneous turbulence these columnar vortices first

appear when the Rossby number, Ro = u/Ωl, falls below ∼ 1, where Ω is the bulk rotation

rate, l a suitably defined integral scale, and u a characteristic velocity of the turbulence

measured in the rotating frame of reference. This growth of columnar vortices is clearly

evident in the experiments of, say, Davidson et al2 and Staplehurst et al3, and the mechanism

by which they form is quasi-linear inertial wave propagation.2,3 That is to say, for Ro << 1,

eddies (i.e. blobs of vorticity) tend to disperse their energy and momentum by linear inertial

wave propagation, and while much of this energy is dispersed randomly, there is a systematic

preference for vortex blobs to radiate energy along the rotation axis, elongating the eddies
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into columnar structures.2 In homogeneous turbulence this process is observed to occur not

only for small Ro, but also for larger Ro, say Ro . 1.3

For Ro ∼ 1, a second, related phenomenon is observed: there are more cyclones than

anticyclones, in the sense that the long-lived, intense regions of ωz are more likely to be

positive than negative. (Here ωz is the vorticity component parallel to Ω, measured in the

rotating frame.) This preference for cyclones is clearly evident in the numerical simulations

of Bartello et al,4 van Bokhoven et al5 and Bourouiba and Bartello,6 and in the laboratory

experiments of Hopfinger et al,1 Morize et al7 and Staplehurst et al3. In Refs. 3–7, for

example, the vorticity skewness, S =<ω3
z > / <ω2

z >3/2, is found to be positive, indicating

that large positive values of ωz are more likely than large negative values.

The reason for the dominance of cyclones is still poorly understood, though several expla-

nations have been offered. For example, Bartello et al4 note that, in an inertial frame of

reference, where the axial vorticity is ωz +2Ω, two-dimensional axisymmetric cyclones of the

form u = uθ(r)êθ generally satisfy Rayleigh’s stability criterion, whereas the corresponding

anticyclones are Rayleigh-unstable when Ro exceeds ∼ 1. In this picture, then, both cy-

clones and anticyclones form, but only the former provide stable, long-lived structures at

Ro ∼ 1. An alternative explanation has been put forward by Gence and Frick.8 They con-

sidered the situation in which fully-developed, isotropic turbulence is suddenly subjected to

bulk rotation at t = 0. (This requires an infinite acceleration). They showed that, at t = 0,

∂

∂t
<ω3

z >= 0.4Ω <ωiωjSij >0 (1)

where Sij is the rate-of-strain tensor. Since < ωiωjSij > is positive in mature, isotropic

turbulence, the vorticity skewness grows from S = 0 at t = 0 to S > 0 for t = 0+. Note that

this second argument is independent of the value of Ro, and depends crucially on the choice
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of the initial condition.

In this paper we offer a third explanation. We suggest that, at Ro ∼ 1, it is not that

both cyclones and anticyclones form, with the anticyclones subsequently going unstable, but

rather that anticyclones are less likely to form in the first place. The argument proceeds by

considering the somewhat idealized problem of the fate of isolated blobs of vorticity (eddies)

sitting in an otherwise quiescent, rotating fluid. For Ro << 1, we know that such blobs

will evolve into columnar vortices via inertial wave propagation,2 and it does not matter

if the average rotation of the blob is cyclonic or anticyclonic. For Ro >> 1, on the other

hand, no such columnar vortex will appear, with the vorticity distribution determined by

nonlinear dynamics, i.e. the advection and stretching of vorticity. In the case of a simple,

localized region of swirling fluid, for example, the vortex blob bursts radially outward under

the action of the centrifugal force, creating a thin annular sheet of vorticity.9 Again, it

does not matter whether the mean rotation of the blob is cyclonic or anticyclonic. The

key point, however, is the following. We shall show that, for localized regions of swirl,

the transition from columnar vortex formation to radial bursting is surprisingly rapid, and

that the nature of this transition depends crucially on whether the vortex is cyclonic or

anticyclonic. For the initial conditions considered here, the transition for cyclones occurs in

the range 1.4 < Ro < 3, with columnar vortex formation below Ro = 1.4 and centrifugal

bursting for Ro & 3. For anticyclonic blobs, however, the transition occurs at lower values

of Ro, around 0.4 < Ro < 1.6, with columnar vortex formation for Ro . 0.4. Thus, if we

consider an initial condition composed of a random sea of vortex blobs with Ro ∼ 1, one

might expect to see more cyclonic columnar vortices emerge than anticyclonic ones. While

the model problem considered here is highly idealized, consisting of localized vortex blobs,

the results seem consistent with the experimental observations. Moreover, as we shall see,
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our findings are not peculiar to the particular initial conditions considered here. Indeed,

we shall show that any axisymmetric vortex blob in which the angular velocity decreases

monotonically with radius behaves in a similar fashion; that is, the transition from columnar

vortex formation to radial bursting occurs at a significantly lower Ro for anticyclones.

We conclude this introduction by noting that there is a substantial body of literature which

addresses the cyclone-anticyclone asymmetry in geophysical flows, such as shallow-water,

quasi-geostrophic turbulence, or rotating-stratified turbulence. (See, for example, Refs. 10–

13). This is an altogether more complex problem, where stratification and surface waves can

play an important role. Here we ignore such complexities and are motivated by the simpler

situation of homogeneous turbulence in the presence of bulk rotation, as discussed in the

laboratory experiments and numerical simulations of Refs. 1–8.

2 Theoretical background

In order to place the subsequent discussion in perspective, it is useful to review briefly what

we know about the evolution of a localized blob of vorticity in a rotating fluid. We shall

consider the cases of Ro << 1 and Ro >> 1, describing how columnar vortices (Taylor

columns) form for low Ro, and how a swirling blob of fluid bursts radially outward to form

an annular vortex sheet when Ro >> 1. This discussion is brief and based on the detailed

analysis of Refs. 2 and 9. We shall also touch briefly on the analogy between swirl and

buoyancy, as this will prove useful in the interpretation of our numerical results in Sec. 4

and 5. For simplicity, we shall ignore viscosity throughout.
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2.1 The formation of columnar vortices at low Rossby number

Consider the initial value problem consisting of a localized blob of vorticity sitting in an

otherwise quiescent, rapidly rotating fluid. Let the bulk rotation rate be Ω = Ωêz, the

characteristic scale of the blob be δ and a typical velocity scale be u. If Ro = u/Ωδ << 1

then the inertial force u·∇u is much weaker than the Coriolis force 2u×Ω, and the governing

equation of motion can be linearized to give

∂u

∂t
= 2u × Ω −∇(p/ρ). (2)

The subsequent motion then consists of a spectrum of linear inertial waves whose frequency,

$, and group velocity, cg, are dictated by the initial distribution of wave vectors k, according

to

$ = ±2 (Ω · k)/|k|; (3)

cg = ±2k × (Ω × k)/|k|3. (4)

For an arbitrarily shaped blob of vorticity we might expect the corresponding spectrum of

wave vectors to be equally random, and so (4) suggests that energy and vorticity will disperse

in all directions with a typical speed |cg| ∼ Ωδ. However, Davidson et al2 have shown that

this radiation of energy is subject to a powerful constraint, which systematically favours

dispersion along the rotation axis. In particular, it may be shown that the axial components

of the linear and angular impulse of the initial vortex blob (measured in the rotating frame)

are confined for all time to the cylindrical region which circumscribes the vortex at t = 0.

Thus linear and angular momentum can disperse along the rotation axis only. It is clear

that this constraint systematically biases the dispersion of energy. For example, as energy

radiates to fill a volume of size ∼ (cgt)
3 ∼ (Ωtδ)3, we could expect the velocity outside
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the tangent cylinder to fall as |u| ∼ |u0|(Ωt)−3/2. However, inside the tangent cylinder the

angular momentum is confined to a cylindrical region of size ∼ cgtδ
2 ∼ Ωtδ3, and so the

characteristic velocity inside the cylinder falls more slowly, as |u| ∼ |u0|(Ωt)−1. (See Ref.

2.) These predictions are readily confirmed by, say, the method of stationary phase.

A simple, almost trivial, example illustrates the point. Suppose our initial condition consists

of

u = Λr exp
[

−(r2 + z2)/δ2
]

êθ (5)

in cylindrical polar coordinates, where Λ is a measure of the initial vortex strength. Then

(2) yields the axisymmetric wave equation

∂2

∂t2
∇2

∗
Γ + (2Ω)2

∂2Γ

∂z2
, (6)

where Γ = ruθ and ∇2
∗

is the Laplacian-like operator

∇2

∗
Γ = r

∂

∂r

1

r

∂Γ

∂r
+

∂2Γ

∂z2
. (7)

This may be readily solved using a Hankel-cosine transform, which yields,2

uθ ≈ Λδ

∫

∞

0

κ2e−κ2

J1(2κr/δ)
[

exp
[

−
(z

δ
− Ωt

κ

)2]

+ exp
[

−
(z

δ
+

Ωt

κ

)2]
]

dκ (8)

where J1 is the usual Bessel function, κ = krδ/2 and kr is the radial wavenumber. Evi-

dently, the kinetic energy disperses along the z-axis, forming two columnar structures (Tay-

lor columns) whose centres are located at z = ±δΩt and whose lengths grow as lz ∼ δΩt.

This is illustrated in Figure 1. Note that the fate of the vortex is independent of whether it is

cyclonic or anticyclonic. The precise form of (8) for Ωt >> 1 may be found by insisting that

the arguments in the exponentials remain of order unity as Ωt → ∞. At location z = δΩt,

for example, we have

uθ(r, z = δΩt) ≈ Λδ(π1/2/e)J1(2r/δ)(Ωt)−1, Ωt → ∞, (9)
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which gives uθ ∼ Λδ(Ωt)−1 within the tangent cylinder, r < δ, and uθ ∼ Λδ(Ωt)−3/2(r/z)−1/2

for r >> δ, in line with the discussion above.

The experiments described in Refs. 2 and 3 show that this kind of linear inertial wave

propagation lies behind the columnar structures observed in rotating turbulence when Ro ∼

1.

2.2 The radial bursting of a Gaussian vortex for Ro >> 1

Let us now consider the opposite extreme, in which the Rossby number is large. For simplicity

we consider the same initial condition as before, i.e. (5). This problem is discussed in detail

in Ref. 9 and we merely summarise the key results. Since we are considering the limit

of Ro → ∞, or Ω → 0, our frame of reference reverts to an inertial frame. Our inviscid

Gaussian vortex now evolves according to,

DΓ

Dt
= 0, (10)

D

Dt
(
ωθ

r
) =

1

r4

∂Γ2

∂z
(11)

where Γ = ruθ and ωθ is the azimuthal vorticity. At t = 0, the poloidal velocity, up =

(ur, 0, uz), is zero by virtue of our choice of initial condition, and so ωθ = ∇ × up is also

zero. However, it is clear from (11) that ωθ is non-zero for t > 0 and the source of this

vorticity is evident: the right-hand side of (11) has its roots in ∇× (uθ × ωp), and so ωθ is

produced whenever differential rotation (axial gradients in Γ) spiral up the poloidal vortex

lines, ωp = ∇× [(Γ/r)êθ]. This produces a skew-symmetric distribution in ωθ, with ωθ < 0

for z > 0 and ωθ > 0 for z < 0.

The subsequent development of the vortex is easy to predict. The poloidal velocity associated
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with ωθ sweeps the Γ-lines radially outward in accordance with (10), and as shown in Figure

2. Integrating (11) yields

d

dt

∫

z<0

ωθ

r
dV = 2π

∫

∞

0

Γ2
0

r3
dr, (12)

where Γ0(r) = Γ(r, z = 0) is the angular momentum density on the symmetry plane. Thus,

the integral of |ωθ/r| increases monotonically as the Γ-lines get swept radially outward.

Eventually the Γ-lines form a thin axisymmetric sheet as shown in Figure 2, and since Γ is

the Stokes stream function for ωp, this is a poloidal vortex sheet. The mushroom-like shape

of this vortex sheet is reminiscent of a thermal plume and indeed there are close analogies

to buoyancy, as discussed in Sec. 2.3. In Ref. 9, it is shown that, at large times, the vortex

sheet propagates radially outward with constant velocity while thinning exponentially fast.

Evidently, the fate of our Gaussian vortex is radically different depending on whether Ro <<

1 or Ro >> 1. The only thing the two limits have in common is that it does not matter

whether the initial vortex is cyclonic or anticyclonic. The main purpose of this paper is to

explore the intermediate regime of Ro ∼ 1, and in particular the transition from columnar

vortex formation to radial bursting. Our primary finding is that the transition occurs over

a surprisingly small range of Ro, and that the nature of the transition depends crucially

on whether the initial vortex is cyclonic or anticyclonic. Before examining the numerical

evidence, however, it is worth reviewing one last topic: the analogy between swirl and

buoyancy. This will help in the interpretation of our results.

2.3 The analogy between swirl and buoyancy

Consider an inviscid, axisymmetric flow evolving in an infinite domain which may or may

not have background rotation. We shall find it convenient to temporarily adopt an inertial
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frame of reference, so that any bulk rotation is absorbed into u. In such a case, axisymmetric

flows with swirl have a well-known analogy to flows driven by buoyancy. Consider (10) and

(11) rewritten as

Dup

Dt
= −∇(p/ρ) +

Γ2

r3
êr, ∇.up = 0, (13)

DΓ2

Dt
= 0. (14)

Compare these with the governing equations for a diffusionless, Boussinesq fluid with density

perturbation ρ′ and mean density ρ:

Du

Dt
= −∇(p/ρ) + Tg, ∇.u = 0, (15)

DT

Dt
= 0, (16)

where T = ρ′/ρ and g is the gravitational acceleration. Equating Γ2 to T and r−3êr to

g provides an exact analogy. Thus, we could interpret (13) and (14) as a poloidal flow

driven by density perturbations, Γ2, in a fictitious radial gravity field, g = r−3êr. In doing

so, we have reduced the problem to that of a strictly poloidal flow evolving in the (r, z)

plane. In this analogy, ‘heavy’ fluid corresponds to large Γ2, while ‘light’ fluid corresponds

to small values of Γ2, and potential energy is released whenever heavy fluid moves radially

outward, displacing lighter fluid. Indeed, it is readily confirmed that the potential energy

density corresponding to the materially conserved density perturbation, T = Γ2, moving in

the fictitious radial gravity field, g = r−3êr, is simply 1

2
u2

θ. Thus the conservation of kinetic

energy

E =
1

2

∫

u2

θdV +
1

2

∫

u2

pdV (17)

in the original problem is now interpreted as the conservation of potential energy, 1

2

∫

u2
θdV ,

plus kinetic energy, 1

2

∫

u2
pdV . The radial bursting of the Gaussian eddy in Sec. 2.2 is now
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easy to interpret. We have a region of heavy fluid immersed in lighter fluid, and this wants

to move radially outward under the action of the gravitational field g = r−3êr. In doing so,

it releases potential energy, increasing the kinetic energy of the poloidal flow.

This analogy also provides a simple interpretation of the linear axisymmetric inertial waves

discussed in Sec. 2.1. In an inertial frame the background rotation, Γ = Ωr2, represents a

radially stratified density field and the inertial waves may be interpreted as small-amplitude

internal gravity waves propagating in the fictitious radial gravity field. Indeed, Rayleigh

derived his famous stability criterion for the steady flow u = uθ(r)êθ using precisely this

line of reasoning. That is to say, he converted the problem of the stability of the non-static

equilibrium, u = uθ(r)êθ, to the problem of the static equilibrium, up = 0; Γ2 = Γ2(r),

observing that stable configurations are the ones in which light fluid lies closer to the axis

than heavy fluid, i.e. ∂Γ2/∂r > 0, while unstable configurations correspond to heavy fluid

immersed in an annulus of lighter fluid, ∂Γ2/∂r < 0. In short, Rayleigh’s stability criterion

represents the trivial statement that the flow is stable if and only if the radial stratification

Γ2(r) is stable under the action of the radial gravity field g = r−3êr.

It might be noted that the trick employed by Rayleigh, of converting to the analogous

buoyancy problem, is not as ad hoc as it might seem. It is a particular example of a

more general procedure in Hamiltonian mechanics, called Routh’s procedure, in which the

symmetries of a problem (the ‘ignorable coordinates’ in language of Hamiltonian mechanics)

can be used to eliminate the corresponding degrees of freedom.14,15

We shall find the analogy to buoyancy particularly useful in Sec. 4 and 5 when we investigate

the evolution of a localized blob of vorticity immersed in a rotating fluid. The advantage of

this analogy is that it provides a particularly simple interpretation of the numerical findings,

though its disadvantage is that it requires us to revert to an inertial frame of reference, which
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is not the natural frame when discussing localized disturbances in a rotating fluid. One of

our main findings is that initial conditions which, in an inertial frame, contain regions in

which ∂Γ2/∂r < 0 (heavy fluid immersed in light fluid) tend to burst radially outward, rather

than form columnar vortices. On the other hand, initial conditions in which ∂Γ2/∂r > 0

invariably form columnar vortices. Note that this is not a trivial consequence of Rayleigh’s

stability theorem, as the initial conditions are not steady and so it is meaningless to talk

about whether or not they are linearly stable. (One can only talk about the stability of steady

solutions of the governing equations.) This is why we suggest that, in rotating turbulence,

the prevalence of cyclones is not because columnar anticyclones form and then go Rayleigh-

unstable, but rather that they are less likely to form in the first place. Nevertheless, there

is clearly a strong physical link between our observation of the importance of ∂Γ2/∂r and

Rayleigh’s stability criterion.

3 An outline of the computations

3.1 Problem specification and numerical strategy

We compute the initial value problem of a localized vortex evolving in a rotating fluid. We

use a non-inertial frame of reference rotating with the fluid, though on occasions it will prove

convenient to revert to an inertial frame. To distinguish between the two, we use (̂) to denote

a quantity measured in the inertial frame. Thus, for example,

Γ̂ = Ωr2 + Γ. (18)
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The initial condition, in the rotating frame of reference, is axisymmetric and takes the form

u = Λr
(r2 + z2)1/2

δ
exp

[

−(r2 + z2)/δ2
]

êθ. (19)

The flow is nominally inviscid, though we incorporate a small but finite viscosity in order

to ensure numerical stability. The initial Reynolds number, based on δ and the maximum

velocity at t = 0, is Re = 5000. For large values of Ro steep radial gradients in Γ develop, as

discussed in Sec. 2.2. In order to ensure that there is adequate resolution in the simulations

we track the maximum value of Γ̂, which should be conserved in an inviscid flow. If Γ̂ was

found to drop by more than 2.5% of its initial value, the simulation was stopped. Note,

however, that tests with increased resolution showed that much of the fall in Γ̂ was due

viscous diffusion, rather than due to a loss of resolution.

The numerical scheme is described in Ref. 9 and uses spherical polar coordinates16 expanded

in terms of spherical harmonics, is spectral in the azimuthal angle and colatitude, and

employs finite differences in the radial coordinate. The initial computations for anticyclonic

vortices at Ro = 0.1, 1.0 and 2.0 were fully three-dimensional and these showed that the flow

remains axisymmetric. Moreover, when a 2% non-axisymmetric perturbation (of azimuthal

wavenumber m = 4) was introduced into the Ro = 1 initial condition, the flow remained

close to axisymmetric, with no leakage of energy into the non-axisymmetric modes. In

short, the trajectory of the flow is stable to small but finite non-axisymmetric disturbances.

Consequently, subsequent computations took advantage of assumed axial symmetry, with

the number of radial nodes set equal to 5000. The flow domain is spherical with a radius

of R set equal to 10δ. This allowed the vortex to undergo significant evolution without the

effects of the confinement becoming important. No-slip boundary conditions were used in

all calculations. Both cyclonic (Λ > 0) and anticyclonic (Λ < 0) initial conditions were

investigated, with Ro ranging from 0.01 up to 5. It is convenient to define Ro as |umax|/2Ωδ,
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where umax is the maximum velocity at t = 0. For initial condition (19) this gives,

Ro = |Λ|/2eΩ. (20)

3.2 The topology of the initial condition

Since DΓ̂/Dt = 0 in an inviscid fluid, the topology of the Γ̂-lines must be conserved. Thus,

whatever topology is built in at t = 0 is preserved throughout the simulation and this imposes

constraints on the way in which the flow can evolve. The nature and consequences of these

topological constraints change with Ro, and so, before discussing the simulations, it is useful

to look at how the shape of the initial Γ̂-lines varies with Ro. From (19) and (20) we have

Γ̂ = Ωr2 ± (2eRo)Ωr2
(r2 + z2)1/2

δ
exp

[

−(r2 + z2)/δ2
]

. (21)

Consider first cyclonic initial conditions, corresponding to the plus sign in (21). Here it is

readily confirmed that there are two regimes. For Ro < 1.388, the Γ̂-lines are topologically

equivalent to the unperturbed case, with all the Γ̂-lines unclosed. For Ro > 1.388, however,

an isolated region of closed Γ̂-lines appears, as shown in Figure 3. There is a local maximum

in Γ̂ at the centre of the island, and a saddle point to the right. The width of the island

can be shown to grow approximately as ∼ 0.61δ ln(Ro/1.388). The main significance of the

appearance of this region of closed Γ̂-lines is that, to the right of the local maximum in Γ̂,

there is a region in which ∂Γ̂2/∂r < 0. We might expect, therefore, that Ro = 1.388 heralds

the beginning of the transition from columnar vortex formation to the radial bursting of the

vortex.

The case of anticyclonic initial conditions is slightly more complicated. Here there are

three regimes. For Ro < 0.377 the Γ̂-lines are all unclosed, topologically equivalent to the
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unperturbed flow. However, for 0.377 < Ro < 0.429 an island of closed Γ̂-lines appears,

similar to that of the cyclonic case. There is a local maximum in Γ̂ at the centre of the

island, and a saddle point to the right. The width of the island grows faster than for

cyclones, approximately as ∼ 1.9δ ln(Ro/0.377). As Ro increases, the value of the Γ̂-line

which encircles the island decreases until, at Ro = 0.429, the bounding Γ̂-line reaches a

value of zero and connects to the axis. We then enter a new regime in which we have two

regions of closed Γ̂-lines, both of which are topologically connected to the axis of symmetry.

The inner one encloses a region of positive Γ̂ and has a local maximum in Γ̂ near its centre.

Surrounding this there is region of closed Γ̂-lines in which Γ̂ is negative. This encloses a

local minimum in Γ̂. In both regions, we find ∂Γ̂2/∂r < 0 (heavy fluid immersed in lighter

fluid) to the right of the local extremum in Γ̂. The various regimes are shown in Figure 4.

Note that, as Ro increases, the inner region of closed Γ̂-lines shrinks at the expense of the

outer region of negative Γ̂, and that by Ro = 0.8, the former has all but disappeared. So,

for Ro > 0.8, the dominant region of potentially unstable fluid (∂Γ̂2/∂r < 0) lies between

the minimum in Γ̂ and the bounding curve Γ̂ = 0.

Since the topology of the Γ̂-lines is preserved for all time, we might expect columnar anticy-

clones to emerge for Ro < 0.377, with a gradual transition to radial bursting as Ro increases.

Integrating

D

Dt

( ω̂θ

r

)

=
∂

∂z

( Γ̂2

r4

)

= ∇ ·
[

(Γ̂2/r4)êz

]

(22)

we find that, for anticyclonic initial conditions,

d

dt

∫

z<0

ω̂θ

r
dV = 2π

∫

∞

0

[(

Γ̂2

0 − (Ωr2)2
)

/r3
]

dr =
e2

2
Ω2Ro δ2

[

Ro − 2
√

π

e

]

, (23)

which is reminiscent of (12) for the non-rotating case. Thus the mean azimuthal vorticity

changes sign at Ro = 1.30, and we might anticipate that this heralds a change in behaviour.
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In particular, we would expect the radial velocity on the symmetry plane to change from

inward to outward, marking the beginning of a tendency for the vortex to burst radially

outward. We shall see that this is indeed the case.

4 The behaviour of anticyclonic vortices

We now present the results of the numerical simulations, starting with anticyclonic initial

conditions. Noting that topological changes in the initial distribution of Γ̂ occur at Ro =

0.377 and Ro = 0.429, and that there is a change in the sign of
∫

z<0
(ωθ/r)dV at Ro = 1.30,

we might expect to pass through several regimes as we move from small to large Ro. In

fact, we shall find it convenient to classify the results, at least approximately, in terms of

five ranges of Ro:

1. Ro < 0.38; here quasi-linear inertial wave propagation leads to a pair of columnar

anticyclones, reminiscent of the behaviour at Ro → 0;

2. 0.38 < Ro < 0.43; in this case energy spreads predominantly along the rotation axis by

inertial wave propagation, but the resulting columnar vortex is fundamentally different

in structure to that at lower Ro and this is a result of the topological change which

occurs at Ro = 0.377;

3. 0.43 < Ro < 0.8; the vortex still elongates somewhat, but there is little wave-like

motion, merely a gradual non-oscillatory slide towards an elongated state;

4. 0.8 < Ro < 1.6; there is little evidence of wave motion, but a direct competition

develops between the confined island of ‘heavy’ fluid, which pushes radially outward,

and the surrounding ‘light’ fluid which tends to gravitate towards the axis;
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5. Ro > 1.6; the behaviour is dominated by the island of heavy fluid located near the axis

which bursts radially outward, reminiscent of the behaviour for Ro → ∞, as discussed

in Sec. 2.2.

It is remarkable that the transition from columnar vortex formation and radial bursting

occurs for such a narrow range of Ro, from 0.38 to 1.6.

Let us start with the range Ro < 0.38. The evolution of the poloidal kinetic energy, Ep,

normalized by the initial kinetic energy in the rotating frame, E0, is shown in Figure 5 for

Ro = 0.01 − 0.7, along with contour plots of the azimuthal kinetic energy, 1

2
u2

θ, for the case

Ro = 0.08. It is clear that, as in the low-Ro limit, the initial vortex blob splits to form

a pair of columnar vortices. In addition, there is some weak, off-axis radiation of energy,

which is also part of the low-Ro solution. A similar behaviour is seen for all Ro < 0.37.

Moreover, for Ro < 0.35, the poloidal and azimuthal kinetic energies evolve to a state close

to equipartition, Ep/E0 ∼ 0.5, which is indicative of wave motion. (We shall discuss the

behaviour of Ep/E0 for Ro = 0.4, 0.5 and 0.7 shortly.)

Let us now turn to the range 0.38 < Ro < 0.43. The contour plots of absolute angular

momentum, Γ̂ are shown in Figure 6 for Ro = 0.4 at times Ωt = 0.375, 2.5 and 3.25. It

is clear that, as for the regime Ro < 0.38, the vortex elongates along the rotation axis.

However, the structure of the columnar vortex is fundamentally different. In particular, the

topology of the Γ̂-lines is conserved, so that the existence of an isolated island of closed

Γ̂-lines near the origin restricts the degree to which the angular momentum can disperse.

One consequence of this is a residual region of Γ in the vicinity of z = 0, which is clearly

visible in Figure 6, yet absent in Figure 5. This restricted dispersion of angular momentum

is reflected in the energy curves Ep/E0 shown in Figure 5(a). Here the curve for Ro = 0.4
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drops below equipartition, indicating that the angular momentum trapped near the origin

cannot contribute to wave motion.

Consider now the regime 0.43 < Ro < 0.8. This is characterised by the emergence of two

regions of closed Γ̂-lines, an inner area of positive Γ̂ and an outer region of negative Γ̂. The

inner region contains a local maximum in Γ̂ and the outer area a local minimum in Γ̂. Thus

both regions exhibit maxima in Γ̂2. As Ro increases the inner region shrinks at the expense

of the outer one, and by Ro = 0.8 the former has all but disappeared (see Figure 4). The flow

corresponding to Ro = 0.7 is shown in Figure 7 where Figure 7(a) illustrates the contours of

Γ̂, Figure 7(b) the contours of 1

2
u2

θ and Figure 7(c) the variation of ∂Γ̂/∂r on the symmetry

plane. Note that the main region of ‘heavy’ fluid (large Γ̂2) surrounds the local minimum in

Γ̂. It is evident that the dominant motion is a gradual slide towards an elongated state as

‘light’ fluid pushes up towards the axis, with the local minimum in Γ̂ moving inward and the

saddle points on the z-axis moving away from z = 0. Clearly the region of heavy fluid is not

yet strong enough to burst radially outward. There is some evidence of dispersion of energy

by inertial waves in Figure 7(b), but it is weaker than that shown in Figures 5 and 6. The

variations of Ep/E0 versus Ωt for Ro = 0.5 and 0.7 are shown in Figure 5 and it is evident

that progressively less energy is transferred to Ep as Ro increases, reflecting the diminished

role of inertial waves in redistributing energy.

Turning now to the regime 0.8 < Ro < 1.6, the behaviour becomes more complicated. There

is now a direct competition between the heavy fluid, which lies between the local minimum

in Γ̂ and the bounding curve Γ̂ = 0, and the lighter fluid surrounding it. The heavy fluid

wants to burst radially outward while the light fluid tends to push up towards the axis.

These two effects are finely balanced, as indicated by the change in the sign of
∫

z<0
(ωθ/r)dV

at Ro = 1.3. There is little evidence of wave propagation in this regime. Contours of Γ̂
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show that the local minimum in Γ̂ (i.e. heavy fluid) now moves radially outward, and that

a radial front starts to form, which is the first sign of bursting-like behaviour. The saddle

points on the axis, on the other hand, continue to move away from z = 0 as light fluid sweeps

up towards the axis. This is illustrated in Figure 8(a) which shows the contours of Γ̂ for

Ro = 1.4.

The formation of the front is evident from the plots of (∂Γ̂/∂r)z=0 shown in Figure 8(b)

for Ro = 1, 1.4 and 1.8. It is convenient to define the centre of the front rf as the local

minimum in Γ̂, i.e. (∂Γ̂/∂r)z=0 = 0, and the characteristic thickness of the front, δf , as the

distance between the minimum and maximum values of (∂Γ̂/∂r)z=0. Figure 9(a) shows rf ,

normalized by its initial value, rf0, as a function of Ωt for the range 0.7 < Ro < 2.0, while

Figure 9(b) shows the front thickness, δf , as a function of t/τ , where τ is the initial turn-over

time of the eddy, δ/umax,0. Evidently, the location of Γ̂min moves inward for Ro = 0.7, but

outward for Ro ≥ 1, as suggested above. Moreover, the continual thinning of the front for

Ro ≥ 1 is clearly evident in Figure 9(b). Note, however, that for Ro < 1.6 the front thins

by (∂Γ̂/∂r)min moving outward and (∂Γ̂/∂r)max moving inward, whereas for Ro > 1.6, the

front thins with both (∂Γ̂/∂r)min and (∂Γ̂/∂r)max moving outward, which is characteristic

of a bursting vortex in the absence of rotation.10

Finally, we consider the regime Ro > 1.6. This is characterised by an island of heavy fluid

bursting radially outward, reminiscent of the case of Ro → ∞ discussed in Sec. 2.2. In

this regime the location of Γ̂min moves outward while the saddle points on the axis converge

towards z = 0. The case of Ro = 2.0 is illustrated in Figure 10, where the contours of Γ̂ are

shown in Figure 10(a) and (∂Γ̂/∂r)z=0 is shown in Figure 10(b). Note from Figure 9(b) that

the front thins exponentially fast for Ro > 1.4, which is the hallmark of the radial bursting

of a vortex in the absence of background rotation.10
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In summary, then, for Ro < 0.4, an anticyclonic eddy forms a pair of columnar vortices

via inertial wave propagation, essentially in the same manner as the linear, low-Ro regime.

Conversely, for Ro > 1.6, the same vortex bursts radially outward under the action of the

centrifugal force, with the background rotation playing almost no role. The intermediate

behaviour is quite intricate, but perhaps this is of less interest. The more important point

is that there is rapid transition from one regime to the other, at around Ro ∼ 1.

5 The behaviour of cyclonic vortices

Let us now consider the case of cyclonic vortices. We expect the transition from columnar

vortex formation to radial bursting to be more straightforward here, as there is only one

topological change in the initial Γ̂-field, which occurs at Ro = 1.39. For Ro < 1.39, the Γ̂-

lines are unclosed and topologically equivalent to the unperturbed case, so we might expect

columnar vortex formation via quasi-linear inertial wave propagation. For Ro > 1.39, an

island of closed Γ̂-lines forms, enclosing a local maximum in Γ̂, which tends to drive the fluid

radially outward. We shall see that quasi-linear columnar vortex formation does indeed occur

for Ro < 1.39, while radial bursting is the dominant behaviour for Ro > 3. For intermediate

values of Ro there is evidence of both types of behaviour.

Figure 11 shows the the azimuthal energy density, 1

2
u2

θ, for the cases Ro = 1, 2, 3 and 4 at

Ωt = 2.5, 1.0, 0.8 and 0.5 respectively. It is clear that the dominant behaviour for Ro = 1

is axial wave propagation, while radial bursting dominates for Ro = 3, 4. The intermediate

case of Ro = 2 exhibits mixed behaviour, with some dispersion of energy by waves, as well

as elements of radial bursting. Figure 12 shows the evolution of (∂Γ̂/∂r)z=0 for the same

four values of Ro. The formation of the radial front is evident for Ro = 3 and 4, there is no
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front for Ro = 1, and the behaviour at Ro = 2 is more complex, with some evidence of a

radial front forming. Finally, Figure 13 shows δf versus t/τ , where τ is the initial turn-over

time. It is clear that the front thins exponentially fast for Ro > 3, which is characteristic of

the radial bursting of a vortex in the absence of background rotation. For Ro = 2, the front

initially thins exponentially fast, but there is a change in behaviour at around t/τ = 3.4.

6 Discussion

The precise details of the transition from columnar vortex formation to centrifugal bursting

is, perhaps, not so important, as it depends partly on the particular initial conditions under

consideration. The more important observation is that ‘potentially unstable’ regions (i.e.

heavy fluid lying within light fluid) develops at lower values of Ro for anticyclones than

for cyclones. It is these regions, where ∂Γ̂2/∂r < 0, which ultimately drives the centrifugal

bursting of a vortex. This is evident from a comparison of Figures 3 and 4: anticyclonic

vortices very quickly develop a substantial region of negative Γ̂, which then feeds the radial

bursting of the vortex. Cyclonic initial conditions, on the other hand, require significantly

higher values of Ro before small islands of closed Γ̂-lines appear. Moreover, this phenomenon

is not peculiar to the particular initial condition chosen here. It is readily confirmed that

almost any simple localized region of vorticity exhibits the same asymmetry between cyclones

and anticyclones. The reason is as follows: ∂Γ̂2/∂r = 2Γ̂r(2Ω + ωz), and regions of negative

∂Γ̂2/∂r first appear when (2Ω + ωz) = 0. For an anticyclone, this occurs near the axis of

symmetry where ωz is negative and |ωz| is relatively intense [Figure 14(b)]. For cyclones, on

the other hand, this occurs at the outer edge of the vortex where |ωz| is less intense as the

vortex lines are more spread out [Figure 14(a)]. Thus (2Ω + ωz) = 0 occurs at significantly
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lower values of Ro for anticyclones. Note that this argument holds for any axisymmetric

vortex blob in which the angular velocity, uθ/r, monotonically falls with r. In all such

cases we expect to see an asymmetry between cyclones and anticyclones, with anticyclones

exhibiting a lower transitional value of Ro.

This is illustrated in Figure 15, where the Γ̂-lines for cyclonic and anticyclonic vortices are

shown corresponding to the different initial condition

u = Λr exp
[

−(r2 + z2)/δ2
]

êθ. (24)

As for (19), regions of negative ∂Γ̂2/∂r develop rapidly for anticyclonic initial conditions,

but less rapidly for cyclones. In this case, ∂Γ̂2/∂r first becomes negative at Ro = 0.214

for anticyclones, but at Ro = 1.58 for cyclones. The ratio of the two values of Ro is 7.39.

Thus we expect a substantial difference in the value of Ro at which the transition from

columnar vortex formation to radial bursting occurs. It is readily confirmed that a similar

picture emerges if, instead of a Gaussian fall-off in r, we choose, say, uθ/r = sech2(r/δ) on

the symmetry plane z = 0. The transitional values of Ro are different, but the qualitative

picture remains unchanged.

Let us now return to the sort of experiment discussed in Refs. 2 and 3 where eddies (blobs of

vorticity) are created by dragging a grid through a tank of water at Ro > 1. With time the

Rossby number falls (kinetic energy decays) and when the Rossby number falls to ∼ 1, it is

observed that many of the eddies start to elongate along the rotation axis, forming columnar

vortices. Measurements of their rate of growth confirm that the mechanism of elongation is

essentially quasi-linear inertial wave propagation, and it is usually observed that the bulk of

the resulting columnar vortices are cyclonic. These observations are entirely consistent with

the picture suggested above; as Ro falls it is the cyclonic eddies which first become prone to
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columnar vortex formation. Anticyclonic vortices, on the other hand, require a substantially

lower value of Ro in order to produce columnar structures. While this does not prove that

the mechanism described here is the mechanism responsible for the dominance of cyclones,

it is certainly consistent with the experimental observations. Moreover, our explanation is

more in line with the experimental data than that of Gence and Frick,8 which relies on a

very special initial condition.

7 Conclusion

We have looked at the process of columnar vortex formation in a rotating fluid and shown

that, when Ro ∼ 1, cyclonic eddies are more likely to form columnar structures than an-

ticyclonic eddies. Although the numerical simulations were for a particular class of initial

conditions, we have shown that the primary conclusions are likely to hold for any simple,

axisymmetric vortex. The relationship between our findings and the observation that cy-

clones predominate in rapidly rotating turbulence is uncertain, since our model problem

is somewhat idealized. Nevertheless, our findings are consistent with the experiments on

homogeneous turbulence.

Binod Sreenivasan’s work is sponsored by a Research Fellowship from the Leverhulme Trust,

UK.
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lz ∼ δΩt

Figure 1: An initial blob of vorticity converts itself into a pair of columnar vortices via

inertial wave propagation (Ro << 1).
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Figure 2: The centrifugal bursting of a swirling vortex (Ro >> 1). (i) the initial condition;

(ii) the associated poloidal vorticity; (iii) azimuthal vorticity swept out from the poloidal

vorticity by differential rotation; (iv) the poloidal velocity associated with the azimuthal

vorticity sweeps out the angular momentum, Γ; and (v) the eventual state.
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Ro = 1.0 Ro = 1.5 Ro = 2.0

Figure 3: Lines of absolute angular momentum, Γ̂, at t = 0 for cyclonic initial conditions.

The contours are shown in the domain R/4.
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Ro = 0.33 Ro = 0.39 Ro = 0.43 Ro = 0.45 Ro = 0.50

Ro = 0.60 Ro = 0.80 Ro = 1.0 Ro = 1.2

Figure 4: Lines of absolute angular momentum, Γ̂, at t = 0 for anticyclonic initial conditions.

Contours for the cases Ro = 0.33 − 0.50 (top row) are restricted to the domain R/10 and

cases Ro = 0.60 − 1.2 (bottom row) are shown in the domain R/6. Light contours show

positive values and dark contours show negative values.
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Figure 5: Evolution of an anticyclone. (a) Normalized poloidal kinetic energy, Ep/E0, versus

Ωt for Ro = 0.01, 0.08, 0.2 and 0.35 (solid lines from top to bottom) and for Ro = 0.4, 0.5

and 0.7 (dashed-dotted lines from top to bottom). (b) Shaded contours of azimuthal kinetic

energy, 1

2
u2

θ, for Ro = 0.08 at Ωt = 1.25, 2.5 and 3.25, shown for the restricted domain 2R/3.
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Ω t = 2.50Ω Ω t = 3.25t = 0.375

Figure 6: Flow corresponding to Ro = 0.4 (anticyclonic initial condition). Contours of

absolute angular momentum, Γ̂ at different times, shown for the restricted domain R/10.
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Figure 7: Flow for Ro = 0.7 (anticyclonic initial condition). (a) Contours of Γ̂ for different

times, shown for the restricted domain R/5. Light contours show positive values and dark

contours show negative values. (b) Contours of azimuthal kinetic energy, 1

2
u2

θ, at Ωt = 3.0,

shown for the restricted domain R/3. (c) ∂Γ̂/∂r on the symmetry plane versus r/δ for Ωt = 0

(thick solid line), 1.2 (dashed line), 2.4 (dashed-dotted line) and 3.3 (thin solid line).
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Figure 8: (a) Contours of the absolute angular momentum, Γ̂, for anticyclonic initial con-

ditions and Ro = 1.4, shown for different times in the restricted domain R/5. (b) ∂Γ̂/∂r

on the symmetry plane for anticyclonic initial conditions. (i) Ro = 1 and Ωt = 0, 1.25, 2.5

(thick solid line, dashed line, thin solid line); (ii) Ro = 1.4 and Ωt = 0, 1.2, 1.8 (thick solid,

dashed, thin solid); (iii) Ro = 1.8 and Ωt = 0, 1.0, 1.5 (thick solid, dashed, thin solid).
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Figure 9: Front position, rf , and front thickness, δf , for anticyclonic initial conditions. (a)

rf/rf0 versus Ωt for different Rossby numbers shown. (b) ln(δf ) versus t/τ . The curves

from top to bottom correspond to the cases Ro = 0.7, 1.0 (both in dashed lines), Ro =

1.4, 1.6, 1.8, 2.0, 3.0 (in solid lines).
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Figure 10: Flow for anticyclonic initial conditions and Ro = 2.0. (a) Contours of Γ̂ at

Ωt = 0.5, 0.875 and 1.25, shown for the restricted domain R/3. (b) ∂Γ̂/∂r on the symmetry

plane at Ωt = 0.0, 0.875 and 1.25 (thick solid line, dashed line, thin solid line).
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Ro = 1.0 Ro = 2.0 Ro = 3.0 Ro = 4.0

Figure 11: Azimuthal energy density for cyclonic initial conditions shown for the restricted

domain R/2. Ro = 1.0, Ωt = 2.5; Ro = 2.0, Ωt = 1.0; Ro = 3.0, Ωt = 0.8; Ro = 4.0, Ωt =

0.5.
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Figure 12: The evolution of ∂Γ̂/∂r on the symmetry plane z = 0 for cyclonic initial condi-

tions: (a) Ro = 1.0, for Ωt = 0 (thick solid line), 0.5 (dashed line) and 0.75 (thin solid line);

(b) Ro = 2.0, for Ωt = 0 (thick solid line), 1.0 (dashed), 1.5 (dashed-dotted) and 2.0 (thin

solid); (c) Ro = 3.0, for Ωt = 0 (thick solid), 0.5 (dashed) and 0.8 (thin solid); (d) Ro = 4.0,

for Ωt = 0 (thick solid), 0.375 (dashed) and 0.5 (thin solid).
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Figure 13: ln(δf ) versus t/τ for Ro = 2 (dashed), Ro = 3 (dashed-dotted), Ro = 4, 5 (solid

lines), for cyclonic initial conditions.

(a) (b)

Figure 14: Poloidal vortex lines, ωp, at t = 0, for (a) a cyclonic vortex; (b) an anticyclonic

vortex.
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Ro = 0.21 Ro = 0.23 Ro = 0.25 Ro = 0.27
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(b)

Figure 15: (a) Contours of absolute angular momentum, Γ̂, at t = 0 for a cyclonic vortex

corresponding to (24). The plots are restricted to the domain R/4. (b) Contours of Γ̂ at

t = 0 for an anticyclonic vortex corresponding to (24). The plots are restricted to the domain

R/15. Light contours show positive values and dark contours show negative values.
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