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Abstract
Background: In many laboratory-based high throughput microarray experiments, there are very
few replicates of gene expression levels. Thus, estimates of gene variances are inaccurate. Visual
inspection of graphical summaries of these data usually reveals that heteroscedasticity is present,
and the standard approach to address this is to take a log2 transformation. In such circumstances,
it is then common to assume that gene variability is constant when an analysis of these data is
undertaken. However, this is perhaps too stringent an assumption. More careful inspection reveals
that the simple log2 transformation does not remove the problem of heteroscedasticity. An
alternative strategy is to assume independent gene-specific variances; although again this is
problematic as variance estimates based on few replications are highly unstable. More meaningful
and reliable comparisons of gene expression might be achieved, for different conditions or different
tissue samples, where the test statistics are based on accurate estimates of gene variability; a crucial
step in the identification of differentially expressed genes.

Results: We propose a Bayesian mixture model, which classifies genes according to similarity in
their variance. The result is that genes in the same latent class share the similar variance, estimated
from a larger number of replicates than purely those per gene, i.e. the total of all replicates of all
genes in the same latent class. An example dataset, consisting of 9216 genes with four replicates
per condition, resulted in four latent classes based on their similarity of the variance.

Conclusion: The mixture variance model provides a realistic and flexible estimate for the variance
of gene expression data under limited replicates. We believe that in using the latent class variances,
estimated from a larger number of genes in each derived latent group, the p-values obtained are
more robust than either using a constant gene or gene-specific variance estimate.

Background
The recent advancement of deoxyribonucleic acid (DNA)
microarray technology allows the measurement of expres-
sion levels of tens of thousands of genes simultaneously
[1,2]. A DNA microarray experiment measures the abun-

dance of messenger ribonucleic acid (mRNA) present in a
set of cells, and a high concentration of mRNA for a given
gene indicates a high expression level for that gene [3,4].
The solution of mRNA is either radiolabelled or fluores-
cently labelled and then allowed to hybridize to spots on

Published: 17 April 2007

BMC Bioinformatics 2007, 8:124 doi:10.1186/1471-2105-8-124

Received: 11 October 2006
Accepted: 17 April 2007

This article is available from: http://www.biomedcentral.com/1471-2105/8/124

© 2007 Manda et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/8/124
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17439644
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2007, 8:124 http://www.biomedcentral.com/1471-2105/8/124
the array. Further information about early DNA microar-
ray experiments can be found in [5]. There is a wide vari-
ety of arrays, but the two main kinds are short and long
oligonucleotide arrays. In oligonucleotide arrays, there
are approximately 20 probes pairs of a perfect match (PM)
and a mismatch (MM) for each gene. The PM probe con-
tains a match to a small subsequence of a gene's polynu-
cleotide, about 25 bases long, while the MM probe acts as
a control, being a copy of the PM probe with the central
position flipped to its complement. The amount of mRNA
present in the target gene in a sample is estimated from a
combination (usually, the average) of the PM-MM inten-
sity differences over the 20 probe pairs [6].

In a spotted complimentary DNA (cDNA) or long oligo-
nucleotide arrays (the kind featured in this article) thou-
sands of spots of cDNA from the genes are printed onto a
glass slide or some other form of substrate. Two different
mRNA samples are separately reverse-transcribed into
cDNA and labelled with different fluorescent dyes, green
(cyanine 3) or red (cyanine 5). The mixture of labelled
cDNA is co-hybridized on the same microarray, and the
labelled cDNA molecule will bind to the complementary
fragments of cDNA sequence on the slide. A laser scanner
is then used to measure both fluorescent signals emitted
at each spot on the chip. The general idea assumed behind
the technology is that if a particular gene is highly
expressed in the sample, it produces many molecules of
mRNA [4]. These in turn will hybridize to the probes on
the microarray and generate a very bright fluorescent area.
Genes that are less expressed produce less mRNA, which
results in dimmer fluorescent spots. If there is no fluores-
cence, no messenger molecules have hybridized to the
probes, indicating that the gene is inactive. By comparing
the intensity levels of the emitted fluorescent lights
between the samples, it is hoped that one might be able to
identify any differences in the gene expression profiles of
the various samples.

In a typical cDNA microarray experiment, we are looking
to ascertain whether gene i displays differential expression
between two samples T and C, labelled with differential
colours red and green. For instance, these experiments
include comparing tumor and normal tissue cells, treated
and untreated cells, or cells from knockout and wild-type
organisms. The samples can be compared on the same
slide (i.e. same hybridization), resulting in a direct estimate
of differences in expression levels since the measurements
come from the same hybridization. An alternative is when
expression levels Ti and Ci are estimated in two different
hybridizations, with T together with reference sample R
and C with another reference sample R'. This is an indirect
estimate of the gene's differential expression since the T
and C expression levels are from different hybridizations
[7]. Sometimes, common reference samples are hybrid-

ized with each mRNA sample of interest (T or C), resulting
in what are known as common reference designs. The com-
mon reference sample could be tissues from wild-type
organisms or control tissue or a pool of all the samples of
interest.

Standard statistical analyses

The simplest way, used by many in the field, to ascertain
a gene's differential expression, is on the basis of a fold-

change criterion, defined by the log-ratio δi = log2(Ti/Ci),

under direct comparison or δi = log2(Ti/Ri) - log2(Ci/ )

for indirect comparison. It is expected that the majority of

genes will have a δi value close to 0 [4]. Those genes with

a large positive δi value (δi > 1) are generally concluded to

be overexpressed or upregulated in the T sample, and those

whose δi is negatively large (δi < -1) are concluded to be

underexpressed or downregulated in the T sample. However,
the use of fold change is of limited use, as the intensities
are associated with some biological, experimental and
measurement error, and unless these error distributions
can be derived, it is difficult to assess whether a ratio of
1.9, say, is worth noting or whether it has occurred by
chance. Furthermore, the boundaries accepted for thresh-
olding these fold-changes seem to be rather arbitrary and
very little documentation can be found to support these
criteria.

In recent times, the identification of genes that are differ-
entially expressed between two conditions has been based
on a standardised fold-change, which is the fold-change
divided by an estimate of its standard deviation. A t-test,
with a correction for multiple testing, is then used to test
for significance of the standardised fold-change. This
allows for the assessment of significance of the observed
differences in the presence of all the sources of variation,
which are not necessarily equal from gene to gene. Our
contribution to the problem of identifying genuinely dif-
ferentially expressed genes is on the estimation of reliable
standard deviations of gene expression levels. Modelling
of gene expression variability ranges between two extreme
cases: a constant variance, which is too stringent an
assumption, to independent gene-specific variances. The
latter option has low power as it is based on very few rep-
lications as a result of the relatively large cost of commer-
cial microarray chips. This makes estimation of the
sample standard deviation very unreliable and unstable.
An ad-hoc solution to the problem includes discarding
genes with a small fold-change and very small standard
deviations [4]. A better method, called Significance Analy-
sis of Microarrays (SAM), developed in [8], adds a constant
a0 to each gene-specific standard deviation, thus prevent-
ing the denominator of the t-statistic from getting too
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small. This was expounded in [3], using an empirical
Bayesian procedure, by taking a0 equal to the 90th percen-
tile of the standard deviations of all the genes. Shrinking
the gene-specific standard deviations in this way helps to
minimize the false discovery rates (i.e. a large t statistic).

Mixture models
An intuitive approach to modelling gene expression data
is to assume two groups of genes, one group with genes
that are differentially expressed and the other with genes
that are not differentially expressed. This approach has
been used in analyses involving mixture models for gene
expression levels. Formally, the basic assumption is that
the distribution of the difference δi can be flexibly mod-
elled as a mixture with two components: a subgroup of
genes with δi around 0 and a subgroup of genes with non
zero δi [3,4,9,10]. Using this approach, Lonnstedt and
Speed [4], derived an empirical Bayesian statistic B, which
is the log posterior odds of differential expression. Efron
et al. [3] and Efron and Tibshirani [10] also consider a two
component mixture model to model differential gene
expression, the later using a rank-based nonparametric
two-sample test statistic. A similar approach was fol-
lowed-up in [11] based on a fully Bayesian hierarchical
model, but with an unknown number of mixture compo-
nents. The number of components was treated as a ran-
dom variable and estimated with the other parameters
based on the pioneering work of Richardson and Green
[12]. Other approaches using mixture models for gene
expression data from microarray experiments can be
found in [13,14].

Purpose of the paper
A number of methods, particularly based on full Bayesian
hierarchical models, have been used to provide better esti-
mates of variance for gene differential data. These meth-
ods provide estimates of gene-specific variance, which are
the weighted average of the empirical variance and a prior
variance estimate [11,15,16]. In particular, Lewin et al.
[16] provide a fully Bayesian approach combining estima-
tion of gene differential expression, biological variability
and array effects with a hierarchical prior distribution on
gene-specific variances. Other than modelling the gene-
specific variances with an exchangeable hierarchical prior,
Delmar et al. [17] use a mixture model on the distribution
of gene-specific variances. Genes are grouped into latent
classes based on homogeneity of their variances. A gene is
assigned a variance based on its latent class membership
and this variance is estimated with high power because of
the large number of genes (hence a larger number of rep-
licates) in that latent class. All these methods produce
what are called regularized t-tests.

Our work is closely related to that proposed by Delmar et
al. [17], who used the EM-algorithm to fit a variance mix-

ture model for gene expression data. We believe our Baye-
sian approach has certain advantages and adds value in
comparison to the EM-algorithm approach. In using a
Bayesian hierarchical model, we are able to model various
sources of variability in a common model, thus propagat-
ing uncertainty. Within a Bayesian hierarchical model
framework, it is far easier to borrow and share data across
all genes in order to obtain more reliable estimates of their
variance and at the same time allowing for some variabil-
ity. In this approach, variances are stabilized and shrunk
towards the average variance within each component of
the mixture, in particular some small and large variance
estimates that are incompatible with the overall distribu-
tion are increased and decreased, respectively.

Furthermore, in complex biological data exhibiting a lot
of noise, traditional statistical methods, such as the EM-
algorithm, can struggle to cope with complex non-linear
models when used to explore such data. In the Bayesian
paradigm, on the other hand, all the unknown quantities
are treated together in a consistent manner, to give fully
probabilistic information on all unobserved variables,
even their functions. Our method is based on a Chi-
squared (χ2)-mixture model for the gene-specific vari-
ances, with the number of components ranging from 1 to
5. In bioinformatics, as in many fields, mixture models
have been fitted through the expectation-maximisation
(EM) algorithm with different values of the number of
mixture components [9,17,18]. In this paper, we present
a Bayesian analysis of the variance mixture model, which
we implement in the Bayesian software package, Win-
BUGS [19]. The methodology is applied to a dataset on
diffuse large B-cell lymphomas. The data contains expres-
sion levels of chronic lymphatic leukaemia (CLL) and dif-
fuse large cell (DLCL) malignancies for the 9216 genes
under study. The results of applying our model to the
data-set are presented in the Results from the mixture model
section. A discussion of the model and the results are in
the Conclusions section.

It is hoped that the work presented in this paper will con-
tribute to a large volume of current research work aimed
at minimizing the risk of false positives in microarray
experiments. The two extreme assumptions on the vari-
ance of gene expression data are presented in the Standard
models for gene variance section and a description of the
variance mixture model is contained in A mixture model for
gene variance section.

Results and discussion
Description of the data set
We analyse the data described in [20], which investigates
the classification of diffuse large B-cell lymphomas into
distinct groups by gene expression profiling. Diffuse large
B-cell lymphoma is an aggressive malignancy of mature B
Page 3 of 10
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lymphocytes. It is estimated that, with an annual inci-
dence of over 25,000 cases, it accounts for approximately
40% of all cases of non-Hodgkin's lymphoma. Currently,
a combination of clinical parameters is used to provide an
assessment of a patient's risk profile and to determine the
most suitable clinical course of treatment. Whilst most
patients initially respond well to chemotherapy, patients
receiving the same diagnosis can have very different final
outcomes in terms of remission achieved and their overall
survival. It is suspected that the prognostic variables used
are in fact proxies for the underlying cellular and molecu-
lar variation within diffuse large B-cell lymphomas. Their
work considers whether gene expression profiling could
subdivide this 'clinically heterogenous diagnostic category
into molecularly distinct diseases that would possess
more homogeneous clinical behaviours' [20]. The micro-
arrays used in this experiment were specially designed
complementary DNA microarrays, called 'Lymphochips',
which included those genes with a known or suspected
role in processes that are important in immunology or
cancer, and those genes known to be preferentially
expressed in lymphoid cells. The profiling of gene expres-
sion included the three most prevalent adult lymphoid
malignancies, in addition to profiling the gene expression
in purified normal lymphocyte subpopulations under a
range of activation conditions, in normal human tonsil
and lymph node, and in a variety of lymphoma and leu-
kaemia cell lines. From each experimental mRNA sample,
a cDNA sample was prepared and labelled with red Cy5
dye. Furthermore, a corresponding reference cDNA sam-
ple, labelled with green Cy3 dye, was prepared from a
pool of mRNAs isolated from nine different lymphoma
cell lines. The labelled samples were combined and
hybridized to the microarray.

Approximately 1.8-million measurements of gene expres-
sion were taken in all, across 96 normal and malignant
lymphocyte samples, using 128 of the Lymphochip
microarrays. To demonstrate the method proposed in this
paper, we use a small subset, containing only eight slides
from two conditions. Four slides quantify gene expression
relating to chronic lymphatic leukaemia (CLL) malignan-
cies and the other four to diffuse large cell lymphoma
(DLCL) malignancies. Each slide contains measurements
for 9216 genes. The red-to-green intensity ratio can be
quantified for each gene and this reflects the relative abun-
dance of mRNA in the experimental sample compared
with the reference mRNA pool. By using a common refer-
ence sample, these fluorescent ratios can be considered a
comparable measurement of the relative expression level
of each gene across all of the samples. We want to com-
pare different gene expression levels between the CLL and
DLCL malignancy conditions.

Results from the mixture model
We fitted the model:

where  is gene i's log-ratio of observed intensity for

condition c to the reference mRNA pool in replicate rc(i =

1, ..., 9216; c = 1 for CLL, 2 for DLCL; r1 = 1, ..., 4; r2 = 1,

..., 4);  μic is the mean log-ratio; and  is normally dis-

tributed with mean 0.

The mixture weights were estimated as part of the model,
where they were assigned a Dirichlet prior distribution,
(π1, ..., πk) ~ Dirichlet(1, ..., 1), where k is the number of
mixture components. The χ2 mixture scale parameters ψj
were assigned independent Gamma(0.01, 0.01) prior dis-
tributions. For each mixture model, three independent
chains were run for 50,000 iterations. We discarded the
first 20,000 iterations and used a combined sample of the
remaining 60,000 iterations for posterior summaries.

The determination of the number of components to
include in a mixture is an important, yet unresolved key
issue in finite mixture models. There are a number of
approaches for assessing the adequate number of mixture
components, and a review of the available approaches is
given in Oliveira-Brochado and Martins [21]. Standard χ2

based goodness of fit and likelihood ratio tests are not
reliable statistics for deciding the number of mixture com-
ponents; in particular the likelihood has a tendency to
select more complex models, having a higher number of
parameters. The widely used selection statistics – Bayesian
Information Criterion (BIC) and Akaike Information Cri-
terion (AIC) – impose a penalty on the likelihood to
account for the number of parameters estimated in the
model. Both BIC and AIC have been shown to be suitable
in determining the number of latent classes in the normal-
mixture model. However, in some non-normal mixture
models, such as beta-mixture, BIC and AIC were shown to
perform poorly, by selecting excessive numbers of compo-
nents whilst an alternative criterion, the Integrated Com-
pleted Likelihood (ICL)-BIC selected the right number of
mixture components in simulation studies [18]. On the
other hand, the ICL-BIC selected too few components in
Poisson-mixture models [22], whereby the performance
of BIC and AIC criteria were adequate, more so for the BIC
in large samples. For the purpose of this Bayesian applica-
tion, and considering that the underlying distribution of
variance is continuous and sample size is relatively large,
we chose to use the BIC criterion for model selection. The
BIC is defined as: BIC = -2 * log -likelihood + P log g,
where P is the number of unknown parameters in the
model (P = 2 * k - 1 in our case) and g is the sample size.

yicr ic icrc c
= +μ ε (1)

yicrc

εicrc
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In the Bayesian context, BIC selects a model that is most
probable after conditioning on the data [22]. The model
with the smallest BIC value is selected to be the model that
best predicts the number of mixture components, bearing
in mind that when a set of models estimated on the same
data set yield the same log -likelihood value, BIC favours
parsimony by selecting the model with the fewer parame-
ters. We present posterior mean and standard deviation
(SD) estimates of the model parameters from fitting the
proposed model with corresponding values of BIC (see
Table 1). The results are shown only up to the four-com-
ponent mixture model as the BIC value changed by only
about 2 when fitting a five-component mixture model.
Also provided are comparative results from fitting the EM
algorithm [17]. Our Bayesian mixture variance model
gives very similar results to those obtained from the EM
algorithm. The results seem to imply that there is one
small latent class consisting of genes with a large variance.

For each fitted variance mixture model, we assigned each
gene i to group j according to the highest estimated poste-
rior classification probability ij. In turn, gene i was

assigned variance  where  is the estimated

variance of latent class j. Thus, the derived t-statistic for
gene i now becomes:

where m1 and m2 are sample sizes  for condition 1 and 2,
respectively.

We compared the t-statistics using gene-specific and
homogeneous standard errors to the four-component

mixture estimated standard errors. It was evident that the
majority of genes have t-statistics very close to 0, indicat-
ing similar expression levels under the two conditions,
CLL and DLCL (see Figure 1). All three have a similar
shape; however, the mixture estimated t-statistic is more
conservative than the gene-specific t-statistics (with its
own problem of not having enough data to estimate the
variance) and not as naive as the homogeneous statistic,
which is based on overly unrealistic gene variance
assumptions. The mixture estimated t-statistic is more
informative as it uses standard errors estimated from a
larger number of genes based on their variance similarity.
In the data set, some genes have larger variances than oth-
ers and large variance genes that are not differentially
expressed are more likely to have large log fold changes.
However, when taking variance into account, these genes
produce small t-statistics. On the other hand, with only
four measurements per group, the estimate of the stand-
ard error is not stable and some genes have large t-statis-
tics only because, by chance, the denominator was very
small. This relative large disparity in t-statistics is demon-
strated in histogram (A) and (C). The histogram (B)is an
improvement in that it does give high t-statistics to genes
only because they have small sample variances. The statis-
tic presented in histogram (B) is referred to as the modified
t-statistic, which are based on borrowed strength across
genes in order to obtain more stable estimates of gene var-
iances.

This classification of genes under the Bayesian mixture
model was compared to that obtained under the EM mix-
ture model for the four component model (see Table 2).
There is very good agreement between the two models,
with only 387 out of 9216 genes classified differently. The
measure of agreement, kappa, was 0.929. For all of the 387
genes that were classified differently, their two most likely

π

ˆ ˆσ σi j∗ =2 2 σ̂ j
2

t SE m mi i i i i i
∗

∗ ∗= = +δ δ δ σ σ/ ( ) /( / / ) ./2
1

2
2

1 2 (2)

Table 1: Posterior mean (SD) for various variance mixture models

Model Bayesian Model EM algorithm
πj

j
πj

j

2 Classes
1 0.2276 (0.009) 0.7624 (0.008) 0.2286 0.7607
2 0.7724 (0.0085) 0.3426 (0.0024) 0.7713 0.3422
BIC 22911.89 22657.89
3 Classes
1 0.0677 (0.0039) 1.0220 (0.2627) 0.0688 1.0225
2 0.4462 (0.0170) 0.4977 (0.0077) 0.4546 0.4970
3 0.4860 (0.0182) 0.2841 (0.0035) 0.4766 0.2839
BIC 21819.82 21703.82
4 Classes
1 0.2303 (0.0146) 0.6125 (0.0129) 0.2317 0.6125
2 0.0384 (0.0045) 1.1547 (0.0321) 0.0370 1.1523
3 0.2318 (0.0218) 0.2413 (0.0053) 0.2285 0.2427
4 0.4994 (0.0201) 0.3775 (0.0161) 0.5028 0.3782
BIC 21727.75 21620.86

σ σ
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classes, based on the posterior classification πij, were the
same in both models. In this case, one can conclude
that the two models resulted in agreement in classifying
genes to the four mixture components.

We identified the top ten ranked genes according to the
absolute t-statistic obtained from using various variance
models (see Table 3). Only two genes, coded 2143 and
4323 are consistently ranked in the top ten across all var-
iance models. Genes coded 3181, 4069, 4532, 4586 and

Distribution of the t-statistic, using different estimate of gene standard errorFigure 1
Distribution of the t-statistic, using different estimate of gene standard error. Plot (A) is a histogram based on gene-
specific standard error, (B) is based on the four-component mixture model estimated standard error and (C) shows a histo-
gram based on homogeneous standard error.
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8076 are ranked in the top ten in at least two variance
models.

Finally, other than setting , which is outright

membership, we also considered a weighted variance esti-

mate  based on a four-component vari-

ance mixture model. We ranked genes using this weighted
variance estimate to compare the ranking obtained from
the other variance estimates (see Table 3). Eight genes
coded 2143, 3181, 4069, 4323, 4532, 4586, 8076 and
8903 that appear in the top ten under the weighted vari-
ance model, also appear at least once in the top ten of the
other variance models. These genes might be interesting,
thus requiring further analysis and investigation.

We are aware that different assumptions for the prior dis-
tributions for both mixture weights and scales may give
different results. We performed some limited sensitivity
examination of the results to different specification of the
priors. There were slight differences in the results, but the
substantive conclusions were not affected.

Conclusion
We have presented a Bayesian variance mixture model for
differential gene expression data. This model is a compro-
mise between two extreme models: the too stringent con-
stant gene variance and the overparameterised gene-

specific variance models, which are both unrealistic
assumptions. Our mixture variance model provides a
more realistic and flexible estimate for the variance of
gene expression data under limited replicates. We believe
that in using the (weighted) latent class variances, esti-
mated from a larger number of genes in each derived
latent group, the p-values obtained are more accurate then
either using a constant gene variance or gene-specific var-
iance estimate.

In our example data, the results obtained from using our
model are in close agreement to those obtained using EM
algorithm implementation [17], which had been shown,
using simulation studies, to be flexible and reliable in
both true and false discovery rates. Our results are based
on the assumptions of normally distributed log-ratios and
a constant gene-variance between the two conditions. We
are working on relaxing these conditions, in particular in
using a long-tailed t-distribution as a robust alternative to
allow for the possibility of gene-intensity measurement
outliers. By varying the degrees of freedom, the t-distribu-
tion can also be used to investigate the sensitivity of the
posterior results to changes in the prior for the gene inten-
sity measurements.

Methods
Notation and variance models
We assume that the intensity level data is background cor-
rected and normalised according to [23], using an arcsinh
transformation based on a model for the dependence of

ˆ ˆσ σi j∗ =2 2

σ̂ π σiw ij j
2 2= ∑

Table 3: Top ten ranked genes by different variance models (Genes are listed by their codes)

Gene-specific Constant 2 Classes 3 Classes 4 Classes Weighted

4323 2602 1939 2143 2143 2143
4532 1945 2143 3181 4069 4069
4069 257 3181 4069 4323 4323
8076 1400 7161 8903 4532 4532
4331 1939 2003 4323 7496 8076
6635 2143 4069 4347 8076 3181
2026 3181 6731 4532 4586 4586
2143 7003 6343 6592 5674 8903
4586 4323 8649 8628 8048 2542
8892 3151 4323 5746 1631 5674

Table 2: Classification of genes under the Bayesian and EM mixture models, with four components

EM model Bayesian model Total
1 2 3 4

1 1621 3 0 52 1676
2 18 242 0 0 260
3 0 0 1848 161 2009
4 42 0 111 5118 5271
Total 1681 245 1959 5331 9216
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the variance on the mean intensity levels with variance
stabalizing properties. These are implemented in a vari-
ance stabilizing transformation vsn, the title function of
the vsn package, part of the Bioconductor project for R
[24]. This results in generalised log-transformed expres-
sion intensity values. We develop the methodology for
unpaired (indirect) data case, where two samples of inter-
est are each co-hybridised with a reference sample. That is,
each independent slide is a two-colour microarray experi-
ment. The methodology is easily adapted to paired (direct
comparison) data case.

We consider a pair of log-transformed expression meas-
urements (Tir, Rir) for gene i : i = 1, ..., g in replicate r : r =

1, ..., mT for condition T co-hybridized with reference sam-

ple R. Then, yitr = Tir - Rir is the log-ratio of gene i under

condition T in replicate r. Similarly, let (Cir', ) be a pair

of expression measurements for gene i in replicate r' : r' =
1, ..., mC for condition C co-hybridized with reference

sample R'. The difference yicr' = Cir' -  is the log-ratio for

gene i under condition C. In such an experiment, we want
to compare the log-ratios yitr and yicr' between the T and C

samples. We can obtain sample data statistics for each
condition, such as averages:

and variances:

The selection of differentially expressed genes can proceed
simply by a test based on log fold-change criterion,

. However, as pointed out in the Standard sta-

tistical analyses section, the use of fold changes is limited
because the intensities are associated with biological,
experimental and measurement errors. Formally, we con-
sider significance testing by assuming that the observed
log-ratios yitr and yitr' are modelled by simple linear mod-

els:

yitr = μiT + εitr and yicr' = μiC + εicr' (5)

where εitr and εicr' are normally distributed with mean 0

and equal variance . For each gene i, we use the usual

two-sample t-test H0 : μiT = μiC against H1 : μiT ≠ μiC. This

resulting test statistic is based on the standardised fold
change:

whose usefulness depends on an accurate estimate of the

standard error (SE) of i. Generally, there will be very few

replications; thus the estimation of SE would be very unre-
liable and unstable. One solution is to discard genes with
a small fold-change and very small standard deviations to
avoid getting overoptimistic significant results.

Standard models for gene variance
There are two extreme cases to model this variance:

• Independent gene-specific variance: In this scenario,

 is estimated by:

which has ν = mT + mC - 2 degrees of freedom. Under the
null hypothesis, μiT = μiC, the standardised fold-change ti
is distributed according to a t-distribution with ν degrees
of freedom. This option has low power as it is based on
very few replications. This makes estimation of the sample
variances very unreliable and unstable, and this results in
less powerful t-tests.

• A constant variance: In this homoscedastic model, all
genes are assumed to have the same variance σ2, which is
estimated by:

This has a large number of replicates, totalling (mT + mC)g.
The degrees of freedom of the variance estimate are now ν
= (mT + mC - 2)g, which makes the statistic ti behave like a
standard Normal (0,1) variate. However, a constant vari-
ance over all the genes is too unrealistic an assumption,
and it increases the risk of a false positive result for a gene
with a larger variance. On the other hand, there is a high
risk of missing out on a truly differentiated gene having a
small variance, and a large differential effect.
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Assuming that the log -ratios yitr and yicr' follow a normal

distribution, then under the null hypothesis μiT = μiC the

observed scaled gene-specific residual sum of squares wi =

 is a scaled Chi-squared (χ2) variate with ν degrees of

freedom, denoted by  with density:

with mean ν/ψi. Thus, the mean of the sample gene-spe-

cific variance  is 1/ψi. However, the constant ψi is

unknown and must be estimated from the data. Instead of

estimating ψi separately for each gene, we consider mod-

elling wi as independent observations from a finite mix-

ture of χ2 distributions:

where k is the number of latent components (classes); π =

(π1, ..., πk) are the mixture proportions with πj being the

probability that a gene belongs to latent class j (π1 + � +

πk = 1); ψ = (ψ1, ..., ψk) are the component-specific χ2 dis-

tribution scaling constants and g(wi|ψj, ν) are χ2 distribu-

tions with the scaled constant ψj being specific to

component j and ν = mT + mC - 2 is the common degrees

of freedom, common for all components. The variance of

the class j is  = 1/ψj, the variance of all the genes in class

j.

In mixture modelling, it is convenient to formulate the
model using a missing data problem, where each observa-
tion wi is assumed to arise from a specific but unknown
component zi of the mixture. The model can be written in
terms of the missing data z = z1, ..., zg, otherwise known as
allocation variables, which are assumed to be independent
realizations of discrete random variables Z1, ..., Zg with

Pr(Zi = j|π, ψ, ν) = πj(i = 1, ..., g; j = 1, ..., k).

Now, conditional on Z1, ..., Zg, the observed data w1, ..., wg

are independent observations from g(wi|Zi = j, π, ψ, ν) ~

g(wi|ψj, ν). Furthermore, summing over all the unknown

Z1, ..., Zg, we get

, which is just (10). We are interested in allocating gene i
to component j based on its posterior classification prob-

ability πij = Pr(Zi = j|wi, π, ψ, ν), the posterior probability

of gene i belonging to the jth component. This is given as :

This simplifies to:

The allocation of gene i to component j is based on the
highest posterior probability πij over all the components.
Genes in the same latent class j share the same variance 1/
ψj, the mean variance of all the nj genes in component j,
estimated from a larger number of replicates than purely
those per gene (n1 + … + nk = n). Parameters of the model
can be estimated by the EM algorithm as shown in [17].

Quantities of interest, such as the posterior classification
probabilities in (12), are estimated by plugging-in the

point estimates  and  of π and ψ, respectively. Such

plug-in estimates do not account for all the variability in
estimating the model parameters and, as such, are more
likely to underestimate the variance of the model param-
eters, which might inflate the significance levels. Aside
from the problems associated with estimating the varia-
bility, the EM algorithm can sometimes have computa-
tional problems, not least in finding local maximum of
the likelihood surface among several possible local
maxima instead of the global maximum. In order to avoid
the possibility of such problems, we propose a Bayesian
hierarchical structure for the mixture model of the gene

differential variance. We use an exchangeable gamma(ς,
τ) prior on ψi and a dirichlet(α1, ..., αk) prior on π. The

hyperparameters ς and τ can be influential, and therefore
in our full Bayesian analysis, these are not fixed, but given
vague hyper-priors.
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