
This is a repository copy of Instabilities of Shercliffe and Stewartson layers in spherical 
Couette flow .

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/4755/

Article:

Wei, X. and Hollerbach, R. (2008) Instabilities of Shercliffe and Stewartson layers in 
spherical Couette flow. Physical Review E, 78 (2). 026309. ISSN 1550-2376 

doi.10.1103/PhysRevE.78.026309

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

See Attached 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


promoting access to White Rose research papers 
   

White Rose Research Online 

 
 

Universities of Leeds, Sheffield and York 
http://eprints.whiterose.ac.uk/ 

 
 

 
This is an author produced version of a paper published in Physical Review E. 
 
 
White Rose Research Online URL for this paper: 
http://eprints.whiterose.ac.uk/4755/ 
 

 
 
Published paper 
Wei, X. and Hollerbach, R. (2008) Instabilities of Shercliffe and Stewartson 
layers in spherical Couette flow, Physical Review E, Volume 78 (2), 026309. 
  
 
 

 

eprints@whiterose.ac.uk 
 



Instabilities of Shercliffe and Stewartson layers in spherical Couette flow

X. Wei
Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, United Kingdom

R. Hollerbach
Department of Applied Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom

(Dated: August 4, 2008)

We explore numerically the flow induced in a spherical shell by differentially rotating the inner and
outer spheres. The fluid is also taken to be electrically conducting (in the low magnetic Reynolds
number limit), and a magnetic field is imposed parallel to the axis of rotation. If the outer sphere
is stationary, the magnetic field induces a Shercliffe layer on the tangent cylinder, the cylinder just
touching the inner sphere and parallel to the field. If the magnetic field is absent, but a strong
overall rotation is present, Coriolis effects induce a Stewartson layer on the tangent cylinder. The
non-axisymmetric instabilities of both types of layer separately have been studied before; here we
consider the two cases side by side, as well as the mixed case, and investigate how magnetic and
rotational effects interact. We find that if the differential rotation and the overall rotation are in the
same direction, the overall rotation may have a destabilizing influence, whereas if the differential
rotation and the overall rotation are in the opposite direction, the overall rotation always has a
stabilizing influence.

PACS numbers: 47.20.-k, 47.65.-d

I. INTRODUCTION

The study of free shear layers and their instabilities is
one of the oldest problems in fluid dynamics, dating back
to the pioneering work of Kelvin [1] and Helmholtz [2].
In this work we will consider two types of shear layer, the
magnetically induced Shercliffe layer and the rotationally
induced Stewartson layer, that can easily be set up in
a differentially rotating spherical shell. Previous work
has studied each of these layers and its corresponding
instabilities in isolation [3, 4]. The basic shear layers
are similar in many ways, but their instabilities may be
very different. Here we compare and contrast the two
problems, and then consider the mixed case, when both
magnetic and rotational effects are present.

Previous studies on magnetohydrodynamic spherical
Couette flow have included analytic [5–7], numerical [8–
10] and experimental [11, 12] work, with a variety of im-
posed magnetic fields. Nonmagnetic Stewartson layers
have also been widely studied, in both cylindrical [13–
17] and spherical [18–20] geometries.

II. EQUATIONS

We start with two concentric spheres, of radii ri and ro,
rotating about a common axis (the z axis) with angular
velocities Ωi and Ωo. The fluid filling the shell is taken to
be electrically conducting, and a magnetic field B = B0êz

is externally imposed. The question then is, what sort
of flow states will result as the parameters B0, Ωi and
Ωo are varied, and can the solutions be classified in some
systematic way, for example according to whether they
are magnetically or rotationally dominated?

In the reference frame rotating with the outer sphere,

the governing equations are

∂U

∂t
+ ReU · ∇U + Ta êz × U

= −∇p + ∇2
U + Ha2 (∇× b) × êz , (1)

∇2
b = −∇× (U × êz), (2)

where the Hartmann number

Ha =
B0 ri√
µρνη

(3)

measures the strength of the imposed magnetic field, the
Taylor number

Ta =
2 Ωor

2

i

ν
(4)

measures the overall rotation of the whole system, and
the Reynolds number

Re =
(Ωi − Ωo) r2

i

ν
(5)

measures the differential rotation of the inner sphere.
The density ρ, viscosity ν, diffusitivy η, and permeability
µ are (constant) material properties of the fluid.

In these equations, length has been scaled by ri, time
by r2

i /ν, and U by (Ωi − Ωo)ri. Finally, the induced
magnetic field b has been scaled by Rm B0, where Rm =
(Ωi − Ωo) r2

i /η is the magnetic Reynolds number, and
Eqs. (1) and (2) have been formulated in the Rm → 0
limit, in which Rm no longer appears in the equations
at all, but only in the interpretation associated with b.



See also [3]; the problem considered here is precisely the
extension of [3] to include the overall rotation given by
Ta.

The boundary conditions associated with (1) are the
usual spherical Couette flow conditions

U = r sin θ êφ at r = ri, U = 0 at r = ro, (6)

where the radii will be fixed at ri = 1 and ro = 3. For the
boundary conditions associated with (2) we take the exte-
rior regions r < ri and r > ro to be insulating. As shown
in [3], taking these regions to be conducting instead can
have dramatic consequences, yielding a counter-rotating
jet rather than a shear layer. However, precisely because
we want to focus on shear layers here, we consider only
the insulating case.

These equations and associated boundary conditions
are solved numerically, using the spherical harmonics
code [21]. We begin by considering the axisymmetric
basic states, then we linearize about these solutions, and
compute the linear onset of non-axisymmetric instabil-
ities. Resolutions as high as 300 Legendre functions in
θ and 180 Chebyshev polynomials in r were used, and
results were tested to ensure that all aspects of the solu-
tions were fully resolved.

III. THE TWO PURE CASES

A. Basic States

Figure 1 shows the solutions at Re = Ta = 0, and
Ha2 = 104, 105, 106, corresponding to an infinitesimal
differential rotation, no overall rotation, and an increas-
ingly strong magnetic field. We see the emergence of
an increasingly thin shear layer, the Shercliffe layer, lo-
cated on the so-called tangent cylinder C, the cylinder
just touching the inner sphere and parallel to the mag-
netic field. The origin of this layer is easy to under-
stand, in terms of the magnetic tension along the field
lines. Fluid columns outside C are coupled at both end-
points to the outer boundary only, so they remain at
rest. In contrast, fluid columns inside C are coupled to
both boundaries, which are rotating at different angular
velocities, 0 at the outer boundary, and 1 at the inner
boundary, as imposed by (6). These columns then rotate
at a rate intermediate between 0 and 1. The result is a
jump in angular velocity across C, which is precisely the
Shercliffe layer observed in Figure 1. (Inside C there are
also Hartmann layers at the outer and inner boundaries,
accomodating the jump from ∼ 1/2 in the interior to 0
and 1 at the boundaries. We will not be interested in
these boundary layers though.)

Figure 2 shows the solutions at Re = Ha = 0, and
Ta = 103.5, 104, 104.5. We again see the emergence of
an increasingly thin shear layer, the Stewartson layer, on
the same tangent cylinder C as before. The origin of this
layer is also very similar to that of the Shercliffe layer, the

FIG. 1: Examples of the pure Shercliffe layer, showing con-
tours of the angular velocity, with a contour interval of 1/9.
From left to right Ha2 = 104, 105, 106, and Ta = Re = 0 for
all three.

FIG. 2: Examples of the pure Stewartson layer, showing con-
tours of the angular velocity, with a contour interval of 1/9.
From left to right Ta = 103.5, 104, 104.5, and Ha = Re = 0
for all three.

only difference being that now it is the Taylor-Proudman
theorem that couples fluid columns along the z axis, and
not magnetic tension, which is of course entirely absent
for Ha = 0.

Despite their similarities, there are also important dif-
ferences between Shercliffe and Stewartson layers. Note
for example how the contour lines in the Stewartson layer
are almost perfectly parallel, whereas in the Shercliffe
layer they spread out somewhat away from the inner
sphere. Related to this is the fact that the asymptotics of
these two shear layers are also slightly different; the Sher-

cliffe layer consists of a single layer of thickness Ha−1/2

[22], whereas the Stewartson layer consists of a primary

layer of thickness Ta−1/4 across which the shear is re-
solved, but also contains secondary layers of thicknesses

Ta−2/7 just inside C and Ta−1/3 just outside C [18].

B. Onset of Instabilities

The results in Figs. 1 and 2 are all for the case of in-
finitesimally small differential rotation, Re = 0. Now
suppose the differential rotation is gradually increased.
As the shear across the layers is increased, one might ex-
pect the layers to become unstable eventually, to some-
thing like a Kelvin-Helmholtz instability. That is, one
might expect the initially circular, axisymmetric basic
state to adopt a wavy, non-axisymmetric structure.

The instabilities of the pure Shercliffe layer were con-
sidered by [3]; the left panel in Fig. 3 shows their results
(Fig. 4a in [3]), over the range of Hartmann numbers
shown in Fig. 1. The instabilities of the pure Stewart-
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FIG. 3: (a) shows log
10

|Rec| as a function of log
10

(Ha) for
the pure Shercliffe layer; (b) shows log

10
|Rec| as a function

of log
10

(Ta) for the pure Stewartson layer. The numbers be-
side individual curves indicate the azimuthal wavenumbers
m, showing only the most unstable modes. In (b), the solid
curves m = 3 to 7 are for Re > 0, whereas the dashed curve
m = 1 is for Re < 0.

son layer were considered by [4]; the right panel in Fig.
3 shows these results (Fig. 4 in [4]), again over the range
of Taylor numbers shown in Fig. 2. (Note though that
the equations here are scaled differently from those in
[4], to allow for the possibility of Ta = 0 here. The Ek-
man and Rossby numbers in [4] are related to the Taylor
and Reynolds numbers used here by E = 1/(2Ta) and
Ro = 2Re/Ta.)

Comparing the two panels in Fig. 3, there are clearly
similarities between the two cases. Most obviously, for
comparable thicknesses of the underlying shear layers (as
indicated in Figs. 1 and 2) the critical Reynolds numbers
for the onset of instabilities are also comparable, with
|Rec| ∼ 103 for the Ha and Ta ranges shown. Beyond
that, in both cases the critical Reynolds numbers increase
as the thickness of the shear layers decreases.

However, there is also one crucial difference between
the instabilities of these two types of shear layer, more
fundamental than any difference between the shear lay-
ers themselves. Specifically, for the pure Shercliffe layer,
the results are invariant to the sign of Re, that is, the
direction in which the inner sphere rotates. The easiest
way to see this is to note that reversing the rotation of
the inner sphere is equivalent to turning the entire sys-
tem upside down. This merely reverses the sign of the
imposed magnetic field though, which clearly has no ef-
fect.

In sharp contrast, the results for the Stewartson layer
are not invariant to the sign of Re. One can of course still
imagine turning the system upside down, but instead of
reversing the magnetic field, this now reverses the sense of
the overall rotation. And unlike the magnetic field, whose
sign doesn’t matter, the sign of the overall rotation does
matter. That is, instead of reversing the sign of Re one
could just as well reverse the sign of Ta, but the result is
still not equivalent to the original configuration. Having
Re and Ta of the same sign is fundamentally different
from having them of the opposite sign.

Returning to the right panel in Fig. 3 then, we note
that Re > 0 and Re < 0 do indeed yield strikingly dif-

FIG. 4: The Shercliffe layer at Ha2 = 105, Rec = ±1588, and
Ta = 0. The left panel shows the angular velocity, with a
contour interval of 1/9; the middle panel shows the merid-
ional circulation, with a contour interval of 10−4; the right
panel shows the azimuthally integrated kinetic energy of the
instability, having wavenumber m = 3, as indicated in the left
panel of Fig. 3.

FIG. 5: The Stewartson layer at Ta = 104, Rec = 665, and
Ha = 0. The left panel shows the angular velocity, with a
contour interval of 1/9; the middle panel shows the merid-
ional circulation, with a contour interval of 10−3; the right
panel shows the azimuthally integrated kinetic energy of the
instability, having wavenumber m = 5, as indicated in the
right panel of Fig. 3.

ferent instabilities. Positive Re has increasingly large az-
imuthal wavenumbers m for increasingly large Ta, ex-
actly as one would expect for a Kelvin-Helmholtz type
instability, whereas negative Re has m = 1 over the en-
tire range of Ta shown here. Comparing with the ±Re
invariant Shercliffe results in the left panel, we see that
these are more like the Re > 0 Stewartson results, in that
they also show a progression to higher m.

One reason for considering the mixed Shercliffe-
Stewartson problem then is simply to see how this ±Re
asymmetry manifests itself in this case, and at what point
the results are more like the symmetric Shercliffe problem
or more like the asymmetric Stewartson problem.

C. Location of the Instabilities

First though we consider a few more aspects of the two
pure problems, namely the spatial location of the insta-
bilities. Fig. 4 shows the Shercliffe case, Fig. 5 the Re > 0
Stewartson case. The first panels in each figure show the
angular velocity, as before in Figs. 1 and 2. One point to
note here is how similar these solutions at non-zero Re
are to the Re = 0 solutions in Figs. 1 and 2. The inertial
term ReU · ∇U is crucially important in driving the in-
stabilities, but in the basic states themselves it is almost



FIG. 6: As in Fig. 5, but with Rec = −1404, and m = 1.

FIG. 7: As in Fig. 6, but with the split outer sphere boundary
condition. Rec = −826, and m = 1.

completely balanced by the pressure-gradient term. The
second panels show the associated meridional circulation.
This is very weak though in comparison with the shear
layers, and does not appear to play an important role in
the instabilities. Finally, the grey-shading in the third
panels shows the azimuthally integrated kinetic energy
of the instabilities, that is, the quantity

∫
|u|2 r sin θ dφ.

As expected, both instabilities are concentrated on the
tangent cylinder C, although it is interesting to note that
the concentration is far greater in the Shercliffe case than
in the Stewartson case.

Figure 6 shows the corresponding results for the Re <
0 Stewartson case, the anomalous m = 1 mode. The
instability now appears to have curious gaps in cylindrical
radius, resulting in a striped appearance. Furthermore,
the instability reaches its maximum concentration not
on C, but instead just inside, where the Stewartson layer
intersects the Ekman layer on the inner sphere. This
would suggest that this anomalous mode is perhaps not a
Stewartson layer instability at all, but instead an Ekman
layer instability, for which it is well known that the Re >
0 case (von Kármán flow) and the Re < 0 case (Bödewadt
flow) are indeed very different [23].

The numerical tests conducted by [4] considered ex-
actly this possibility, and suggest that however plausible
this idea may be, it is incorrect: this Re < 0 mode is
not a Bödewadt instability, but a Stewartson layer in-
stability, just like the Re > 0 modes. However, these
numerical tests [4], in which the meridional circulation
and the Ekman layers were simply deleted from the ba-
sic state before computing the instabilities, can be – and
indeed have been – criticized as being unphysical, not
corresponding to anything that one could actually set up
in a lab, for example.

We would therefore like to repeat something like this
deletion of the meridional circulation and the Ekman lay-
ers, but in a way that is physical, and could be set up

in an experiment. Fortunately, this can be accomplished
rather easily: we simply replace the outer boundary con-
dition U = 0 by U = r sin θ Ω(θ) êφ at r = ro, where
Ω(θ) is 1 inside C, and 0 outside (for numerical reasons
the transition is actually smoothed out over a degree or
so). Physically this would correspond to having the outer
sphere split into differentially rotating segments, with the
regions inside the tangent cylinder now co-rotating with
the inner sphere, which is precisely how many Stewartson
layer experiments are indeed done [16, 20].

Figure 7 shows these results. If we begin by compar-
ing the basic states in Figs. 6 and 7, we see that this new
boundary condition has roughly doubled the jump in an-
gular velocity across the shear, because everything inside
C is now co-rotating with the inner sphere, whereas before
the fluid inside C was rotating at a rate intermediate be-
tween 1 at the inner boundary and 0 at the outer. Turn-
ing next to the Ekman layers, these have been largely
eliminated; if everything inside C is co-rotating, there
is simply no need for Ekman layers at the boundaries.
And correspondingly, the meridional circulation, which
is driven by Ekman pumping in the boundary layers, is
also dramatically reduced.

This new boundary condition has thus accomplished
exactly what we wanted, but in a way that is physi-
cally realizable, unlike the numerical tests presented in
[4]. And if we compare the instabilities in the two cases
then, the original boundary condition (Fig. 6) has m = 1
and Rec = −1404, and the new boundary condition (Fig.
7) has m = 1 and Rec = −826. That is, doubling the
shear across the layer roughly halves the critical Reynolds
number, exactly as one would expect if it is indeed the
shear layer that is triggering the instability. This new
boundary condition therefore confirms the claim made
by [4] that this anomalous m = 1 mode is also a Stew-
artson layer instability (although beyond that there are
unfortunately still many aspects of this mode that are
not entirely clear).

IV. THE MIXED CASE

Figure 8 shows stability results for the mixed case,
when neither Ha nor Ta are zero. Starting with Hart-
mann numbers Ha2 = 104.5 and 105.5, Ta is increased
from 102 to 105.5, for both positive and negative Re.
For Ta ≪ Ha2, ±Re are not surprisingly almost the
same. As rotational effects become comparable with
magnetic effects though, the rotationally induced asym-
metry becomes more and more pronounced. For pos-
itive/negative Re the wavenumber increases/decreases,
until for Ta = 105.5 we are almost back to the pure Stew-
artson regime, with large m for positive Re, and small m
for negative Re. It is unfortunately not entirely clear why
the wavenumbers behave in this way, but the fact that
there is this smooth transition from the symmetric Sher-
cliffe case to the asymmetric Stewartson cases, for both
positive and negative Re, further reinforces the view that
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FIG. 8: The critical Reynolds numbers for the onset of insta-
bilities, as functions of log

10
(Ta), with Ta = 102 almost the

pure Shercliffe regime, and Ta = 105.5 almost the pure Stew-
artson regime. (a) is for Ha2 = 104.5; (b) is for Ha2 = 105.5.
Within each panel the upper set of curves, with decreasing
wavenumbers, is for Re < 0; the lower set of curves, with
increasing wavenumbers, is for Re > 0.

even these ‘anomalous’ m = 1 modes above are not so
anomalous after all, but are merely the limiting case in
this family of shear layer instabilities.

One other interesting, and completely unexpected re-
sult in Fig. 8 is this initial decrease in the Re > 0 curves,
reaching a minimum when Ta/Ha2 ∼ 10−0.75 ≈ 0.2.
Ta/Ha2 = O(1) is of course precisely the regime where ro-
tational and magnetic effects are comparable, so it is not
surprising that any interaction between the two would
manifest itself most strongly there. That rotational and
magnetic effects can destabilize one another even though
each separately has a stabilizing influence is also familiar
in other contexts, such as Rayleigh-Bénard convection
[24]. It is not clear though why this mutual destabiliza-
tion in this case does not occur for Re < 0 as well.

Finally, we wish to consider the spatial structures of
both the basic states and the instabilities in this case
Ta/Ha2 = 10−0.75 where rotational and magnetic effects
are interacting most strongly, and see whether they are
more like the pure Shercliffe case, or more like the pure
Stewartson case. Figure 9 shows the results for Re > 0;
comparing with Figs. 4 and 5, we see that they look more

FIG. 9: The top row shows results at Ha2 = 104.5, Ta =
103.75, Rec = 946 and m = 4, the bottom row at Ha2 = 105.5,
Ta = 104.75, Rec = 1827 and m = 8; that is, at the minima of
the Re > 0 curves in Fig. 8. The left panels show the angular
velocity, with a contour interval of 1/9; the middle panels
show the meridional circulation, with a contour interval of
10−3 (top) and 5× 10−4 (bottom); the right panels show the
azimuthally integrated kinetic energy of the instabilities.

FIG. 10: As in Fig. 9, but for Re < 0, with Ha2 = 104.5,
Ta = 103.75, Rec = −1324 and m = 2 for the top row, and
Ha2 = 105.5, Ta = 104.75, Rec = −3661 and m = 3 for the
bottom row.

like the pure Shercliffe case. Figure 10 shows the results
for Re < 0; comparing with Figs. 4 and 6, we see that
the basic state again looks more like the pure Shercliffe
case. The instabilities though have aspects in common
with both the Stewartson case, namely this striped ap-
pearance, as well as the Shercliffe case, namely the con-
centration more outside C, rather than in the equatorial
region as in the Stewartson case.

V. CONCLUSION

In this work we have explored the stability of two types
of free shear layers that may be set up by magnetic and



rotational effects. Although the shear layers themselves
are very similar for the two effects, the instabilities are
quite different in one important aspect, namely that in
the magnetic Shercliffe case they are invariant to the sign
of the differential rotation that induces them, whereas in
the rotational Stewartson case they are not. However, as

different as the ±Re pure Stewartson cases may at first
sight appear to be, by considering the mixed case, we
showed that there is in fact a smooth progression from the
invariant Shercliffe limit to both of the ±Re Stewartson
cases, suggesting that these cases are not so different after
all.
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