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a b s t r a c t

Potential-based reward shaping has been shown to be a powerful method to improve the convergence
rate of reinforcement learning agents. It is a flexible technique to incorporate background knowledge into
temporal-difference learning in a principled way. However, the question remains of how to compute the
potential function which is used to shape the reward that is given to the learning agent. In this paper,
we show how, in the absence of knowledge to define the potential function manually, this function can
be learned online in parallel with the actual reinforcement learning process. Two cases are considered.
The first solutionwhich is based on themulti-grid discretisation is designed formodel-free reinforcement
learning. In the second case, the approach for the prototypical model-based R-max algorithm is proposed.
It learns the potential function using the free space assumption about the transitions in the environment.
Two novel algorithms are presented and evaluated.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Reinforcement learning (RL) is a popular method to design
autonomous agents that learn from interactions with the envi-
ronment, or, in more mathematical terms, from repeated simula-
tion (Bertsekas, 2007). In contrast to supervised learning (Mitchell,
1997), RL methods do not rely on instructive feedback; i.e., the
agent is not informed as to what the best action is in a given situ-
ation. Instead, the agent is guided by the immediate numerical re-
wardwhich defines the optimal behaviour for solving the task. This
leads to the temporal credit assignment problem; i.e., the problem
of determining which part of the behaviour deserves the reward
(Sutton & Barto, 1998). To deal with this issue, conventional RL al-
gorithms employ a delayed approach which is based on the back-
propagation of the value function which is defined on the state
space. However the back-propagation is time consuming, since it
is an iterative approach.

To speed up the learning process, and to tackle the temporal
credit assignment problem in a more efficient way, the concept
of reward shaping has been considered in the field (Gullapalli &
Barto, 1992; Konidaris & Barto, 2006; Mataric, 1994; Ng, Harada,
& Russell, 1999; Randløv & Alstrom, 1998). The idea of reward
shaping is to give additional (numerical) feedback to the agent
in order to improve its convergence rate. Even though reward
shaping has been powerful in many experiments, it quickly turned
out that, used improperly, it can also be misleading (Randløv
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& Alstrom, 1998). To deal with such problems, potential-based
reward shaping F(s, s′) was proposed (Ng et al., 1999; Wiewiora,
2003) as the difference of some potential function Φ defined over
a source s and a destination state s′:

F(s, s′) = γΦ(s′)− Φ(s), (1)

where γ is a discount factor. Ng et al. (1999) proved that re-
ward shaping defined in this way leaves the optimal behaviour un-
changed while the time for attempting suboptimal actions can be
reduced. One problem with reward shaping is that often detailed
knowledge of the potential function of states is not available, or
very difficult to represent directly in the form of a shaped reward.

The main goal of this paper is to develop an algorithmic
solution which would allow applying the potential-based reward
shaping when the potential function cannot be defined manually.
Generally a similar problem exists in informed heuristic search
which also requires an admissible heuristic (Russell & Norvig,
2002). Specifically, two algorithms are proposed in this paper.
The first one is designed for model-free RL. It is based on the
multi-grid discretisation of the state space. The state space with
higher generalisation is used to learn a high level value function
which is treated as a potential function for reward shaping of the
actual learning process. The second approach is for model-based
RL, and applies the free space assumption to create and refine
the model of environment dynamics for learning the potential
function. These two approaches have one feature in common. They
both assume that the value function at an abstract level is used as
a potential function. In the first case it is a value function of the
low resolution discretisation, and in the second case the model
constructed according to the free space assumption is used to
evaluate such a value function.
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The remainder of this paper is organised as follows. Section 2
gives a brief overviewof aMarkovDecision Process. Reinforcement
learning and reward shaping are discussed in Sections 3 and 4.
The main contribution of this paper is divided into two main
parts. In Section 5 our method to learn a potential function
for reward shaping in model-free RL is introduced, and in
Section 6 a corresponding algorithm for the model-based case is
presented. Each of thesemajor sections of the paper is additionally
divided into a number of sub-sections which introduce a given
approach, describe experimental settings and tested algorithms
and parameters, and end with a presentation and discussion of
obtained results. The paper ends with a review of related work in
Section 7 and a conclusion in the final section.

This paper extends the work presented at ICANN’08 (Grzes &
Kudenko, 2008a).

2. Markov decision processes

A Markov Decision Process (MDP) is a tuple (S, A, T , R), where
s ∈ S is the state space, a ∈ A is the action space, T (s, a, s′) is
the probability that action a when executed in state s will lead to
state s′, R(s, a, s′) is the immediate reward received when action a
taken in state s results in a transition to state s′ (Puterman, 1994).
The problem of solving an MDP is to find a policy (i.e., a mapping
from states to actions) which maximises the accumulated reward.
When the environment dynamics (i.e., transition probabilities
and a reward function) are available, this task becomes a
planning problem (Ghallab, Nau, & Traverso, 2004) which can be
solved using iterative approaches like policy and value iteration.
Policy and value iteration belong to a large family of dynamic
programming methods (Bertsekas, 2007).

3. Reinforcement learning

The policy and value iteration methods require access to an ex-
plicit, mathematical model of the environment, that is, transition
probabilities, T (s, a, s′), and the reward function, R(s, a, s′). When
such a model is not available, policy and value iteration cannot be
applied. However the concept of an iterative approach in itself is
the backbone of the majority of algorithms for learning a policy
when the model is not available. Algorithms for learning in the ab-
sence of the model are known as reinforcement learning (RL) (Sut-
ton & Barto, 1998) or neuro-dynamic programming (Bertsekas &
Tsitsiklis, 1996). Inmany problems, even if such an explicit, mathe-
matical model cannot be constructed, the system can be simulated
either directly or via a generativemodel (it is often easier to build a
generativemodel than an explicit MDPmodel of system dynamics;
TD-gammon of Tesauro (1994) or Tetris of Böhm, Kókai, andMandl
(2005) show that it may be useful to learn the policy directly from
simulation, that is, using a generative model of the environment,
without considering theMDPmodel of systemdynamics). This idea
of simulation-based dynamic optimisation is known as learning by
reward and punishment in the artificial intelligence literature (Sut-
ton & Barto, 1998).

The first approach to learn from simulation is to estimate the
missing model of the environment, i.e., T (s, a, s′) and/or R(s, a, s′),
using, for example, statistical techniques. The repeated simulation
is used to approximate or average the model. Once such an
estimation of the model is available, standard techniques for
solving MDPs, like policy and value iteration, are again applicable.
This approach is known as model-based RL (Sutton, 1990).

An alternative approach can be of potential interest when the
domain is huge and the approximate solution is satisfactory. The
so called model-free RL algorithms do not attempt to estimate the
model of the environment. Instead they directly estimate the value

function or a policy (Ng & Jordan, 2000) from repeated simula-
tion. In this way huge state spaces can be tackled, since there is no
need to estimate the model for such a number of states (Bertsekas,
2007). These algorithms can be based on so called temporal differ-
ence updates to propagate information about values of states, V (s),
or state-action pairs,Q (s, a). These updates are based on the differ-
ence of the two temporally different estimates of a particular state
or state-action value. Model-free SARSA is such a method (Sutton
& Barto, 1998). It updates state-action values by the formula:

Q (s, a)← Q (s, a)+ α[r + γQ (s′, a′)− Q (s, a)]. (2)

It modifies the value of taking action a in state s, when after exe-
cuting this action the environment returned reward r , moved to a
new state s′, and action a′ was chosen in state s′.

4. Reward shaping

When the agent is learning from simulation, the immediate
reward r which is in the update rule given by Eq. (2) represents
the (only) feedback from the environment. The idea of reward
shaping is to provide an additional reward which will improve the
performance of the agent. This shaping reward does not come from
the environment. It is extra information which is incorporated by
the designer of the systemand estimated on the basis of knowledge
of the problem. The concept of reward shaping can be represented
by the following formula for the SARSA algorithm:

Q (s, a)← Q (s, a)+ α[r + F(s, a, s′)+ γQ (s′, a′)− Q (s, a)],

where F(s, a, s′) is the general form of the shaping reward which
in our analysis is a function F : S × S → R.

Depending on the quality of the shaping reward, it can decrease
the time the algorithm spends attempting suboptimal actions.
This decrease is the main aim of applying reward shaping. Ng
et al. (1999) defined formal requirements on the shaping reward.
In particular, the optimal behaviour of the (model-free) agent is
left unchanged if and only if the shaping reward is defined as a
difference of some potential function Φ of a source state s and a
destination state s′ (see Eq. (1)). This can be further clarified in
the following way. When one has certain knowledge about the
environment (knowledge which may help decrease the number
of suboptimal actions the agent will attempt during learning),
this knowledge can be used in different ways. In some cases the
Q-table can be simply initialised based on this knowledge. The
theoretical work of Ng et al. (1999) proved that if instead of
initialising the Q-table, the same knowledge is used as a shaping
reward, the final solution of the agent will not be changed. One
of the most important implications of this fact, is that it allows
for a straightforward use of background knowledge in RL with
function approximation. It is not an obvious task of how to use
existing heuristics to initialise the Q-table which is represented
— for example, as a multi-layer neural network. The fact that
reward shaping can be equivalent allows for a straightforward
use of background knowledge in such cases. Heuristic knowledge
can be easily given via reward shaping even when the function
approximation with multi-layer neural networks is used for
function approximation. In the case of neural networkswith global
basis functions (Bishop, 1996) the use of reward shaping instead
of Q-table initialisation (assuming that such an initialisation could
be done easily) would have additional advantages. The consistent
reward shaping would be given all the time during the learning
process, whereas initialised values would change rapidly during
temporal-difference learning.

The work of Ng et al. (1999) and their requirement of potential-
based shaping rewards applies to model-free algorithms like
Q-learning or SARSA (Sutton & Barto, 1998). Recently Asmuth,
Littman, and Zinkov (2008) gave theoretically grounded conditions
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on the potential function Φ for a prototypical model-based algo-
rithmR-max (Brafman& Tennenholtz, 2002). In particular, Asmuth
et al. (2008) proved that the R-max algorithmwith potential-based
reward shaping preserves its properties; i.e., is PAC-MDP (Strehl, Li,
& Littman, 2006) if the shaping function is admissible. The notion of
admissibility here is similar to the meaning of admissible heuristic
functions in informed search (Russell & Norvig, 2002). The shaping
function is said to be admissible in the context of the R-max algo-
rithm ifΦ(s) ≥ maxa Q (s, a), that is, the shaping reward never un-
derestimates the reward (i.e., never overestimates the cost (Russell
& Norvig, 2002)). The notion of admissibility naturally extends to
the value function, for example, any arbitrary value function V ′(s)
can be said to be admissible if V ′(s) ≥ maxa Q (s, a).

The theoreticalwork discussed in the twopreceding paragraphs
specifies how to apply reward shaping in both model-free and
model-based settings. In particular, requirements on the potential
function Φ are determined. But, this work does not specify how
to obtain such knowledge and how to represent it as a heuristic
function. The main focus of this paper is how to approximate
the heuristic function online when it is not available or cannot
be specified manually, and when (according to the theoretical
requirements) reward shaping is defined as the difference of the
potential function Φ of consecutive states s and s′ (see Eq. (1)).
This reduces to the problem of how to learn the potential function
Φ . In particular two solutions are introduced in this paper. The
first one is designed for model-free RL. It is based on the multigrid
discretisation of the state space. The agent learns the target, ground
value function with desired resolution, and at the same time it also
learns another value function with lower resolution which is used
as an estimate of the potential function for shaping the ground
learning. It is worth noting that a particularly convenient potential
functionwould be the onewhich is equal to the value function, that
is, Φ(s) = V (s), which helps justify why roughly approximating
the value function is a promising approach for reward shaping (Ng
et al., 1999). The second approach is designed for model-based
RL and is based on the free space assumption which is used
in algorithms for learning heuristics in real time (LRTA*-type of
algorithms Rayner, Davison, Bulitko, Anderson, & Lu, 2007). The
free space assumption deals with initial uncertainty assuming
that all actions in all states are unblocked. In our algorithm the
statistical model of the underlying MDP, which is used for learning
a potential function (heuristic), is initialised according to the free
space assumption and is being further improved during repeated
simulation. Before each replanning step of the R-max algorithm the
potential function also undergoes replanning (value iteration) and
after that it is used as a potential function for the R-max algorithm.
Section 5 contains an introduction and the evaluation of the first
approach and Section 6 treats the model-based case.

5. Learning a potential function with multigrid discretisation

In this section an algorithm to learn a potential function for
reward shaping in model-free RL is presented. Firstly the state
aggregation is explained. Next the discussion of the new algorithm
is given followed by its empirical evaluation.

5.1. State aggregation

State aggregation represents one of the options for tackling the
state space explosion which arises in sequential decision mak-
ing, particularly when the mathematical model of the environ-
ment needs to have theMarkov property (Boutilier, Dean, & Hanks,
1999). It is based on aggregating states of the original MDP into
clusters, and treating these clusters as states of a newMDP. Such an
MDP can be solved easier since its state space can be significantly
reduced. States of the groundMDPare grouped according to a given

Abstract State Space

Original State Space

Continuous State Variable

Fig. 1. Multigrid discretisation of the continuous domain variable.

notion of similarity, and, in the ideal case, states within one clus-
ter should be indistinguishable with regard to the policy (e.g., all
states which are in the same abstract state have the same optimal
action). When states within aggregates are distinguishable in this
sense, such aggregation is approximate. The fact, towhat extent the
states which belong to one cluster differ, determines the quality of
the approximate representation. The trade-off between high qual-
ity approximation and tractability of solving an MDP needs to be
considered. In this section we propose a RL architecture in which
the original RL problem can be represented with the desired pre-
cision (i.e., the algorithm can reach the optimal solution) whereas
the high level approximation (even though of a low quality) can
improve the convergence of ground learning.

In this section we investigate the particular case when the
continuous state space is discretised to form the discrete state
space for which the value function can be represented in a tabular
form. The state aggregation for high level learning can be easily
obtained by applying discretisation with bigger intervals (see
Fig. 1). Low level discrete states are used to learn the actual solution
to the original problemand learning on abstract stateswith a rough
approximation provides useful guidance.

5.2. Learning a potential function for reward shaping

We propose a RL architecture with two different discretisations
of the state space. The first one is to learn an approximation of
the Q-function at the ground RL level. The second one which has
lower resolution is to represent an abstract V-function which is
used as the potential function to calculate the shaping reward (see
Eq. (1)) for the ground level. The algorithm which is proposed
here builds on two techniques existing in the field: (1) multigrid
discretisation used with MDPs (Chow & Tsitsiklis, 1991) and (2)
automatic shaping which was recently proposed (Marthi, 2007).

The multigrid discretisation in the MDP setting (Chow & Tsit-
siklis, 1991) was used to solve MDPs in a coarse-to-fine manner.
While this technique iswell suited to dynamic programmingmeth-
ods, (a coarse problem can be solved and used as a starting point
for the solution on a finer grid) therewas no easyway tomerge lay-
ers with a different resolution when applied to RL algorithms. First
such attempts were made in (Anderson & Crawford-Hines, 1994)
and this problemwas evident there. The need for knowledge of the
topology of the state space is necessary in their solution to define
how multiple levels are related, but this fact made this approach
infeasible for RL tasks. It used a multigrid as a way of obtaining
knowledge, but the mechanism to use this knowledge at a ground
RL level was missing. We propose potential-based reward shaping
as a solution to these problems. The ground RL algorithm does not
have to be modified and knowledge can be given in a transparent
way via reward shaping.

In the automatic shaping approach (Marthi, 2007) an abstract
MDP is formulated and solved. In the initial phase of learning,
the abstract MDP model is built and, after a defined number of
episodes, the abstract MDP is solved exactly and its value function
used as the potential function for ground states. In this paper, we
propose an algorithm which applies a multigrid strategy when a
continuous state space is discretised to be represented in a tabular
form. Instead of defining an abstract task as dynamic programming
for solving an abstract MDP, we use RL to solve the high level task
online. Because such an abstract RL does not need to learn the
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Algorithm 1 SARSA-RS: Multigrid SARSA with potential-based
reward shaping from the value function of aggregated states.

1: ∀s, aQ (s, a) = 0, ∀zV (z) = 0, t = 0
2: z ← aggregating state for s
3: a← random action in state s
4: repeat

5: z ′ ← aggregating state for s′

6: t = t + 1
7: rv = rewardv(r)
8: if rv 6= 0 or z 6= z ′ then
9: V (z) = (1− αv)V (z)+ αv(rv + γ t

vV (z ′));
10: t = 0
11: end if

12: F(s, s′) = γvV (z ′)− V (z)
13: z = z ′

14: a′ ← best action in state s′

15: with probability ǫ: a′ ← random action in state s′

16: Q (s, a) = (1− α)Q (s, a)+ α(r + F(s, s′)+ γQ (s′, a′))
17: s = s′; a = a′

18: until state s is terminal

model, a shaping reward can be provided right from the start of
learning. Additionally, the multigrid discretisation yields a natural
translation between ground and abstract levels. Our method
does not require any more knowledge about the environment
than necessary to define discretisation at the ground level. We
do not need methods to translate abstract to ground states or
approximating environment dynamics (transition probabilities) at
an abstract level. We propose an algorithm which, in contrast to
the shaping approach ofMarthi (2007), is entirelymodel-free, does
not increase computational requirements, and is straightforward
to apply with minimal knowledge about the domain.

Algorithm 1 summarises our approach. It follows the structure
of SARSA from (Sutton & Barto, 1998). In our case learning at the
ground level is the same as in the base-line. The modification is
the point where basic SARSA is given the shaping reward F(s, s′) in
Line 16 of Algorithm 1 where the temporal difference for ground
states is computed. The way in which F(s, s′) is evaluated defines
our extension.

The shaping reward F(s, s′) is computed in Line 12 as the dif-
ference of the value function of current and previous states visited
by the agent. Thus Φ(s) = V (z) where V (z) is the value function
of the abstract level and state s is aggregated by given state z. The
value V (z) is learned using temporal difference updates (Line 9).
All parameters that relate to this task have subscript v in the al-
gorithm. The mapping from state s to a corresponding state z is
done in a straightforward way without any special knowledge. Ba-
sically, abstract states z aggregate ground states s and subsump-
tion can be easily determined. However with optional, additional
knowledge about the problem, such a mapping can remove some
state variables in the abstract representation and appropriately fo-
cus the high level learning.

High level RL is treated as a Semi-MDP (Sutton, Precup, & Singh,
1999) since, due to higher generalisation, an agent can be several
time steps within one high level position. For this reason, time t is
used when the temporal difference in Line 9 is computed.

The generic function rewardv(r) shows that high level learning
can receive an internally modified reward. The fact which may be
considered when defining this function is that the shaping reward
should not obscure the reward given by the environment because it
may lead to suboptimal solutions when, for example, the potential
function is based on non-admissible heuristic.

5.3. Experimental methodology

Algorithm 1 was evaluated empirically on the Mountain Car
task with a continuous state space (Sutton & Barto, 1998). The

following values of common RL parameters were used: α = 0.1,
αv = 0.1, γ = 0.99 and γv = 0.99. In all experiments ǫ-
greedy exploration strategy was used with ǫ decreasing linearly
from0.3 in the first episode to 0.01 in the last episode. All runswere
repeated 10 times and average results are presented in graphs. The
x-axis represents the number of completed episodes, and the y-axis
represents numerical rewards. Following the evaluation process
from recent RL competitions, the accumulated reward (part b)
of each figure) over all episodes was also used as a measure to
compare results in a more readable way. Error bars of the standard
error of the mean (SEM) are also presented in graphs for the
accumulated reward.

To investigate how well the proposed algorithm scales to big
problems, different discretisations for the low-level learning were
applied. In this way, a range of problems with 231 to 104 states
was obtained for the analysis. Such an empirical methodology was
used in the related literature (e.g., by Wingate and Seppi (2005))
and allows for better understanding of properties of evaluated
algorithms, especially scalability to bigger problems.

The experiments were performed on the Mountain Car task
according to the description in (Sutton & Barto, 1998). The agent
received a reward of 1 upon reaching the goal state on the right
hill and −1 on the left hill. Function rewardv(r) returned zero for
negative r and an unchanged value for positive r . An experiment
was terminated and the agent placed in a random position after
reaching any of the two goal positions or after 103 episodes. Three
different discretisations were used with 11 × 21 (these smallest
values were taken from (Epshteyn & DeJong, 2006)), 40 × 40 and
100 × 100 intervals on correspondingly the position and velocity
of the car. For these discretisations, high level states aggregated 4,
8 and 20 ground states accordingly.

5.4. Results

The resultswith three discretisations introduced in theprevious
section are in Figs. 2–4 respectively. As these problems gradually
become more difficult, the number of episodes was increased in
more difficult versions, leading to numbers 104, 2 ·104, and 5 ·104.

The most essential observation which supports the significance
of Algorithm 1 is that the bigger the instance of the problem,
the bigger the positive influence this algorithm has. Particular
comparisons can be read from the graphs. On the easiest task the
accumulated reward of SARSA is 1500 and SARSA-RS 2500 after
the same number (104) of episodes (Fig. 2b). On the 40×40 version
when SARSA obtains 1500, SARSA-RS has already scored 4500 after
the samenumber (in this case 2·104) of episodes (Fig. 3b). Themost
difficult 100× 100 version shows further improvement of reward
shaping (Fig. 4b).When SARSA obtains 1500, SARSA-RS gains about
7200 after the same number (about 4.7 · 104) of episodes. This
relationship can be also found, though in a less clear way, in graphs
presenting average reward per episode in the (a) part of each
figure. This observation clearly shows that the positive influence of
our algorithm is more evident when the problem is more difficult
(in terms of the number of states).

Learning becomes more difficult when the problem becomes
bigger, but the advantage of SARSA-RS when compared with pure
SARSA is significant in all cases. Error bars placed in graphs for
the accumulated reward indicate that this difference is statistically
significant.

6. Learning a potential functionwith the free space assumption

In this section an algorithm to learn a potential function for re-
ward shaping in the model-based R-max algorithm is introduced.
Since the method suggested in this section to learn the potential
function is specific to particular properties of the R-max algorithm,
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Fig. 2. The average reward per episode (a) and the average cumulative reward (b) on the Mountain Car task with discretisation 11× 21 and aggregation of 4 states.
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Fig. 3. The average reward per episode (a) and the average cumulative reward (b) on the Mountain Car task with discretisation 40× 40 and aggregation of 8 states.

a b

Fig. 4. The average reward per episode (a) and the average cumulative reward (b) on the Mountain Car task with discretisation 100× 100 and aggregation of 20 states.

and also attempts to preserve the theoretical convergence proper-
ties of this algorithm, the introduction to our method starts with
an explanation of how the R-max algorithm works. Next, the free
space assumption is explained. After that, our approach to learn
reward shaping for the R-max learning is discussed, and the em-
pirical evaluation of the proposed method is presented in the final
part of this section.

6.1. R-max and reward shaping

The R-max algorithm is a prototypical model-based algorithm
which is PAC-MDP (Strehl et al., 2006), that is, the number of
suboptimal steps is bounded polynomially by relevant parameters.
The theoretical properties of this algorithm, the fact that it is
becoming popular in the reinforcement learning literature, and
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also that it has been recently analysed with regard to reward
shaping (Asmuth et al., 2008), makes it a good candidate for our
analysis. In particular, our approach proposed in this paper is in
accordance with the theoretical assumptions of R-max learning.
The R-max algorithm applies the approach of optimism under
uncertainty. Specifically, it initially assumes that all state-action
pairs lead deterministically to the goal state, and the maximum
value of the reward, R-max (i.e., R-max = max(s,a,s′) r(s, a, s

′)
when γ = 1, or R-max = max(s,a,s′) r(s, a, s

′)/(1 − γ ) when
γ < 1), is given after each transition in this model. For dynamics
defined in this way, the value function is computed using value
iteration:

Q (s, a)←
∑

s′

R(s, a, s′)+ γ
∑

s′

[T (s, a, s′)max
a′

Q (s′, a′)]. (3)

After that, the agent acts in the environment (real or simulated)
following the policy defined by the current value function. When
samples are drawn from the environment, the agent improves
its estimation of the model. Specifically, for each tuple 〈s, a, s′, r〉
obtained from the environment, the agent increases counters
c(s, a, s′) ← c(s, a, s′) + 1 and t(s, a, s′) ← t(s, a, s′) + r .
The precision of the R-max algorithm is regulated through the
parameter m which depends on specific figures which define
the precision of the method. The higher the value of m the
more precise the model is and the more accurate value function
calculation according to this model (Brafman & Tennenholtz,
2002). If, for a given state-action pair

∑
s′ c(s, a, s

′) ≥ m, the initial
model for particular state-action pair is replaced by T (s, a, s′) =
c(s, a, s′)/

∑
s′′ c(s, a, s

′′) and R(s, a, s′) = t(s, a, s′)/c(s, a, s′). The
value iteration (Eq. (3)) is performed every time a new state-action
pair becomes known, that is, when its

∑
s′ c(s, a, s

′) reaches the
value of m. When no new state-action pairs become known, the
algorithm follows a near-optimal policy which is represented by
the current value function obtained from the last planning step (Eq.
(3)).

The potential-based reward shaping for both model-free and
model-based RL was introduced in Section 4. The planning step of
the R-max algorithm can have the following form when this type
of reward shaping is used:

Q (s, a)←
∑

s′

R(s, a, s′)+ F(s, s′)

γ
∑

s′

[T (s, a, s′)max
a′

Q (s′, a′)],
(4)

where F(s, s′) is computed according to Eq. (1), that is, it is a
difference of the value of the potential functionΦ of states s′ and s.
Thus, in this section (analogically to the previous section) our aim
is to learn the potential function Φ . According to the introduction
in Section 4, we have to take into account the fact that the potential
function has to be admissible if we want to preserve convergence
properties of the R-max algorithm. The following subsection aims
at introducing the algorithm to learn this function online, that is,
at the same time, as the actual R-max learning takes place. The free
space assumption (Rayner et al., 2007) is used in this algorithm.

6.2. Free space assumption and learning a potential function

The free space assumption (FSA) is an approach to define an ini-
tial model of the environment which assumes that all transitions
in the environment are possible (in navigation robotic environ-
ments it would assume that there are no walls between all adja-
cent states), and that all actions are deterministic and always lead
to the expected state, that is, a state which has the highest proba-
bility in the actual stochastic model of the environment. Thus, this
approach assumes that all actions always lead to their expected ef-
fects (Rayner et al., 2007). In the hypothetical robotic environment,

ab

c

d ab

c

d ab

c

d

a b c

Fig. 5. Probabilistic actions in a stochastic environment. Solid lines show expected

effects of actions, and dashed lines show low-probability unexpected failures. Solid

lines between circular states reflect no connectivity (walls) between those states.

it would mean that an action move forward, always moves the
robot from a given state to the state in front of the robot, ignoring
any existing walls and probabilistic effects of actions like, for ex-
ample, slippery surface which would slow down the robot’s move-
ment or change the direction of itsmotion. A part of the state space
with stochastic actions, and blocked transitions between neigh-
bouring states is shown in Fig. 5.

An important property of the model defined according to the
free state assumption is that it leads to an admissible value function
when compared to the value function which corresponds to the
true model and when the same reward is used in both cases.
Since the probabilistic effects and obstacles are ignored, the value
function computed with this model is always higher than the true
value. Thus, the value function of the initial FSA model can be
seen as a first option to provide an admissible potential function
to the R-max algorithm with reward shaping. In domains where
the admissible heuristic cannot be (easily) defined manually, the
use of the free space assumption yields a potential solution to the
problem of determining the admissible heuristic.

The initial FSA model can be defined before the agent starts its
interaction with the environment. The key idea of our algorithm
which is presented in the next subsection is that this initial
FSA model can be further revised, using the same experience
(i.e., tuples 〈s, a, s′, r〉 obtained from the environment) as the basic
R-max algorithm. The potential problem of this idea is that the
straightforward incremental modification of the FSA model may
lead to changes which will make this model non-admissible, that
is, the value function computed according to this model would not
be admissible. A more detailed discussion of this issue together
with a solution is in the next subsection where the full algorithm
is presented.

6.3. Learning a potential function for R-max

In this subsection a new approach to R-max learning with
reward shaping is proposed. The main aim is to obtain the R-
max algorithm with reward shaping which can be used when the
admissible heuristic cannot be specified manually. The approach
based on the free space assumption is presented in Algorithm 2. It
is a standard R-max solution enhanced by the mechanism to learn
a potential function Φ .

In the first instance, the models of the environment are ini-
tialised. In Line 1 the R-max model is initialised according to the
description of the standard R-max algorithm in Section 6.1, and in
Line 2 the initial FSA-model is created according to Section 6.2. The
next two lines use these models to compute the potential function
Φ and the value function of the R-max algorithm. The VI method
implements standard value iteration (Eq. (3)) and VI-RS is with re-
ward shaping according to Eq. (4). Since VI-RS requires the poten-
tial functionΦ to compute F(s, s′) in Eq. (4),Φ has to be computed
before VI-RS is executed. In Line 6 the current state s is initialised
to the start state, and the algorithm enters themain loop after that.

The first step of each iteration of the main loop is to decide
on the action for the current state. The current value function is
used to make this decision, that is, an action with the highest
value is always chosen (ties are broken randomly). In Line 9 the
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Algorithm 2 RS-FSA: The R-max algorithmwith online learning of
potential-based reward shaping via the free space assumption.

1: R-model← initialise the R-max model
2: FSA-model← initialise the FSA model
3: Φ ← VI(FSA-model)
4: R-value-function← VI-RS(R-model, Φ)
5:

6: s← the start state
7: repeat

8: a← choose an action using R-value-function
9: (s′, r)← execute a in state s

10: known← R-model.observe(s, a, s′, r)
11: FSA-model.observe(s, a, s′, r)
12: if known then {a new state became known in the R-max model}
13: Φ ← VI(FSA-model)
14: R-value-function← VI-RS(R-model, Φ)
15: end if

16: if for the first time ¬known in at least k episodes then
17: FSA-model← increase FSA transitions
18: Φ ← VI(FSA-model)
19: R-value-function← VI-RS(R-model, Φ)
20: end if

21: if s′ is terminal then
22: s← the start state
23: else

24: s← s′

25: end if

26: until terminal condition

sampling from the environment takes place, and the next state
and the corresponding reward are returned by the environment.
This experience tuple is used for updating models (the R-model in
Line 10 and the FSA-model in Line 11). The update of the R-model is
according to the description in Section 6.1, and themethod observe
of this model returns true when the executed update made the
state-action pair (s,a) known to this model, that is,

∑
s′ c(s, a, s

′)
reached the value ofm for the first time. Updates of the FSA-model
increase corresponding counters.

As was discussed in Section 6.1, the planning steps of the R-
max algorithm are executed only when a new state-action pair
becomes known. For this reason this fact is checked in Line 12, and
re-planning takes place in Lines 12–15. After that the current state
can be updated in Lines 21–25, and the algorithm continues to the
next iteration of the loop.

The piece of code in Lines 16–20 has been omitted on purpose
in the previous discussion since it requires a more detailed
explanation. The problem which should be discussed here stems
from the fact that the way the FSA-model is updated in Line 11 –
that is, by increasing counters for the corresponding observation
tuple – may lead to the value of Φ which is not admissible. The
probability of this situation is very low (because of the prior for
FSA-transitions specified according to the free space assumption
— for details see Section 6.2), however it can be the case that
the model which is obtained is not admissible. It may again
become admissible once more observations will be sampled and
used to update the model. To deal with this problem the code
in Lines 16–20 was added. The following reasoning supports
this. The problem which is tackled here stems from the fact
that the estimate of dynamics for a particular state-action pair
may be not admissible when the number of observed tuples is
small. However, the theoretical properties of the R-max algorithm
allow one to accept the model for a particular state-action pair
when it was experienced at least m times. If the value of m is
sufficiently high (according to relevant parameters which define
the precision of the final result) the estimate of transition dynamics
are considered to be sufficiently accurate. The algorithmic trick
which we propose here is to re-initialise the counters of the FSA-
model when the algorithm stabilises. More precisely, during the

S

G

Fig. 6. The stochastic navigation maze domain.

initial phase of learning, the FSA-model is being updated just by
increasing corresponding counters. When the algorithm stabilises
– that is, there are nomore planning steps over a specified number
of episodes k – the FSA-model is re-initialised in a special way.
The re-initialisation takes place only for those state-action pairs for
which

∑
s′ c(s, a, s

′) < m, that is, for those pairs which have not
been experienced well enough to be considered as known in the
sense of the R-maxm parameter. If such pairs are found in the FSA-
model, then counters of those transitions which follow the free
space assumption (i.e., those which were initially initialised to 1 in
Line 2) are increased by the value ofm−

∑
s′ c(s, a, s

′). In this way
they become known in the sense of the R-max m parameter, and
furthermore they will also lead to an admissible potential function
Φ when comparedwith the value function of the R-max algorithm.
The potential functionΦ is estimated again after this step (Line 17),
and the value function computed again usingΦ for reward shaping
(Line 18). If the previous potential functionwas not admissible, the
new value function will lead to additional exploration of the state
space, since the new potential function Φ is surely admissible in
the sense of the value m of the R-max algorithm.

6.4. Experimental methodology

Algorithm 2 was evaluated empirically on the navigation maze
task that is shown in Fig. 6. It is a stochastic domain. Each action
can result in its expected outcome with probability 0.8, and slip
into one of two perpendicular directions with probability 0.1 for
each of these directions (see Fig. 5a). The reward of−0.01 is given
for the execution of each action. For the transition to the goal
state G, the agent receives additional reward of the value of 1. The
start state is marked with S. Blocked transitions (walls) between
states are marked as solid lines between corresponding states. The
learning problem in this environment is formulated as follows.
The RL agent has to learn the highest reward path from the start
state S to the goal state G without knowing in advance transition
probabilities of the environment. Without much loss of generality
the reward model is assumed be known to the agent, what is
commonly assumed in the relevant literature (Asmuth et al., 2008).

The following values of parameters were used: m = 5, and
k = 100. The value of 100 for parameter k was to ensure that the
re-initialisation of the FSA-model is done when the exploration of
the algorithm stabilises. The value of 1 was assigned to the MDP
discount factor γ . Experiments were conducted on a number of
algorithms:

1. R-max - the standard version of the R-max algorithm.
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a b

Fig. 7. The cumulative reward plotted as a function of: (a) the number of learning episodes, and (b) the overall number of samples.

2. R-max-RS - the R-max algorithm with reward shaping accord-
ing to Asmuth et al. (2008), the potential functionwas evaluated
asΦ(s) = rs×d(s)/̺+ rg , where rs ≤ 0 is the step reward, d(s)
is the shortest straight-line distance from state s to the goal G,
̺ the probability of the expected outcome of the action, and rg
the reward given when the goal state is reached.

3. RS-FSA-init is Algorithm2 inwhich the initial FSA-model is used
during the entire learning process.

4. RS-FSA stands for the full version of the Algorithm 2, that is,
with refinement of the FSA-model, recalculation of the potential
function Φ and final re-initialisation to ensure an admissible
potential function with regard to the parameterm.

In all graphs in this section all evaluationswere computed for 30
runs of all algorithms. Similarly to the previous section we plotted
the cumulative score of each algorithm as a function of the number
of episodes. Additionally, in this analysis the cumulative reward is
drawn also as a function of the overall number of samples. This
is important here, since the R-max type of learning is aimed at
sample complexity reduction (Kearns & Singh, 2002). The error
bars of the standard error of the mean (SEM) (Cohen, 1995) were
also calculated and plotted. However the error range was very
small in this experiment, and thus each interval resulted in a single
point on our graphs, whichmeans that presented curves have very
low variance and indicates that differences in obtained results are
statistically significant. For this reason error bars are not present in
the final version in Fig. 7.

6.5. Results

Fig. 7 shows the cumulative reward obtained by the four learn-
ing algorithms. The number of learning episodes was 1500. For
better readability of results, Fig. 7a shows the cumulative reward
in the first 300 episodes, the full range of episodes is additionally
placed in the bottom-right corner of this figure.

The R-max algorithm without reward shaping has the lowest
learning performance. R-max-RS which uses the hand-coded
heuristic based on the straight line distance to the goal shows
significant improvement. This kind of improvement is generally
expected, and this kind of an admissible heuristic can be designed
manually by a human. Our goal in this paper was to tackle the
problem of reward shaping when such a heuristic cannot be easily
designed, and thus our goal was to perform better then pure R-
maxbut not necessarily better than a good, hand-coded, admissible
heuristic. It turned out that already the RS-FSA-init version of
our algorithm performed as well as R-max-RS. Curves for these
two algorithms overlap after around 50 episodes of learning. The

further refinement of the FSA-model in the RS-FSA algorithm and
the use of this model to compute the new potential function Φ

online resulted in further improvement. The full range of episodes
in the bottom-right corner of Fig. 7a shows additionally that all
lines are ideally parallel in the final period of learning, which
means that all algorithms reach the same asymptotic convergence.

The R-max algorithm is intended to reduce the sample
complexity (this can be a critical issue of applying a RL solution
when sampling from the real environment is costly). For this
reason in Fig. 7b the cumulative reward is also presented as a
function of the overall number of samples. When the full range of
episodes is concerned, the advantage of reward shaping solutions
is more evident in Fig. 7b than in Fig. 7a. It means that even
though reward shaping leads to a more rapid improvement in
terms of the number of learning episodes, the relative difference
is more significant in terms of the number of samples. This relative
difference can be identified when the full experiment is compared,
that is, Fig. 7b is compared with the bottom-right part of Fig. 7a.
Curves are much further apart in Fig. 7b which shows a bigger
difference.

Overall, the approach proposed in this section to learn the po-
tential function for reward shaping online was shown to be suc-
cessful, and can be considered when the heuristic function cannot
be designedmanually. Furthermore, the proposed approach is also
competitive to hand-coded heuristics and, in the face of obtained
results, can also be considered when such a heuristic is available.

7. Related work

In Algorithms 1 and 2 learning takes place at two levels of
abstraction/model, and so it is worth relating this approach to
the general concept of hierarchical machine learning. Stone and
Veloso (2000) proposed the universal idea of layered learning
where the search space of hypotheses can be reduced by a bottom-
up, hierarchical task decomposition into independent subtasks.
Each local task is solved separately, and tasks are solved in a
bottom-up order. The distinguishing feature of this paradigm is
that the learning processes at different layers do not interact with
each other and different machine learning algorithms can be used
at different layers. In particular, RL was applied to learn in this
architecture (Stone & Veloso, 2000); i.e., to learn at a particular
layer. Because tasks are solved independently using results from
learning at lower layers, the algorithms proposed in our paper can
be seen as a potential choice for selected subtasks.

When relating Algorithms 1 and 2 to hierarchical reinforcement
learning it is worth taking note of how the hierarchy interacts with
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reinforcement learning in such algorithms. Regardless of the type
of abstraction used to create a hierarchy (e.g., state abstraction,
hierarchical distance to the goal (Kaelbling, 1993; Moore, Baird, &
Kaelbling, 1999), feudal reinforcement learning (Dayan & Hinton,
1993), temporal abstraction (Parr & Russell, 1997; Sutton et al.,
1999), or both state and temporal abstractions (Dietterich, 2000)),
the hierarchy exists in the final representation of the solution;
i.e., the policy is defined on this hierarchy, and learning may
take place at all levels of the hierarchy simultaneously. The
value function is a function of not only the ground states and
actions but also some elements determined by the hierarchy
(e.g., in Parr & Russell, 1997) HAMQ-learning maintains an
extended Q-table Q([s,m],a) indexed by the pair of states, which
includes environment state s, and machine state m, and an action
a at a choice point. In Algorithms 1 and 2 the actual RL is not
modified and the high level learning provides feedback which
is given in a transparent way via reward shaping. There is also
no need for knowledge about the hierarchal task decomposition,
as in the basic case the knowledge which is used to design
the state representation is sufficient to deploy Algorithm 1, and
knowledge which allows defining the free space transitions to
apply Algorithm 2. In particular they can be applied when the
hierarchical task decomposition is not possible or difficult to
distinguish or incorporate into the solution.

A related approach to learning the potential function for reward
shaping was investigated by the authors of this paper in Grzes
and Kudenko (2008b). In this case, symbolic knowledge which is
represented in the form of STRIPS operators is used to create a
high level symbolic plan (Ghallab et al., 2004). The symbolic plan
is then translated into the potential function for reinforcement
learning. This approach is effective in providing useful guidance to
the learning agentwhen thehigh level symbolic representation can
be identified. Such a representation should allow creating STRIPS
operators and defining the planning problem. The work presented
in the current paper does not have this requirement and can be
applied to a broader range of scenarios.

8. Conclusion

Reward shaping is a powerful technique to incorporate
background knowledge into RL agents. One problem with this
approach is that often detailed knowledge of the potential function
of states is not available, or very difficult to represent directly
in the form of a shaped reward. For this reason, this paper
discusses solutions which allow applying the potential-based
reward shaping when the potential function cannot be defined
manually.

Two algorithms are proposed in this paper. The first one is
to learn the potential function in model-free RL, and the second
one in the model-based RL. Both these algorithms apply the same
paradigm of estimating the value function at an abstract level and
the use of this value function as a potential function for the actual
learning task.

The first algorithm, which is designed for model-free RL and is
described in Section 5, is based on the multi-grid discretisation
of the state space. The state space with higher generalisation
is used to learn a high level value function which is treated as
a potential function for reward shaping of the actual learning
process. The theoretical and empirical analysis of this approach can
be summarised as follows:

• simultaneous learning of the potential function and the actual
policy in the model-free setting can converge to a stable
solution,
• the algorithm proposed in this paper may yield significant

improvement of the convergence rate,when the bigger instance
of the problem is considered with a fine grained policy
(i.e., based on a more expressive representation) to be learned,

• improved convergence speed is achieved at a low computa-
tional cost, because there is at most one backup of the V-
function for each SARSA backup,
• a separate and external representation of knowledge is

obtained and this high level knowledge may be useful for
knowledge transfer (Taylor & Stone, 2005),
• no need for explicit domain knowledge; in the basic form the

high level learning can be defined using the same knowledge
which is used to design the state representation at the ground
level,
• in general, the application of this algorithm can be considered

whenever state aggregation or, in other words, grouping of
original states, can be applied,
• in domains with structural dependencies between groups of

state variables, the high level representation may additionally
ignore some state variables which could lead to tremendous
improvement of reward shaping in this algorithm.

The second approach, which is for model-based RL, applies
the free space assumption to create and refine the model
of environment dynamics for learning the potential function.
The theoretical and empirical analysis of this approach can be
summarised as follows:

• the theoretical properties of the underlying R-max algorithm
are entirely preserved by the proposed solution,
• the algorithm is specifically useful when the admissible

heuristic cannot be easily created and the initial model which
is based on the free space transitions can be identified,
• according to the obtained results, the use of this algorithm can

be considered even when a good heuristic can be designed
manually, as our approach can further improve learning with
reward shaping,
• our algorithm leads to the reduction of the sample complexity

which follows the main practical aim of the model-based R-
max algorithm, that is, the aim of maximal sample complexity
reduction of the learning algorithm (Brafman & Tennenholtz,
2002; Kearns & Singh, 2002).

The final discussion of the paper aims at analysing potential
problems of the proposed approaches andhelps the reader to judge
their application potential in particular domains.

The technique proposed in Section 5 is applicable to the general
range of RL problems with a very limited background knowledge.
The algorithm attempts to learn the heuristic function from a
reduced representation. Therefore, even though this approach is
flexible, it is strongly dependent on the design of the high level
representation. The process of designing a suitable abstraction for
learning of reward shaping is a mixture of art and engineering.
Both approaches presented in this paper aim at rapid learning of
the heuristic function which can guide the actual learning process.
The first question which should be answered at the beginning is
what kind of a heuristic function is to be learned at the abstract
level, i.e., what kind of information should it provide to the
learning algorithm. When an answer to this question is available,
the abstraction should contain those state features which will be
sufficient to represent the required heuristic function. Failure in
identifying all features which are correlated with the required
behaviour or inclusion of irrelevant features will result in learning
wrong information or a very slow learning of heuristics. The overall
success depends on particular engineering design. However, in the
case of complex RL domains with many sets of correlated features,
more than one heuristic function could be learned and used for
reward shaping.

Reinforcement learning with reward shaping could be named
informed reinforcement learning in a similar manner as informed
search is distinguished from uninformed search (Russell & Norvig,
2002). Informed approaches which are based on heuristics are
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designed to perform more directed search or learning. The overall
improvement of the R-max algorithm with reward shaping can be
therefore inferred in the sameway as the improvement of the best-
first search algorithm is predicted over the Dijkstra’s algorithm
which is a special case of the best-first search algorithm when the
heuristic function is always zero. Overall, we can expect that R-
max with reward shaping will work better in similar situations
where best-first search works better than Dijsktra’s algorithm,
and this fact makes the general idea of reward shaping for R-
max rather strong. Thus the main shortcoming of our approach
to learning the shaping reward is the fact that knowledge about
the goal state and the free space assumption is required. But,
this knowledge is usually available when the heuristic function is
not. With this knowledge, one can not only deal with situations
when the heuristic function is not available but also gain further
improvement over manually designed heuristics if they exist.
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