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ALTERNATIVE CRITERIA FOR THE BOUNDEDNESS OF

VOLTERRA INTEGRAL OPERATORS IN LEBESGUE SPACES

VLADIMIR D. STEPANOV AND ELENA P. USHAKOVA

Dedicated to Professor Josip Pečarić

on the occasion of his 60th birthday

Abstract. Three different criteria for Lp − Lq boundedness of Volterra integral operator (1.1)

with locally integrable weight functions w,v and a non-negative kernel k(x,y) satisfying Oinarov’s

condition for each case 1 < p � q < ∞ and 1 < q < p < ∞ are given. Relations between com-

ponents of the boundedness constants are described.

1. Introduction

Let −∞ � a < b � ∞ and let v and w be locally integrable non-negative weight

functions on (a,b). In the theory of integral operators a progress of the last three

decades is related with the study of Volterra operators

K f (x) : = w(x)

∫ x

a
k(x,y) f (y)v(y)dy, x ∈ (a,b), (1.1)

in Lebesgue spaces. Except an independent interest such transforms play an important

role in applications to the spectral theory, integral and differential equations, embed-

dings of Sobolev spaces (see, for instance the monographs [2], [8], [12] and the papers

[1], [3], [10], [11], [13], [14], [15], [16], [17], [19], [20], [21], [22]).

The first step in the study of (1.1) is the boundedness and compactness criteria

which quality plays a crucial role for a further estimate of characteristic numbers and

other applications. As an example we mention the operator (1.1) with k(x,y) = ρ(x) �

0, which was studied in the frame of the Sturm-Liouville equation theory [4]. This

and other results rooted from the Hardy inequality [6], were later generalized by many

authors and reached a kind of a final form on the class of Oinarov’s kernels k(x,y) � 0

such that

D−1k(x,y) � k(x,z)+ k(z,y) � Dk(x,y), b � x � z � y � a, (1.2)
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with a constant D � 1 independent on x, y, z. Typical examples of such kernels are

the Riemann-Liouville operator with the kernel k(x,y) = (x−y)α−1
+ for α � 1, integral

kernels k(x,y) =
(∫ x

y h(z)dz
)γ

, γ � 0, h(z) � 0, and their combinations.

Let 0 < p � ∞, −∞� a < b � ∞,

‖ f‖p =

⎧
⎪⎨
⎪⎩

(∫ b
a | f (x)|p dx

) 1
p
, 0 < p < ∞,

ess sup
x∈[a,b]

| f (x)| , p = ∞.

Denote p′ := p/(p−1) for 0 < p < ∞, p �= 1 and define the Lebesgue space Lp[a,b]
as a set of all measurable function f on [a,b] such that ‖ f‖p <∞. If a = 0 and b =∞
we denote Lp := Lp[0,∞). Without a loss of generality we assume functions f and

weights w , v to be non-negative throughout the paper.

Let the kernel k(x,y) � 0 of Volterra integral operator (1.1) be satisfying the con-

dition (1.2) and the constant C in the inequality

‖K f‖q � C‖ f‖p (1.3)

is the least possible, that is equal to the norm ‖K‖Lp→Lq
. It is known [18], that if

0 < p < 1 and K : Lp[a,b] → Lq[a,b] then w(x)k(x,y)v(y) = 0 for almost all (x,y),
therefore K is the null operator. For p = 1< q <∞ and 1 < p < q=∞ the boundedness

of K from Lp[a,b] to Lq[a,b] is characterized by the following known criteria.

THEOREM 1.1. [7, Chapter XI, § 1.5, Theorem 4] Let the operator K be given

by (1.1). Then, if 1 � q < ∞, we have

‖K‖L1[a,b]→Lq[a,b] = esssup
t>0

∥∥χ[a,·](t)k(·,t)w(·)v(t)
∥∥

q
.

If 1 < p � ∞ and 1/p+1/p′ = 1, then

‖K‖Lp[a,b]→L∞[a,b] = esssup
t>0

∥∥χ[a,·](t)k(t, ·)w(·)v(t)
∥∥

p′
.

Denote r := pq/(p−q) for 0 < q < p < ∞ and put

Iv f (x) :=
∫ x

a
f (y)v(y)dy, I∗wg(y) :=

∫ b

y
g(x)w(x)ds,

V (x) :=
∫ x

a
[v(y)]p

′
dy, W (y) :=

∫ b

y
[w(x)]qdx,

V1(x) :=
∫ x

a
k(x,y)[v(y)]p

′
dy, Vp(x) :=

∫ x

a
[k(x,y)]p

′
[v(y)]p

′
dy,

W1(y) :=
∫ b

y
k(x,y)[w(x)]qdx, Wq(y) :=

∫ b

y
[k(x,y)]q[w(x)]qdx
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To characterize the Lp −Lq boundedness of K we need the following constants

A := max(A0,A1) , A0 := sup
t∈(a,b)

A0(t) = sup
t∈(a,b)

[Wq(t)]
1
q [V (t)]

1
p′ ,

A1 := sup
t∈(a,b)

A1(t) = sup
t∈(a,b)

[W (t)]
1
q [Vp(t)]

1
p′ ;

A := max(A0,A1) , A0 := sup
t∈(a,b)

A0(t) = sup
t∈(a,b)

[V (t)]−
1
p

(∫ t

a
[V1(x)]

q[w(x)]qdx

) 1
q

,

A1 := sup
t∈(a,b)

A1(t) = sup
t∈(a,b)

[Vp(t)]
− 1

p

(∫ t

a
[Vp(x)]

q[w(x)]qdx

) 1
q

;

A := max(A0,A1) , A0 := sup
t∈(a,b)

A0(t) = sup
t∈(a,b)

[Wq(t)]
− 1

q′

(∫ b

t
[Wq(y)]

p′ [v(y)]p
′
dy

) 1
p′

,

A1 := sup
t∈(a,b)

A1(t) = sup
t∈(a,b)

[W (t)]
− 1

q′

(∫ b

t
[W1(y)]

p′ [v(y)]p
′
dy

) 1
p′

;

B := max(B0,B1) , B0 :=

(∫ b

a
[Wq(t)]

r
q d[V (t)]

r
p′

) 1
r

,

B1 :=

(∫ b

a
[Vp(t)]

r
p′ d

(
−[W(t)]

r
q

)) 1
r

;

B := max(B0,B1) , B0 :=

(∫ b

a
[V (t)]−

r
p d

(∫ t

a
[V1(x)]

q[w(x)]qdx

) r
q

) 1
r

,

B1 :=

(∫ b

a
[Vp(t)]

− r
p d

(∫ t

a
[Vp(x)]

q[w(x)]qdx

) r
q

) 1
r

;

B := max(B0,B1) , B0 :=

(∫ b

a
[Wq(t)]

− r
q′ d

(
−

(∫ b

t
[Wq(y)]

p′ [v(y)]p
′
dy

) r
p′

)) 1
r

,

B1 :=

(∫ b

a
[W (t)]

− r
q′ d

(
−

(∫ b

t
[W1(y)]

p′ [v(y)]p
′
dy

) r
p′

)) 1
r

.

For 1 < p � q < ∞ the characterization of (1.3) by the condition A < ∞ was

obtained in [1], by A < ∞ in [13] and by A < ∞ or by A < ∞ in [20] provided the

kernel k(x,y) of K satisfies (1.2) and some monotonicity or continuity conditions,

which were later removed in [10]. Moreover, some relations between Ai, Ai, Ai,
i = 0,1 have been noted in [20]. The opposite case 1 < q < p < ∞ was studied in [13]

and [20] by giving the only criterion B <∞. An implicit criterion for (1.3) to hold in the

case 0 < q < 1 < p < ∞ was found in [9]. Explicit, but separate necessary or sufficient

conditions for the case 0 < q < 1 < p < ∞ under some monotonicity requirements on
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the kernel k(x,y) were obtained in [20]. An extention of the above criteria A < ∞
and B < ∞ from [20] for the case, when the weight functions replaced by the arbitrary

Borel measures is given in [17]. The compactness problem for the operator (1.1) with

1 < p,q < ∞ was solved in [20].

In this work we analyse the relations between the components of the boundedness

critera for (1.3) hold in both cases 1 < p � q < ∞ (Theorem 2.1) and 1 < q < p < ∞
(Theorem 2.2) providing alternative proofs.

Without a loss of generality we assume that k(x,y) is non-decreasing with respect

to the variable x and non-increasing in y. Otherwise we replace the kernel k(x,y) of the

operator (1.1) by the kernel k0(x,y) := supy�z�x k(x,z), where k(x,y) := supy�t�x k(t,y).
Then k0(x,y) has the both monotonicities, satisfies Oinarov’s condition and k(x,y) �

k0(x,y) � D2k(x,y) (see [10, Lemma 3] for details).

Throughout the paper the expressions of the type 0 ·∞ are taken to be equal to 0.

Relations A ≪ B mean A � cB with some constants c depending only on parameters

of summations and, possibly, on the constants of equivalence in the inequalities of the

type (1.2). We write A ≈ B instead of A ≪ B ≪ A or A = cB . Z denotes the set of

all integers and χE stands for a characteristic function (indicator) of a subset E ⊂ R
+.

Also we make use of marks := and = : for introducing new quantities and suppose

p′ := p/(p−1) for 1 < p < ∞ and r := pq/(p−q) for 1 < q < p < ∞.

2. Relations between components of boundedness constants

We need the following definition and technical proposition from [5].

DEFINITION 2.1. ([5, Definition 2.2(a)]) A nonnegative sequence {ak}k∈Z
is said

to be strongly increasing (strongly decreasing) if

inf
k∈Z

ak+1

ak

> 1

(
sup
k∈Z

ak+1

ak

< 1

)
,

and we write ak ⇈ (ak �).

PROPOSITION 2.1. ([5, Proposition 2.1]) Let {ak}k∈Z
, {σk}k∈Z

and {τk}k∈Z
be

nonnegative sequences and 0 < p < ∞.

(a) If σk ⇈, then
(
∑k∈Z

[
∑m�k am

]pσ p

k

) 1
p ≪ (∑m∈Z [amσm]p)

1
p .

(b) If τk �, then
(
∑k∈Z

[
∑m�k am

]p τ p
k

) 1
p ≪ (∑m∈Z [amτm]p)

1
p .

Boundedness of the operator K : Lp → Lq with the Oinarov kernel (1.2) can be

characterized by three alternative criteria (see Theorem 3.1 and also [1], [20]). Thus,

there are tree pairs of conditions such that, for instance in the case 1 < p � q <∞

A0 +A1 < ∞⇐⇒ A0 +A1 <∞⇐⇒ A0 +A1 < ∞.

It is known that the components in the pairs are independent on each other in general

and finiteness of the only one of them do not guarantee the boundedness of K. By the

following theorem we describe relations between the above components.
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THEOREM 2.1. Let 1 < p � q < ∞ and let a function k(x,y) � 0 on {(x,y) :

x > y > 0} be non-decreasing in x and non-increasing in y. Then

(i) A0 < ∞⇐⇒ A0 < ∞, (ii) A1 < ∞⇐⇒ A1 < ∞,

(iii) A0 < ∞ =⇒ A0 < ∞, (iv) A1 < ∞ =⇒ A1 < ∞,

(v) A0 < ∞ =⇒ A0 < ∞, (vi) A1 < ∞ =⇒ A1 < ∞.

Moreover, the opposite relations to (iii) – (vi) are not true in general.

Proof. We start with (i). For any t ∈ (a,b) we define an increasing integer-valued

function k : (a,b) → Z

k(t) := max
{

k ∈ Z : Wq(t) � 2−k
}

(2.1)

and let {ki}i∈Z1
,Z1 ⊆ Z be the values of k(t). Then, it corresponds to each i ∈ Z1

either the interval Δi := [ti, ti+1) or the interval Δi := (ti,ti+1), when

2−ki � Wq(t) > 2−ki−1, t ∈ Δi, i ∈ Z1,1 ⊆ Z1 ⊆ Z, (2.2)

or the points {ti} for which

2−ki � Wq(ti) > 2−ki−1, i ∈ Z1,2 ⊆ Z1 ⊆ Z, (2.3)

and Z1 = Z1,1 ⊔Z1,2. Observe that the function Wq(t) is non-increasing and almost

everywhere equal to the left continuous function W̃q(t) := Wq(t−0)

2−km � W̃q(t) � 2−km−1, t ∈ (tm,tm+1], m ∈ Z1,1 (2.4)

and to the right continuous function W q(t) := Wq(t +0)

2−km � W q(t) > 2−km−1, t ∈ [tm,tm+1), m ∈ Z1,1. (2.5)

Let t ∈ Δi, i ∈ Z1,1. Then we have

A0(t)
(2.2)
≪ 2

−
ki
q

(

∑
m�i

∫

Δm

[v(y)]p
′
dy

) 1
p′

.

Since for any tm < t < tm+1, m ∈ Z1,1,

2
km·p′

q′

(∫ tm+1

t
[v(y)]p

′
dy

)
= 2

km·p′

q′

(∫ tm+1

t
[Wq(y)]

p′ [v(y)]p
′
[W̃q(y)]

−p′dy

)

(2.4)
≪ 2km·p

′
·2

km·p′

q′

(∫ tm+1

t
[Wq(y)]

p′ [v(y)]p
′
dy

)

(2.2)
≪ 2km·p

′
· [Wq(t)]

− p′

q′

(∫ tm+1

t
[Wq(y)]

p′ [v(y)]p
′
dy

)

� 2km·p
′
·A p′

0 , (2.6)
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then

∫

Δm

[v(y)]p
′
dy ≪ A

p′

0 ·2
km·p′

q . (2.7)

Therefore,

A0(t) ≪ A0 ·2
−

ki
q

(

∑
m�i

2
km·p′

q

) 1
p′

�

(
1−2

− p′

q

)− 1
p′

A0. (2.8)

Hence,

sup
t∈∪i∈Z1,1

Δi

A0(t) ≪ A0. (2.9)

In the case t = ti, i ∈ Z1,2, we have

A0(ti)
(2.3)
≪ 2

−
ki
q

(

∑
m�i−1

∫

Δm

[v(y)]p
′
dy

) 1
p′

and using (2.7) we obtain (2.8) for t = ti. Thus,

sup
i∈Z1,2

A0(ti) ≪ A0

and combining this with (2.9) we see that A0 ≪ A0 holds.

For the converse direction, using (2.2) we write for t ∈ Δi, i ∈ Z1,1

A0(t) ≪ 2
ki
q′

(

∑
m�i

∫

Δm

[Wq(y)]
p′ [v(y)]p

′
dy

) 1
p′

(2.2)

� 2
ki
q′

(

∑
m�i

2−km·p
′
∫

Δm

[v(y)]p
′
dy

) 1
p′

. (2.10)

Since for any tm < t < tm+1, m ∈ Z1,1,

2−km·p
′
∫ t

tm

[v(y)]p
′
dy

(2.2)
≪ 2

− km·p′

q′ · [Wq(t)]
p′

q V (t) � A
p′

0 ·2
− km·p′

q′ , (2.11)

then

2−km·p
′
∫

Δm

[v(y)]p
′
dy ≪ A

p′

0 ·2
− km·p′

q′ ,

and

A0(t) ≪ A0 ·2
ki
q′

(

∑
m�i

2
− km·p′

q′

) 1
p′

�

(
1−2

− p′

q′

)− 1
p′

A0. (2.12)
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The argument is analogous in the proof of (2.12) for t = ti . It implies A0 ≪ A0 and

the equivalence A0 < ∞⇐⇒ A0 < ∞ follows.

To prove (ii) we define the integer-valued function l : (a,b) → Z such that

l(t) = max
{

l ∈ Z : Vp(t) � 2l
}

. (2.13)

Denote values of l(t) by {l j} j∈Z2⊆Z. Here again each number j corresponds either to

the interval

Δ j := [t j, t j+1) or Δ j := (t j,t j+1),

where

2l j � Vp(t) < 2l j+1, t ∈ Δ j, j ∈ Z2,1 ⊆ Z2 ⊆ Z, (2.14)

or to the points {t j}, where

2l j � Vp(t j) < 2l j+1, j ∈ Z2,2 ⊆ Z2 ⊆ Z, (2.15)

and Z2 = Z2,1⊔Z2,2. Note that the function Vp(t) is non-decreasing and almost every-

where equal to the left continuous function Ṽp(t) := Vp(t −0)

2lm � Ṽp(t) � 2lm+1, t ∈ (tm,tm+1], m ∈ Z2,1, (2.16)

as well as to the right continuous function V p(t) := Vp(t +0)

2lm � V p(t) < 2lm+1, t ∈ [tm, tm+1), m ∈ Z2,1. (2.17)

For t ∈ Δ j, j ∈ Z2,1, we have

A1(t)
(2.14)
≪ 2

−
l j
p

(

∑
m� j

∫

Δm

[Vp(x)]
q[w(x)]qdx

) 1
q

(2.14)

� 2
−

l j
p

(

∑
m� j

2(lm+1)·q
∫

Δm

[w(x)]qdx

) 1
q

. (2.18)

The inequality

2
lm·q
p′

∫ tm+1

t
[w(x)]qdx

(2.14)
≪ [Vp(t)]

q

p′ W (t) � A
q
1, (2.19)

where tm < t < tm+1, m ∈ Z2,1, yields

2(lm+1)·q
∫

Δm

[w(x)]qdx ≪ A
q
1 ·2

lm·q
p .

Therefore,

A1(t) ≪ A1 ·2
−

l j
p

(

∑
m� j

2
lm·q

p

) 1
q

�

(
1−2

− q
p

)− 1
q
A1. (2.20)
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For t = t j, j ∈ Z2,2, by (2.15) we have similar to (2.18) inequality

A1(t j) ≪ 2
−

l j
p

(

∑
m� j−1

2(lm+1)·q
∫

Δm

[w(x)]qdx

) 1
q

.

Now by (2.19) the estimate (2.20) is true for t = t j too. Hence, A1 ≪ A1.
For the opposite estimate we note that for t ∈ Δ j, j ∈ Z2,1, it holds by (2.14) that

A1(t) ≪ 2

l j

p′

(

∑
m� j

∫

Δm

[w(x)]qdx

) 1
q

.

We have for any tm < t < tm+1, m ∈ Z2,1,

2
− lm·q

p

(∫ t

tm

[w(x)]qdx

)
= 2

− lm·q
p

(∫ t

tm

[Vp(x)]
q[w(x)]q[V p(x)]

−qdx

)

(2.14)

� 2−lm·q ·2−
lm·q

p

(∫ t

tm

[Vp(x)]
q[w(x)]qdx

)

(2.14)
≪ 2−lm·q · [Vp(t)]

− q
p

∫ t

tm

[Vp(x)]
q[w(x)]qdx

� 2−lm·q ·Aq
1. (2.21)

Therefore,

∫

Δm

[w(x)]qdx ≪ A
q
1 ·2

− lm·q
p′ . (2.22)

Then,

A1(t) ≪ A1 ·2
l j

p′

(

∑
m� j

2
− lm·q

p′

) 1
q

�

(
1−2

− p′

q

)− 1
p′

A1, (2.23)

and, thus,

sup
t∈∪ j∈Z2,1

Δ j

A1(t) ≪ A1. (2.24)

If t = t j, j ∈ Z2,2, then

A1(t j)
(2.15)
≪ 2

l j

p′

(

∑
m� j

∫

Δm

[w(x)]qdx

) 1
q

,

and now by (2.21) and (2.22) the estimate (2.23) holds too and the assertion (ii) follows.

The implications (iii) and (iv) follow by Minkowski’s inequality (see [20, Propo-

sition]). The relation (v) follows from (i) and (iii), while (vi) – from (ii) and (iv). The

assertion about the implications reverse to (iii) – (vi) is proved in [20, Proposition].
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Analogously, in the case 1 < q < p <∞ there are tree pairs of conditions such that

B0 +B1 < ∞⇐⇒ B0 +B1 < ∞⇐⇒ B0 +B1 < ∞,

and the components are related to each other by the following way.

THEOREM 2.2. Let 1 < q < p < ∞ and let a function k(x,y) � 0 on {(x,y) :

x > y > 0} be non-decreasing in x and non-increasing in y. Then

(i) B0 < ∞⇐⇒ B0 < ∞, (ii) B1 < ∞⇐⇒ B1 < ∞,

(iii) B0 < ∞ =⇒ B0 < ∞, (iv) B1 < ∞=⇒ B1 < ∞,

(v) B0 < ∞ =⇒ B0 < ∞, (vi) B1 < ∞=⇒ B1 < ∞,

and the relations opposite to (iii) – (vi) are not true in general.

Proof. We start with (i). Using the definitions (2.1) – (2.5) we write

Br
0 = ∑

i∈Z1,1

∫

Δi

[Wq(t)]
r
q d[V (t)]

r
p′

(2.2)

� ∑
i∈Z1,1

2
−ki·r

q

∫

Δi

d[V(t)]
r
p′

� ∑
i∈Z1,1

2
−ki·r

q [V (ti+1)]
r
p′ � ∑

i∈Z

2
−

ki·r
q

(

∑
m�i

∫

Δm

[v(y)]p
′
dy

) r
p′

.

Let Δm = ∅ if m ∈ Z\Z1,1. By Proposition 2.1(b)

Br
0 ≪ ∑

i∈Z

2
−

ki·r
q

(∫

Δi

[v(y)]p
′
dy

) r
p′

(2.4)
≪ ∑

i∈Z1,1

2
ki·r

q′

(∫ ti+1

ti

[v(y)]p
′
dy

) r
p′

[W̃q(ti+1)]
r

� ∑
i∈Z1,1

2
ki·r

q′

(∫ ti+1

ti

[Wq(y)]
p′ [v(y)]p

′
dy

) r
p′

(2.5)
≪ ∑

i∈Z1,1

[W q(ti)]
− r

q′

∫ ti+1

ti

d

(
−

(∫ ti+1

t
[Wq(y)]

p′ [v(y)]p
′
dy

) r
p′

)

� ∑
i∈Z1,1

∫ ti+1

ti

[Wq(t)]
− r

q′ d

(
−

(∫ b

t
[Wq(y)]

p′ [v(y)]p
′
dy

) r
p′

)
= B

r
0.
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By Proposition 2.1(a) for the opposite estimate we write

B
r
0

(2.2)
≪ ∑

i∈Z1,1

2
ki·r

q′

∫

Δi

d

(
−

(∫ b

t
[Wq(y)]

p′ [v(y)]p
′
dy

) r
p′

)

� ∑
i∈Z1,1

2
ki·r

q′

(∫ b

ti

[Wq(y)]
p′ [v(y)]p

′
dy

) r
p′

= ∑
i∈Z1,1

2
ki·r

q′

(

∑
m�i

∫

Δm

[Wq(y)]
p′ [v(y)]p

′
dy

) r
p′

≪ ∑
m∈Z1,1

2
km·r
q′

(∫

Δm

[Wq(y)]
p′ [v(y)]p

′
dy

) r
p′

(2.2)
≪ ∑

m∈Z1,1

2
−km·r

q

(∫

Δm

[v(y)]p
′
dy

) r
p′

≈ ∑
m∈Z1,1

2
−km·r

q

∫ tm+1

tm

(∫ t

tm

[v(y)]p
′
dy

) r
q′

[v(t)]p
′
dt

(2.4)
≪ ∑

m∈Z1,1

[W̃q(tm+1)]
r
q

∫ tm+1

tm

d[V (t)]
r
p′

� ∑
m∈Z1,1

∫ tm+1

tm

[Wq(t)]
r
q d[V (t)]

r
p′ = Br

0.

To prove (ii) we use the sequence {l j} j∈Z2⊆Z with the properties (2.13) – (2.17). Then

Br
1 = ∑

j∈Z2,1

∫

Δ j

[Vp(t)]
r
p′ d

(
−[W(t)]

r
q

) (2.14)

� ∑
j∈Z2,1

2

(l j+1)·r

p′

∫

Δ j

d
(
−[W (t)]

r
q

)

� ∑
j∈Z2,1

2

(l j+1)·r

p′ [W (t j)]
r
q � 2

r
p′ ∑

j∈Z

2

l j ·r

p′

(

∑
m� j

∫

Δm

[w(x)]qdx

) r
q

.

If m ∈ Z\Z2,1 we assume Δm = ∅. By Proposition 2.1(a)

Br
1 ≪ ∑

j∈Z

2
l j ·r

p′

(∫

Δ j

[w(x)]qdx

) r
q

(2.17)
≪ ∑

j∈Z2,1

2
−l j ·r

p

(∫ t j+1

t j

[w(x)]qdx

) r
q

[V p(t j)]
r

� ∑
j∈Z2,1

2
−l j ·r

p

(∫ t j+1

t j

[Vp(x)]
q[w(x)]qdx

) r
q

(2.16)
≪ ∑

j∈Z2,1

[Ṽp(t j+1)]
− r

p

∫ t j+1

t j

d

(∫ t

t j

[Vp(x)]
q[w(x)]qdx

) r
q
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� ∑
j∈Z2,1

∫ t j+1

t j

[Vp(t)]
− r

p d

(∫ t

a
[Vp(x)]

q[w(x)]qdx

) r
q

= B
r
1.

By Proposition 2.1(b) for the reverse estimate we write

B
r
1 = ∑

j∈Z2,1

∫ t j+1

t j

[Vp(t)]
− r

p d

(∫ t

a
[Vp(x)]

q[w(x)]qdx

) r
q

(2.14)

� ∑
j∈Z2,1

2
−l j ·r

p

(∫ t j+1

a
[Vp(x)]

q[w(x)]qdx

) r
q

= ∑
j∈Z2,1

2
−l j ·r

p

(

∑
m� j

∫

Δm

[Vp(x)]
q[w(x)]qdx

) r
q

≪ ∑
m∈Z2,1

2
−lm·r

p

(∫

Δm

[Vp(x)]
q[w(x)]qdx

) r
q

(2.14)

� ∑
m∈Z2,1

2
lm·r
p′

(∫

Δm

[w(x)]qdx

) r
q

� ∑
m∈Z2,1

2
lm·r
p′

∫

Δm

d

(
−[W(x)]

r
q

)

(2.14)

� ∑
m∈Z2,1

∫

Δm

[Vp(x)]
r
p′ d

(
−[W (x)]

r
q

)
= Br

1.

For (iii) we obtain by Minkowski’s inequality

(∫ t

a
[V1(x)]

q[w(x)]qdx

) 1
q

�

∫ t

a

(∫ t

y
[k(x,y)]q[w(x)]qdx

) 1
q

dV (y) �

∫ t

a
[Wq(y)]

1
q dV(y).

(2.25)

Integrating by parts we have

B
r
0 = [V (b)]−

r
p

(∫ b

a
[V1(x)]

q[w(x)]qdx

) r
q

+
r

p
B

r

0, (2.26)

provided V (b) < ∞, where

B
r

0 :=

∫ b

a

(∫ t

a
[V1(x)]

q[w(x)]qdy

) r
q

[V (t)]−
r
q dV(t)

and B
r
0 = B

r

0 if V (b) =∞. Let α ∈
(

1
q′

, 1
r′

)
. By applying Hölder’s inequality with the

powers r and r′ = r
r−1

we have
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B
r

0 ≪

∫ b

a

(∫ t

a
[Wq(y)]

1
q [V (y)]α [V (y)]−αdV (y)

)r

[V (t)]−
r
q dV (t)

�

∫ b

a

∫ t

a
[Wq(y)]

r
q [V (y)]αrdV(y)

(∫ t

a
[V (z)]−αr′dV (z)

)r−1

[V (t)]−
r
q dV (t)

≈

∫ b

a
[Wq(y)]

r
q [V (y)]αr

(∫ b

y
[V (y)]r−1−αr− r

q dV (y)

)
dV (y) ≪ Br

0. (2.27)

To estimate the first term in (2.26) we write by Minkowski’s and Hölder’s inequalities

(∫ b

a
[V1(x)]

q[w(x)]qdx

) r
q

�

(∫ b

a

(∫ b

y
[k(x,y)]q[w(x)]qdx

) 1
q

dV (y)

)r

=

(∫ b

a
[Wq(y)]

1
q [V (y)]

1
q′ [V (y)]

− 1
q′ dV (y)

)r

�

∫ b

a
[Wq(y)]

r
q [V (y)]

r
q′ dV (y)

(∫ b

a
[V (z)]

− r′

q′ dV (z)

)r−1

≈ Br
0[V (b)]

r
p . (2.28)

From this and (2.26) – (2.27) the estimate B0 ≪ B0 follows.

For (iv) we find analogously to (2.25)

(∫ b

t
[W1(y)]

p′vp′(y)dy

) 1
p′

�

∫ b

t
[Vp(y)]

1
p′ d (−W (y)) .

Further, analogously to (2.27) for α ∈
(

1
p
, 1

r′

)
and (2.28) we obtain the required es-

timate. The relation (v) follows from (i) and (iii), while (vi) goes from ((ii) and (iv).

Proofs of the assertion about the implications reverse to (iii) – (vi) are analogous to [20,

Proposition].

3. Boundedness criteria

Let the operator K be given by (1.1) with a kernel k(x,y) satisfying Oinarov’s

condition (1.2). We consider the cases 1 < p � q < ∞ and 1 < q < p < ∞ separately

but both basing on the following auxiliary lemmas.

LEMMA 3.1. [20, Lemma 1] Let 1 < q < ∞ and the operator K be given by

(1.1) with the kernel k(x,y) satisfying (1.2). Denote K f (x) :=
∫ x
a k(x,y) f (y)v(y)dy

and suppose that

‖K f‖q
q < ∞.

Then

‖K f‖q
q ≈

∫ b

a
f (t)v(t)[Iv f (t)]q−1Wq(t)dt +

∫ b

a
f (t)v(t)[K f (t)]q−1W1(t)dt. (3.1)
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LEMMA 3.2. [20, Lemma 2] Let 1 < p′ <∞ and K∗ be an adjoint to K operator

of the form

K∗g(y) := v(y)

∫ b

y
k(x,y)w(x)g(x)dy, y ∈ (a,b), (3.2)

with k(x,y) satisfying (1.2). Denote K∗g(y) :=
∫ b
y k(x,y)g(x)w(x)dx and suppose that

‖K∗g‖p′

p′
< ∞.

Then

‖K∗g‖
p′

p′
≈

∫ b

a
g(t)w(t)[I∗wg(t)]p

′−1Vp(t)dt +

∫ b

a
g(t)w(t)[K∗g(t)]p

′−1V1(t)dt. (3.3)

Denote ‖K‖ := ‖K‖Lp[a,b]→Lq[a,b] . Our main result reads

THEOREM 3.1. Let the operator K be defined by the formula (1.1) with the kernel

satisfying the condition (1.2). If 1 < p � q < ∞, then

(a) ‖K‖ ≈ A (b) ‖K‖ ≈ A (c) ‖K‖ ≈ A . (3.4)

For 1 < q < p < ∞ we have

(a) ‖K‖ ≈ B (b) ‖K‖ ≈ B (c) ‖K‖ ≈ B. (3.5)

Proof. The lower estimates in (3.4)(a), (3.5)(a) and (3.4)(c) follow by inserting in

(1.1) the test functions (see [20, Proofs of Theorems 1 and 2] and [1, Proof of Theorem

2.1]). Moreover, the lower estimate in (3.4)(c) can be obtained from ‖K‖ ≫ A by

Theorem 2.1 (i), (ii) and (vi) as well as the lower estimate in (3.4)(b) by Theorem 2.2

(i), (ii) and (vi). Similar assertions of Theorem 2.2 works for the lower estimates in

(3.5)(b) and (3.5)(c) from ‖K‖≫ B to obtain.

For the upper estimates in (3.4)(a), (3.5)(a) and (3.4)(c) we give the proofs differ-

ent from [20] and [1]. For the simplicity we suppose that a = 0, b = ∞. Remind that

we suppose functions f to be non-negative. We start from (a) and (c) both basing on

Lemma 3.1. We have

‖K f‖q
q ≈

∫ ∞

0
f (t)v(t)[Iv f (t)]q−1Wq(t)dt +

∫ ∞

0
f (t)v(t)[K f (t)]q−1W1(t)dt =: J1 + J2.

(3.6)

To estimate J1 we use the sequence {ki}i∈Z1⊆Z with the properties (2.1) – (2.4). Then,

by Proposition 2.1(b) and Hölder’s inequality

J1 = ∑
i∈Z1,1

∫

Δi

f (t)v(t)[Iv f (t)]q−1Wq(t)dt
(2.2)

� ∑
i∈Z1,1

2−ki

∫

Δi

f (t)v(t)[Iv f (t)]q−1dt

≪ ∑
i∈Z1,1

2−ki [Iv f (ti+1)]
q � ∑

i∈Z1,1

2−ki

(

∑
m�i

∫

Δm

f (y)v(y)dy

)q
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≪ ∑
m∈Z1,1

2−km

(∫

Δm

f (y)v(y)dy

)q

= ∑
m∈Z1,1

2−km

(∫

Δm

f (y)v(y)dy

)q

� ∑
m∈Z1,1

2−km

(∫

Δm

[ f (y)]pdy

) q
p
(∫

Δm

[v(y)]p
′
dy

) q

p′

=: J1,1. (3.7)

If tm < t < tm+1, then by (2.2)

2−km

(∫ t

tm

[v(y)]p
′
dy

) q

p′

� 2 ·Wq(t)

(∫ t

tm

[v(y)]p
′
dy

) q

p′

� 2 ·A
q
0.

Consequently,

2−km

(∫

Δm

[v(y)]p
′
dy

) q

p′

� 2 ·Aq
0.

If 1 < p � q < ∞, we obtain by Jensen’s inequality with the power q/p

J1,1 � 2 ·Aq
0

(

∑
m∈Z

∫

Δm

[ f (y)]pdy

) q
p

� 2 ·Aq
0‖ f‖q

p ≈ A
q
0 ‖ f‖q

p , (3.8)

where the last equivalence follows from Theorem 2.1 (i).

For 1 < q < p < ∞ we have by (2.4), Hölder’s inequality with the powers p/q,
r/q and Theorem 2.2 (i)

J1 ≪

(

∑
i∈Z1,1

∫

Δi

[ f (y)]pdy

) q
p
(

∑
i∈Z1,1

[W̃q(ti+1)]
r
q

(∫

Δi

[v(y)]p
′
dy

) r
p′

) q
r

�

(∫ ∞

0
[ f (y)]pdy

) q
p

(

∑
i∈Z1,1

∫

Δi

[Wq(t)]
r
q d

(∫ t

ti

[v(y)]p
′
dy

) r
p′

) q
r

� B
q
0 ‖ f‖q

p ≈ B
q
0 ‖ f‖q

p . (3.9)

Thus, by (3.7) – (3.9)

J1 ≪ Fq ‖ f‖q
p , where F :=

{
A or A , if 1 < p � q < ∞,

B or B, if 1 < q < p < ∞.
(3.10)

Since W (t) is absolutely continuous, we can find the sequence {zm}⊂ (0,∞) such

that

W (tm) = 2−m,m ∈ Z3 ⊂ Z.

Obviously, the function W (t) is non-increasing and

2−m−1 � W (t) � 2−m for t ∈ Δm := [tm,tm+1]. (3.11)
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By Hölder’s inequality it holds that

J2 � J

1
p′

3

(∫ ∞

0
[ f (y)]pdy

) 1
p

, (3.12)

with

J3 :=

∫ ∞

0
[K f (t)]p

′(q−1)[W1(t)]
p′ [v(t)]p

′
dt,

where K f (t) :=
∫ t
0 k(t,s) f (s)v(s)ds. Since K f (t) is non-decreasing we have

J3 = ∑
m∈Z3

∫

Δm

[K f (t)]p
′(q−1)[W1(t)]

p′ [v(t)]p
′
dt

(3.11)
≪ ∑

m∈Z3

2
−m

p′

q′ [K f (tm+1)]
p′(q−1)

(
[W (tm)]

− p′

q′

∫

Δm

[W1(t)]
p′ [v(t)]p

′
dt

)
. (3.13)

Let 1 < p � q < ∞. By Jensen’s inequality and Theorem 2.1 (iv)

J3 ≪ A
p′

1 ∑
m∈Z3

(
2−m[K f (tm+1)]

q
) p′

q′ ≈ A
p′

1 ∑
m∈Z3

(
[K f (tm+1)]

q

∫

Δm+1

[w(x)]qdx

) p′

q′

≪ A
p′

1

(

∑
m∈Z3

∫ tm+2

tm+1

[K f (x)]qdx

) p′

q′

� A
p′

1 ‖K f‖p′(q−1)
q ≪ A

p′

1 ‖K f‖p′(q−1)
q . (3.14)

Now let 1 < q < p < ∞. By applying Hölder’s inequality to (3.13) with the powers

q′/p′ and r/p′ we obtain

J3 ≪

(

∑
m∈Z3

2−m[K f (tm+1)]
q

) p′

q′
(

∑
m∈Z3

2
m r

q′

(∫

Δm

[W1(t)]
p′ [v(t)]p

′
dt

) r
p′

) p′

r

.

On the strength of (3.11)

(

∑
m∈Z3

2−m[K f (tm+1)]
q

) p′

q′

≪

(

∑
m∈Z3

∫

Δm+1

[K f (x)]qdx

) p′

q′

� ‖K f‖p′(q−1)
q .

By the same reason and Theorem 2.2 (iv)

(

∑
m∈Z3

2
m r

q′

(∫

Δm

[W1(t)]
p′ [v(t)]p

′
dt

) r
p′

) p′

r

=

(

∑
m∈Z3

2
m r

q′

∫

Δm

d

(
−

(∫ tm+1

z
[W1(t)]

p′ [v(t)]p
′
dt

) r
p′

)) p′

r
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≪

(

∑
m∈Z3

∫

Δm

[W (z)]
r
q′ d

(
−

(∫ ∞

z
[W1(t)]

p′ [v(t)]p
′
dt

) r
p′

)) p′

r

� B
p′

1 ≪ B
p′

1 .

Now from (3.12) – (3.14) it follows

J2 ≪ F‖ f‖p ‖K f‖q−1
q .

Thus, and from (3.10) we have proved by (3.6) that

‖K f‖q
q ≪ Fq‖ f‖q

p +F‖ f‖p‖K f‖q−1
q .

Therefore, (
‖K‖

F

)q

≪ 1+

(
‖K‖

F

)q−1

.

From here the upper estimate ‖K‖ ≪ F follows evidently and now (3.4) (a), (c) and

(3.5) (a), (c) are proved.

The upper estimates in (3.4) (b) and (3.5) (b) follows similarly by using Lemma

3.2 and (2.13) – (2.17).
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