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Abstract

The success of social animals (including ourselves) can be attributed to efficiencies that arise from a division of labour. Many
animal societies have a communal nest which certain individuals must leave to perform external tasks, for example foraging
or patrolling. Staying at home to care for young or leaving to find food is one of the most fundamental divisions of labour. It
is also often a choice between safety and danger. Here we explore the regulation of departures from ant nests. We consider
the extreme situation in which no one returns and show experimentally that exiting decisions seem to be governed by
fluctuating record signals and ant-ant interactions. A record signal is a new ‘high water mark’ in the history of a system. An
ant exiting the nest only when the record signal reaches a level it has never perceived before could be a very effective
mechanism to postpone, until the last possible moment, a potentially fatal decision. We also show that record dynamics
may be involved in first exits by individually tagged ants even when their nest mates are allowed to re-enter the nest. So
record dynamics may play a role in allocating individuals to tasks, both in emergencies and in everyday life. The dynamics of
several complex but purely physical systems are also based on record signals but this is the first time they have been
experimentally shown in a biological system.
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Introduction

Ant societies are shaped by selection that operates, in part, at

the level of the colony [1], so the success of the individual is

intimately bound to that of its colony. Outside-nest work is

dangerous and the rate of attrition of outside-nest workers through

predation or adverse environmental conditions is often high.

The life-cycles of ant societies are dominated by growth or

decline [2]. Thus they are rarely at a steady state and are typically

non-stationary. Here we induce non-stationarity by permanently

eliminating all ants that exit the nest and compare these colonies

with controls in which ants can freely leave and re-enter the nest.

We use analytical methods developed for the analysis of out-of-

equilibrium physical systems to explore the nature of the

mechanism governing the decisions of individual ants to leave

the nest. Indeed, biological systems are, like other systems in

Nature, generically non-equilibrium systems since they are not

isolated from external influences and continuously have a flux of

mass or energy passing through them [3].

The null model for a system in which successive events are

drawn from a diminishing pool is one with an exponentially

declining event rate, as in radioactive decay. In this scenario there

are either no interactions between the components or interactions

between the components are not correlated with decay events.

The simplest form of radioactive decay is one in which all the

components have an identical decay probability, which can be

modelled as a homogeneous Poisson process. Obviously ants are

not all identical, so for our null model we implement a

heterogeneous Poisson process by assuming that the component

parts (the ants) vary in their decay (i.e. exit) probabilities.

An alternative scenario that produces rapidly decreasing event

rates is one in which events are triggered when a fluctuating

variable - the record signal - exceeds its historical ‘high water

mark’. If the record signal fluctuates randomly, the increment

between successive record values becomes progressively smaller

and the rate at which new records accrue drops off according to

the inverse of time [4,5]. Hence the rate of change is a function of

the age of the system. An intuitive example of a rapidly

decelerating record time-series (albeit one that is probably not

based on record signals as defined in complex systems) is the

accumulation of human sporting records, where the rate at which

new records accumulate depends largely on the age of the sport

[6,7]. All cases in which fluctuating record signals trigger events,

include strong interactions between the component parts and

involve long-range correlations that span the entire system

[8,9,10,11].

While exponential decay is characterised by Poisson statistics in

linear time, record dynamics is characterised by Poisson statistics

in logarithmic time [4,5,8,12,13,14]. What mechanism can

generate such log-Poisson statistics? A fluctuating record signal

will only produce log-Poisson statistics if each successive value of

the underlying fluctuating signal is independent of its predecessors.

Independence of the fluctuating record signal leads the record
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times to be uncorrelated in logarithmic time, so the record value at

time log (Tk) is independent of previous records at time log (Tk-n).

Crucially, the distribution of the underlying fluctuating signal from

which the record signal is derived, must not change over time.

Quite remarkably, irrespective of the probability distribution of the

underlying fluctuating signal, records will accrue at a logarithmi-

cally decreasing rate [5].

We test whether nest leaving activity is compatible with either of

two models of rapidly decelerating events: exponential decay as a

null model or record dynamics. We further test the effects of

heterogeneous units and varying colony size on the exponential

decay model through a simulation parameterised from data.

Materials and Methods

Experiments
Fifteen T. albipennis colonies were collected from rock crevices in

Dorset, UK. They were housed in nests constructed from a

cardboard cavity sandwiched between a pair of microscope slides,

and maintained according to established protocols [15]. All colonies

were queenright and had a complement of brood at various stages of

development. The mean number of workers in each colony was 121

(median= 139, min= 73, max=150, interquartile range= 59), the

mean number of brood was 112 (median= 100, min= 56,

max=259, interquartile range= 68), and the mean worker:brood

ratio was 1.30 (median= 1.16, min= 0.56, max=2.48, interquartile

range= 0.53). There is no evidence of a day-night cycle or regular

periodicity of activity bouts in T. albipennis (Robinson et al. 2009).

Colonies were maintained at a constant temperature (24uC), with

continuous lighting.

In the treatment when ants were removed as they left the nest,

the number remaining in the nest decreased. So to test the effect of

external worker removals, the ‘events’ (ant exits) in the non-

removal condition had also to be drawn from a diminishing pool of

ants that could potentially leave the nest. Hence in the control an

event was defined as the exit of a ‘new ant’, one that had not been seen

leaving the nest since the start of observation.

The fifteen colonies were allocated to treatment and control

groups as follows.

60 hour non-removal control (colonies 1–7). We recorded

the times that previously-unseen ‘new ants’ first left the nest. Each

nest was placed in an identical arena, in which food and water

were available ad-lib. All the ants in seven colonies were fitted with

passive RFID tags so that the time and identities of ants leaving the

nest could be recorded by an RFID reader over the nest exit [16].

12 hour removal treatment (colonies 1,2,5,6 & 7). Five of

the seven colonies fitted with passive RFID tags from the non-

removal control were later used for external worker removal.

2 hour removal treatment (colonies i–vi). A different set

of six colonies were subjected to a shorter 120 minute removal

period. Every time an ant left the nest, it was removed and the

time noted.

5+ day removal treatment (colonies 8 & 9). Two colonies

were subjected to continuous worker removal lasting for 140 and

200 hours. Every time an ant walked to the nest exit, its movement

was detected automatically by a high-resolution webcam (Logitech

QC deluxe) positioned immediately above the exit and attached to

a PC. When an ant was detected leaving the nest, the computer

opened a valve, releasing a short burst of pressurised air resulting

in the ant being expelled from the nest exit into a collection dish.

A Null Model of Nest Leaving by ‘Weighting Waiting’
To test the exponential decay scenario further we consider a

simple model that generates a rapidly decelerating exit rate using

individual variation in intrinsic exit probabilities in which

independent ‘decay’ events are equivalent to exits. In this scenario

the declining exit rate is due to the diminishing number of ants,

and because the fewer ants that remain, the lower the average exit

probability per ant. No correlation between the ants will emerge

since their decision to exit is entirely determined by processes

Figure 1. Waiting times between exits are not exponentially
distributed. In both removal (#) and non-removal (N) conditions for
the five colonies which underwent both the waiting time probability
densities between exits, w=Tk-Tk-1, follow a heavy-tailed distribution,
that is closer to a power-law distribution, P(w) =w

2k, where k = 1, than
an exponential, P(w) = e2lw, which will not give a straight line on a log-
log plot.
doi:10.1371/journal.pone.0009621.g001

Figure 2. Events occur at random in logarithmic time. Graphical representation of ant exits in the removal condition. The rate of ant exits
rapidly decelerates in time, and in logarithmic time the Poisson nature of events is evident. The red bars represent exits a) Untransformed data for the
two longest time-series of ant removals; 5+ days, colonies 8 and 9, as indicated on the y-axis. b) The same data in logarithmic time, where the pattern
matches what would be expected from a random (Poisson) process. After logarithmic transformation the ratios between sequential exit times, (Tk) are
exponentially distributed (see Fig. 3).
doi:10.1371/journal.pone.0009621.g002

Log-Poisson Statistics in Ants
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referring to the individual ant.Weighting Waiting treats the observed

exit time series as originating from a heterogeneous Poisson

process which is similar to classical radioactive decay, but differs in

two respects: the distribution of individual decay (exit) probabilities

is heterogeneous and the number of components is finite. Ants

carry food reserves in their gaster (the bulbous part of their

abdomen). In T. albipennis corpulence is positively related to gaster

dry-weight [17], which is itself positively related to waiting times

between exits [16]. Thus we parameterised the exit probability

distribution from the experimental distribution of gaster dry-

weights (see Fig. S3 for gaster weight data). Individuals with a light

gaster tend to exit the nest sooner than those with a heavier gaster,

but an ant of any weight can potentially exit at any time, so the

greater the weight the longer the wait.

At the start of each run of the simulation, every ‘ant’ in the

colony was randomly assigned a gaster weight from the empirical

Figure 3. The logarithmic waiting time, t, is exponentially distributed. Survivorship of t, P(t.x) where t= ln (Tk/Tk-1), the logarithmic waiting
time. The ordinate is logged as a straight line on such a plot indicates that event rate is independent of logged waiting time, i.e. that P(t.x) = e2lx.
The straight lines are least squares regressions (see Table S1). Column 1, row 2: Pooled t distributions for colonies i-vi (see Fig. S1 for non-pooled
plots).
doi:10.1371/journal.pone.0009621.g003

Figure 4. The cumulative number of exits increases linearly in logarithmic time. Accumulated number of ant exits over time, N(t) to exit
time, Tk. The abscissa is logged to check for constant exit rates in logarithmic time when Tk&1. NR= non-removal control, R = removal treatment.
Colum 1, row 2; Ensemble average, ,N(t). for six colonies (i–vi) undergoing 2 hours of external worker removal.
doi:10.1371/journal.pone.0009621.g004

Log-Poisson Statistics in Ants
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distribution (Fig. S3), thus giving it an exit probability and creating

individual heterogenity. In every time-step each ant decided

whether to leave the nest by comparing its exit probability to a

uniformly-distributed random number between 0 and 1. If the

ant’s exit probability was greater than this random number, the

ant was deemed to have left the nest, and was eliminated from the

simulation. We recorded the same statistics for these simulated

ants, as for the real ants.

Statistics
In a Poisson process, if Tk is the time of the kth event, then the

waiting times between events, w=Tk-Tk-1 have the exponential

distribution P(w.x) = e–lx. Analogously, in a log-Poisson process

the logarithmic waiting time, t is equivalent to the difference

between the logarithms of successive event times, which in turn is

equal to the logged ratio of successive event times, t=Ln(Tk)-

Ln(Tk-1) = Ln(Tk/Tk-1), and has the exponential distribution

P(t.x) = e–lx. Therefore we test whether either the waiting time,

w or the logarithmic waiting time, t is exponentially distributed.

A major feature of the Poisson process is the absence of any

correlation between events, so the duration of successive waiting

times, w, should not be related. Similarly, a log-Poisson process

will not display correlations in the sequence of logarithmic waiting

times, t. Therefore we test for the presence of correlations in the

sequence of logarithmic waiting times.

Furthermore, in a Poisson process the average number of

events, ,N., grows linearly over time, and similarly in a log-

Poisson process,N. grows linearly over the logarithm of time, so

,Nt.= a Ln t, when t»1. Hence we test whether the number of

ants leaving the nest is constant in logarithmic time, and compare

this to the null model.

Finally, in systems that decelerate according to record

dynamics, the average rate of events, r, decreases with the inverse

of the system age, so, r / t21 [4]. Thus we test if the rate of ants

leaving the nest drops off in this manner, and compare the

observed exit rate for the ants to that predicted by the null model.

Results

Ant exits were not compatible with the null model of

exponential decay because the probability density of waiting

times, w, is a straight line on a log-log plot and this is not consistent

with an exponential distribution (Fig. 1). Rather, the temporal

statistics are compatible with record dynamics. In logarithmic time

the random (i.e. Poisson) structure of the exits is visible (Fig. 2).

The evidence for record dynamics is as follows. For both control

and treatment the logarithmic waiting time, that is, the logged

ratio of successive exit times, t=Ln(Tk/Tk-1), is compatible with

an exponential distribution (Fig. 3, Text S1, Fig. S1). Additional

evidence for compatibility with log-Poisson statistics is provided by

the demonstration that the sequence of t values is ‘memoryless’,

that is there is little autocorrelation between successive logarithmic

waiting times (Text S1, Fig. S2), as expected in a log-Poisson

process [4]. Furthermore, the cumulative number of exits increases

linearly over the logarithm of time, that is the event rate is constant

in logarithmic time (Fig. 4). In both removal and non-removal

conditions the rate of exits, r, decreases as an inverse function of

time elapsed (Fig. 5), so r / t21. By contrast, the cumulative

number of events produced by the Weighting Waiting model

increases as a sigmoid, rather than a linear function of the

logarithm of time (Fig. 6), and the event rate does not fall off

according to the inverse of the time elapsed (Fig. 7).

Figure 5. The event rate decreases as a function of the inverse of time, r / t21. For both removal and non-removal, mean ant exit rates,
(Tk-Tk-1)

21, are non-stationary and drop off according to the inverse of time.N; 60 hr non-removal, Log 10 (Tk-Tk-1)
21=0.19 - 0.71*Log 10 Tk.#; 12 hr

removal, Log 10 (Tk-Tk-1)
21=0.31 - 0.79*Log 10 Tk. N; 200 hr removal, Log 10 (Tk-Tk-1)

21= 0.40–0.84*Log 10 Tk.
doi:10.1371/journal.pone.0009621.g005

Log-Poisson Statistics in Ants
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Figure 6. In the null model the accumulated number of events does not increase linearly in log time.Mean accumulated number of exits
over time, ,N(Tk). over logarithmic Tk, with N(t) normalised by colony size (#; colony size = 500, N; 100, N; 50). Each colony size was run for 26104

independent realisations. The points for each colony size overlay each other. The finite-size effect inherent in our heterogeneous Poisson process
model means that even when the ants drew their exit probabilities from a more right-skewed distribution than the empirical gaster weight
distribution, the pattern of exits was qualitatively similar.
doi:10.1371/journal.pone.0009621.g006

Figure 7. In the null model the event rate does not decrease as
a function of the inverse of time. The mean event rate rate over
time for the Weighting Waiting model. Same data as Fig. 6. (#; colony
size = 500, N; 100, N; 50).
doi:10.1371/journal.pone.0009621.g007

Figure 8. The exit rate is down-regulated when ants fail to
return. The rate exponent, l, from the t distribution for five colonies
that underwent both non-removal and removal conditions (colonies
1,2,5,6 & 7, Table S1). Smaller values of l indicate the t distribution is
skewed towards bigger values of t; t-test, t8= 2.52, p = 0.036.
doi:10.1371/journal.pone.0009621.g008

Log-Poisson Statistics in Ants
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Although exits under both removal and non-removal conditions

display qualitatively identical log-Poisson statistics, there are

quantitative differences between them. The intensity exponent,

l, from P(t .x) = e–lx was significantly lower in the removal

condition (Fig. 8, Table S1). Put another way, when ants are not

allowed to return, the distribution of the logged ratio of successive

waiting times, t was more skewed towards larger values. This

means ants took longer to exit the nest.

Discussion

We found that ant exits were compatible with a record

dynamics process while the null model could not reproduce the

observed statistics. Therefore, the temporal pattern of ant exits

implies that ant-ant interactions and fluctuating record signals

govern individual nest-leaving decisions. Log-Poisson statistics are

only found when the system is in a statistically non-stationary or

‘transient’ state [4,5]. Thus the demonstration of record dynamics

implies that the colony is not in a steady state, i.e. not at

equilibrium, even when the population size is stationary. Such a

mechanism might be adaptive for a dangerous task such as leaving

the nest, because individuals may only do so when the demand

reaches an unprecedented level, for example, the brood may be

hungrier and the adult workforce thirstier than ever before.

Intriguingly, record dynamics were present both when ants were

removed and in the non-removal control. In the treatment the

colony population size was forced to decrease. Similarly, in the

control the definition of an event as the exit of any ant previously

not seen leaving the nest effectively creates a diminishing sub-

population of individuals that have yet to be observed leaving the

nest. This sub-population is the equivalent of the population

remaining in the nest in the experiment where ants are prevented

from returning, as it also undergoes a decline towards zero, when

all ants in the colony would have been observed leaving the nest at

least once. As the same qualitative pattern was found under both

the removal and non-removal condition, interactions with ants

that have not recently returned to the nest seem sufficient for the

generation of log-Poisson statistics. So fluctuating record signals

and ant-ant interactions may regulate individual exit decisions

irrespective of whether external workers return to the nest.

If the temporal pattern of exits appears to be qualitatively

identical under both benign and hostile environmental conditions,

are there any quantitative differences? When workers are

prevented from returning, the distribution of t is significantly

more skewed towards larger values (Fig. 8). In honeybees [18],

bumblebees [19], and other ants [2], stimuli derived from

interactions with returning individuals up-regulate the exit rate.

However, to our knowledge this is the first evidence that the

complete severance of this feedback loop results in down-

regulation of the exit rate.

It should be emphasised that the statistical mechanism described

in the high water-mark record-dynamics model, is a macroscopic

summary of the processes occurring at the microscopic level. It does

not describe the specific microscopic processes. However scenarios

in which fluctuating record signals trigger events are always

associated with long-range correlations that span the system.

These correlations arise out of short-range interactions between

the components [5,10]. Since the designation of a new record

depends on the preceding sequence of record values, and because

through local interactions, the components share this collective

history, all components involved in a process controlled by record

dynamics must necessarily be strongly correlated [8,9,10,11].

Intermittent dynamics associated with event rates that deceler-

ate rapidly, but non-exponentially, have been described in 10000

generation experiments of bacterial evolution [20], declining

extinction rates [9,21], the ‘Tangled Nature’ model of macroevo-

lution [4,10], fluctuating commodity prices [22], type-II super-

conductors [11], colloidal gels [14], and spin glasses [8]. To our

knowledge this is the first experimental evidence for record

dynamics in living systems, that is, those that have been shaped by

Darwinian evolution.

The concept of complex systems was developed in the physical

sciences to explain the emergence of macroscopic phenomena

from the interactions of large numbers of microscopic compo-

nents. In biology this approach has greatly aided our understand-

ing of collective phenomena such as decentralised control and

pattern formation [23]. The theory of self-organisation was

originally developed to explain pattern formation in stationary

physical systems - those at a statistical steady state. However the

physical systems that decelerate according to record dynamics are

manifestly non-stationary. The identification of the record signal

even in purely physical systems is a hard problem, indeed the only

case in which the record signal has been unequivocally identified

(i.e. thermal energy) is the Edwards-Anderson spin-glass [4].

We have described a biological social system that displays the

same statistics as found in many non-stationary physical systems

governed by decelerating record dynamics, and hence infer that a

similar statistical mechanism is in operation in the ants. What

could be the individual mechanism underlying the collective

record dynamics? One plausible scenario is that individual

variation in the perception of the record signal can lead to

variation in the memory of the standing record amongst

individuals. We have demonstrated that decision-making in ant

societies may originate from the combination of fluctuating

record signals and ant-ant interactions. This suggests that further

understanding of signals and interactions between individuals

within the colony could elucidate not only the organisation of

insect societies but also facilitate the understanding of general

principles of system organisation. The challenge for biologists is

to identify these signals and interactions by quantifying the

behaviour of the individual colony members over time. This

opens a future avenue for new manipulative experimentation and

theory.

Supporting Information

Text S1 Electronic supplementary material. Refers to Table S1,

and Figures S1, S2 and S3.

Found at: doi:10.1371/journal.pone.0009621.s001 (0.32 MB

PDF)

Table S1 Regression statistics for the individual colonies. Least

squares linear regressions were performed on the survivorship

plots, P(t.x), for t=Ln(Tk)-Ln(Tk-1) (Fig. 3 and Fig. S1 a–f).

Found at: doi:10.1371/journal.pone.0009621.s002 (0.05 MB

DOC)

Figure S1 Logarithmic waiting times are exponentially distrib-

uted for two-hour removals. Survivorship of the logarithmic

waiting times, t, that is P(t.x). a–f) The six colonies that

underwent a two-hour removal. g) Cumulative distribution for the

scaled waiting times for the same data. Solid line- empirical data.

Circles- Fit provided by the scaled waiting time distribution

expected from a Log-Poisson process; P (( Tk - Tk-1)/Tk-1 ,x ) = 1-

(x+1)2a. Here the best fit was provided by a=13.

Found at: doi:10.1371/journal.pone.0009621.s003 (0.11 MB TIF)

Figure S2 The time-series of logarithmic waiting times is

‘memoryless’. Mean autocorrelation of the logged ratio between

successive exit times, t, and the lagged values.
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Found at: doi:10.1371/journal.pone.0009621.s004 (0.04 MB

PDF)
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