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1 Abstract

One of the major costs in a software project is the construction of
test-data. This paper outlines a generalised test-case data genera-
tion framework based on optimisation techniques. The framework
can incorporate a number of testing criteria, for both functional and
non-functional properties. Application of the optimisation frame-
work to testing specification failures and exception conditions is
illustrated. The results of a number of small case studies are pre-
sented and show the efficiency and effectiveness of this dynamic
optimisation-base approach to generating test-data.

1.1 Keywords

Automatic test-case generation, software testing, formal specifica-
tions, exception conditions, optimisation techniques, simulated an-
nealing.

2 Introduction

Software testing is an expensive process, typically consuming at
least 50% of the total costs involved in developing software [3],
while adding nothing to the functionality of the product. It remains,
however, the primary method through which confidence in software
is achieved. Automation of the testing process is desirable both to
reduce development costs and also to improve the quality of (or at
least confidence in) software. While automation of the testing pro-
cess – the maintenance and execution of tests – is taking hold com-
mercially, the automation of test-data generation has yet to find its
way out of academia. Ould has suggested that it is this automation
of test-data generation which is vital to advance the state-of-the-art
in software testing [17].

Many techniques for generating test-data have been developed.
These can broadly be classified into static and dynamic methods.
Static techniques do not require the software under test to be exe-
cuted. They generally use symbolic execution to obtain constraints

on input variables for the particular test criterion. Solutions to these
constraints represent the test-data. Many of the limitations of the
static techniques come from their use of symbolic execution. It
is difficult to analyse recursion, dynamic data-structures, array in-
dices which depend on input data and some loop structures using
symbolic execution. Also, the problem of solving arbitrary con-
straint systems is known to be intractable. However, it is often the
case that the constraints which arise from real software are in a
subset of general constraint systems which can be solved. In con-
trast, dynamic methods require that the software under test is ex-
ecuted. Dynamic methods generally involve a directed search for
test-data which meets a desired criterion. However the computa-
tional expense involved in repeated execution can mean that obtain-
ing test-data is computationally intractable for complex software
with a large parameter space. Figure 1 shows the major approaches
presented in the literature [5, 15, 12, 6, 22, 16, 13, 10]. The arrows
in the figure indicate the progression of ideas and methods through
the various approaches. While the 1980s saw the emergence of for-
mal methods as a focus of academic research attention, the 1990s
has seen the growth once more of software testing research. This is,
possibly, partly due to the realisation that the use of formal meth-
ods does not obviate the need for good software testing and also the
realisation that software testing can provide a cost-effective means
of verification.

All of these previous approaches focus on generating test-case data
in a narrow area; they all aim to generate test-data for testing func-
tional properties, with most selecting test-data using structural test-
ing criteria. The application of many of these techniques is lim-
ited by lack of generality. This lack of generality can be seen in
the limited data-types or control-flow structures which some of the
techniques can process and also in the limited testing criteria of the
others. The aim of the present work is to develop a generalised
framework for test-case data generation. The objectives are to au-
tomate the generation of test-case data to satisfy both black and
white box testing of functional properties and also non-functional
properties. This paper focuses on two applications of this general
framework: the first relates to falsification of program specifica-
tions (functional testing), the second relates to exception condition
testing (non-functional testing).

The generality of the approach comes from the use of optimisation
techniques. Optimisation techniques are a flexible and powerful
search method with an ability to find good results for many ex-
tremely difficult problems. The next two sections outline methods
for guiding a search to select test-data to illustrate specification fail-
ures and exception conditions. Because of the size and complexities
of the search space it is unlikely that exhaustive or simple neigh-
bourhood search strategies would obtain good test-data. Therefore
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Figure 1: Some Approaches to Automating Test-Case Data Generation

optimisation techniques, specifically simulated annealing1 , are in-
troduced. Some case-studies are then given to show how simulated
annealing manages to generate good test-case data despite the com-
plexities and size of the search space.

3 Testing Specification Failure

Dynamic testing of functional properties can be divided into two
categories, functional and structural. Structural tests are considered
white-box, the underlying code of the software being used to de-
termine the test-data. In contrast functional testing is considered
black-box, the test inputs and expected outputs are derived solely
from the functional specification. To allow functional test-data to
be generated automatically it is obviously necessary for the spec-
ification to be in a sufficiently formal notation. Testing against a
formalised specification has a number of advantages – it has the
potential to detect missing functionality, it is independent of the
implementation language and it provides scope for an automated
test oracle.

For highly safety-critical software system it is often the case that
formal proofs must be developed. These proofs must show that
the software is a refinement of the formal specification. Producing
formal-proofs is a complex, time-consuming and expensive pro-
cess. If the putative properties are simply untrue then attempting
a proof (which will inevitably fail) is an extraordinarily expensive
method to find errors in the software. To demonstrate that a proof
will fail it is only necessary to find one test-case which shows the

1Simulated annealing is a very simple optimisation algorithm
to implement, it is for this reason that it has been used during the
development and assessment of prototype tools. There is no sug-
gestion that is the superior optimisation technique, an investigation
as to the merits of other optimisation techniques (i.e. genetic al-
gorithms, tabu-search, etc.) for generating test-data is something
which is planned for the future.

specification is not satisfied. Indeed it is often stated that a suc-
cessful test-case is one which illustrates software error (Dijkstra
1972). For the purposes of investigating an optimisation-based ap-
proach to testing specification failure the formal specifications have
been specified in a SPARK-Ada proof contexts [18, 2] like nota-
tion. These proof contexts consist of a pre- and post-condition for
the subprogram. These conditions consist of an Ada expression, ex-
tended to allow logical implication and equivalence. Figure 2 shows
how the formal specification is expressed as part of the subprogram
specification for a simple integer square-root subprogram.

procedure Int Root (N : Integer; Root : out Integer);
��# pre N >= 0;

��# post (Root � Root <= N) and

��# (N < (Root + 1) � (Root + 1));

Figure 2: Formal Specification Notation

Variables in the pre-condition refer to input values (i.e. prior to ex-
ecution). Variables in the post-condition can refer to either output
values or input values (when decorated with a˜), when a variable is
both imported and exported from a routine. To show that a partic-
ular implementation does not fully meet its specification it is nec-
essary to find a test-case which prior to execution satisfies the pre-
condition but after execution does not satisfy the post-condition.
Such a process can be difficult, time-consuming and hard to man-
age (as the process lacks a quantified measure of completeness).
However if such a process could be fully automated then it could
be routinely applied prior to attempting proofs or other traditional
testing methods. The following describes a method for carrying out
this automation using simulated annealing.



3.1 The Dynamic Approach

To allow a dynamic approach to be used it is necessary to devise an
objective function which will guide the search. The solution we are
searching for is a test-case which satisfies the pre-condition before
execution of the subprogram and the negated post-condition2 after
execution. Obviously any particular test-case will either meet this
criterion or it will not. However this is not sufficient to guide the
search. We therefore need the objective function to return good val-
ues for those test-cases which nearly meet the criterion and worse
values for those which are a long way away from meeting the crite-
rion. For example, consider the constraint X > 50. If X = 49 then
this constraint is a lot nearer to being true than when X = 2 (how-
ever it remains a fact that they are both false, we just consider one
to be less false than the other!).

The objective function is calculated as follows. Firstly the pre-
condition and negated post-condition are converted to Disjunctive
Normal Form (DNF). For example the condition A! (B_ (C^D))
would become :A_B_ (C^D). A solution to any one disjunct
(i.e. :A, B or (C^D)) then represents a solution to the entire con-
dition. All possible pairs of a single pre-condition disjunct and post-
condition disjunct are then formed using conjunction. These pairs
can be considered as an encoding of one of the possible ways in
which the software can fail. The search process attempts to find
a solution to each of these pairs in turn. Each term within the pair
adds a value to the pairs overall cost according to the rules shown in
Table 1 (the value K in the table refers to a failure constant which
is always added if the term is not true). If all terms are true then
it can be seen that the overall cost will be zero, this becomes the
stop-condition for the simulated annealing search.

Term Value

Boolean if TRUE then 0
else K

a = b if abs(a�b) = 0 then 0
else abs(a�b)+K

a 6= b if abs(a�b) 6= 0 then 0
else K

a< b if a�b < 0 then 0
else (a�b)+K

a� b if a�b � 0 then 0
else (a�b)+K

a> b if b�a < 0 then 0
else (b�a)+K

a� b if b�a � 0 then 0
else (b�a)+K

Table 1: Term Values

Using this objective function simulated annealing can be used to
search for test-data to illustrate flawed functionality.

3.2 Simple Example

A simple example will help illustrate how this guides the search
process. Consider a simple wrap-round incrementer routine as
specified in Figure 3. This simple routine should count from 0 to
10 and then wrap-around back to 0 again.

The first step is to convert the pre-condition and the negation of the

2Satisfying the negation of the post-condition is equivalent to
falsifying the post-condition.

procedure Wrap Inc (N : in out Integer);
��# pre N >= 0 and N <= 10;

��# post (N˜ < 10 -> N = N˜ + 1) and

��# (N˜ = 10 -> N = 0);

Figure 3: Specification of Wrap-Round Increment Routine

post-condition to DNF. It is then necessary to form all possible pairs
of pre-condition and post-condition disjunction. The pre-condition
is already in DNF and consists of a single disjunct. The DNF of the
negated post-condition consists of two disjuncts (shown in paren-
thesis below) hence there are two possible pairings as follows.

N ˜� 0^N ˜� 10^ (N ˜< 10^N 6= N ˜+1) (1)

N ˜� 0^N ˜� 10^ (N ˜= 10^N 6= 0) (2)

Let us consider the second of these pairs. If, say, N = 2 then each
term contributes the following to the overall cost (assuming that N
after execution will equal 3).

Term Cost Contribution

N ˜� 0 0
N ˜� 10 0
N ˜= 10 abs(2�10)+K = 8+K
N 6= 0 0

It can be seen that the overall condition is false, however the cost
gives a measure of how false. If we now consider N = 10 then
each term contributes the following (assuming that the software is
implemented correctly and that N after execution will equal 0).

Term Cost Contribution

N ˜� 0 0
N ˜� 10 0
N ˜= 10 0
N 6= 0 0�0+K = K

This shows that while the overall condition remains false it is now
less false than it was before. Indeed if the software had been im-
plemented incorrectly (for example it wrapped-round at 11 not 10
possibly due to > rather than � being used) then the cost would
be reduced to 0, hence this would represent a test-case which illus-
trated a specification failure. This flawed implementation appears
at the end of this paper.

Using this method of assigning a cost to a particular test-case
through an objective function, guidance can be given to the search
process. Due to the complexities of software systems it is extremely
unlikely that this cost surface would be linear or continuous, for ex-
ample a small change in input data can cause a different path to
be traversed causing a radically different cost value. This fact lim-
its the usefulness of simple hill-climbing or neighbourhood search
strategies. It is also possible that the search space will be extremely
large making exhaustive search strategies computationally infeasi-
ble. For these reasons heuristic global optimisation techniques have
been used. The search aims to minimise the value of the objective-
function for each of the pre- and post-condition pairs in turn. When-
ever a cost of zero is found the input-data represents a test-case to
show specification failure.



We therefore use simulated annealing [1] to find suitable test-cases,
and here present a number of examples to demonstrate its effec-
tiveness in uncovering implementation errors with respect to the
specifications. It is also possible to extend these ideas to search for
test-cases which meet other criteria. One such extension is to target
the search at finding test-cases which cause exception conditions;
this is discussed in the following section. Other extensions include
finding violations of safeness conditions, boundary analysis, etc.

4 Testing Exception Conditions

As with specification testing, when testing exception conditions it
is usually more interesting to focus on the failure case (i.e. the case
where an exception condition arises). Perhaps the most common
form of exception condition is that of numeric overflow or under-
flow (this is known as a Constraint Error in Ada). Indeed
in a SPARK Ada program a Constraint Error is the only ex-
ception condition which can occur. The remaining exception con-
ditions cannot arise because of the rules of SPARK Ada. It is pos-
sible to use the SPARK tools to prove that Constraint Errors
cannot arise (the run-time checks [2]). The SPARK Examiner sim-
ply inserts additional conditions at appropriate places to ensure that
run-time exception conditions cannot occur, the developer then has
to prove the resulting conditions. However, as with specification
proofs, this can be a complex, time-consuming and expensive way
to find errors.

The conditions which may cause exceptions to be raised can be
specified in a similar way to the formal specification. These are
the negations of the conditions inserted by the SPARK tools as part
of the exception-free proof process. The conditions represent the
constraints which must be satisfied at a particular point during the
execution for an exception condition to occur. Figure 4 shows an
example for a simple integer square routine.

procedure Square (N : in Integer; S : out Integer) is

begin

��# exception not (N�N >= Integer’First and

��# N�N <= Integer’Last);

S := N � N;

end Square;

Figure 4: Exception Condition Notation

4.1 The Dynamic Approach

Again the search for test-case data requires guidance using an ob-
jective function. The same objective function as for specification
failure testing can be used. However the values used for variables
must be those intermediate values at the exact point in the code
where the exception condition is stated. For example, converting
the exception condition from figure 4 to DNF results in the follow-
ing:

:(N �N � Min Int)_:(N �N � Max Int)

Assuming the maximum integer is 231 then we can see how this
guides the search process for the second disjunct. If N = 100 then
the objective function is equal to 231� (100�100) = 2147473648,
which is a long way from being true. However, if N = 46340 then
the value of the objective function decrease to 88048 which is much
closer to being true. Indeed, if N = 50000 then the objective func-
tion becomes zero indicating that the condition has been met and

also that an exception condition will occur. The objective function
is further complicated because it also needs to guide the search to
test-data which executes the desired statement. Details of this will
be presented in a later paper, a summary can be found in [20].

The search space remains large, complex and unlikely to be linear
and continuous. It is therefore necessary to use a search strategy
which can obtain good result despite these problems. The next sec-
tion introduces optimisation techniques and the specific technique
of simulated annealing. Simulated annealing has been used both
because of its simplicity and its ability to obtain good results. Fol-
lowing this some simple case studies are presented to show the ef-
fectiveness of the simulated annealing search in finding test-cases
to cause exception conditions.

5 Optimisation and Simulated Annealing

Optimisation techniques make very few assumptions about the un-
derlying problem which they are attempting to solve. It is this prop-
erty which allows them to be applied to a wide variety of problems.
Optimisation techniques are simply directed search method which
attempts to find minimal (or maximal) values of a particular objec-
tive function. Thus to apply optimisation techniques to a problem it
is only necessary to devise an objective function to direct the search.
Simulated annealing is one such optimisation technique. It has been
used to assess the feasibility of an optimisation-based approach to
generalised test-case data generation during this work.

Simulated annealing is based on the idea of neighbourhood search
[19]. The ideas were first published in 1953 [14], thirty years later
Kirkpatrick [11] suggested a form of simulated annealing could be
used to solve complex optimisation problems. The algorithm works
by selecting candidate solutions which are in the neighbourhood
of the given candidate solution. Better candidate solutions (i.e.
with respects to an objective function) are always accepted, how-
ever worse candidate solutions are accepted in a controlled manner.
The idea is that it is better to accept a short-term penalty in the hope
of finding significant rewards longer term. In accepting an inferior
solution the search aims to escape from locally optimal solutions. A
control parameter (known as the temperature) is used to control the
acceptance of inferior candidate solutions. Initially the temperature
is high allowing almost unrestricted movement around the search
space. The temperature is gradually reduced during the search con-
straining the acceptance of inferior candidate solutions. Eventually
the process freezes and no inferior solutions can be accepted, re-
ducing the search to simple hill climbing. Figure 5 shows the basic
outline of the simulated annealing algorithm.

Simulated annealing is a general purpose search strategy. Much of
the algorithm remains completely unchanged across problem do-
mains. Dowsland [7] classifies the implementation decisions which
must be made into two categories – generic and problem specific.
The generic decisions represent the parameters of the algorithm it-
self. The main generic implementation decision is how the temper-
ature will be reduced, this is known as the cooling schedule. The
problem specific decisions include the representation of the solution
space, the neighbourhood and how to quantify the cost (goodness)
of a solution. As we are dealing with software test-data generation
the representation of a candidate solution and neighbourhood can
remain fixed across this domain. A candidate solution is obviously
a collection of data values which represent a test-case. This leads
to the natural representation of a candidate solution as a number of
data items which are derived from the underlying data types of the
programming language used for the software under test. The neigh-
bourhood should represent the set of candidate solutions which are



procedure Simulated Annealing is

Current Solution, New Solution : Solution;
Current Cost, New Cost : Float;
Temperature : Float;
Length : Integer;

begin

INITIALISE (Current Solution, Temperature, Length);
�� Start with :-

�� Random solution

�� Temperature to allow almost free movement

�� Length to allow some solutions to be accepted

Current Cost := COST (Current Solution);

�� Obtain cost using objective function

loop

for I in 1 . . Length loop

New Solution := GENERATE (Current Solution);

�� Generate new solution in the neighbourhood

�� of the current solution

New Cost := COST (New Solution);

if New Cost < Current Cost then

Current Solution := New Solution;

Current Cost := New Cost;

�� Accept Solution

else

if (exp ((Current Cost � New Cost) =
Temperature) > Random (0, 1)

then

Current Solution := New Solution;

Current Cost := New Cost;

�� Accept Solution

else

�� Do not accept solution

null;

end if;

end if;

end loop;

COOL (Length, Temperature);

�� Reduce the temperature and set the number

�� of solution to examine at the reduced temperature

exit when STOP CRITERION;

end loop;

end Simulated Annealing;

Figure 5: Simulated Annealing Algorithm

in some respects close to a given candidate solution. Given the rep-
resentation of candidate solutions, the neighbourhood can be de-
fined as follows for the fundamental Ada types.

Basic Type Neighbourhood

INTEGER � Some proportion of allowed range
FLOAT � Some proportion of allowed range
BOOLEAN TRUE or FALSE

ENUMERATION Any value from the enumeration3

Methods for quantifying the cost of a candidate solution depend en-
tirely upon the software testing problem being addressed. These
were discussed in previous sections for the problems of finding
specification failures and exception conditions.

The following section shows some simple case studies to illustrate
the effectiveness of the optimisation based (using simulated anneal-
ing) approach in generating test-case data to illustrate specification
failures or exception conditions. The results show that this can be
done both effectively and efficiently.

6 Case Studies

6.1 Specification Testing

This section presents the results of using simulated annealing to
find test-case data highlighting specification failures for three Ada
programs – middle, bubble sort and tomorrow. The incorrect im-
plementations of these three routines can be found at the end of this
paper.

The specification for the middle routine is shown in Figure 6. It
states that given three integer values this routine should return the
middle numeric value. However if two of the input values are the
same the return value should be the other input value. If all three
input values are identical then any return value will satisfy the given
specification. The implementation of the routine, however, always
returns the first input value when any of the input values are the
same. Hence, the desired test-case is one where two of the input
values are the same.

function Middle (A, B, C : Integer) return Integer;
��# pre True;

��# return M => ((B<A and A<C) -> M=A) and

��# ((C<A and A<B) -> M=A) and

��# ((A<B and B<C) -> M=B) and

��# ((C<B and C<A) -> M=B) and

��# ((A<C and C<B) -> M=C) and

��# ((B<C and C<A) -> M=C) and

��# (B=C -> M=A) and (A=C -> M=B) and (A=B -> M=C);

Figure 6: Specification of Middle Routine

The specification for the bubble routine is shown in Figure 7. It
states that given an array of input values the routine should sort
them into ascending order4. The implementation of this routine,
however, does not perform enough iterations to sort the array when
the smallest input values appears as the last element in the input

3No neighbourhood range is used for enumeration types as the
ordering of enumeration literals is not always significant.

4In fact, the specification is too weak because it only states that
the values in the returned array should be ordered. It does not state
that they must be a permutation of the input values.



array. Hence the desired test-case is one where the smallest value
in the array is in the last element.

type My Int is Integer range 0 . . 1000;
type My Arr is array (1 . . 10) of My Integer;

procedure Bubble Sort (A : in out My Arr);
��# pre True;

��# post X(1) <= X(2) and X(2) <= X(3) and

��# X(3) <= X(4) and X(4) <= X(5) and X(5) <= X(6) and

��# X(6) <= X(7) and X(7) <= X(8) and X(8) <= X(9) and

��# X(9) <= X(10);

Figure 7: Specification of Bubble Sort Routine

The specification for the tomorrow routine is shown in Figure 8.
Given a date including the day of the week the routine should re-
turn the date of tomorrow, accounting for leap years. However the
implementation is incorrect in that it considers all years divisible
by 4 as leap years (rather than just years divisible by 400 or 4, but
not 100). Hence the desired test-case is one where the input date is
28th Feb on a year which is divisible by 100 but not by 400.

The following table shows the results of using simulated annealing
to search for test-data that illustrates a specification failure. The
search process was repeated 50 times to give an indication of the
robustness of the search. Each search started using a randomly gen-
erated initial candidate solution and the following information was
recorded; whether the test-case data was a solution (i.e. was a spec-
ification failure illustrated), the number of test-cases examined dur-
ing the search and the execution time for the search5. The figures
below show the average percentage of test-cases examined during
each search, the average execution time for each search and also the
total number of failure illustrating test-cases produced over the 50
search attempts.

Size of Space Valid Execution
Param. Space Searched Test-Cases Time

Middle
100000 0:0445% 50 5 sec.

Bubble Sort
1e+30 8:7e�11% 50 23 sec.

Tomorrow
286440 0:2467% 50 31 sec.

These results demonstrate the effectiveness of the optimisation-
based approach to generating test-case data for specification fail-
ure testing. For example consider the tomorrow program, there are
only 9 test-cases which would highlight the flaw in the given im-
plementation. This represents only 0:00314% of the search space.
Considering only the disjunct pair which encodes the flaw in the im-
plementation simple random testing requires on average more than
31;000 iterations to illustrate the flaw. In comparison the simulated
annealing search requires on average only 3;000 iterations which is
a significant improvement. Given that this test-generation and exe-
cution is entirely automated it could be used as a pre-proof phase to
attempt to detect errors before complex proofs are attempted.

6.2 Exception Condition Testing

5The system executes on an Intel Pentium Pro 200MHz machine
running Linux and is coded in Ada 95.

type Day Type is

(Mon, Tue, Wed, Thu, Fri, Sat, Sun);

type Date Type is range 1. .31;

type Month Type is

(Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec);

type Year Type is range 1900. .3000;

procedure Tomorrow

(Day : in Day Type;
Date : in Date Type;
Month : in Month Type;
Year : in Year Type;
Next Day : out Day Type;
Next Date : out Date Type;
Next Month : out Month Type;
Next Year : out Year Type);

��# pre (Date = 31 ->
��# (Month = Jan or Month = Mar or

��# Month = May or Month = Jul or

��# Month = Aug or Month = Oct or

��# Month = Dec)) and

��# (Month = Feb -> Date <= 29);

��# post (Day = Sun -> Next Day = Mon) and

��# (Day == Sun -> Next Day = Succ(Day)) and

��# (Date = 31 ->
��# (Next Date = 1 and

��# (Month = Dec ->
��# (Next Month = Jan and

��# Next Year = Year + 1)) and

��# (Month == Dec ->
��# Next Month = Succ(Month)))) and

��# ((((Date = 30 and

��# (Month = Apr or Month = Jun or

��# Month = Sep or Month = Nov)) or

��# (Date = 29 and Month = Feb)) ->
��# (Next Date = 1 and

��# Next Month = Succ(Month) and

��# Next Year = Year)) and

��# (((Date = 28 and Month = Feb and

��# ((Year mod 4 = 0 and Year mod 100 == 0) or

��# Year mod 400 = 0)) ->
��# (Next Date = 29 and

��# Next Month = Month and

��# Next Year = Year)) and

��# ((Date = 28 and Month = Feb and not

��# ((Year mod 4 = 0 and Year mod 100 == 0) or

��# Year mod 400 = 0)) ->
��# (Next Date = 1 and Next Month = Mar and

��# Next Year = Year))));

Figure 8: Specification of Tomorrow Routine



This section presents the results of using simulated annealing to
find test-case data which highlights exception conditions for two
Ada programs – square and integer square root.

The square routine can be seen in Figure 9. The exception condi-
tion under examination occurs when the value of N�N is out of
bounds for the type Large Integer. Hence the desired test-case
is where the value of N�N overflows its type range.

type Small Integer is range �10001 . . 10001;
type Large Integer is range �100000000 . . 100000000;

procedure Square

(N : in Small Integer; S : out Large Integer) is

begin

��# exception (N�N) < Large Integer’First or

��# (N�N) > Large Integer’Last;

S := Large Integer(N) � Large Integer(N));

end Square;

Figure 9: An Exception Condition for Square Routine

The integer square root routine can be seen in Figure 10. The par-
ticular exception condition specified in this routine is where the as-
signment of S+T to S is out of bounds for the type My Natural.
Hence the desired test-case is where the input parameter N causes
S+T to overflow its type range.

type My Natural is Natural range 0 . . 10 000;

procedure IntRoot (N : My Natural; Root : out My Natural) is

R : My Natural := 0; S, T : My Natural := 1;
begin

loop

exit when S > N;
R := R + 1; T := T + 2;
��# exception (S+T) < My Natural’First or

��# (S+T) > My Natural’Last;

S := S + T;

end loop;

Root := (My Natural (R));

end IntRoot;

Figure 10: An Exception Condition for Integer Square Root
Routine

The results of the simulated annealing search for test data are shown
below. The system was set to search for test-cases which illus-
trated the specified exception conditions 50 times. The figures
below show the average percentage of parameter space that was
searched, the average search time and also the number of test-case
which caused the desired exception that were found.

The following table shows the results of using simulated anneal-
ing to search for test-data that illustrates an exception condition.
The search process was repeated 50 times to give an indication of
the robustness of the search. Each search started using a randomly
generated initial candidate solution and the following information
was recorded; whether the test-case data was a solution (i.e. was
an exception condition caused), the number of test-cases examined
during the search and the execution time for the search. The figures
below show the average percentage of test-cases examined during
each search, the average execution time for each search and also the

total number of exception generating test-cases produced over the
50 search attempts.

Size of Space Valid Execution
Param. Space Searched Test-Cases Time

Square
20002 0:265% 50 <0.5 sec.

Integer Square
Root

10000 2:07% 50 <0.5 sec.

These results once again demonstrate the effectiveness of the op-
timisation based approach to generating test-case data for finding
exception conditions. Again the process is entirely automatic re-
quiring very little user effort to initiate the search for test-case data.
The above examples are for illustration only. The aim is to show
how optimisation can be used for exception generation testing. The
general use of optimisation is intended to allow us to generate test-
data where non-linearity is exhibited. In these examples a simple
hill climbing search would have succeeded.

7 Further Work and Generalisations

The results presented above show that it is possible to use opti-
misation to automatically generate test-case data both effectively
and efficiently. The degree of effort required to find test-case data
for the problems presented above is significantly lower than that
required by manual test-data generation or tool-supported proof at-
tempts. Unsuccessful proof attempts are an extremely expensive
way in which to find errors in software. Targeting manual test-
ing at flaw finding in specifications or in run-time conditions is an
very difficult task to manage will little guidance on the degree of
completion and when to stop. This approach can be applied in a
completely automated manner (obviously for specification failure
testing effort is required to derive the specification information in
a suitable form6) and thus could be applied almost for free before
other testing begins.

To further assess the optimisation-based approach to provide a use-
ful, generalised framework for automated test-case data generation
more work on several fronts is needed. Perhaps the most important
is that of gathering empirical evidence as to the effectiveness of the
technique. It is essential to evaluate the approach using real, large-
scale software to assess how effectively test-cases can be generated.

7.1 Optimisation Techniques

There are a variety of other optimisation techniques which could be
examined. A detailed comparison of the various optimisation tech-
niques to discover their relative strengths and weaknesses would be
required. Tabu-search [8] and genetic algorithms [9] are two such
optimisation techniques which are suitable for investigation. Some
preliminary work on methods to apply tabu-search and genetic-
algorithms has already been carried out (see [21]). However, in-
tegration into the prototype tool-set is required to allow a full as-
sessment of their performance.

Optimisation techniques will never be able to guarantee their re-

6Note: While this paper presents the idea of finding flaws in full
specifications, the approach is applicable to checking simple safe-
ness conditions or any other conditions which must hold that may
be significantly cheaper to derive from the software requirements.



sults7. However, it may be possible to devise software metrics
which can give guidance in a number of areas – to suggest which
optimisation techniques will give the best results; to suggest suit-
able parameter values for the optimisation techniques; and also to
give an indication as to the likely quality of the result.

7.2 Search Efficiency

From the results presented in the previous section it can be seen that
the search space (even for simple routines) can be extremely large.
It can be seen that the current simple simulated annealing search is
more efficient in its search when the parameter space is large (i.e.
a smaller proportion of the parameter space is examined). Meth-
ods to reduce the amount of the search space examined may still be
useful and indeed may allow very complex or higher-level routines
to be processed. A number of problem specific enhancements can
be made to the various optimisation techniques. For example, the
neighbourhood of simulated annealing can be restricted to only al-
low variables that contribute to a condition failure to be changed.
Careful selection of tabu-move attributes will also increase the effi-
ciency of the search.

7.3 Generalisation

For each testing criteria to be addressed it is necessary to consider
how to represent it as an optimisation problem. This paper shows an
approach for representing specification failure and exception condi-
tion generation in an optimisation framework. These two problems
are simply a special case of constraint solving involving a trans-
formation of the variable values (i.e. the execution of the software
under test). Thus the same objective function can be used to guide
the search for general constraint solving. Indeed a tool using the ob-
jective function developed for general constraint solving has been
integrated into a proof-tool being developed at York [4]. Prelimi-
nary work has also been carried out on testing for worst-case exe-
cution time (WCET) and stack-usage (see [21], where the objective
function is simply a measure of execution time or stack size). There
remains a large number of test-data selection criteria worthy of con-
sideration. For each criterion it is only necessary to devise an ob-
jective function which gives the search process sufficient guidance.
This allows virtually any testing criteria to be incorporated into the
same generalised framework. In particular structural testing criteria
and coverage will form the focus for work in the near future.

8 Conclusions

Many of the approaches for automated software test-data genera-
tion presented in the literature are inflexible or have limited capac-
ity. They are often limited to particular data-types or control-flow
structures and can often only process the lowest level routines.

Optimisation techniques are a flexible and powerful approach to
solving difficult problems. To allow the optimisation technique to
generate test-data for a new testing criteria it is necessary only to
devise a suitable objective function. Because of this it is hoped that
it will be possible to build a general framework which can be used
to generate test-data for a wide class of testing criteria.

The results presented in this paper are encouraging and justify fur-
ther work in the field. The ability to obtain test-data illustrating

7For example, if optimisation fails to find test-data illustrating
a specification failure that does no imply that the software must
be correct, it simply means that the search failed to find any such
failures.

specification failures or exception conditions automatically could
save a significant amount of time and money (time and money
which would have been spent on unsuccessful proof attempts) in the
development software, particularly safety-critical software where
such formal specifications are readily available.

As with all testing approaches, we can only show the presence of
faults not their absence. Indeed the failure of the search to find flaw
illustrating test-cases does not indicate that the software is correct,
only that the search failed. However, given an intensive directed
search for flaws, the failure to find flaws does increase confidence
in the quality of the software which is after all the aim of testing.
The tools we provide for falsification based on heuristic optimisa-
tion need not be of high integrity (that is not to say they need not be
of a high quality!) even when testing safety critical code. We view
them as producing test-cases that can be checked by other means.
This is important since the algorithms are stochastic and it is diffi-
cult to reason about their efficacy for application to arbitrary code.
We envisage them being used within a wider and integrated set of
verification and validation tools.
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10 Implementations

This section gives the incorrect implementations for each of the
programs presented in the specification failure section. The point
at which the implementation is incorrect is highlighted and it is this
error which the search process should illustrate by the generation of
suitable test-data.

10.1 Wrap-Round Counter

procedure Wrap Inc (N : in out Integer) is

begin

�� Error in line below should be >=

if N > 10 then

N := 0;

else

N := N + 1;

end if;

end Wrap Inc;

10.2 Bubble Sort

procedure Bubble Sort(A : in out My Arr) is

begin

for I in 1 . . 8 loop �� Error loop sould go to 9

for J in 1 . . 9 loop

if X(J) > X(J+1) then

Swap (X(J), X(J+1));

end if;

end loop;

end loop;

end Bubble Sort;



10.3 Middle

function Middle (A, B, C : My Integer) return My Integer is

begin
if (A < B and B < C) or else (C < B and B < A)
then

return B;
elsif (A < C and C < B) or else (B < C and C < A)
then

return C;
elsif (B < A and A < C) or else (C < A and C < B)
then

return A;
else

�� Error should return unique value

�� when two values are the same

return A;
end if;

end Middle;

10.4 Tomorrow

procedure Tomorrow
(Day : in Day Type; Date : in Date Type;
Month : in Month Type; Year : in Year Type;
Next Day : out Day Type; Next Date : out Date Type;
Next Month : out Month Type; Next Year : out Year Type)

is

begin

Next Day := Day; Next Date := Date;
Next Month := Month; Next Year := Year;
if Day = Sun then

Next Day := Mon;
else

Next Day := Day Type‘Succ (Day);
end if;

if (Month = Dec and Date = 31) then

Next Date := 1; Next Month := Jan;
Next Year := Year + 1;

elsif (Date = 28 and Month = Feb) then

�� Error - should be

�� ((Year mod 4 = 0 and Year mod 100 == 0)

�� or Year mod 400 = 0)
if ((Year mod 4 = 0) or Year mod 400 = 0)
then

Next Date := 29;
else

Next Date := 1;
Next Month := Mar;

end if;
elsif (Date = 31 or (Date = 29 and Month = Feb) or

(Date = 30 and

(Month = Apr or Month = Jun or Month = Sep or

Month = Nov)))
then

Next Date := 1;
Next Month := Month Type‘Succ(Month);

else

Next Date := Date + 1;
end if;

end Tomorrow;
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